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Abstract

RNA-Seq and gene expression microarrays provide comprehensive profiles of gene

activity, but lack of reproducibility has hindered their application. A key challenge

in the data analysis is the normalization of gene expression levels, which is currently

performed following an implicit assumption that most genes are not differentially

expressed. Here, we present a mathematical approach to normalization that makes

no assumption of this sort. We have found that variation in gene expression is

much greater than currently believed, and that it can be measured with available

technologies. Our results also explain, at least partially, the problems encountered

in transcriptomics studies. We expect this improvement in detection to help efforts

to realize the full potential of gene expression profiling, especially in analyses of

cellular processes involving complex modulations of gene expression.

Introduction

Since the discovery of DNA structure by Watson and Crick, molecular biology has pro-

gressed increasingly quickly, with rapid advances in sequencing and related genomic tech-

nologies. Among these, microarrays and RNA-Seq have been widely adopted to obtain

gene expression profiles, by measuring the concentration of tens of thousands of mRNA

molecules in single assays (Schena et al., 1995; Lockhart et al., 1996; Duggan et al., 1999;

Mortazavi et al., 2008; Wang et al., 2009). Despite their enormous potential (Golub et al.,

1999; van ’t Veer et al., 2002; Ivanova et al., 2002; Chi et al., 2003), problems of repro-

ducibility and reliability (Tan et al., 2003; Frantz, 2005; Couzin, 2006) have discouraged

their use in some areas, e.g. biomedicine (Michiels et al., 2005; Weigelt and Reis-Filho,

2010; Brettingham-Moore et al., 2011). In more mature microarray technologies, issues

such as probe design, cross-hybridization, non-linearities and batch effects (Draghici et al.,

2006) have been identified as possible culprits, but the problems persist (Shi et al., 2006;

Su et al., 2014).

The normalization of gene expression, which is required to set a common reference level
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among samples (Smyth and Speed, 2003; Irizarry et al., 2003; Bullard et al., 2010; Garber

et al., 2011; Dillies et al., 2013), is also reportedly problematic, affecting the reproducibil-

ity of results with both microarray (Shi et al., 2006; Shippy et al., 2006) and RNA-Seq

(Su et al., 2014; Bullard et al., 2010; Dillies et al., 2013). Batch effects and their influence

on normalization have recently received a great deal of attention (Leek et al., 2010; Reese

et al., 2013; Li et al., 2014), resulting in approaches aiming to remove unwanted technical

variation caused by differences between batches of samples or by other sources of expres-

sion heterogeneity (Listgarten et al., 2010; Gagnon-Bartsch and Speed, 2012; Risso et al.,

2014). A different issue, however, is the underlying assumption made by the most widely

used normalization methods to date, such as median and quantile normalization (Bolstad

et al., 2003) for microarrays, or RPKM (Mortazavi et al., 2008) and TMM (Robinson

and Oshlack, 2010) for RNA-Seq, which posit that most genes are not differentially ex-

pressed (Dillies et al., 2013; Hicks and Irizarry, 2015). This lack-of-variation assumption

may seem reasonable for many applications, but it has not been confirmed. Furthermore,

results obtained with other technologies, particularly qRT-PCR, suggest that it may not

be valid (Shi et al., 2006; Bullard et al., 2010).

Some methods have been proposed to address the issue of the lack-of-variation assumption,

based on the use of spike-ins (Lovén et al., 2012), negative control probes (Wu and Aryee,

2010) or negative control genes (Gagnon-Bartsch and Speed, 2012), that is, on external or

internal controls that are known a priori not to be differentially expressed (Lippa et al.,

2010). The applicability of these methods, however, has been limited by this requirement

of a priori knowledge, which is rarely available for a sufficiently large number of controls.

Thus, in attempts to clarify and overcome limitations imposed by the lack-of-variation

assumption, we have developed an approach to normalization that does not assume lack-

of-variation and that does not require the use of spike-ins or a priori knowledge of control

genes. The analysis of a large gene expression dataset using this approach shows that

the assumption can severely undermine the detection of variation in gene expression. We

have found that large numbers of differentially expressed genes with substantial expression

changes are missed when data are normalized with methods that assume lack-of-variation.
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Results

Datasets and Normalization Methods

The dataset was obtained from biological triplicates of Enchytraeus crypticus (a globally

distributed soil organism used in standard ecotoxicity tests), sampled under 51 experimen-

tal conditions (42 treatments and 9 controls), involving exposure to several substances,

at several concentrations and durations according to a factorial design (Supp. Table 1).

Gene expression was measured using a customized high-density oligonucleotide microar-

ray, and the resulting dataset was normalized with four methods. Two of these methods

are the most widely used procedures for microarrays, median (or scale) normalization

and quantile normalization (Bolstad et al., 2003), whereas the other two, designated me-

dian condition-decomposition normalization and standard-vector condition-decomposition

normalization, have been developed for this study.

With the exception of quantile normalization, all used methods apply a multiplicative

factor to the expression levels in each sample, equivalent to the addition of a number in

the usual log2-scale for gene expression levels. Solving the normalization problem consists

of finding these correction factors. The problem can be exactly and linearly decomposed

into several sub-problems: one within-condition normalization for each experimental con-

dition and one final between-condition normalization for the condition averages. In the

within-condition normalizations, the samples (replicates) subjected to each experimental

condition are normalized separately, whereas in the final between-condition normalization

average levels for all conditions are normalized together. Because there are no genes with

differential expression in any of the within-condition normalizations, the lack-of-variation

assumption only affects the final between-condition normalization. The assumption is

avoided by using, in this normalization, expression levels only from no-variation genes,

i.e. genes that show no evidence of differential expression under a statistical test. Both

methods of normalization proposed here follow this condition-decomposition approach.

With median condition-decomposition normalization, all normalizations are performed
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with median values, as in conventional median normalization, but only no-variation genes

are included in the between-condition step. Otherwise, if all genes were used in this final

step, the resulting total normalization factors would be exactly the same as those obtained

with conventional median normalization.

For standard-vector condition-decomposition normalization, a vectorial procedure was de-

veloped to carry out each normalization step. The samples of any experimental condition,

in a properly normalized dataset, must be exchangeable. In mathematical terms, the ex-

pression levels of each gene can be considered as an s-dimensional vector, where s is the

number of samples for the experimental condition. After standardization (mean subtrac-

tion and variance scaling), these standard vectors are located in a (s − 2)-dimensional

hypersphere. The exchangeability mentioned above implies that, when properly normal-

ized, the distribution of standard vectors must be invariant with respect to permutations

of the sample labels and must have zero expected value. These properties allow to obtain,

under fairly general assumptions, a robust estimator of the normalization factors.

To further explore and compare outcomes of the normalization methods, they were also

applied to a synthetic random dataset. This dataset was generated with identical means

and variances gene-by-gene to the real dataset, and with the assumption that all genes

were no-variation genes. In addition, normalization factors were applied, equal to those

obtained from the real dataset. Thus, the synthetic dataset was very similar to the real

one, while complying by construction with the lack-of-variation assumption.

Normalization Results

Figure 1 displays the results of applying the four normalization methods to the real and

synthetic datasets. Each panel shows the interquartile ranges of expression levels for the

153 samples, grouped in triplicates exposed to each experimental condition. Both median

(second row) and quantile normalization (third row) yielded similar outputs, for both

datasets. In contrast, the condition-decomposition normalizations (fourth and fifth rows)

identified marked differences, detecting much greater variation between conditions in the
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real dataset. Conventional median normalization makes, by design, the median of each

sample the same, while quantile normalization makes the full distribution of each sample

the same. Hence, if there were differences in medians or distributions of gene expression

between experimental conditions, both methods would have removed them. Figures 1G,I

show that such variation between conditions was present in the real dataset.

Influence of no-variation genes on normalization

To clarify how the condition-decomposition normalizations preserved the variation be-

tween conditions, we studied the influence of the choice of no-variation genes in the final

between-condition normalization. To this end, we obtained the between-condition varia-

tion with both methods in two families of cases. In one family, no-variation genes were

chosen in decreasing order of p-values from an ANOVA test. In the other family, genes

were chosen at random. The first option was similar to the approach implemented to

obtain the results presented in Figures 1G–J, with the difference that there the number

of genes was chosen automatically by a statistical test. As shown in Figure 2A, for the

real dataset the random choice of genes resulted in n−1/2 decays (n being the number

of chosen genes), followed by a plateau. The n−1/2 decays reflect the standard errors of

the estimators of the normalization factors. Selecting the genes by decreasing p-values,

however, yielded a completely different result. Up to a certain number of genes, the

variance remained similar, but for larger numbers of genes the variance dropped rapidly.

Figure 2A shows, therefore, that between-condition variation was removed as soon as

the between-condition normalizations used genes that varied in expression level across

experimental conditions. The big circles in Figure 2A indicate the working points of the

normalizations used to generate the results displayed in Figures 1G,I. In fact, these points

slightly underestimated the variation between conditions. Although the statistical test for

identifying no-variation genes ensured that there was no evidence of variation, inevitably

the expression of some selected genes varied across conditions.

Figure 2B displays the results obtained with the synthetic dataset. There were no plateaus
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when no-variation genes were chosen randomly, only n−1/2 decays, and small differences

when no-variation genes were selected by decreasing p-values. Big circles show that work-

ing points were selected with much larger numbers of genes in the synthetic dataset

(Figs. 1H,J) than in the real dataset (Figs. 1G,I). The residual variation, produced by

errors in the estimation of the normalization factors, was much smaller than the varia-

tion detected in the real dataset, especially for standard-vector condition-decomposition

normalization. Overall, Figure 2 shows that the between-condition variation pictured in

Figures 1G,I is not an artifact caused by using an exceedingly small or extremely par-

ticular set of genes in the final between-condition normalization, but that this variation

originated from the real dataset.

Differential Gene Expression

Finally, Figure 3A shows the numbers of differentially expressed gene probes (DEGP),

identified after normalizing with the four methods, for each of the 42 experimental treat-

ments versus the corresponding control (Supp. Table 2). Compared to conventional meth-

ods, the number of DEGP detected with the condition-decomposition normalizations was

much larger under most treatments, including some whose number of DEGP was larger

by more than one order of magnitude. These are statistically significant changes of gene

expression, i.e. changes that cannot be explained by chance. More important is the scale

of the detected variation, as illustrated by the boxplots in Figure 3C showing absolute

fold changes of DEGP detected after standard-vector condition-decomposition normaliza-

tion. For all treatments, the entire interquartile range of absolute fold change is above

1.5-fold, and for more than two thirds of the treatments the median absolute fold change

is greater than 2. This amount of gene expression variation cannot be neglected, and

warrants further research to explore its biological significance.
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Discussion

The variation between medians displayed in Figures 1G,I may seem surprising, given

routine expectations based on current methods (Figs. 1C,E). Nevertheless, this variation

inevitably results from the imbalance between over- and under-expressed genes. As an

illustration, let us consider a case with two experimental conditions, in which the average

expression of a given gene is less than the distribution median under one condition, but

greater than the median under the other. The variation of this gene alone will change

the value of the median to the expression level of the next ranked gene. Therefore, if the

number of over-expressed genes is different from the number of under-expressed genes,

and enough changes cross the median boundary, then the median will substantially differ

between conditions. Only when the differential expression is balanced or small enough,

will the median stay the same. This argument applies equally to any other quantile in the

distribution of gene expression. Transcriptional amplification is an extreme example of

change in the distribution of expression levels (Lovén et al., 2012), which can nevertheless

be properly normalized with condition-decomposition methods, and without resorting to

spike-ins as long as some genes are not differentially expressed.

An important feature of the approaches to normalization proposed here (linear decompo-

sition into normalization sub-problems per condition, and standard-vector normalization

for each sub-problem) is that they do not depend on any particular aspect of the tech-

nology of gene expression microarrays or RNA-Seq. The numbers in the input data are

interpreted as measured concentrations of mRNA molecules, in order to identify the nor-

malization factors and irrespectively of whether the concentrations were obtained from

fluorescence intensities of hybridized cDNA (microarrays) or from counts of fragments

read of mRNA sequences (RNA-Seq). Nevertheless, we consider that specific within-

sample corrections for each technology are still necessary and must be applied before the

between-sample normalizations proposed here. Examples include background correction

for microarrays or gene-length normalization (RPKM) for RNA-Seq. Equally, methods

that address the influence of biological or technical confounding factors on downstream
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analyses, such as SVA (Leek and Storey, 2007) or PEER (Stegle et al., 2010), should be

applied when necessary, after normalizing.

The lack-of-variation assumption underlying the current methods of normalization was

self-fulfilling, removing variation in gene expression that was present in the real dataset.

Moreover, it had negative consequences for downstream analyses, as it both removed po-

tentially important biological information and introduced errors in the detection of gene

expression. A removal of variation can be understood as errors in the estimation of normal-

ization factors. Considering data and errors vectorially, the length of each vector equals,

after centering and up to a constant factor, the standard deviation of the data or error.

The addition of an error of small magnitude, compared to the data variance, would have

only a minor effect. However, errors of similar or greater magnitude than the data vari-

ance may, depending on the lengths and relative angles of the vectors, severely distort the

observed data variance. This will in turn cause spurious results in the statistical analyses.

Furthermore, the angles between the data and the correct normalization factors (consid-

ered as vectors) are random. Data reflect biological variation, while normalization factors

respond to technical variation. If the experiment is repeated, even with exactly the same

experimental settings, the errors in the normalization factors will vary randomly, causing

random spurious results in the downstream analyses. This explains, at least partially,

the lack of reproducibility found in transcriptomics studies, especially for the detection of

small changes of gene expression, because small variations are most likely to be distorted

by errors in the estimates of normalization factors. Accordingly, the largest differences in

numbers of DEGP detected by conventional compared to condition-decomposition meth-

ods (Fig. 3A) occurred consistently in the treatments with the smallest magnitudes of

gene expression changes, e.g. treatments 28, 29 and 33 (Figs. 3B,C).

In summary, this study proves that large numbers of genes change in expression level

(often strongly) across experimental conditions, and too extensively to ignore in the nor-

malization of gene expression data. Further, our approach, which avoids the prevailing

lack-of-variation assumption, demonstrates that current normalization methods likely re-

move and distort important variation in gene expression. It also offers a means to inves-
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tigate broad changes in gene expression that have remained hidden to date. We expect

this to provide revealing insights about diverse biomolecular processes, particularly those

involving substantial numbers of genes, such as cell differentiation, toxic responses, dis-

eases with non-Mendelian inheritance patterns and cancer. After years of lagging behind

the advances in genome sequencing, we believe that the procedures presented here will

assist efforts to realize the full potential of gene expression profiling.
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Data Deposition and Code Availability

MIAME-compliant microarray data from the experiment were submitted to the Gene Ex-

pression Omnibus (GEO) at the NCBI website (platform: GPL20310; series: GSE69746,

GSE69792, GSE69793 and GSE69794). Custom code that reproduces all the reported

results starting from the raw microarray data is available at the GitHub repository

https://github/carlosproca/gene-expr-norm-paper.
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Figure 1: The condition-decomposition normalizations detected a large amount of

between-condition variation in the real expression data, in contrast with conventional

methods. All 10 panels show interquartile ranges of expression levels of the 153 samples,

grouped by the 51 experimental conditions (Ag, blue-yellow; Cu, red-cyan; Ni, green-

orange; UV, purple; see Supp. Table 1). Black lines indicate medians. Rows and columns

correspond to normalization methods and datasets (as labeled), respectively. In the syn-

thetic dataset no gene was differentially expressed between any two conditions.
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Figure 2: The selection of genes in the final between-condition normalization was crucial

to preserve variation between conditions. The panels show the detected variation as a

function of the number of gene probes used in the between-condition normalization of the

real dataset (A) and synthetic dataset (B). Between-condition variation is represented

as the standard deviation of the within-condition mean averages (averages of sample

mean expression levels, for all samples under the condition). See Supplementary Figure 1

for within-condition median averages, with similar results. Each point in either of the

panels indicates the variation obtained with one complete normalization (black circles,

median condition-decomposition normalization; blue circles, standard-vector condition-

decomposition normalization). Gene probes were selected in two ways: randomly (empty

circles) or in decreasing order of p-values (filled circles). Big circles show the working

points of the algorithms whose results are depicted in Figures 1G–J. Black dashed lines

show references for n−1/2 decays, with the same values in both panels.
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Figure 3: The condition-decomposition normalizations detected much larger numbers of

differentially expressed gene probes (DEGP), with substantial fold changes. A: Number of

DEGP for each treatment vs control comparison, obtained after applying the four normal-

ization methods (empty black circles, median normalization; empty red triangles, quantile

normalization; filled green circles, median condition-decomposition normalization; filled

blue triangles, standard-vector condition decomposition normalization). Significant differ-

ential expression was identified with R/Bioconductor package limma. (see Supp. Fig. 2 for

results with t-tests). Lower panel shows boxplots of absolute values of DEGP fold changes

(absolute differences of log2 expression levels), also per treatment vs control comparison,

obtained with quantile normalization (B) and standard-vector condition-decomposition

normalization (C). Boxplots are colored by treatment, with the same color code as in Fig-

ure 1. In both panels comparisons are ordered according to the number of DEGP identified

with standard-vector condition-decomposition normalization, increasing from left to right

(Supp. Table 2). Dashed horizontal lines in the lower panel indicate references of 1.5-fold

and 2-fold changes.
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Materials and Methods

Test Organism and Exposure Media

The test species was Enchytraeus crypticus. Individuals were cultured in Petri dishes

containing agar medium, in controlled conditions (Gomes et al., 2015b).

For copper (Cu) exposure, a natural soil collected at Hygum, Jutland, Denmark was

used (Gomes et al., 2015b; Scott-Fordsmand et al., 2000). For silver (Ag) and nickel (Ni)

exposure, the natural standard soil LUFA 2.2 (LUFA Speyer, Germany) was used (Gomes

et al., 2015b). The exposure to ultra-violet (UV) radiation was done in ISO reconstituted

water (OECD, 2004a).

Test Chemicals

The tested Cu forms (Gomes et al., 2015b) included copper nitrate (Cu(NO3)2 ·3H2O >

99%, Sigma Aldrich), Cu nanoparticles (Cu-NPs, 20–30 nm, American Elements) and Cu

nanowires (Cu-Nwires, synthesized by reduction of copper (II) nitrate with hydrazine in

alkaline medium (Chang et al., 2005)).

The tested Ag forms (Gomes et al., 2015b) included silver nitratre AgNO3 > 99%, Sigma

Aldrich), non-coated Ag nanoparticles (Ag-NPs Non-Coated, 20–30 nm, American Ele-

ments),

Polyvinylpyrrolidone (PVP)-coated Ag nanoparticles (Ag-NPs PVP-Coated, 20–30 nm,

American Elements), and Ag NM300K nanoparticles (Ag NM300K, 15 nm, JRC Repos-

itory). The Ag NM300K was dispersed in 4% Polyoxyethylene Glycerol Triolaete and

Polyoxyethylene (20) orbitan mono-Laurat (Tween 20), thus the dispersant was tested

alone as control (CTdisp).

The tested Ni forms included nickel nitrate (Ni(NO3)2 ·6H2O ≥ 98.5%, Fluka) and Ni

nanoparticles (Ni-NPs, 20 nm, American Elements).
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Spiking Procedure

Spiking for the Cu and Ag materials was done as in previous work (Gomes et al., 2015b).

For the Ni materials, the Ni-NPs were added to the soil as powder, following the same

procedure as for the Cu materials. NiNO3, being soluble, was added to the pre-moistened

soil as aqueous dispersions.

The concentrations tested were selected based on the reproduction effect concentrations

EC20 and EC50, for E. crypticus, within 95% of confidence intervals, being: CuNO3

EC20/50 = 290/360 mgCu/kg, Cu-NPs EC20/50 = 980/1760 mgCu/kg, Cu-Nwires EC20/50

= 850/1610 mgCu/kg, Cu-Field EC20/50 = 500/1400 mgCu/kg, AgNO3 EC20/50 = 45/60

mgAg/kg, Ag-NP PVP-coated EC20/50 = 380/550 mgAg/kg, Ag-NP Non-coated EC20/50

= 380/430 mgAg/kg, Ag NM300K EC20/50 = 60/170 mgAg/kg, CTdisp = 4% w/w Tween

20, NiNO3 EC20/50 = 40/60 mgNi/kg, Ni-NPs EC20/50 = 980/1760 mgNi/kg.

Four biological replicates were performed per test condition, including controls. For Cu

exposure, the control condition for all the treatments consisted of soil from a control area

at Hygum site, which has a Cu background concentration of 15 mg/kg (Scott-Fordsmand

et al., 2000). For Ag exposure, two control sets were performed: CT (un-spiked LUFA soil,

to be the control condition for AgNO3, Ag-NPs PVP-Coated and Ag-NPs Non-Coated

treatments) and CTdisp (LUFA soil spiked with the dispersant Tween 20, to be the

control condition for the Ag NM300K treatments). For Ni exposure, the control consisted

of un-spiked LUFA soil.

Exposure Details

In soil (i.e. for Cu, Ag and Ni) exposure followed the standard ERT (OECD, 2004b)

with adaptations as follows: twenty adults with well-developed clitellum were introduced

in each test vessel, containing 20 g of moist soil (control or spiked). The organisms

were exposed for three and seven days under controlled conditions of photoperiod (16:8

h light:dark) and temperature 20 ± 1 ◦C without food. After the exposure period, the
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organisms were carefully removed from the soil, rinsed in deionized water and frozen in

liquid nitrogen. The samples were stored at −80 ◦C, until analysis.

For UV exposure, the test conditions (OECD, 2004a) were adapted for E. crypticus

(Gomes et al., 2015a). The exposure was performed in 24-well plates, where each well

correspond to a replicate and contain 1 ml of ISO water and five adult organisms with

clitellum. The test duration was five days, at 20 ± 1 ◦C. The organisms were exposed

to UV on a daily basis, during 15 minutes per day to two UV intensities (280–400nm)

of 1669.25 ± 50.83 and 1804.08 ± 43.10 mW/m2, corresponding to total UV doses of

7511.6 and 8118.35 J/m2, respectively. The remaining time was spent under standard

laboratory illumination (16:8 h photoperiod). UV radiation was provided by an UV lamp

(Spectroline XX15F/B, Spectronics Corporation, NY, USA, peak emission at 312 nm)

and a cellulose acetate sheet was coupled to the lamp to cut-off UVC-range wavelengths

(Gomes et al., 2015a). Thirty two replicates per test condition (including control without

UV radiation) were performed to obtain 4 biological replicates with 40 organisms each

for RNA extraction. After the exposure period, the organisms were carefully removed

from the water and frozen in liquid nitrogen. The samples were stored at −80 ◦C, until

analysis.

RNA Extraction, Labeling and Hybridization

RNA was extracted from each replicate, which contained a pool of 20 and 40 organisms,

for soil and water exposure, respectively. Three biological replicates per test treatment

(including controls) were used. Total RNA was extracted using SV Total RNA Isolation

System (Promega). The quantity and purity were measured spectrophotometrically with a

nanodrop (NanoDrop ND-1000 Spectrophotometer) and its quality checked by denaturing

formaldehyde agarose gel electrophoresis.

500 ng of total RNA were amplified and labeled with Agilent Low Input Quick Amp

Labeling Kit (Agilent Technologies, Palo Alto, CA, USA). Positive controls were added
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with the Agilent one-color RNA Spike-In Kit. Purification of the amplified and labeled

cRNA was performed with RNeasy columns (Qiagen, Valencia, CA, USA).

The cRNA samples were hybridized on custom Gene Expression Agilent Microarrays (4

x 44k format), with a single-color design (Castro-Ferreira et al., 2014). Hybridizations

were performed using the Agilent Gene Expression Hybridization Kit and each biological

replicate was individually hybridized on one array. The arrays were hybridized at 65 ◦C

with a rotation of 10 rpm, during 17 h. Afterwards, microarrays were washed using

Agilent Gene Expression Wash Buffer Kit and scanned with the Agilent DNA microarray

scanner G2505B.

Data Acquisition and Analysis

Fluorescence intensity data was obtained with Agilent Feature Extraction Software

v. 10.7.3.1, using recommended protocol GE1 107 Sep09. Quality control was done by

inspecting the reports on the Agilent Spike-in control probes. Background correction

was provided by Agilent Feature Extraction software. To ensure an optimal comparison

between the different normalization methods, only gene probes with good signal quality

(flag IsPosAndSignif = True) in all samples were employed in the analyses. This implied

the selection of 18,339 gene probes from a total of 43,750. Analyses were performed with

R (R Core Team, 2015) v. 3.2.2, using R packages plotrix and RColorBrewer, and with

Bioconductor (Huber et al., 2015) v. 3.1 packages genefilter and limma (Ritchie et al.,

2015).

The synthetic data was generated gene by gene as normal variates with mean and vari-

ance equal, respectively, to the sample mean and sample variance of the real data. The

applied normalization factors were those detected from the real data with standard-vector

condition-decomposition normalization.

Median normalization was performed by subtracting the median of each sample distribu-

tion, and then adding the overall median to preserve the global expression level. Quantile
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normalization was performed as implemented in the limma package.

The two condition-decomposition normalizations proceeded in the same way: first, 51

independent within-condition normalization using all genes; then, final between-condition

normalization, iteratively detecting no-variation genes and normalizing until convergence.

No-variation genes were identified with one-sided Kolmogorov-Smirnov tests, as goodness-

of-fit tests against the uniform distribution, carried out on the greatest p-values obtained

from an ANOVA test on the complete dataset (see below). The ANOVA test benefited

from the already corrected within-condition variances, provided by the within-condition

normalizations. The KS test was rejected at α = 0.001.

The criterion for convergence for the median condition-decomposition (CD) normaliza-

tions was to require that the relative changes in the standard deviation of the normal-

ization factors were less than 1%, or less than 10% for 10 steps in a row. In the case

of standard-vector CD normalizations, convergence required that numerical errors were,

compared to the estimated statistical errors (see below), less than 1%, or less than 10%

for 10 steps in a row. For Figure 2 and Supplementary Figure 1, due to the very low

number of gene probes in some cases, the thresholds for convergence for 10 steps in a row

were increased to 80% and 50%, respectively, for median CD and standard-vector CD

normalization.

In standard-vector CD normalization, the distribution of standard vectors was trimmed

in each step to remove the 1% more extreme values of variance.

Differentially expressed gene probes were identified with limma (Fig. 3) or t-tests (Supp.

Fig. 2), using in all cases a FDR threshold of 5%.

The reference distribution with permutation symmetry shown in the polar plots of the

probability density function in Supplementary Movies 1–3 was calculated with the 6 per-

mutations of the empirical standard vectors. The Watson U2 statistic was calculated

with the two-sample test (Durbin, 1973). An equal number of samples for comparison

was obtained by sampling with replacement the permuted standard vectors.
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Mathematical Methods

In a gene expression dataset with g genes, c experimental conditions and n samples per

condition, the observed expression levels of gene j in condition k, y
(k)
j = (y

(k)
1j , . . . , y

(k)
nj )′,

can be expressed in log2-scale as

y
(k)
j = x

(k)
j + a(k), (1)

where x
(k)
j is the vector of true gene expression levels and a(k) is the vector of normalization

factors.

Given a sample vector x, the mean vector is x = x̄1, and the residual vector is x̃ = x−x.

Then, (1) can be linearly decomposed into

y
(k)
j = x

(k)
j + a(k), (2)

ỹ
(k)
j = x̃

(k)
j + ã(k). (3)

Equations (3) define the within-condition normalizations for each condition k. The scalar

values in (2) are used to obtain the equations on condition means,

y∗j = x∗j + a∗, (4)

ỹ∗j = x̃∗j + ã∗. (5)

The between-condition normalization is defined by (5). Equations (4) reduce to a single

number, which is irrelevant to the normalization. The complete solution for each condition

is obtained with a(k) = a(k) + ã(k).

The n samples of gene j in a given condition can be modeled with the random vectors

Xj,Yj ∈ Rn. Again, Yj = Xj + a, where a is a fixed vector of normalization factors. It

can be proved, under fairly general assumptions, that the true standard vectors have zero

expected value

E

(
√
n− 1

X̃j

‖X̃j‖

)
= 0, (6)

whereas the observed standard vectors verify, as long as a 6= 0,

0 < E

(
√
n− 1

Ỹj

‖Ỹj‖

)′
ã

‖ã‖
< E

(
√
n− 1

1

‖Ỹj‖

)
‖ã‖. (7)
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This motivates the following iterative procedure to solve (3) and (5) (standard-vector

normalization):

ŷ
(0)
j = ỹj, (8)

ŷ
(t)
j = ŷ

(t−1)
j − b̂(t−1), for t ≥ 1, (9)

b̂(t) =

g∑
j=1

ŷ
(t)
j

‖ŷ(t)
j ‖

g∑
j=1

1

‖ŷ(t)
j ‖

, for t ≥ 0. (10)

At convergence, limt→∞ b̂(t) = 0, which implies limt→∞ ŷ
(t)
j = x̃j and

∑∞
t=0 b̂(t) = ã.

Convergence is faster the more symmetric the empirical distribution of x̃j/‖x̃j‖ is on the

unit (n − 2)-sphere. Convergence is optimal with spherically symmetric distributions,

such as the Gaussian distribution, because in that case

E

(
Ỹj

‖Ỹj‖

)
= λã, with 0 < λ < E

(
1

‖Ỹj‖

)
. (11)

Assuming no correlation between genes, an approximation of the statistical error at step

t can be obtained with

E
(
‖b̂(t)‖

)
≈

√
g

g∑
j=1

1

‖ŷ(t)
j ‖

. (12)

This statistical error is compared with the numerical error to assess convergence.

See Supplementary Material for a detailed exposition of the mathematical methods, and

Supplementary Movies 1–5 for an illustration.
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Supplementary Tables

Supplementary Table 1: Experimental conditions of the toxicity experiment on E. cryp-

ticus, listed in the same order as they appear in each panel of Figure 1, from left to

right.

Condition ID Condition description

1 Ag.AgNO3.EC20.3d AgNO3 EC20 3 days

2 Ag.AgNO3.EC20.7d AgNO3 EC20 7 days

3 Ag.AgNO3.EC50.3d AgNO3 EC50 3 days

4 Ag.AgNO3.EC50.7d AgNO3 EC50 7 days

5 Ag.Coated.EC20.3d Ag-NPs PVP-Coated EC20 3 days

6 Ag.Coated.EC20.7d Ag-NPs PVP-Coated EC20 7 days

7 Ag.Coated.EC50.3d Ag-NPs PVP-Coated EC50 3 days

8 Ag.Coated.EC50.7d Ag-NPs PVP-Coated EC50 7 days

9 Ag.NC.EC20.3d Ag-NPs Non-Coated EC20 3 days

10 Ag.NC.EC20.7d Ag-NPs Non-Coated EC20 7 days

11 Ag.NC.EC50.3d Ag-NPs Non-Coated EC50 3 days

12 Ag.NC.EC50.7d Ag-NPs Non-Coated EC50 7 days

13 Ag.NM300K.EC20.3d Ag NM300K EC20 3 days

14 Ag.NM300K.EC20.7d Ag NM300K EC20 7 days

15 Ag.NM300K.EC50.3d Ag NM300K EC50 3 days

16 Ag.NM300K.EC50.7d Ag NM300K EC50 7 days

17 Ag.CT.3d Ag Control 3 days

18 Ag.CT.7d Ag Control 7 days

19 Ag.CTD.3d Ag Control Dispersant 3 days

20 Ag.CTD.7d Ag Control Dispersant 7 days

21 Cu.CuNO3.EC20.3d CuNO3 EC20 3 days

22 Cu.CuNO3.EC20.7d CuNO3 EC20 7 days

23 Cu.CuNO3.EC50.3d CuNO3 EC50 3 days

24 Cu.CuNO3.EC50.7d CuNO3 EC50 7 days

25 Cu.Cu.NPs.EC20.3d Cu-NPs EC20 3 days

26 Cu.Cu.NPs.EC20.7d Cu-NPs EC20 7 days

27 Cu.Cu.NPs.EC50.3d Cu-NPs EC50 3 days

28 Cu.Cu.NPs.EC50.7d Cu-NPs EC50 7 days

29 Cu.Cu.Nwires.EC20.3d Cu-NWires EC20 3 days

30 Cu.Cu.Nwires.EC20.7d Cu-NWires EC20 7 days

31 Cu.Cu.Nwires.EC50.3d Cu-NWires EC50 3 days

32 Cu.Cu.Nwires.EC50.7d Cu-NWires EC50 7 days

33 Cu.Cu.field.EC20.3d Cu-Field EC20 3 days

34 Cu.Cu.field.EC20.7d Cu-Field EC20 7 days

35 Cu.Cu.field.EC50.3d Cu-Field EC50 3 days

36 Cu.Cu.field.EC50.7d Cu-Field EC50 7 days

37 Cu.CT.3d Cu Control 3 days

38 Cu.CT.7d Cu Control 7 days

39 Ni.NiNO3.EC20.3d NiNO3 EC20 3 days

40 Ni.NiNO3.EC20.7d NiNO3 EC20 7 days

41 Ni.NiNO3.EC50.3d NiNO3 EC50 3 days

42 Ni.NiNO3.EC50.7d NiNO3 EC50 7 days

43 Ni.Ni.NPs.EC20.3d Ni-NPs EC20 3 days

44 Ni.Ni.NPs.EC20.7d Ni-NPs EC20 7 days

45 Ni.Ni.NPs.EC50.3d Ni-NPs EC50 3 days

46 Ni.Ni.NPs.EC50.7d Ni-NPs EC50 7 days

47 Ni.CT.3d Ni Control 3 days

48 Ni.CT.7d Ni Control 7 days

49 Uv.UV.D1.5d UV Dose 1

50 Uv.UV.D2.5d UV Dose 2

51 Uv.CT.5d UV Control

Condition
number
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Supplementary Table 2: Treatment vs control comparisons, listed in increasing number

of differentially expressed gene probes (DEGP) obtained with standard-vector condition-

decomposition normalization and limma statistical analysis. This is the same order as in

Figure 3, from left to right.

Treatment ID Control ID Treatment description

1 Ag.NM300K.EC20.7d Ag.CTD.7d Ag NM300K EC20 7 days 2

2 Ni.Ni.NPs.EC20.7d Ni.CT.7d Ni-NPs EC20 7 days 7

3 Cu.CuNO3.EC20.3d Cu.CT.3d CuNO3 EC20 3 days 27

4 Cu.CuNO3.EC50.7d Cu.CT.7d CuNO3 EC50 7 days 31

5 Cu.Cu.NPs.EC20.3d Cu.CT.3d Cu-NPs EC20 3 days 31

6 Ag.AgNO3.EC50.7d Ag.CT.7d AgNO3 EC50 7 days 33

7 Cu.Cu.NPs.EC20.7d Cu.CT.7d Cu-NPs EC20 7 days 33

8 Ag.NM300K.EC20.3d Ag.CTD.3d Ag NM300K EC20 3 days 38

9 Ag.NM300K.EC50.3d Ag.CTD.3d Ag NM300K EC50 3 days 52

10 Ni.NiNO3.EC20.3d Ni.CT.3d NiNO3 EC20 3 days 74

11 Ni.NiNO3.EC20.7d Ni.CT.7d NiNO3 EC20 7 days 79

12 Ag.NC.EC20.7d Ag.CT.7d Ag-NPs Non-Coated EC20 7 days 106

13 Ni.Ni.NPs.EC50.7d Ni.CT.7d Ni-NPs EC50 7 days 107

14 Ag.AgNO3.EC20.7d Ag.CT.7d AgNO3 EC20 7 days 111

15 Ag.NC.EC50.7d Ag.CT.7d Ag-NPs Non-Coated EC50 7 days 163

16 Ag.NC.EC20.3d Ag.CT.3d Ag-NPs Non-Coated EC20 3 days 244

17 Ag.AgNO3.EC50.3d Ag.CT.3d AgNO3 EC50 3 days 254

18 Ag.Coated.EC20.7d Ag.CT.7d Ag-NPs PVP-Coated EC20 7 days 261

19 Ni.NiNO3.EC50.7d Ni.CT.7d NiNO3 EC50 7 days 329

20 Cu.Cu.NPs.EC50.7d Cu.CT.7d Cu-NPs EC50 7 days 343

21 Ag.Coated.EC50.7d Ag.CT.7d Ag-NPs PVP-Coated EC50 7 days 346

22 Cu.Cu.Nwires.EC50.7d Cu.CT.7d Cu-NWires EC50 7 days 387

23 Cu.CuNO3.EC20.7d Cu.CT.7d CuNO3 EC20 7 days 393

24 Cu.Cu.Nwires.EC20.7d Cu.CT.7d Cu-NWires EC20 7 days 478

25 Cu.CuNO3.EC50.3d Cu.CT.3d CuNO3 EC50 3 days 522

26 Ag.AgNO3.EC20.3d Ag.CT.3d AgNO3 EC20 3 days 911

27 Ag.Coated.EC20.3d Ag.CT.3d Ag-NPs PVP-Coated EC20 3 days 930

28 Ag.NM300K.EC50.7d Ag.CTD.7d Ag NM300K EC50 7 days 1,264

29 Ni.Ni.NPs.EC20.3d Ni.CT.3d Ni-NPs EC20 3 days 1,460

30 Cu.Cu.field.EC20.7d Cu.CT.7d Cu-Field EC20 7 days 1,627

31 Ni.NiNO3.EC50.3d Ni.CT.3d NiNO3 EC50 3 days 1,649

32 Uv.UV.D2.5d Uv.CT.5d UV Dose 2 1,864

33 Ni.Ni.NPs.EC50.3d Ni.CT.3d Ni-NPs EC50 3 days 2,341

34 Cu.Cu.field.EC50.3d Cu.CT.3d Cu-Field EC50 3 days 3,578

35 Cu.Cu.field.EC50.7d Cu.CT.7d Cu-Field EC50 7 days 4,412

36 Uv.UV.D1.5d Uv.CT.5d UV Dose 1 4,746

37 Cu.Cu.NPs.EC50.3d Cu.CT.3d Cu-NPs EC50 3 days 5,993

38 Cu.Cu.field.EC20.3d Cu.CT.3d Cu-Field EC20 3 days 9,225

39 Ag.Coated.EC50.3d Ag.CT.3d Ag-NPs PVP-Coated EC50 3 days 9,474

40 Cu.Cu.Nwires.EC20.3d Cu.CT.3d Cu-NWires EC20 3 days 9,753

41 Ag.NC.EC50.3d Ag.CT.3d Ag-NPs Non-Coated EC50 3 days 9,876

42 Cu.Cu.Nwires.EC50.3d Cu.CT.3d Cu-NWires EC50 3 days 10,287

Comparison
number

Number of
DEGP
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Supplementary Figures

# Gene probes in between-condition normalization

Be
tw

ee
n-

co
nd

iti
on

 v
ar

ia
tio

n

20 100 1000 10000

0.
01

0.
1

0.
5

Be
tw

ee
n-

co
nd

iti
on

 v
ar

ia
tio

n

20 100 1000 10000

0.
01

0.
1

0.
5

Real dataset

Synthetic datasetB

A

Supplementary Figure S1

32

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 4, 2015. ; https://doi.org/10.1101/021212doi: bioRxiv preprint 

https://doi.org/10.1101/021212


Supplementary Figure 1: Representing between-condition variation as the standard de-

viation of the within-condition median averages (averages of sample median expression

levels, for all samples under the condition) yields similar results to those obtained with

within-condition mean averages (Fig. 2). The panels show the detected variation as a

function of the number of gene probes used in the between-condition normalization of

the real dataset (A) and synthetic dataset (B). Labeling is the same as in Figure 2.

Each point in either of the panels indicates the variation obtained with one complete

normalization (black circles, median condition-decomposition normalization; blue circles,

standard-vector condition-decomposition normalization). Gene probes were selected in

two ways: randomly (empty circles) or in decreasing order of p-values (filled circles).

Big circles show the working points of the algorithms whose results are depicted in Fig-

ures 1G–J. Black dashed lines show references for n−1/2 decays, with the same values in

both panels.
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Supplementary Figure 2: With t-tests, the condition-decomposition normalizations also

detected much larger numbers of differentially expressed gene probes (DEGP). The figure

shows the number of DEGP obtained with a statistical analysis based on t-tests instead

of limma (Fig. 3A). Labeling is the same as in Figure 3A (empty black circles, median

normalization; empty red triangles, quantile normalization; filled green circles, median

condition-decomposition normalization; filled blue triangles, standard-vector condition

decomposition normalization). Treatment vs control comparisons are ordered according

to the number of DEGP identified with standard-vector condition-decomposition normal-

ization, increasing from left to right. This order (not shown) was similar but not exactly

the same as in Figure 3A.
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Supplementary Mathematical Methods

Contents

SM1 Vectorial representation of sample data . . . . . . . . . . . . . . . . . . . . 35

SM2 Linear decomposition of the normalization problem . . . . . . . . . . . . . 37

SM3 Permutation invariance of multivariate data . . . . . . . . . . . . . . . . . 42

SM4 Standard-vector normalization . . . . . . . . . . . . . . . . . . . . . . . . . 48

SM5 Identification of non-differentially expressed genes . . . . . . . . . . . . . . 50

SM1 Vectorial representation of sample data

Let x1, . . . , xn be the samples of n independent and identically distributed random vari-

ables X1, . . . , Xn. Let us represent the samples x1, . . . , xn with the Rn column vector

x = (x1, . . . , xn)′, and let us denote the sample mean by x̄ =
∑n

i=1 xi/n.

Let us define the Rn → Rn vectorial operators mean ( · ) and residual ( ·̃ ), respectively, as

x = ( x̄, . . . , x̄ )′ = x̄1, (13)

x̃ = x− x = x− x̄1, (14)

1 being the all-ones column vector of dimension n.

Thus, any sample vector x ∈ Rn can be decomposed as

x = x + x̃. (15)

The mean vector x contains the sample mean, while the residual vector x̃ carries the

sample variation around the mean.
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The vectorial operators mean (13) and residual (14) are linear.

Proposition. For any two sample vectors x,y ∈ Rn and any two numbers α, β ∈ R,

αx + βy = αx + βy, (16)

˜αx + βy = αx̃ + βỹ. (17)

Proof. Let us denote x = (x1, . . . , xn)′ and y = (y1, . . . , yn)′.

αx + βy =

∑n
i=1 (αxi + βyi)

n
1 = α

∑n
i=1 xi
n

1 + β

∑n
i=1 yi
n

1 = αx + βy,

˜αx + βy = αx + βy − αx + βy = αx + βy − (αx + βy),

= α(x− x) + β(y − y) = αx̃ + βỹ. �

An essential property of the mean and residual vectors is that they belong to subspaces

that are orthogonal complements (Eaton, 2007). Hence, for any sample vector x ∈ Rn,

the mean vector x belongs to the subspace of dimension 1 spanned by the unit vector

1̂ = 1/
√
n, while the residual vector x̃ belongs to the (n − 1)-dimensional hyperplane

orthogonal to 1̂.

The lengths of the mean vector and residual vector are equal, up to a scaling factor, to the

sample mean and sample standard deviation, respectively. For a set of samples x1, . . . , xn,

where n ≥ 2, let us denote the sample mean as before by x̄ =
∑n

i=1 xi/n, and the sample

variance as s2x =
∑n

i=1(xi − x̄)2/(n − 1). Then, the lengths of the mean and residual

vectors obtained from the sample vector x = (x1, . . . , xn)′ are

‖x‖ =
√
n x̄2 =

√
n |x̄|, (18)

‖x̃‖ =

√√√√ n∑
i=1

(xi − x̄)2 =
√
n− 1 sx. (19)

Finally, let us define the standard vector of the sample vector x = (x1, . . . , xn)′ (n ≥ 2),

as

stdvec(x) =
√
n− 1

x̃

‖x̃‖
, (20)
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whenever x̃ 6= 0, or otherwise as stdvec(x) = 0. 0 is the all-zeros column vector of

dimension n.

For a given number of samples n, all the non-zero standard vectors belong to the (n− 2)-

sphere of radius
√
n− 1, embedded in the (n− 1)-dimensional hyperplane perpendicular

to 1̂. Besides, all the components of a standard vector are equal to the corresponding

standardized samples,
√
n− 1

x̃i
‖x̃‖

=
xi − x̄
sx

. (21)

For the degenerate case of having only two samples (n = 2), the only possible values of a

non-zero standard vector are ±( 1/
√

2, −1/
√

2 )′.

SM2 Linear decomposition of the normalization problem

Let us consider a gene expression dataset, with g genes and c experimental conditions.

Each condition k has sk samples. The total number of samples is s =
∑c

k=1 sk.

Let us denote the observed expression level of gene j in the sample i of condition k by y
(k)
ij .

We assume that the observed level y
(k)
ij is equal, in the usual log2-scale, to the addition of

the normalization factor a
(k)
i to the true gene expression level x

(k)
ij ,

y
(k)
ij = x

(k)
ij + a

(k)
i . (22)

Solving the normalization problem amounts to finding the normalization factors a
(k)
i from

the observed values y
(k)
ij . The normalization factors can be understood as sample-wide

changes in the concentration of mRNA molecules by multiplicative factors equal to 2a
(k)
i .

These changes are caused by technical reasons in the assay and are independent of the

biological variation in the true levels x
(k)
ij .

Let us represent the true and observed expression levels, x
(k)
ij and y

(k)
ij , of gene j in the
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samples i = 1 . . . sk of condition k, by the sk-dimensional vectors

x
(k)
j = ( x

(k)
1j , . . . , x

(k)
skj

)′, (23)

y
(k)
j = ( y

(k)
1j , . . . , y

(k)
skj

)′. (24)

Let us also represent the unknown normalization factors of condition k by the sk-dimensional

vector

a(k) = ( a
(k)
1 , . . . , a(k)sk

)′. (25)

From (22)–(25), the normalization problem can be written in vectorial form as

y
(k)
j = x

(k)
j + a(k). (26)

Applying the vectorial operators mean (13) and residual (14), we obtain

y
(k)
j = x

(k)
j + a(k), (27)

ỹ
(k)
j = x̃

(k)
j + ã(k). (28)

The residual-vector equations (28) correspond to the c within-condition normalizations.

Each within-condition normalization uses the equations (28) particular to a condition k,

for the subset of genes Gk ⊆ {1, . . . , g} that have expression level available and of enough

quality in that experimental condition.

Let us denote the condition means for each gene as

x
(k)
j =

∑sk
i=1 x

(k)
ij

sk
, (29)

y
(k)
j =

∑sk
i=1 y

(k)
ij

sk
, (30)

a(k) =

∑sk
i=1 a

(k)
i

sk
, (31)

so that

x
(k)
j = x

(k)
j 1sk , (32)

y
(k)
j = y

(k)
j 1sk , (33)

a(k) = a(k)1sk , (34)
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1sk being the all-ones column vector of dimension sk.

Then, the mean-vector equations (27) can be written as

y
(k)
j 1sk = x

(k)
j 1sk + a(k)1sk , (35)

so they reduce to the scalar equations

y
(k)
j = x

(k)
j + a(k). (36)

Let us define the vectors of conditions means as

x∗j = (x
(1)
j , . . . , x

(c)
j )′, (37)

y∗j = ( y
(1)
j , . . . , y

(c)
j )′, (38)

a∗ = ( a(1), . . . , a(c) )′, (39)

and let us express the condition-mean equations in vectorial form as

y∗j = x∗j + a∗. (40)

Applying again the mean and variance operators, we obtain

y∗j = x∗j + a∗, (41)

ỹ∗j = x̃∗j + ã∗. (42)

The residual-vector equations on condition means (42) correspond to the single between-

condition normalization, in a similar way as (28) do for the each of the within-condition

normalizations. There is one equation (42) per gene. The only equations used in the

between-condition normalization are those of the subset of genes G∗ ⊆ {1, . . . , g} that

show no evidence of variation across experimental conditions, according to a statistical

test.

Given that a∗ = a∗1c, (41) has the only unknown a∗. The meaning of a∗ is a conversion

factor between the scale the true and observed expression levels. This factor depends on
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the technology used to measure the expression levels and finding it is out of the scope of

the normalization problem. Therefore, without loss of generality, we assume a∗ = 0, so

a∗ = 0c, (43)

a∗ = ã∗. (44)

The solution of the between-condition normalization, ã∗, allows to find the mean vectors

of the normalization factors a(k), via (34), (39) and (44). The within-condition normaliza-

tions yield the residual vectors ã(k). The complete solution to the normalization problem

is finally obtained, for each condition k, with

a(k) = a(k) + ã(k). (45)

Thus, the original normalization problem (26) has been divided in c+1 normalization sub-

problems on residual vectors, stated by (28) and (42). In fact, this linear decomposition

is possible for any partition of the set of s samples. The choice of the partition as the one

defined by the experimental conditions is motivated by the need to control the biological

variation among the genes used in each normalization. All the c + 1 normalizations face

the same kind of normalization of residuals problem, which we define in general as follows.

Normalization of Residuals Problem. Let yij be the i-th observed value of feature

j, in a dataset with n ≥ 2 observations for each of the m features. The observed values

yij are equal to the true values xij plus the normalization factors ai, which are constant

across features. In vectorial form, there are m equations

yj = xj + a, (46)

where the vectors belong to Rn. As a consequence

ỹj = x̃j + ã. (47)

Solving the normalization of residuals problem amounts to finding the residual vector of

normalization factors ã from the observed residual vectors ỹj. In the within-condition
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normalizations, the features are gene expression levels, with one observation per sample

of the corresponding experimental condition. In the between-condition normalization, the

features are means of gene expression levels, with one observation per condition.

There is, however, an additional requirement imposed by the methods with which we

propose to solve the between-condition normalization. We would like to consider the

condition means x
(k)
j in (36) as sample data across conditions. This only holds when all

the conditions have the same number of samples. Otherwise, we balance the condition

means so that they result from the same number of samples in all conditions, according

to the procedure described in the following.

Let s∗ be the minimum number of samples across conditions, s∗ = min{s1, . . . , sc}. Let

S(k)
j be independent random samples (without replacement) of size s∗ from the set of

indexes {1, . . . , sk}, with one sample per gene j and condition k. Then, the balanced

condition means are defined as

x
(k)∗
j =

∑
i∈S(k)j

x
(k)
ij

s∗
, (48)

y
(k)∗
j =

∑
i∈S(k)j

y
(k)
ij

s∗
, (49)

a
(k)∗
j =

∑
i∈S(k)j

a
(k)
i

s∗
. (50)

From (22), the balanced condition means verify a relationship similar to (36),

y
(k)∗
j = x

(k)∗
j + a

(k)∗
j . (51)

Moreover, the average of a
(k)∗
j across the sampling subsets S(k)

j is equal to the unknown

a(k). This implies that (51) are, on average, equivalent to (36). Hence, we use the following

vectors of balanced conditions means

x∗j = (x
(1)∗
j , . . . , x

(c)∗
j ), (52)

y∗j = ( y
(1)∗
j , . . . , y

(c)∗
j ), (53)

41

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 4, 2015. ; https://doi.org/10.1101/021212doi: bioRxiv preprint 

https://doi.org/10.1101/021212


instead of (37), (38), in order to build the condition-mean equations (40). This balancing

of the condition means is only required when the experimental conditions have different

number of samples.

SM3 Permutation invariance of multivariate data

Let xij and yij be, respectively, the true and observed values of a dataset with n observa-

tions of m features, as defined in the normalization of residuals problem above.

We have assumed that the n true values x1j, . . . , xnj of feature j are samples of independent

and identically distributed random variables X1j, . . . , Xnj. These random variables can

be represented with the random vector Xj = (X1j, . . . , Xnj)
′, carried by the probability

space (Ω,F ,P) and with induced space (Rn,Bn,P). Let us define the random vectors Xj

and X̃j with the vectorial operators mean (13) and residual (14), respectively,

Xj =
n∑

i=1

Xij

n
, (54)

Xj = (Xj, . . . , Xj )′ = Xj1, (55)

X̃j = Xj −Xj = Xj −Xj1. (56)

Xj = Xj + X̃j holds for any random vector Xj, as well as the other properties presented

above. Let us assume that E( ‖Xj‖ ) <∞ and that P( ‖X̃j‖ = 0 ) = 0, which imply that

X̃j/‖X̃j‖ has length 1 almost surely.

The standard random vector
√
n− 1 X̃j/‖X̃j‖ is a pivotal quantity, where the location

(mean) and scale (standard deviation) of feature j have been removed. The probability

distribution of X̃j/‖X̃j‖ across the remaining degrees of freedom over the unit (n −

2)-sphere is governed by the parametric family of the random variables X1j, . . . , Xnj.

Moreover, the independence and identity of distribution across the n observations implies

that the distribution of Xj is exchangeable, i.e. invariant with respect to permutations

of the observation labels. As a result, X̃j/‖X̃j‖ is also permutation invariant, which

geometrically corresponds to symmetries with respect to the n! permutations of the axes
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in the n-dimensional space of random vectors, projected onto the (n − 1)-dimensional

hyperplane of residual vectors.

Residual vectors and standard vectors have been widely studied, especially in relation to

elliptically symmetric distributions and linear models (Fang et al., 1990; Gupta et al.,

2013), and to the invariances of probability distributions (Kallenberg, 2005). Here, we

consider these vectors from the viewpoint of the problem of normalizing multivariate data,

and its relationship with permutation invariance.

It is well know that, for a multivariate distribution with independent and identically

distributed components, the expected value of the standard vector is zero (Eaton, 2007),

given that it is so for each component. We prove this here for completeness, and to show

that it is also a necessary consequence of the permutation invariance of the distribution.

Proposition. The expected value of any true (i.e. without normalization issues) stan-

dard vector is zero. If the n ≥ 2 samples of feature j are independent and identically

distributed, then

E

(
√
n− 1

X̃j

‖X̃j‖

)
= 0. (57)

Proof. Let Pn be the set of all the permutation matrices in Rn×n. Then, for any P ∈ Pn,

X̃j/‖X̃j‖ is equal in distribution to P X̃j/‖X̃j‖. This implies that

E

(
X̃j

‖X̃j‖

)
= E

(
P

X̃j

‖X̃j‖

)
= P E

(
X̃j

‖X̃j‖

)
.

The only vectors that are invariant with respect to all possible permutations are those

that have all components identical. Therefore, E( X̃j/‖X̃j‖ ) = α1̂, with α ∈ R. However,

X̃′j1̂ = 0, so that α = E( X̃j/‖X̃j‖ )′ 1̂ = 0. Hence E( X̃j/‖X̃j‖ ) = 0. �

For each true random vector Xj, there is an observed random vector Yj = Xj + A,

where A is the random vector of normalization factors. The random vectors Xj and A

are independent, representing biological and technical variation, respectively. Therefore,

and without loss of generality, we assume in what follows a fixed vector of normalization
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factors a, i.e. we condition on the event {A = a }. We also assume that P( ‖Ỹj‖ = 0 ) = 0,

which implies that Ỹj/‖Ỹj‖ has length 1 almost surely.

In contrast to the true standard vector
√
n− 1 X̃j/‖X̃j‖, the observed standard vector

√
n− 1 Ỹj/‖Ỹj‖ is biased toward the direction of ã, with the result that the expected

value is not zero.

Proposition. If the n ≥ 2 samples of feature j are independent and identically distributed,

whenever ã 6= 0,

E

(
√
n− 1

Ỹj

‖Ỹj‖

)
6= 0. (58)

When n = 2, there is the additional requirement that P( ‖X̃i‖ < ‖ã‖ ) > 0. This threshold

of detection only occurs for the degenerate case of n = 2.

Proof. Let us consider the projection of Ỹj/‖Ỹj‖ on ã, compared to the projection of

X̃j/‖X̃j‖.

When the vectors X̃j and ã are collinear,

X̃′j ã

‖X̃j‖ ‖ã‖
= ±1, and

Ỹ′j ã

‖Ỹj‖ ‖ã‖
= ±1,

with
Ỹ′j ã

‖Ỹj‖ ‖ã‖
≥

X̃′j ã

‖X̃j‖ ‖ã‖
.

This is the only case when n = 2. The additional requirement ensures that, for n = 2,

P

(
Ỹ′j ã

‖Ỹj‖ ‖ã‖
>

X̃′j ã

‖X̃j‖ ‖ã‖

)
> 0,

which implies

E

(
Ỹ′j ã

‖Ỹj‖ ‖ã‖

)
> E

(
X̃′j ã

‖X̃j‖ ‖ã‖

)
.

Otherwise, when n > 2 and the vectors X̃j and ã are not collinear, they lie on a plane.

The vector Ỹj = X̃j + ã is the diagonal of the parallelogram defined by X̃j and ã. Hence
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the angle between Ỹj and ã is strictly less than the angle between X̃j and ã, so the cosine

of the angle is strictly greater. Thus,

Ỹ′j ã

‖Ỹj‖ ‖ã‖
>

X̃′j ã

‖X̃j‖ ‖ã‖
.

Due to the permutation symmetries in the distribution of X̃j/‖X̃j‖, when n > 2 the

vector X̃j has non-zero probability of being not collinear with ã, i.e. P( |X̃′j ã| < 1 ) > 0.

Therefore,

P

(
Ỹ′j ã

‖Ỹj‖ ‖ã‖
>

X̃′j ã

‖X̃j‖ ‖ã‖

)
> 0,

which again implies

E

(
Ỹ′j ã

‖Ỹj‖ ‖ã‖

)
> E

(
X̃′j ã

‖X̃j‖ ‖ã‖

)
.

Finally, ∥∥∥∥∥E

(
Ỹj

‖Ỹj‖

)∥∥∥∥∥ ≥ E

(
Ỹj

‖Ỹj‖

)′
ã

‖ã‖
> E

(
X̃j

‖X̃j‖

)′
ã

‖ã‖
= 0. �

As a consequence, the normalization of residuals problem may be restated as the problem

of finding the normalization factors ã from the observed vectors ỹj, such that the standard

vectors
√
n− 1 (ỹj − ã)/‖ỹj − ã‖ are invariant against permutations of the observation

labels. Or equivalently, such that the standard vectors
√
n− 1 (ỹj − ã)/‖ỹj − ã‖ have

zero mean. The following property provides an approach to the solution.

Proposition. Whenever ã 6= 0, the component of the expected value of Ỹj/‖Ỹj‖ parallel

to ã verifies

0 < E

(
Ỹj

‖Ỹj‖

)′
ã

‖ã‖
< E

(
1

‖Ỹj‖

)
‖ã‖. (59)

As in (58), when n = 2 we also assume that P( ‖X̃j‖ < ‖ã‖ ) > 0.

Proof. The first inequality holds from the previous proof. Concerning the second inequal-

ity, let us consider

Ỹ′j ã

‖Ỹj‖ ‖ã‖
=

(X̃j + ã)′ ã

‖X̃j + ã‖ ‖ã‖
=

‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖
+
‖ã‖
‖Ỹj‖

.
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We need to prove that the first term on the RHS has negative expected value. Let us

decompose this term into the positive and negative parts,

‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖
=

(
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)+

−

(
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)−
,

where X+ = max(X, 0) and X− = −min(X, 0).

Because ‖X̃j + ã‖2 = ‖X̃j‖2 + ‖ã‖2 + 2X̃′jã,(
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)+

≤

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

+

,

(
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)−
≥

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

− .
These inequalities are identities when X̃′j ã is of opposite sign to ( · )±, or when X̃′j ã = 0.

Because of the permutation symmetries of X̃j/‖X̃j‖, it follows that P( X̃′j ã 6= 0 ) > 0,

which implies

P

( ‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)+

<

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

+  > 0,

P

( ‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)−
>

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

−  > 0,

and hence

E

((
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)+ )
< E

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

+  ,

E

((
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)− )
> E

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

−  .

For any permutation matrix P ∈ Pn,

‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

=
‖P X̃j‖√

‖P X̃j‖2 + ‖ã‖2
surely,

X̃j

‖X̃j‖
= P

X̃j

‖X̃j‖
in distribution,
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so that

‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃j

‖X̃j‖
= P

‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃j

‖X̃j‖
in distribution,

which together with  ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃j

‖X̃j‖

′ 1̂ = 0 surely,

implies, as in (57), that

E

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃j

‖X̃j‖

 = 0.

Therefore,

E

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

+  = E

 ‖X̃j‖√
‖X̃j‖2 + ‖ã‖2

X̃′j ã

‖X̃j‖ ‖ã‖

−  .

Back to the initial expected values, it follows that

E

((
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)+ )
< E

((
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)− )
,

which implies

E

(
‖X̃j‖
‖X̃j + ã‖

X̃′j ã

‖X̃j‖ ‖ã‖

)
< 0. �

The Gaussian multivariate distribution, among others, has spherical symmetry besides

permutation symmetry. For parametric families with spherical symmetry, the true stan-

dard vector
√
n− 1 X̃j/‖X̃j‖ has uniform distribution over the (n−2)-sphere. As a result,

the components of Ỹj/‖Ỹj‖ perpendicular to ã are antisymmetric with respect to the di-

rection of ã, so that they cancel out in expectation. That is, for parametric families with

spherical symmetry, and as long as ã 6= 0,

E

(
Ỹj

‖Ỹj‖

)
= λã, with 0 < λ < E

(
1

‖Ỹj‖

)
. (60)
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SM4 Standard-vector normalization

The properties (59), (60) suggest the use of

b̂ =

m∑
j=1

ỹj

‖ỹj‖
m∑
j=1

1

‖ỹj‖

(61)

to approximate the unknown residual vector of normalization factors ã. The following

iterative method implements this approach to solve the normalization of residuals problem.

Let us define the following recursive sequence, where each step t comprises m vectors ŷ
(t)
j

(j ∈ {1, . . . ,m}) and one vector b̂(t),

ŷ
(0)
j = ỹj, (62)

ŷ
(t)
j = ŷ

(t−1)
j − b̂(t−1), for t ≥ 1, (63)

b̂(t) =

m∑
i=1

ŷ
(t)
j

‖ŷ(t)
j ‖

m∑
i=1

1

‖ŷ(t)
j ‖

, for t ≥ 0. (64)

We assume that ŷ
(t)
j 6= 0n, for all j ∈ {1, . . . ,m} and all t ≥ 0. Nonetheless, an imple-

mentation of this algorithm benefits from trimming out a small fraction (e.g. 1%) of the

features with lesser ‖ŷ(t)
j ‖ in (64), in order to avoid numerical singularities.
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Let us write ŷ
(t)
j as a function of the unknowns x̃j and ã. For any t ≥ 1,

ŷ
(t)
j = ŷ

(t−1)
j − b̂(t−1), (65)

= ŷ
(t−2)
j − b̂(t−2) − b̂(t−1), (66)

... (67)

= ŷ
(0)
j −

t−1∑
r=0

b̂(r), (68)

= ỹj −
t−1∑
r=0

b̂(r), (69)

= x̃j + ã−
t−1∑
r=0

b̂(r). (70)

Note that (70) is also valid for t = 0.

Let us also define the vectors â(t), for t ≥ 0, which describe the vector of normalization

factors still to be removed at step t,

â(t) = ã−
t−1∑
r=0

b̂(r), (71)

so that, by (70), for t ≥ 0,

ŷ
(t)
j = x̃j + â(t). (72)

Therefore, the recursive sequence (62)–(64) faces a new, weaker normalization of residuals

problem at each step t, with true residual vectors x̃j, observed residual vectors ŷ
(t)
j and

unknown normalization factors â(t). The step t results in the estimation of normalization

factors b̂(t), which are removed from ŷ
(t)
j , generating the next step. At the beginning,

ŷ
(0)
j = ỹj and â(0) = ã.

At convergence, limt→∞ b̂(t) = 0. Equations (57), (58), (64) imply that, in such a case,

limt→∞ ŷ
(t)
j = x̃j and

∑∞
t=0 b̂(t) = ã. Convergence is optimal when the parametric family

of the m features has spherical symmetry, Gaussian being the most prominent case. Oth-

erwise, the more uniform the distribution of standard vectors
√
n− 1 x̃j/‖x̃j‖ is on the

(n− 2)-sphere, the faster the sequence (62)–(64) converges. See examples of convergence

in Supplementary Movies 1–3.
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SM5 Identification of non-differentially expressed genes

Let us consider a gene expression dataset, with g genes and c experimental conditions.

Each condition k has sk samples. The total number of samples is s =
∑c

k=1 sk. Let us

assume that c ≥ 2 and that sk ≥ 2, for all conditions k ∈ {1, . . . , c}. Let us also assume

that, among the g genes, there is a fraction π0 of non-differentially expressed (non-DE)

genes, with 0 ≤ π0 ≤ 1, while the remaining fraction 1 − π0 comprises the differentially

expressed (DE) genes (Storey and Tibshirani, 2003).

Let us consider the usual ANOVA test comparing average expression levels across con-

ditions, gene-by-gene. Under the null hypothesis of a non-differentially expressed gene,

the corresponding F -statistic follows the F -distribution with c − 1 and s − c degrees of

freedom. The test of this hypothesis yields a p-value pj for each gene j ∈ {1, . . . , g}.

The obtained p-values pj follow a probability distribution that can be considered as the

mixture of two probability distributions, F0 and F1, for the non-DE genes and the DE

genes, respectively (Storey, 2003). The fraction π0 of non-DE genes follows the uniform

distribution on the interval [0, 1],

F0(p) = p, (73)

while the fraction 1−π0 of DE genes follows a distribution that verifies, for any p ∈ (0, 1),

F1(p) > p, (74)

and the mixture distribution is

F (p) = π0F0(p) + (1− π0)F1(p). (75)

Let us further assume that there exists a p∗, with 0 < p∗ < 1, such that F1(p) = 1 for

every p ≥ p∗. In other words, all DE genes have p-value pj from the ANOVA test such

that pj ≤ p∗, while only some genes among the non-DE genes have p-value with pj > p∗.

This implies that the mixture distribution of p-values is uniform on the interval [p∗, 1],

F (p) = π0p+ 1− π0, for p∗ ≤ p ≤ 1, (76)

f(p) = π0, for p∗ < p < 1. (77)
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On the other hand, for any set of n samples x(1) ≤ x(2) ≤ · · · ≤ x(n) obtained from n

independent and identically distributed uniform random variables on the interval [a, b], all

the distances between consecutive ordered samples (including boundaries), x(1)−a, x(2)−

x(1), . . . , x(n) − x(n−1), b− x(n), obey the same distribution (Feller, 1971). Then, it can be

realized that, for any j such that 2 ≤ j ≤ n−1, the two subsets of samples x(1), . . . , x(j−1)

and x(j+1), . . . , x(n) follow uniform distributions on the intervals [a, x(j)] and [x(j), b], re-

spectively.

Based on these facts, to identify non-DE genes we propose finding the minimum p(j),

from the ordered sequence of p-values p(1) ≤ p(2) ≤ · · · ≤ p(g), such that a goodness-of-fit

test for the uniform distribution on the interval [p(j), 1], performed on p(j+1), . . . , p(g), is

not rejected. As a result, the genes corresponding to the p-values p(j), p(j+1), . . . , p(g) are

considered as non-DE genes.

Given the concavity of F (p), the goodness-of-fit test used is the one-sided Kolmogorov-

Smirnov test on positive deviations of the empirical distribution function.

See Supplementary Movies 4–5 for examples of this approach to identifying non-differentially

expressed genes.
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