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Abstract

Summary: Commonly used multiplicity adjustments fail to control the error rate for reported

findings in many expression quantitative trait loci (eQTL) studies. TreeQTL implements a

stage-wise multiple testing procedure which allows control of appropriate error rates defined

relative to a hierarchical grouping of the eQTL hypotheses.

Availability and Implementation: The R package TreeQTL is available for download at

http://bioinformatics.org/treeqtl.

Contact: sabatti@stanford.edu

Introduction

The overarching goal of eQTL analysis is to gain insight into the genetic regulation of gene

expression. Typically, this is carried out by testing a vast collection of hypotheses Hvp probing

association (or linkage) between the genotype at variant (locus) v and the measured expression

for probe p, where v = 1, . . . , M, p = 1, . . . , G, M is on the order of hundreds of thousands,

and G of tens of thousands. Given the large number of hypotheses tested, the need to adjust for

multiplicity is universally recognized and the false discovery rate (FDR) [5] is typically adopted

as the target global error rate.
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In an effort to improve interpretability, reporting of results is typically organized along more

general findings such as the discovery of genes subject to local regulation [7] or regulatory SNPs

(eSNPs) [9]. The adopted strategy for multiplicity adjustment needs to offer guarantees on the

specific reported discoveries. For example, imagine testing the Hvp hypotheses using the Ben-

jamini Hochberg (BH) [5] rule and defining as an eSNP those variants v for which Hvp is rejected

for at least some probe p. While this would control the FDR among the Hvp rejections, it would

offer no control of the rate of false eSNP discoveries, as shown by the simulations in [10].

Researchers in the eQTL field have recognized this challenge and have noted that since local

regulation is more common than distal [1], hypotheses probing these two mechanisms should be

tested separately. However, there is no single standard in the literature for error rates targeted or

error-controlling strategies: for example, one finds the notion of per-gene error rates [9, 13] or the

application of Bonferroni across genes [14] in local regulation, while for distal effects significance

cut-offs vary from 5 x 10−8 [8] to 5.78 x 10−12 [14]. This makes comparison across studies and

replicability challenging.

1 Approach

To overcome the confusion generated by the plurality of approaches and to provide guarantees

relative to the discoveries reported, it is useful to recognize the structure among the hypotheses

tested in an eQTL study and to introduce some terminology. We distinguish between hypotheses

testing local (when the distance between variant v and probe p is less then a threshold) and distal

regulation, indicating them with Lvp and Dvp, respectively.

Further, we recognize that we might be interested mainly in identifying which genes appear

to have local (distal) regulation prior to obtaining a detailed list of the variants involved in

this regulation; or we might want to pinpoint SNPs that appear to have local (distal) effects on

multiple genes, even without committing to a comprehensive list of these genes. Recalling that

our measurements of expression are mediated by probes and that typically typed genetic variants

are SNPs, we use LeProbe to signify a probe whose expression is influenced by some local

DNA variants and LeSNP to designate a specific SNP associated to variability in expression for

some local probes. With LeAssociation we signify the local association between one specific SNP

and one specific probe. For distal regulation, DeProbe, DeSNP, and DeAssociation are similarly

defined. Mapping these back to the original collection of hypotheses, we note, for example, that
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Figure 6: Hierarchical structure of the
hypotheses tested
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Figure 7: Hierarchical structure of the
hypotheses tested

Figure 1: Organization of eQTL hypotheses in TreeQTL. Hypotheses testing local regulation are
on the left and hypotheses testing distal regulation are on the right. Local regulation hypotheses
have been grouped by probe and distal regulation hypotheses are grouped by SNP, so that Level
1 rejections will result in discoveries of LeProbes and DeSNPs. Tested hypotheses are colored in
red, and rejected hypotheses indicated with a star.

to discover a DeSNP is equivalent to rejecting the intersection hypothesis Dv•=∩pDvp.

To control global error rates defined in terms of the reported discoveries (LeSNPs, LeAsso-

ciations, etc.), we have implemented in TreeQTL a multi-resolution approach based on results

in [3] and whose practical effectiveness in GWAS has been described in [10]. Furthermore, by

accounting for the described structure, TreeQTL has the potential to increase power: the effective

number of tests is reduced and one can capitalize on the adaptivity of FDR.

2 Methods

TreeQTL is a hierarchical testing procedure that distinguishes two levels of discoveries within

each class of local or distal regulation. In Level 1, the users can specify their primary interest

as the identification of either eProbes or eSNPs. Given this choice, all the pair-wise association

hypotheses are given a position in a tree similar to that shown in Figure 1: each eProbe or eSNP

hypothesis indexes the collection of simple hypotheses by whose intersection it is defined. Level

1 hypotheses are tested controlling for global errors within the two regulation classes. The more

granular eAssociation hypotheses in Level 2 are tested only when they correspond to a global

hypothesis rejected in Level 1.

TreeQTL takes as input the p-values for each hypothesis in Level 2: these may be obtained

via Matrix eQTL [11] and their correctness is of crucial importance. The p-values for the Level

1 hypotheses are computed using Simes’ rule [12] on the families they index. This summary of
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the evidence for the global null hypotheses is relatively robust to dependence [4]. Users can,

however, input alternative p-values for Level 1, such as those obtained via permutation.

Testing proceeds from Level 1, where the default option is to control the FDR at a user-

specified level q1 using the BH [5]. This guarantees control of the FDR for Level 1 discoveries

when all hypotheses are independent or under positive regression dependence. The Benjamini-

Yekutieli procedure [6], robust to any dependence between tests, is available as an alternative. A

third, more stringent option is to control the family-wise error rate (FWER) using the Bonferroni

correction.

In Level 2, significance is established using BH within each set of eAssociation hypotheses

corresponding to an eSNP or eProbe identified at Level 1, at the more stringent level needed to

account for selection [3]. The expected average proportion of false discoveries across the selected

Level 2 families is then controlled to the user-specified target level q2.

3 Example application

To demonstrate feasibility, we applied TreeQTL to whole-blood data from the pilot phase of the

GTEx project [2]: genotype data at 6,820,472 SNPs and expression levels for 30,115 genes are

available across 156 subjects. Following the steps in [2], p-values were obtained by applying Ma-

trix eQTL [11] to quantile-normalized gene expression, adjusting for both known and unknown

technical covariates (note that power for distal analysis is likely to be limited with this sample

size). In applying TreeQTL, we identified eSNPs as the discovery of interest in Level 1, and set

q1 = q2 = 0.05 for local and q1 = q2 = 0.01 for distal regulation. This led to the discovery of

199,032 LeSNPs, involved in 325,529 LeAssociations, and 164,860 DeSNPs involved in 216,933

DeAssociations. By comparison applying BH at levels q = 0.05 and q = 0.01 across all local and

distal hypotheses, respectively, led to the identification of 250,945 LeSNPs (with 389,507 LeAsso-

ciations) and 179,625 DeSNPs (with 216,683 DeAssociations). TreeQTL, then, results in a similar

number of eAssociations, but these are grouped under a small number of eSNPs.

4 Conclusion

By analyzing local and distal regulation separately, TreeQTL has less stringent cut-offs for tests

probing local effects, where it is expected that a larger number of hypotheses will be non-null.
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By grouping hypotheses relative to the same SNP or the same probe, TreeQTL capitalizes on the

inherent heterogeneity of the problem. For example, while few SNPs will act as distal regulators

of expression and might influence multiple probes, the vast majority of SNPs will not have such

an effect: testing all the eAssociation hypotheses relative to one SNP together, separately from

those concerning other loci, allows greater power for SNPs with true regulatory roles and reduces

false positives. Finally, the hierarchical structure of TreeQTL assures control of the FDR for eSNP

and eProbe discoveries. While the current version of TreeQTL implements methodology relative

to studies involving only one tissue, future releases will incorporate approaches for the more

complex structure of multi-tissue investigations.
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