
BIOINFORMATICS Vol. 00 no. 00 2015
Pages 1–3

TESS: Bayesian inference of lineage diversification rates
from (incompletely sampled) molecular phylogenies in R
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Abstract
Summary: Many fundamental questions in evolutionary biology entail
estimating rates of lineage diversification (speciation – extinction). We
develop a flexible Bayesian framework for specifying an effectively
infinite array of diversification models—where rates are constant, vary
continuously, or change episodically through time—and implement
numerical methods to estimate parameters of these models from
molecular phylogenies, even when species sampling is incomplete.
Additionally we provide robust methods for comparing the relative and
absolute fit of competing branching-process models to a given tree,
thereby providing rigorous tests of biological hypotheses regarding
patterns and processes of lineage diversification.
Availability and implementation: the source code for TESS is freely
available at http://cran.r-project.org/web/packages/TESS/.
Contact: Sebastian.Hoehna@gmail.com

1 Introduction
Stochastic-branching process models (e.g., birth-death models)
describe the process of diversification that gave rise to a given
study tree, and include parameters such as the rate of speciation
and extinction. Parameters of these models are commonly estimated
from molecular phylogenies using maximum-likelihood methods
(e.g., Paradis et al., 2004; Rabosky, 2006; Stadler, 2013). There
are several potential benefits of pursuing this inference problem
in Bayesian statistical framework, such as: (1) providing a natural
means for accommodating uncertainty in our estimates (by inferring
parameters as posterior probability densities rather than point
values); (2) incorporating prior information regarding various
aspects of the branching-process models (such as the expected
number or severity of mass-extinction events), and; (3) leveraging
robust Bayesian approaches for model comparison and model
averaging.

These considerations influenced our development of TESS, an R
package for the Bayesian inference of lineage diversification rates
that allows researchers to address three fundamental questions: (1)
What are the rates of the process that gave rise to my study tree? (2)
Have diversification rates changed through time in my study tree?
(3) Is there evidence that my study tree experienced mass extinction?
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2 Methods and algorithms
Branching-process models: Inferring rates of lineage diversification is based
on the reconstructed evolutionary process described by Nee et al. (1994); a
birth-death process in which only sampled, extant lineages are observed. Our
implementation exploits recent theoretical work (Lambert, 2010; Höhna,
2013, 2014, 2015) that allows the rate of diversification to be specified as
an arbitrary function of time. By virtue of adopting this generic approach,
it is possible to specify an effectively infinite number of branching-
process models in TESS. These possibilities correspond to four main
types of diversification models: (1) constant-rate birth-death models; (2)
continuously variable-rate birth-death models; (3) episodically variable-rate
birth-death models, and; (4) explicit mass-extinction birth-death models.

Phylogenetic data: Parameters of the branching-process models are inferred
from a given study tree. Specifically, TESS takes as input rooted ultrametric
trees, where all of the tips are sampled at the same time horizon (the
present). Other types of trees—e.g., where tips are sampled sequentially
through time (Heath et al., 2014)—are currently not supported. It is now well
established that estimates of diversification rates are sensitive to incomplete
species sampling (i.e., where the study tree includes only a fraction of the
described species; Cusimano and Renner, 2010; Höhna et al., 2011). This is
a particular concern, as most empirical phylogenies include only a fraction
of the member species. Accordingly, TESS implements various approaches
for accommodating incompletely sampled trees, including uniform sampling
and diversified sampling schemes (Höhna et al., 2011; Höhna, 2014).

Parameter estimation: In TESS, parameters of the branching-process
models are inferred in a Bayesian statistical framework. Specifically, we
estimate the joint posterior probability density of the model parameters
from the study tree using numerical methods—Markov chain Monte Carlo
(MCMC) algorithms (Figure 1). The numerical methods implemented in
TESS include adaptive-MCMC algorithms (Haario et al., 1999)—where the
scale of the proposal mechanisms is automatically tuned to ensure optimal
efficiency (mixing) of the MCMC simulation—and also feature real-time
diagnostics to assess convergence of the MCMC simulation to the stationary
distribution (the joint posterior probability density of the model parameters).

Model comparison: Each branching-process model specifies a possible
scenario for the diversification process that gave rise to a given study tree.
For most studies, several (possibly many) competing branching-process
models of varying complexity will be plausible a priori. We therefore
need a way to objectively identify the best candidate diversification model.
Bayesian model selection is based on Bayes factors (e.g., Kass and Raftery,
1995; Suchard et al., 2001; Holder and Lewis, 2003). This procedure
requires that we first estimate the marginal likelihood of each candidate
model, and then compare the ratio of the marginal likelihoods for each pair
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of candidate models. We have implemented both stepping-stone sampling
(Xie et al., 2011; Fan et al., 2011) and path-sampling (Lartillot and Philippe,
2006; Baele et al., 2012) algorithms for estimating the marginal likelihoods
of branching-process models in TESS, which provides a robust and flexible
framework for Bayesian tests of diversification-rate hypotheses.

Model adequacy: Bayes factors allow us to assess the relative fit of two or
more competing branching-process models to a given study tree. However,
even the very best of the competing models may nevertheless be woefully
inadequate in an absolute sense. Accordingly, TESS implements methods to
assess the absolute fit of a candidate diversification model to a given study
tree using posterior-predictive simulation (Gelman et al., 1996; Bollback,
2002; Moore and Donoghue, 2009; Brown, 2014). The basic premise of
this approach is as follows: if the diversification model under consideration
provides an adequate description of the process that gave rise to our study
tree, then we should be able to use that model to generate new phylogenies
that are in some sense ‘similar’ to our study tree. TESS permits use of
any summary statistic—e.g., the γ-statistic (Pybus and Harvey, 2000) or
the nLTT statistic (Janzen et al., 2015)—to measure the similarity between
predicted and observed data.

Model averaging: The vast space of possible branching-process models
precludes their exhaustive pairwise comparison using Bayes factors. This
issue may be addressed by means of model-averaging approaches that
treat the model as a random variable (Huelsenbeck et al., 2004, 2006).
TESS implements such an approach; the CoMET (CPP on Mass-Extinction
Times) model (May et al., 2015). The CoMET model is comprised of three
compound Poisson process (CPP) models that describe three corresponding
types of events: (1) instantaneous tree-wide shifts in speciation rate; (2)
instantaneous tree-wide shifts in extinction rate, and; (3) instantaneous tree-
wide mass-extinction events. The dimensions of the CoMET model are
therefore dynamic; there is effectively an infinite number of nested models
that include zero or more events. We use reversible-jump MCMC to average
over all possible models, visiting each model in proportion to its posterior
probability (Green, 1995; Huelsenbeck et al., 2000). The resulting joint
posterior probability distribution can then be queried to assess whether the
study tree has been impacted by mass extinction, and if so, to identify the
number and timing of those events using Bayes factors (Figure 2).

3 Conclusions
TESS allows users to specify an effectively countless number of
diversification models, where each model describes an alternative
scenario for the diversification of the study tree. Additionally, TESS
provides robust methods for assessing the relative fit of competing
models to a given study tree, providing users with an extremely
flexible yet intuitive framework for testing hypotheses regarding the
patterns and processes of lineage diversification. We are optimistic
that the implementation of a robust and powerful Bayesian statistical
framework for exploring rates of lineage diversification will provide
biologists with an important tool for advancing our understanding
of the processes that have shaped the Tree of Life.
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Fig. 1. Estimating rates of (and identifying shifts in) lineage diversification
through time. Left: Plots of the posterior mean and 95% credible interval
for the speciation and extinction rate (upper and lower panels, respectively).
Right: Identifying temporal shifts the speciation and extinction rate (upper
and lower panels, respectively). Each bar indicates the posterior probability
of at least one rate shift within that interval. Bars that exceed the specified
significance threshold (here, 2 lnBF > 6) indicate significant rate shifts.
This analysis of the conifer tree from Leslie et al. (2012) reveals a significant
shift in the extinction rate ∼ 5 million years ago.
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Fig. 2. Identifying significant mass-extinction events using Bayes factors.
Each bar indicates the posterior probability of at least one mass extinction
within that interval. Bars that exceed the specified significance threshold
(here, 2 lnBF > 6) are inferred to be significant mass-extinction events.
This analysis of the conifer tree from Leslie et al. (2012) identifies two
significant mass-extinction events that occurred 48 and 93 million years ago.
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Höhna, S., Stadler, T., Ronquist, F., and Britton, T. (2011). Inferring speciation and
extinction rates under different species sampling schemes. Molecular Biology and
Evolution, 28(9), 2577–2589.

Holder, M. and Lewis, P. (2003). Phylogeny estimation: traditional and Bayesian
approaches. Nature Reviews Genetics, 4(4), 275.

Huelsenbeck, J., Larget, B., and Alfaro, M. (2004). Bayesian phylogenetic model
selection using reversible jump Markov chain Monte Carlo. Molecular Biology and
Evolution, 21(6), 1123.

Huelsenbeck, J. P., Larget, B., and Swofford, D. L. (2000). A compound Poisson
process for relaxing the molecular clock. Genetics, 154, 1879–1892.

Huelsenbeck, J. P., Jain, S., Frost, S. W. D., and Pond, S. L. K. (2006). A Dirichlet
process model for detecting positive selection in protein-coding DNA sequences.
Proceedings of the National Academy of Sciences, 103(16), 6263–6268.
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