
Preprint: Synthetic macroecological data

Synthetic datasets and community tools for the rapid testing of ecological hy-
potheses

Timothée Poisot 1,2,∗, Dominique Gravel 2,3, Shawn Leroux 4, Spencer A. Wood 5,6, Marie-Josée Fortin 7, Benjamin Baiser 8,
Alyssa R. Cirtwill 9, Miguel B. Araújo 10, Daniel B. Stouffer 9

(1) Université de Montréal, Département de Sciences Biologiques, 90 Avenue Vincent d’Indy, Montréal, QC, CAN, H2V3S9
(2) Québec Centre for Biodiversity Sciences, 1205 Dr. Penfield Avenue, Montréal, QC, CAN, H3A1B1
(3) Université du Québec à Rimouski, Département de Biologie, 300 Allée des Ursulines, Rimouski, QC, CAN, G5L3A1
(4) Memorial University of Newfoundland, Department of Biology, 232 Elizabeth Ave, St. John’s, NL, CAN, A1B3X9
(5) Woods Institute for the Environment, Stanford University, Stanford, CA, USA
(6) School for Environmental and Forest Science, University of Washington, Seattle, WA, USA
(7) University of Toronto, Department of Ecology & Evolutionary Biology, 25 Harbord Street, Toronto, ON, CAN, M5S3G5
(8) University of Florida, Department of Wildlife, Ecology & Conservation, Gainseville, FL, USA
(9) Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
(10) Museo Nacional de Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal 2, Madrid 28006, España

∗ e-mail: tim@poisotlab.io

Date: work in progress

The increased availability of both open ecological data, and
software to interact with it, allows to rapidly collect and inte-
grate data over large spatial and taxonomic scales. This of-
fers the opportunity to address macroecological questions in
a cost-effective way. In this contribution, we illustrate this ap-
proach by forecasting the structure of a stream food web at the
global scale. In so doing, we highlight the most salient issues
needing to be addressed before this approach can be used with
a high degree of confidence.
Keywords: open data API species distributions compu-
tational ecology trophic interactions

Ecologists are often asked to provide information and guidance
to solve a variety of issues, across different scales. As part of
the global biodiversity crisis, notable examples include predict-
ing the consequences of the loss of trophic structure (Estes et al.
2011), rapid shifts in species distributions (Gilman et al. 2010),
and increased anthropogenic stress on species and their environ-
ment. Most of these pressing issues require the integration of
a variety of ecological data and information, spanning different
geographical and environmental scales, to be properly addressed
(Thuiller et al. 2013). Because of these requirements, relying
solely on de novo sampling of the ecological systems of inter-
ests is not a viable solution on its own. Chiefly, there are no
global funding mechanisms available to finance systematic sam-
pling of biological data, and the spatial and temporal scales re-
quired to obtain meaningful data on the patterns and processes
driving biodiversity change are such that it would take a long
time before realistic data would be available to support the de-
cision process. While it is obvious that data collection should
continue, we propose that there are a large number of macroe-
cological questions that could be addressed without additional
data or with data acquired at minimal cost, by making use of
open data and community-developed software and platforms.

Existing datasets can, to an increasing extent, be used to build
new datasets (henceforth synthetic datasets, since they represent
the synthesis of several types of data). There are several parallel
advances that make this approach possible. First, the volume of
data on ecological systems that are available openly increases on
a daily basis. This includes point-occurrence data (as in GBIF or
BISON), but also taxonomic knowledge (through ITIS, NCBI or
EOL) or trait and interactions data. In fact, there is a vast (and ar-
guably under-exploited) amount of ecological information, that
is now available without having to contact and secure autho-
rization from every contributor individually. Second, these data
are often available in a programmatic way; as opposed to man-
ually visiting data repositories, and downloading or copy-and-
pasting datasets, several software packages offer the opportunity
to query these databases automatically, considerably speeding
up the data collection process. As opposed to manual collec-
tion, identification, and maintenance of datasets, most of these
services implement web APIs (Application Programming Inter-
face, i.e. services that allow users to query and/or upload data in
a standard format). These services can be queried, either once or
on a regular basis, to retrieve records with the desired properties.
This ensures that the process is repeatable, testable, transparent,
and (as long as the code is properly written) nearly error proof.
Finally, most of the heavy lifting for these tasks can be done
through a burgeoning ecosystem of packages and software that
handles query formatting, data retrieval, and associated tasks,
all the while exposing simple interfaces to researchers. None of
these are new data, in the sense that these collections represent
the aggregation of thousands of ecological studies; the original-
ity lies in the ability to query, aggregate, curate, and use these
data consistently and in a new way using open solutions.

Hypothesis testing for large-scale systems is inherently limited
by the availability of suitable datasets – most data collection re-
sults in small scale, local data, and it is not always clear how
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these can be used at more global scales. Perhaps as a result,
developments in macroecology have primarily been driven by a
search for patterns that are very broad both in scale and nature
(Beck et al. 2012, Keith et al. 2012). While it is obvious that
collecting exhaustive data at scales that are large enough to be
relevant can be an insurmountable effort (because of the mone-
tary, time, and human costs needed), we suggest that macroecol-
ogists could, in parallel, build on existing databases, and aggre-
gate them in a way that allows direct testing of proposals stem-
ming from theory. To us, this opens no less than a new way for
ecologists to ask critical research questions, spanning from the
local to the global, and from the organismal to the ecosystemic,
scales. Here, we (i) outline approaches for integrating data from
a variety of sources (both in terms of provenance, and type of
ecological information), (ii) identify technical bottlenecks, (iii)
discuss issues related to scientific ethics and best practice, and
(iv) provide clear recommendations moving forward with these
approaches at larger scales. Although we illustrate the principles
and proposed approaches with a real-life example, the objective
of this paper is to highlight the way different tools can be inte-
grated in a single study, and to discuss the current limitations
of this approach. This approach can, for example, prove par-
ticularly fruitful if it allows to either offer new interpretation of
well-described macroecological relationships, or to provide test
of hypotheses coming from theoretical work.

An illustrative case-study

Food-web data, that is the determination of trophic interactions
among species, are notoriously difficult to collect. The usual
approach is to assemble literature data, expert knowledge, and
additional information coming from field work, either as direct
observation of feeding events or through gut-content analysis.
Because of these technical constraints, food-web data are most
often assembled based on sampling in a single location. This
prevents an adequate description of the variation of food web
structure over space besides by comparing systems that may be
composed of different taxa. As a consequence, most of the prop-
erties of food web over large (continental, global) spatial extents
remain undocumented. For example, what is the relationship
between latitude and connectance (the density of feeding inter-
actions)? One possible way to approach this question is to col-
lect data from different localities, and document the relationship
between latitude and connectance through regressions. The ap-
proach we illustrate uses broad-scale data integration to forecast
the structure of a single system at the global scale. We are in-
terested in predicting the structure of a pine-marsh food web,
worldwide.

Interactions data

The food-web data were taken from Thompson and
Townsend (2003), as made available in the IWDB database
(https://www.nceas.ucsb.edu/interactionweb/html/
thomps_towns.html) – starting from the Martins dataset
(stream food web from a pine forest in Maine). Wetlands and
other freshwater ecosystems are critically endangered and serve

as a home to a host of endemic biodiversity (Fensham et al.
2011, Minckley et al. 2013). Stream food webs in particular
are important because they provide coupling between terrestrial
and aquatic communities, ensure the maintenance of ecosystem
services, and because the increased pressure on wetlands makes
them particularly threatened. They represent a prime example
of ecosystems for which data-driven prediction can be used to
generate scenarios at a temporal scale relevant for conservation
decisions, and faster than what sampling could allow.

The data comprising the original foodweb (105 nodes, including
vague denominations likeUnidentified detritus or Terrestrial in-
vertebrates), were cleaned in the following way. First, all nodes
were aggregated to the genus level. Due to high level of struc-
ture in trophic interactions emerging from taxonomic rank alone
(Eklof et al. 2011, Stouffer et al. 2012), aggregating to the genus
level has the double advantage of (i) removing ambiguities on the
identification of species and (ii) allowing integrating data when
any two species from given genera interact. Second, all nodes
that were not identified (Unidentified or Unknown in the orig-
inal data) were removed. The cleaned network documented 227
interactions, between 80 genera.

We then used the name-checking functions from the taxize
package (Chamberlain and Szöcs 2013) to perform the following
steps. First, all names were resolved, and one of the following
was applied: valid names were conserved, invalid names with
a close replacement were corrected, and invalid names with no
replacement were removed. In most situations, invalid names
were typos in the spelling of valid ones. After this step, 74 gen-
era with 189 interactions remained, representing a high quality
genus-level food-web from the original sampling.

Because this food web was sampled locally, there is the possi-
bility that interactions between genera are not reported; either
because species from these genera do not interact or do not co-
occur in the sampling location. To circumvent this, we queried
the GLOBI database (Poelen et al. 2014) for each genus name,
and retrieved all feeding interactions. For all new genera re-
trieved through this method, we also retrieved their interactions
with genera already in the network. The inflated network (orig-
inal data plus data from GLOBI) has 368 genera, and a total of
4796 interactions between them.

As a final step, we queried the GBIF taxonomic rank database
with each of these (tentatively) genera names. Every tentative
genus that was either not found, or whose taxonomic level was
not genus, was removed from the network.

The code to reproduce this analysis is in the 1_get_data.r
suppl. file.

Occurrence data and filtering

For each genus, we retrieved the known occurrences from
GBIF and BISON. The download yielded over 200000 point-
occurence data. Because the ultimate goal is to perform spatial
modeling of the structure of the network, we removed genera for
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Figure 1: Visual representation of the initial data. On the left, we show the food web (original data and additional interactions
from GLOBI), with genera forming modules (clusters of densely connected nodes) in different colors. On the right, we show the
occurrence data where each dot represents one observation from BISON and GBIF (again color coded by module).

which fewer than 100 occurrences were known. This seems like
a stringent filter, yet it enables us (i) to maintain sufficient pre-
dictive powers for SDMs, and (ii) to only work on the genera for
which we have “high-quality” data. The cleaned food web had a
total of 134 genera and 782 interactions, for 118269 presences.
Given the curated publicly available data, it represents the cur-
rent best description of feeding interactions between species of
this ecosystem. A visual depiction of the network is given in
Figure 1.

On its own, the fact that filtering for genera with over 100 records
reduced the sample size from 368 genera to 134 indicates how
crucial it is that all observations are reported in public databases.
This is because the type of analysis we present here, although
cost-effective and enabling rapid evaluation of different scenar-
ios, is only as good as the underlying data. Since most modeling
tools require a minimal sample size in order to achieve accept-
able accuracy, concerted efforts by the community and funding
agencies to ensure that the minimal amount of data is deposited
upon publication or acquisition is needed. It must also be noted
that the treshold of a 100 occurrences is an arbitrary one.

The approach is amenable to sensitivity analysis, and indeed this
will be a crucial component of future analyses. A taxon can have
less observations than the threshold either because of under-
sampling or under-reporting, or because it is naturally rare. In
the context of food webs, species higher-up the food chain can
be less common than primary producers. To which extent these
relationships between, e.g., trophic position and rarity, can in-
fluence the predictions, will have to receive attention.

The code to reproduce this analysis is in the 1_get_data.r
suppl. file.

Species Distribution Model

For each species in this subset of data, we retrieved the nineteen
bioclim variables (Hijmans et al. 2005), with a resolution of
5 arc-minutes. This enabled us to build climatic envelope mod-
els for each species. These models tend to be more conservative
than alternate modeling strategies, in that they predict smaller
range sizes (Hijmans and Graham 2006), but they also perform
well overall for presence-only data (Elith et al. 2006). The out-
put of these models is, for species i, the probability of an obser-
vation P(i) within each pixel. We appreciate that this is a coarse
analysis, but its purpose is only to highlight how the different
data can be combined. A discussion of the limitations of this
approach is given below.

The code to reproduce this analysis is in the 2_get_sdm.r suppl.
file.

Assembly

For every interactions in the food web, we estimated the prob-
ability of it being observed in each pixel as the product of the
probabilities of observing each species on its own: P(Lij) ∝
P(i)P(j). This resulted in one LDM (“link distribution model”)
for each interaction. It should be noted that co-occurrence is
considered to be entirely neutral, in that we assume that the prob-
ability that two species co-occur is independent (i.e. a predator
is not more likely to be present if there are, or are not, poten-
tial preys). We also assume no variability in interactions, as in
Havens (2015). It is likely that, in addition to their occurrence,
species co-occurrences and interactions (Poisot et al. 2015) are
affected by climate. Whether or not these constitute acceptable
assumptions has to be decided for each study.
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The code to reproduce this analysis is in the 3_get_ldm.r suppl.
file.

Based on this information, we generated example illustrations
(using 4_draw_figures.r – Figure 2). The system is character-
ized, at the world-wide scale, by an increased number of genera
and interactions in temperate areas, with diversity and interac-
tion hotspots in Western Europe, North-East and South-Atlantic
America, and the western coasts of New Zealand and Australia –
this is clearly symmetrical along the equator. Network structure,
here measured by network connectance, follows a different trend
than genera richness or interactions do. Connectance is, overall,
stable along the gradient, with a decline only at higher latitudes.

Challenges moving forward

The example provided illustrates the promises of data-driven ap-
proaches. It builds on new data availability, new statistical and
computational tools, and new ways to integrate both. Most im-
portantly, it allows to use “classical” ecological data in a res-
olutely novel way, thus presenting an important opportunity to
bridge a gap between field-based and theory-based macroeco-
logical research. But as with every methodological advance-
ment, comes a number of challenges and limitations. Here we
discuss a few we believe are important. In doing so, we hope
to define these issues and emphasize that each of them, on their
own, should be the subject of further discourse.

Attribution stacking and intellectual provenance

The merging of large databases has already created a conflict of
how to properly attribute data provenance. Here there are at least
two core issues that will require community consultation in or-
der to be resolved. First, what is the proper mode of attribution
when a very large volume of data are aggregated? Second, what
should be the intellectual property of the synthetic dataset? Cur-
rently, citations (whether to articles or datasets) are only counted
when they are part of themain text. The simple example outlined
here relies on well over a thousand references, and it makes lit-
tle sense to expect that they would be provided in the main text
(nor do we expect any journal to accept a manuscript with over a
hundred references or so). One intermediate solution would be
to collate these references in a supplement, but it is unclear that
these would be counted, and therefore contribute to the impact
of each individual dataset. This is a problem that we argue is
best solved by publishers; proper attribution and credit is key to
provide incentives to data release (Kenall et al. 2014, Whelan
et al. 2014). As citations are currently the “currency” of scien-
tific impact, publishers have a responsibility not only to ensure
that data are available (which many already do), but that they are
recognized; data citation, no matter how many data are cited, is
a way to achieve this goal. The synthetic dataset, on the other
hand, can reasonably be understood as a novel product; there is
technical and intellectual effort involved in producing it, and al-
though it is a derivative work, we would encourage authors to
deposit it anew.

Sharing of code and analysis pipeline

Ideally, authors should release their analysis pipeline (that is,
the series of steps, represented by code, needed to reproduce the
analysis starting from a new dataset) in addition to the data and
explanation of the steps. The pipeline can take the form of a
makefile (which allows one to generate the results, from the
raw data, without human intervention), or be all of the relevant
code that allows to re-generate the figures and results. For exam-
ple, we have released all of the R code that was used to generate
the figures at will be given upon acceptance . Sharing the anal-
ysis pipeline has several advantages. First, it is a first step to-
wards ensuring the quality of analyses, since reviewers can (and
should reasonably be expected to) look at the source code. Sec-
ond, it provides a template for future analyses – instead of re-
developing the pipeline from scratch, authors can re-use (and
acknowledge) the previous code base and build on it. Finally, it
helps identifying areas of future improvement. The development
of software should primarily aim tomake thework of researchers
easier. Looking at commonalities in the analytical pipelines for
which no ready-made solutions exists will be a great way to influ-
ence priorities in software development. Properly citing and re-
viewing computer code is still an issue, because software evolves
whereas papers remain (for now) frozen in the state where they
were published. Being more careful with citation, notably by in-
cluding version number (White 2015) or using unique identifiers
(Poisot 2015), will help long-term reproducibility.

Computational literacy

This approach hardly qualifies as big data; nevertheless, it relies
on the management and integration of a large volume of hetero-
geneous information, both qualitatively larger than the current
“norm”. The first challenge is being able to manage this data;
it requires data management skills that are not usually needed
when the scale of the dataset is small, and, fallible though the
process may be, when data can reasonably be inspected man-
ually. The second challenge is being able to manipulate these
data; even within the context of this simple use-case, the data do
not fit in the memory of R (arguably the most commonly known
and used software in ecology) without some adjustments. Once
these issues were overcome, running the analysis involved a few
hours worth of computation time. Computational approaches
are going to become increasingly common in ecology (Hamp-
ton et al. 2013), and are identified by the community as both
in-demand skills and as not receiving enough attention in cur-
rent ecological curricula (Barraquand et al. 2014) It seems that
efforts should be allocated to raise the computational literacy
of ecologists, and recognize that there is value in the diver-
sity of tools one can use to carry out more demanding stud-
ies. For example, both Python and Julia are equally as user
friendly as R while also being more powerful and better suited
for computationally- or memory-intensive analyses.

Page 4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2015. ; https://doi.org/10.1101/021402doi: bioRxiv preprint 

https://doi.org/10.1101/021402
http://creativecommons.org/licenses/by/4.0/


Preprint: Synthetic macroecological data

Standards and best practices

In conducting this analysis, we noticed that a common issue was
the identification of species and genera. All of these datasets
were deposited by individual scientists; whether we like it or
not, individuals are prone to failure in a very different way than
the “Garbage in, garbage out” idea that applies to computer pro-
grams. Using tools such as taxize (Chamberlain and Szöcs
2013) can allow us to resolve a few of the uncertainties, yet this
must be done every time the data are queried and requires the end
user to make educated guesses as to what the “true” identity of
the species is. These limitations can be overcome, on two condi-
tions. Database maintainers should implement automated cura-
tion of the data they have the stewardship of, and identify poten-
tial mistakes and correct them upstream, so that users download
high-quality, high-reliability data. Data contributors should rely
more extensively on biodiversity identifiers (such as TSN, GBIF,
NCBI Taxonomy ID, etc.), to make sure that even when there are
typos in the species name, they can be matched across datasets.
Constructing this dataset highlighted a fundamental issue: the
rate-limiting step is rarely the availability of appropriate tools
or platforms, but instead it is the adoption of common standards
and the publication of data in a way that conforms to them. In ad-
dition, Maldonado et al. (2015) emphasize that point-occurence
data are not always properly reported – for example, the center
of a country or region can be used when no other information
is known; this requires an improved dialogue between data col-
lectors and data curators, to highlight which practices have the
highest risk of biasing future analyses.

Propagation of error

There are always caveats to using synthetic datasets. First, the
extent to which each component dataset is adequately sampled
is unknown (although there exist ways to assess the overall rep-
resentativeness of the assembled dataset; Schmill et al. (2014)).
This can create gaps in the information that is available when
all component datasets are being merged. Second, because it is
unlikely that all component datasets were acquired using recon-
cilable standards and protocol, it is likely that much of the quan-
titative information needs be discarded, and therefore the con-
servative position is to do qualitative analyses only. Although
these have to be kept in mind, we do not think they are so suffi-
cient as to prevent use and evaluation of the approachwe suggest.
For one thing, as we illustrate, at large spatial and organizational
scales, coarse- grained analyses are still able to pick up quali-
tative differences in community structure. Second, most emer-
gent properties are relatively insensitive to fine- scale error; for
example, Gravel et al. (2013) show that even though a simple
statistical model of food-web structure mispredicts some indi-
vidual interactions, it produces communities with realistic emer-
gent properties. Which level of error is acceptable needs to be
determined for each application, but we argue that the use of syn-
thetic datasets is a particularly cost- and time-effective approach
for broad-scale description of community-level measures.

Conclusion – why not?

In light of the current limitations and challenges, one might be
tempted to question the ultimate validity and utility of this ap-
proach. Yet there are several strong arguments, that should not
be overlooked, in favor of it use. As we demonstrate with this
example, synthetic datasets allow us to rapidly generate qualita-
tive predictions at large scales. These can, for example, serve as
a basis to forecast the effect of scenarios of climate change on
community properties (Albouy et al. 2014). Perhaps more im-
portantly, synthetic datasets will be extremely efficient at iden-
tifying gaps in our knowledge of biological systems: either be-
cause there is high uncertainty or sensitivity to choices in the
model output, or because there is no available information to in-
corporate in these models. By building these datasets, it will be
easier to assess the extent of our knowledge of biodiversity, and
to identify areas or taxa of higher priority for sampling. For this
reason, using synthetic datasets is not a call to do less field-based
science. Quite the contrary: in addition to highlighting areas of
high uncertainty, synthetic datasets provide predictions that re-
quire field-based validation. Only through this feedback can we
build enough confidence in this approach to apply it for more
ambitious questions, or disqualify it altogether. Meanwhile, the
use of synthetic datasets will necessitate the development of both
statistical methodology and software; this is one of the required
steps towards real-time use and analysis of ecological data (An-
tonelli et al. 2014). We appreciate that this approach currently
comes with some limitations – they are unlikely to be overcome
except with increased use, testing, and validation. Since the
community already built effective and user-friendly databases
and tools, there is very little cost (both in time and in funding)
in trying these methods and there is also the promise of great
potential.
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Preprint: Synthetic macroecological data
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Figure 2: Maps for the number of genera, number of interactions, and connectance in the assembled networks (on the left) as well
as their underlying relationship with latitude (on the right). The tropics are shaded in light yellow. The average value of each output
has been (i) averaged across latitudes and (ii) z-score transformed; this emphasizes variations across the gradient as opposed to
absolute values (which is a more conservative way of looking at the results since the predictions are mostly qualitative).
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