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ABSTRACT
Motivation: Cytosine methylation is widespread in most eukaryotic genomes and is known to play a substantial role in various regulatory
pathways. Unmethylated cytosines may be converted to uracil through the addition of sodium bisulphite, allowing genome-wide quantification
of cytosine methylation via high-throughput sequencing. The data thus acquired allows the discovery of methylation ‘loci’, contiguous regions of
methylation consistently methylated across biological replicates. The mapping of these loci allows for associations with other genomic factors to
be identified, and for analyses of differential methylation to take place.
Results: The segmentSeq R package has been extended to identify methylation loci from high-throughput sequencing data from multiple
conditions. A statistical model is then developed that accounts for biological replication and variable rates of non-conversion of cytosines in
each sample to compute posterior likelihoods of methylation at each locus within an empirical Bayesian framework. The same model is used
as a basis for analysis of differential methylation between multiple experimental conditions with the baySeq R package. These analyses are
demonstrated on a set of data derived from Dicer-like mutants in Arabidopsis to reveal complex interactions between the different Dicer-like
mutants and their methylation pathways.
Availability: The segmentSeq and baySeq packages are available on the Bioconductor (http://www.bioconductor.org).
Contact: tjh48@cam.ac.uk

1 INTRODUCTION
Cytosine methylation, found in most eukaryotes and playing a key role in gene regulation and epigenetic effects, can be investigated at
a genome wide level through high-throughput sequencing of bisulphite treated DNA. Treatment of denatured DNA with sodium bisulphite
deaminates unmethylated cytosines into uracil; sequencing these data thus allows, in principle, not only the identification of every methylated
cytosine but an assessment of the proportion of cells in which the cytosine is methylated. Moreover, by comparing these quantitative
methylation data across experimental conditions, genomic regions displaying differential methylation can be detected.

The data available for methylation locus finding are generated from a set of sequencing libraries. Each library consists of a set of sequenced
reads which can be aligned and summarised to report at each cytosine the number of sequenced reads in which the cytosine is methylated, and
the number in which the cytosine is unmethylated (Hardcastle, 2013). Having aligned the methylated and unmethylated reads, we then require
methods both for calling a methylation ’locus’, a region on the genome where multiple cytosines show evidence for methylation, and finding
differential methylation between samples, both for individual cytosines and for the methylation loci. However, in order to find biologically
meaningful results, we must consider the natural variation in methylation between biological replicates. We adapt our previously described
methods for defining siRNA loci from high-throughput sequencing of sRNAs (Hardcastle et al., 2012), and for discovering differential
expression in high-throughput sequencing of RNA from paired samples (Hardcastle and Kelly, 2013) to an analysis of differential behaviour
in the methylome.

We demonstrate these methods in an analysis of methylation in all contexts in mutants of the Dicer-like proteins in Arabidopsis (Stroud
et al., 2013). The Dicer-like proteins are involved in the production of variously characterised small RNAs, known to play a role in initiation
and maintenance of methylation. We demonstrate that the application of these methods reveal complex patterns of behaviour between the
different Dicer-like mutants. These various patterns of behaviour associate differently with coding sequences, gene promoter regions and
transposable elements, as well as showing divergent patterns of genome localisation which suggest functionally significant differences are
being exposed by such analyses.

2 METHODS
Candidate loci and nulls
We begin our analysis of these data by defining a set of candidate loci which may plausibly represent some methylation loci. A candidate
locus begins and ends at some cytosine with a minimal proportion pmin of methylation in at least one sequencing library. Considering all such
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loci is computationally infeasible and so filters are required to exclude implausible candidates and reduce the computational effort required.
If two cytosines with a proportion of methylation above pmin are within some minimal distance dmin they are assumed to lie within the same
locus. We further restrict the set by removing from consideration any candidate locus containing a region greater than λmax that contains no
cytosine with a proportion of methylation above pmin. Candidate loci may be defined with respect to a single strand (by default) or include
data from both strands.

We define the set of candidate nulls, regions which may represent a region without significant methylation, by considering the gaps between
candidate loci. We refer to the regions separating each candidate locus from its nearest neighbour (in either direction) as ‘empty’. Candidate
nulls consist of the union of the set of ‘empty’ regions, the set of candidate loci extended into the empty region to their left, the set of
candidate loci extended into the empty region to their right, and the set of candidate loci extended into the empty regions to both the left and
right.

Classification of candidates by posterior likelihood
The data pertaining to the candidates defined above are the number of methylated and un-methylated cytosines sequenced and aligning to
these loci for each sample. We then identify those candidates which represent at least part of a true locus of methylation given the observed
data for each replicate group. Each sample will belong to a replicate group of samples from biological replicates, and so the samples may be
thought of as the set {A1, · · · , Am} with a replicate structure defined by R = {R1, · · ·Rn} where j ∈ Rq if and only if sample Aj is a
member of replicate group q.

For a replicate group Rq and segment i we consider the total number of methylated and unmethylated cytosines uiq =
∑
j∈Rq

uij

and u′iq =
∑
j∈Rq

u′ij respectively. This approach neglects the effect of non-conversion rates on the observed values for uqj and u′qj .
We can find no closed form expression for the posterior solution if the effects of non-conversion rates on the distribution of the data are
accounted for. However, we can normalise the observed data by the expected non-conversion rates by setting uij = Cij − Qj

1−Qj
Tij and

u′ij = Tij +
Qj

1−Qj
Tij .

We assume that these data are described by a binomial distribution with parameter piq which has a beta prior distribution with parameters
(α, β); we use an uninformative Jeffreys prior of α = β = 1

2
. The posterior distribution of the parameter piq is then a beta distribution with

parameters (α+ uiq, β+ u′qi). A segment is identified as a methylation ‘locus’ if the posterior likelihood that pqj > q exceeds some critical
value. Similarly, we can classify candidate nulls as true representatives of a null region by identifying those candidates with a posterior
likelihood that pqj < q exceeding some critical value. By default, we use use q = 0.2 and a critical value of 99%; that is, a methylation locus
should have a 99% chance of exceeding a 20% proportion of methylation.

Consensus loci
Given a classification on the set of candidate loci and nulls, we identify a set of consensus loci given the classifications on sets of overlapping
candidates in a similar manner to that described for siRNA loci (Hardcastle and Kelly, 2013). We begin by assuming that a true locus of
methylation should not contain a null region within a replicate group in which the locus is methylated. Thus, if some candidate locus lr is
classified as a locus in replicate groups Ψr , and there exists some candidate null ns that lies completely within lr and is classified as a null
in one or more of the replicate groups Ψr , we discard the locus lr . Of the remaining candidate loci, we then rank those that remain by the
number of replicate groups in which they are classified as a locus, settling ties by considering the longer candidate locus. The consensus loci
are then formed by choosing all those candidate loci that do not overlap with some higher ranked candidate locus, giving a non-overlapping
set of loci on each strand.

Likelihood of data given non-conversion rates
We can compute posterior likelihoods of methylation and differential methylation on the identified loci through application of empirical
Bayesian methods in which we estimate by sampling a distribution on the parameters of a distribution assumed to apply to the data
(Hardcastle, 2015). This approach allows the variability of data between replicates to be accounted for.

Ignoring issues of non-conversion, we would assume that the data in equivalently methylated samples are beta-binomially distributed as
in a straightforward analysis of paired data (Hardcastle and Kelly, 2013). Accounting for non-conversion requires that the data within each
sample j are assumed to be the sum of a binomial distribution with success parameter Qj (the rate of non-conversion) and a beta-binomial
distribution with parameters p (the expected proportion of methylated cytosines) and dispersion parameter φ. Then the likelihood of the
observed data Djk at a single locus i for a sample j is given by

P(Dij |Qj , p, φ) =

Cij∑
m=0

(
Tij +m

m

)
Qmj (1−Qj)Tij

(
Cij + Tij
Cij −m

)
B(α+ Cij −m,β + Tij +m)

B(α, β)
(1)

where m is the number of unconverted unmethylated cytosines, Cij and Tij the number of observed methylated and unmethylated cytosines
respectively. pq represents the proportion of methylation and φ the dispersion of the beta-binomial, with α = p 1−φ

φ
and β = (1− p) 1−φ

φ
.
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Posterior Likelihoods of Methylation
We can estimate posterior likelihoods of methylation for each replicate group and locus using the methods described in Hardcastle (2015).
For a sampled locus, we estimate by maximum likelihood methods for each replicate group q the parameters {p, φ}, in which the dispersion
parameter φ is assumed to be preserved across replicate groups and p is not. By repeating (without replacement) the sampling of loci, we build
an empirical joint distribution on the parameters for the methylation of loci within each replicate group. We similarly derive an empirical
joint distribution on for null regions. Given these distributions, we are able to calculate posterior likelihoods of methylation for each locus
and replicate group. Regions exhibiting various patterns of differential methylation can be similarly identified using the density function
defined in Eqn 1 in the baySeq R package (Hardcastle, 2015).

3 RESULTS
We test the analysis methods in a reanalysis of the Dicer-like mutants from the Stroud et al. (2013) dataset. We identify methylation loci in
the dcl2, dcl3, dcl4, dcl2/4 and dcl2/3/4 mutants, together with wild-type samples . Non-conversion rates are estimated for each sample from
the proportion of cytosine reads reported as methylated in reads aligning to mitochrondrial and chloroplast genomes.

Fig. 1. Genome wide profiles of methylation for the various Dicer-like mutants, and wild-type, in CG (a) CHG (b) and CHH (c) contexts, adjusted for non-
conversion rates. The estimated number of loci identified in each condition are shown in (d), while the estimated length of the genome covered by loci are
shown in (e).

Figure 1 summarises the input data and identified loci. The genome-wide trends in methylation remain constant in all mutants relative
to wild-type with substantial increases in methylation at the centromeric regions and at specific sites on the genome. There appears to be
a minor global decrease in CG methylation (Fig. 1a) in dcl4, dcl3 and dcl2 mutants relative to the dcl2/4 and dcl2/3/4 mutants. In CHG
methylation, a similar pattern is seen only at the centromeric regions. In CHH methylation the situation is more complex; dcl3 and dcl2/3/4
shows reduced methylation relative to wild-type in all regions of the genome, with dcl3 paricularly reduced in the centromeric regions, while
dcl2 shows reduced methylation only in the centromeric regions. The total number of methylation loci in each condition may be estimated
by summing the posterior liklelihoods of loci (Fig. 1d). Relative to wild-type, expected numbers of loci do not alter substantially for dcl2/4
loci in any condition, or for CG methylation in dcl2/3/4, while all the single mutants show lower numbers of methylation in all contexts. The
numbers of methylation loci discovered in the CHG context are substantially lower than for other contexts; however, the loci discovered are
generally longer, as shown by the estimated portion of the genome covered by loci in each context (Fig. 1e), which shows roughly equivalent
coverage for CG and CHG with a minor reduction in CHH context.
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Fig. 2. Expected numbers (log-scale) of methylation loci and the number of loci (log-scale) which can be identified controlling FDR ¡ 0.05 for each of ten
patterns of differential methylation, in each of CG, CHG and CHH contexts.

We next consider patterns of differential methylation in the loci. Using the baySeq v2 (Hardcastle, 2015) with consensus priors we
consider all possible models of equivalence and differential methylation between the mutants and wild-type. For each region of the genome,
posterior likelihoods of difference are identified, and adjusted by the likelihood that the region is a methylation locus in at least one condition.
From these posterior likelihoods, we can estimate the expected number of loci belonging to each pattern of equivalence and difference
between the conditions. We can also select specific loci by controlling the false discovery rate (FDR) estimated from the posterior likelihoods.

Ten patterns (Figure 2) are identified with an estimated number of loci greater than one thousand and a number of loci with an FDR< 0.05
greater than fifty in at least one methylation context. Models I and J, represent the canonical changes in sRNA-linked methylation, in which
there is loss of methylation in dcl3 and dcl2/3/4 relative to wild-type and all other mutants are found to a greater extent in CHG and CHH
than in the CG context, conforming to the expectation that DCL3 is particularly relevant to the CHG and CHH methylation pathways.

However, substantial numbers of loci not conforming to the canonical models may also be found. Models D, E and F appear of particular
interest; these all involve a loss of methylation in dcl2, dcl3 and dcl4 relative to wild-type, dcl2/3/4 and dcl2/4 mutants, with one of the
dcl2, dcl3, dcl4 showing a greater loss of methylation than the remaining two. Notably, these patterns of methylation are prevalent only in
CG context, in contrast to the very similar B model, in which there is an equal loss of methylation in dcl2, dcl3 and dcl4, and which is found
in high numbers in all three contexts.

Given the sets of loci identified in each context for each pattern with an FDR < 0.05, we use the block-bootstrap method of Bickel et al.
(2010) to identify overlap with annotation features (Figure 3); for robustness we limit these analyses to those cases where 20 or more loci
can be identified with an FDR < 0.05. In the CG-context, models D, E and F overlap significantly with coding sequence regions; however,
the related model B shows fewer overlaps in coding sequences than expected and an enrichment in transposable element overlaps; other
models do not have sufficient identifiable loci for analysis. Almost all patterns of differential methylation in CHG and CHH contexts for
which there are sufficient identifiable loci show significant depletion in overlap with coding sequences. Loci identified from models H and I
show significant enrichment in overlaps with promoters which also overlap transposable elements in the CHG context, with loci identified as
belonging to models I and J showing such enrichment in the CHH context.

Divergence can also be observed between the loci associated with the models when considering overlap with transposable element
superfamilies (Figure 4). Loci associated with model B show significant enrichment of overlap with nearly all transposable elements and
contexts with the exception of the RAth, DNA/Mariner and RC/Helitron (in CHG and CHH) contexts. In CHG and CHH contexts, the loci
associated with models I and J show signficant enrichment of overlap with most superfamilies, particularly with the RAth superfamilies,
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Discovery of methylation loci

Fig. 3. Overlaps of annotation feature with ten patterns of differential methylation in CG, CHG and CHH contexts. Significance scores are calculated using
a block-bootstrap method (Bickel et al., 2010) which accounts for clustering of loci on the genome; the number of overlaps per megabase of identifable loci
per megabase of annotation feature is the nearest surrogate for the significance score which has a straightforward interpretation. Significance scores are shown
below the bars; Significance levels are shown in blue for under-representation and red for over-representation, the level of significance is indicated by the
symbol such that # = 0 < p < 10−5, + = 10−4 < p < 10−5, * = 10−3 < p < 10−4, ! = 10−2 < p < 10−3.

but depleted overlaps for LTR/Gypsy and LTR/Copia elements. In CHG methylation, several other transposable element superfamilies
show significant enrichment of overlap with models C (LTR/Gypsy, LTR/Copia, LINE/L1, DNA/En-Spm, DNA/Tc1, DNA/Harbinger), G
(LTR/Copia) and H (RC/Helitron), suggesting that these models may indeed represent functionally divergent pathways of methylation.

We finally examine the genome localisation of the loci associated with the ten models of differential methylation (Figure 5). Loci with
high likelihood of representing the model are most predominant in centromeric regions for the majority of models and contexts, however,
models D, F, G and I in the CG context are depleted in the centromeric regions; model J is also depleted in the centromeric regions of CHG
and CHH loci.
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Fig. 4. Overlaps of transposable element superfamily with ten patterns of differential methylation in CG, CHG and CHH contexts. Significance scores are
calculated using a block-bootstrap method (Bickel et al., 2010) which accounts for clustering of loci on the genome; the number of overlaps per megabase of
identifable loci per megabase of superfamily is the nearest surrogate for the significance score which has a straightforward interpretation. Significance scores
are shown below the bars; Significance levels are shown in blue for under-representation and red for over-representation, the level of significance is indicated
by the symbol such that # = 0 < p < 10−5, + = 10−4 < p < 10−5, * = 10−3 < p < 10−4, ! = 10−2 < p < 10−3.
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Fig. 5. Posterior likelihoods of belonging to models A-J in each methylation cotext across the genome. Mean likelihoods are calculated with traveling windows
of 101, 1001, 10001, 100001 bases; the transparency of the plotted value diminishes with increasing window size.
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4 CONCLUSIONS
The methods described here allow for the identification of methylation loci from multiple sequencing data, the estimation of likelihoods,
for each replicate group, that a region is truly methylated above background levels, and ultimately the detection of differential methylated
regions. The key advantage provided by these methods is the ability to account for biological replication within the analyses, and thus avoid
spurious results due to spontaneous variation in methylation. The analyses also incorporate methods to account for observed rates of non-
conversion of unmethylated cytosines to thymines, and thus to increase the specificity of identified regions of methylation. When applied in
the empirical Bayesian framework of baySeq v2 (Hardcastle, 2015), the model provided also allows for robust multivariate analyses of
methylation data.

We demonstrate these methods on the Dicer-like mutants in Arabidopsis from the Stroud et al. (2013) dataset. Analyses of these data
identify loci with high sensitivity, and allow the detection of complex patterns of differential methylation. These patterns show different
associations with coding sequences, promoter regions and transposable elements, and show divergent localisations on the genome, suggesting
that even subtle variations in the changes in methylation may have functional significance.

The implementation of the methods in the segmentSeq and baySeq R packages ensures compatibility with the analyses of sRNA-seq,
mRNA-seq et cetera already developed in these packages. The results acquired by high-throughput sequencing of methylation can thus be
readily incorporated with these other -omic data in a systems level analysis.

Funding: This work was supported by European Research Council Advanced Investigator Grant ERC-2013-AdG 340642.
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