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ABSTRACT 21 

Human genes exhibit different effects on fitness in cancer and normal cells. Here, 22 

we present an evolutionary approach to measure the selection pressure on human genes, 23 

using the well-known ratio of the nonsynonymous to synonymous substitution rate in 24 

both cancer genomes (CN/CS) and normal populations (pN/pS). A new mutation-profile-25 

based method that adopts sample-specific mutation rate profiles instead of conventional 26 

substitution models was developed. We found that cancer-specific selection pressure is 27 

quite different from the selection pressure at the species and population levels. Both the 28 

relaxation of purifying selection on passenger mutations and the positive selection of 29 

driver mutations may contribute to the increased CN/CS values of human genes in cancer 30 

genomes compared with the pN/pS values in human populations. The CN/CS values also 31 

contribute to the improved classification of cancer genes and a better understanding of 32 

the onco-functionalization of cancer genes during oncogenesis. The use of our 33 

computational pipeline to identify cancer-specific positively and negatively selected 34 

genes may provide useful information for understanding the evolution of cancers and 35 

identifying possible targets for therapeutic intervention. 36 

 37 
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INTRODUCTION 42 

Since the pioneering work of Cairns and Nowell [1, 2], the evolutionary concept 43 

of cancer progression has been widely accepted [3-7]. In this model, cancer cells evolve 44 

through random somatic mutations and epigenetic changes that may alter several crucial 45 

pathways, a process that is followed by clonal selection of the resulting cells. 46 

Consequently, cancer cells can survive and proliferate under deleterious circumstances 47 

[8, 9]. Therefore, knowledge of evolutionary dynamics will benefit our understanding 48 

of cancer initiation and progression. For example, there are two types of somatic 49 

mutations in cancer genomes: driver mutations and passenger mutations [10, 11]. 50 

Driver mutations are those that confer a selective advantage on cancer cells, as indicated 51 

by statistical evidence of positive selection. Passenger mutations do not confer a clonal 52 

growth advantage and are usually considered neutral in cancer. However, some 53 

passenger mutations in protein-coding regions that would have potentially deleterious 54 

effects on cancer cells may be under negative selection in cancer [12, 13].  55 

Cancer somatic mutations, especially driver mutations, promote the cancer specific 56 

functionalization of cancer-associated genes, i.e., onco-functionalization. Onco-57 

functionalization of cancer-associated genes would promote cancer initiation and 58 

progression. For example, oncogenes may gain new functions during carcinogenesis, 59 

which could be considered cancer-specific neo-functionalization [14]. By contrast, the 60 

mutation of tumor suppressor genes to cause a loss or reduction of their function could 61 

be considered cancer-specific non-functionalization [15].  62 

Analyses of large-scale cancer somatic mutation data have revealed that the effects 63 
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of positive selection are much stronger on cancer cells than on germline cells [16, 17]. 64 

Given that many of the positively selected genes in tumor development act as the 65 

driving force behind tumor initiation and development and are thus considered “driver 66 

genes”, it is understandable that almost all previous studies have focused on positively 67 

selected genes in cancer genomes [3, 18-21]. Nevertheless, we have realized that an 68 

alternative approach, i.e., identifying cancer-constrained genes that are highly 69 

conserved in tumor cell populations (under purifying selection), is also valuable. For 70 

example, TP73, a homolog of TP53, is rarely mutated but frequently overexpressed in 71 

tumor cells. TP73 has been reported to activate the expression of glucose-6-phosphate 72 

dehydrogenase and support the proliferation of human cancer cells [22]. As essential 73 

genes are crucial for carcinogenesis, progression and metastasis, this idea may be 74 

advantageous in addressing issues related to drug resistance in cancer therapies, 75 

especially in cancers with high intratumor heterogeneity.  76 

Many previous studies have used the ratio of nonsynonymous to synonymous 77 

substitution rates to identify genes that might be under strong positive selection both in 78 

organismal evolution and carcinogenesis [11, 16, 17, 23-26]. However, most of these 79 

studies applied conventional methods, which are usually based on simple nucleotide 80 

mutation/substitution models, e.g., the simplest equal-rate model assuming that every 81 

mutation or substitution pattern has the same probability [27]. Unfortunately, this may 82 

not be a realistic biological model because many recent cancer genomics studies have 83 

shown that mutation profiles vary greatly between different cancer samples [17, 28]. In 84 

addition, context-dependent mutation bias (i.e., base-substitution profiles that are 85 
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influenced by the flanking 5’ and 3’ bases of each mutated base) should also be 86 

considered [28, 29].  87 

In this study, we describe a mutation-profile-based method to estimate the selective 88 

constraint for each gene in pan-cancer samples and human populations. In brief, the 89 

new method discards an unrealistic assumption inherent in the equal-rate model that 90 

every mutation or substitution pattern has the same probability [27]. This assumption 91 

can lead to nontrivial biased estimations when it is significantly violated. By contrast, 92 

our method implements an empirical nucleotide mutation model that simultaneously 93 

considers account several factors, including single-base mutation patterns, local-94 

specific effects of surrounding DNA regions, and tissue/cancer types. Using simple 95 

somatic mutations from 9,155 tumor-normal paired whole-exome/genome sequences 96 

(ICGC Release 20), as well as rare germline substitutions from 6,500 exome sequences 97 

from the National Heart, Lung, and Blood Institute (NHLBI) Grant Opportunity (GO) 98 

Exome Sequencing Project (ESP), as references, we used this mutation-profile-based 99 

method to identify selective constraints on human genes, especially cancer-associated 100 

genes, in cancer cells. Our results may provide useful information for the precise 101 

classification of known cancer-associated genes and for an improved understanding of 102 

the evolution of cancers. 103 

 104 

RESULTS 105 

The mutation rate profiles in cancer genomes and human populations differ  106 

Estimating evolutionary selective pressure on human genes is a practical method 107 
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for inferring the functional importance of genes in a specific population. By comparing 108 

selective pressures, we may be able to identify different functional and fitness effects 109 

of human genes in cancer and normal cells. The conventional method for measuring 110 

selective pressure is to calculate the ratio of nonsynonymous to synonymous 111 

substitution rates using the equal-rate method [27], which assumes equal substitution 112 

rates among different nucleotides. In this study, we used the cancer somatic mutations 113 

from 9,155 tumor-normal pairs from ICGC (Release 20) as well as rare variants (minor 114 

allele frequency <0.01%) from 6,500 exome sequences from ESP as a reference. We 115 

used these data to compare the empirical mutation rate profiles of cancer somatic 116 

mutations and germline substitutions using 96 substitution classifications [28, 29]. The 117 

empirical mutation rate profiles reveal the prevalence of each substitution pattern for 118 

point mutations and present not only the substitution types but also the sequence context 119 

(see Methods). The exonic mutation profiles of cancer somatic mutations and germline 120 

substitutions are both enriched in C-to-T transitions (Figure 1). The mutation rates for 121 

each trinucleotide context differ from each other, and the ratio of transition to 122 

transversion for each trinucleotide context is much greater than 1:2 for both cancer 123 

somatic mutations (ratio=2.70±0.47) and germline rare variants (ratio=3.28±0.53) 124 

(Supplementary Figure S1). These different mutation profiles may lead to different 125 

biological progressions in carcinogenesis, as depicted in several publications [19, 28]. 126 

For example, the mutation profiles of melanoma are highly enriched in C-to-T 127 

transitions, indicating a direct mutagenic role of ultraviolet (UV) light in melanoma 128 

pathogenesis [30]. Thus, it is inappropriate to use conventional methods such as the 129 
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equal-rate model to measure selective pressure because this approach ignores the 130 

mutation bias of different nucleotide substitution types.  131 

 132 

Measuring selective pressure on human genes in cancer and germline cells using 133 

the mutation-profile-based method 134 

We therefore formulated an evolutionary approach that was designed specifically 135 

to estimate the selective pressure imposed on human genes in cancer cells and then 136 

identify genes that had undergone positive and purifying selection in cancer cells 137 

compared with in normal cells (see Figure 2 for an illustration). In cancer genomics, 138 

distinguishing synonymous from nonsynonymous somatic mutations is straightforward. 139 

We developed the mutation-profile-based method to estimate the CN/CS ratio of each 140 

human gene based on the mutation profiles of cancer somatic mutations and the pN/pS 141 

ratio for germline substitutions. In contrast to the equal-rate method [27], our method 142 

considers differences in substitution rates and uses the overall mutation rate profile as 143 

the weight matrix (Figure 1).  144 

We calculated the expected number of nonsynonymous and synonymous sites 145 

based on the exonic mutation rate profiles. We then counted the number of 146 

nonsynonymous and synonymous substitutions in the protein-coding region of each 147 

human gene for all cancer somatic mutations or germline substitutions. A χ2 test was 148 

performed to identify the genes whose CN/CS values were either significantly greater 149 

than one or less than one, which indicates positive or negative (purifying) selection, 150 

respectively. Of the 16,953 genes with at least one germline substitution and cancer 151 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/021147doi: bioRxiv preprint 

https://doi.org/10.1101/021147
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

somatic mutation, the overall CN/CS value for cancer somatic mutations 152 

(mean±s.e.=1.199±0.008) was much greater than the overall pN/pS of germline 153 

substitutions (mean±s.e.=0.738±0.005) (Wilcoxon test, p<2.2×10-16) (Table 1A, 154 

Supplementary Table S1). In the cancer genomes, 365 genes had CN/CS values 155 

significantly greater than one, and 923 genes had CN/CS values significantly less than 156 

one (χ2 test, p<0.01, FDR<0.1). By contrast, germline substitutions included only 24 157 

genes with pN/pS values significantly greater than one, whereas 4,897 genes had pN/pS 158 

values significantly less than one (χ2 test, p<0.01, FDR<0.1). Of these 365 cancer 159 

positively selected genes, only one gene (RSRC1) also exhibited positive selection 160 

whereas 117 genes exhibited negative selection in germline substitutions. Additionally, 161 

500 cancer negatively selected genes did not exhibit significant negative selection in 162 

germline substitutions. These genes may therefore be under different selective pressure 163 

in cancer and germline genomes. 164 

Previous studies have attributed elevated CN/CS values to the relaxation of 165 

purifying selection [16] or increased positive selection of globally expressed genes [17]. 166 

Our results show that the number of genes under positive selection increased, whereas 167 

the number of genes under negative selection decreased, in cancer genomes compared 168 

with germline genomes. This result indicates that both the relaxation of purifying 169 

selection on passenger mutations and the positive selection of driver mutations may 170 

contribute to the increased CN/CS values of human genes in cancer genomes.  171 

 172 

Selection pressures on cancer-associated genes 173 
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The Cancer Gene Census (CGC) [31, 32] contains more than 500 cancer-associated 174 

genes that have been reported in the literature to exhibit mutations and that are causally 175 

implicated in cancer development. Of those genes, 553 were included in the 16,953 176 

genes that we tested. These known cancer genes have significantly greater CN/CS values 177 

(Wilcoxon test, p=2.9×10-10) for cancer somatic mutations but significantly lower pN/pS 178 

values for germline substitutions (Wilcoxon test, p<2.2×10-16) than other genes (Table 179 

1A). For selection over longer evolutionary time scales, we extracted the dN/dS values 180 

between human-mouse orthologs from the Ensembl database (Release 75) [33]. The 181 

known cancer genes have significantly lower human-mouse dN/dS values than other 182 

human genes (Wilcoxon test, p<2.2×10-16). These results support the work of Thomas 183 

et al. [34], who showed that known cancer genes may be more constrained and more 184 

important than other genes at the species and population levels, especially for 185 

oncogenes. By contrast, known cancer genes are more likely to gain onco-functional 186 

somatic mutations in cancer than other genes.  187 

Among the 365 cancer positively selected genes, 45 (12.3%) genes are known 188 

cancer genes, indicating that cancer genes are significantly enriched in cancer positively 189 

selected genes (Fisher's Exact Test, p=6.7×10-15). When we choose a more stringent 190 

cut-off of p<10-5, 17 of the 29 (58.6%) positively selected genes are known cancer genes, 191 

according to the CGC, and the work of Lawrence et al. [20] and Kandoth et al. [35], 192 

such as the well-known cancer drivers TP53, KRAS, PIK3CA, and BRAF. 193 

(Supplementary Table S2). In addition, the 29 strong positively selected genes are 194 

significantly enriched in biological processes related to cancer, according to the 195 
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functional analysis using DAVID v6.7 [36] (Supplementary Table S3). Some cancer 196 

genes also show negative selection in cancer genomes, such as the oncogene MLLT3 197 

(CN/CS=0.11, p=3.14×10-44, FDR=5.52×10-41). The MLL-MLLT3 gene fusion is the 198 

main mutation type of MLLT3 that drives tumorigenesis in acute leukemia [37]. 199 

Interestingly, MLLT3 has recurrent synonymous mutations at amino acid positions 166 200 

to 168 (S166S, 8/9155; S167S, 33/9155; S168S, 23/9155).  201 

Using the CN/CS values, we classified known cancer genes according to the 202 

selection pressure on these genes in cancer cells, as well as their onco-functionalization 203 

in oncogenesis (Table 2). The most important two classes are oncogenes and tumor 204 

suppressor genes that are under strong positive selection, such as TP53, the most 205 

famous tumor suppressor gene [38], which shows strong positive selection pressure 206 

(CN/CS=32.57, p=1.06×10-159, FDR=6.55×10-156). The non-synonymous mutations of 207 

TP53 with onco-nonfunctionalization are distributed in a wide range of cancers. The 208 

oncogene KRAS [39] also showed a strong positive selection pressure (CN/CS=45.88, 209 

p=4.25×10-87, FDR=1.74×10-83). Recurrent non-synonymous mutation with onco-210 

neofunctionalization of KRAS are highly enriched in codons 12 and 13; mutations in 211 

these codons represent 79.4% and 8.0% of all non-synonymous mutations of KRAS.  212 

We also observed 12 cancer positively selected genes (p<10-5) that have not been 213 

reported as cancer-associated genes. These genes are recurrently mutated in several 214 

tumor types and are potential cancer driver genes. According to the mouse insertional 215 

mutagenesis experiments [40], three of these genes (DMD, MYO9A, and COL5A2) have 216 

been identified as cancer-causing genes [41-44].  217 
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When we chose a more stringent cut-off of p<10-5 for cancer negatively selected 218 

genes, we found 112 genes that showed an enrichment in the Notch signaling pathway 219 

(Supplementary Table S3). Forty-seven of the 112 negatively selected genes showed 220 

more stringent selective constraint in cancer cells than in normal cells (pN/pS > CN/CS, 221 

p>0.05 for pN/pS). It would be quite valuable to uncover the roles of these evolutionarily 222 

conserved genes in cancer cells. Out of the 47 genes, 14 genes showed a significantly 223 

increased expression level in cancers than in normal tissues (fold change>2, p<10-4) 224 

(Supplementary Table S4). For example, SPRR3, a member of the small proline-rich 225 

protein family, is under purifying selection in cancer cells (CN/CS=0.27, p=5.73×10-11, 226 

FDR=1.91×10-8) and neutral selection in germline cells (pN/pS =0.88, p=0.75, 227 

FDR=0.37). It has been reported that SPRR3 is overexpressed in several tumor types, 228 

and is associated with tumor cell proliferation and invasion. Therefore, SPRR3 could 229 

be a potential biomarker and novel therapeutic target [45-47]. 230 

We also examined essential genes during human development and cancer 231 

development. We extracted 2,452 human orthologs of mouse essential genes from 232 

DEG10 (the Database of Essential Genes) [48]. These genes, which are human 233 

orthologs of known essential genes in mice [49], are critical for cell survival and are 234 

therefore more conserved than other genes at the species and population levels. Here, 235 

we found that human orthologs of mouse essential genes have significantly lower dN/dS 236 

values (measured between human-mouse orthologs) and lower pN/pS values for 237 

germline substitutions but similar CN/CS values for cancer somatic mutations compared 238 

with the values for non-essential genes (Table 1A). Human orthologs of mouse essential 239 
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genes are also enriched among cancer positively selected genes. Eighteen of the twenty-240 

nine (62.1%) positively selected genes (p<10-5) are human orthologs of mouse essential 241 

genes (Supplementary Table S2). We also used the human orthologs of mouse essential 242 

genes from OGEE (the database of Online GEne Essentiality) [50] to confirm these 243 

results (Supplementary Table S2).  244 

Cancer essential genes were identified by performing genome-scale pooled RNAi 245 

screens. RNAi screens with the 45k shRNA pool in 12 cancer cell lines, including 246 

small-cell lung cancer, non-small-cell lung cancer, glioblastoma, chronic myelogenous 247 

leukemia, and lymphocytic leukemia, revealed 268 common essential genes [51]. 248 

Compared to other human genes, these cancer essential genes have significantly lower 249 

dN/dS values and lower pN/pS values for germline substitutions and greater CN/CS values 250 

for cancer somatic mutations (Table 1A), suggesting a functional shift of these genes in 251 

human populations and cancer cells. 252 

We further tested the correlations of the dN/dS, pN/pS and CN/CS values of human 253 

genes for human-mouse orthologs, germline substitutions and cancer somatic mutations 254 

to compare selective pressures among species, populations and cancer cells (Table 1B). 255 

For different gene sets, the dN/dS values show a weak positive correlation with the pN/pS 256 

values, but no significant correlation with CN/CS values. The pN/pS values and CN/CS 257 

values also do not have significant correlation for different gene sets. These results 258 

indicate that the cancer-specific selection pressure is quite different from the selection 259 

pressure at the species and population levels. 260 

   261 
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Selection pressure among different cancer types 262 

 As cancer is highly heterogeneous, we further analyzed the selection pressure of 263 

human genes in different cancer types. The 9,155 tumor samples from the ICGC 264 

database could be classified as 20 cancer types according to the primary site. The 265 

overall CN/CS values for the cancer somatic mutations in the different cancer types 266 

ranged from 1.078±0.022 to 1.827±0.013 (mean±s.e., Table 3). The detected positively 267 

and negatively selected genes (χ2 test, p<0.01) varied in the different cancer types 268 

(Supplementary Table S5). Due to the limited number of tumor samples and somatic 269 

mutations for each cancer type, particularly in the cancer types with low mutation rates, 270 

our method might not be sensitive enough to detect the selection pressure for each gene. 271 

For example, only one positively selected gene was detected in bone cancer (IDH1) and 272 

nervous system cancer (ALK), respectively. There were also three genes (TP53, 273 

PIK3CA and KRAS) that showed positive selection in more than five cancer types. In 274 

particular, TP53 showed positive selection in 15 cancer types. On the other hand, more 275 

genes (164/188, 87.2%) were under positive selection in only one cancer type. We also 276 

found that six genes (TBP, EP400, DSPP, MUC21, MLLT3, and MUC2) were under 277 

negative selection in more than five cancer types. These genes also showed negative 278 

selection at the species and population levels. Furthermore, 85.8% (2,417/2,817) of 279 

genes showed negative selection in only one cancer type. These results indicate the 280 

divergence of selection pressure in different cancer types. 281 

 282 

Comparison of the equal-rate model and empirical mutation profile model 283 
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Considering that different nucleotide substitution models might provide varying 284 

estimates, we used the equal-rate method [27] as the simplest model to calculate the 285 

expected numbers of nonsynonymous and synonymous sites. The overall CN/CS value 286 

for cancer somatic mutations (mean±s.e.=0.892±0.006) is greater than the pN/pS value 287 

for germline substitutions (mean±s.e.=0.633±0.004) for the 16,953 genes 288 

(Supplementary Table S1) but lower than that calculated using the mutation-profile-289 

based method (Wilcoxon test, p<2.2×10-16) (Figure 3A). Consequently, the number of 290 

genes with CN/CS values >1 (χ2 test, p<0.01, FDR<0.1) is much lower than those 291 

calculated using the exonic mutation profiles (37 versus 365), whereas the number of 292 

genes with CN/CS values <1 (χ2 test, p<0.01, FDR<0.1) is much greater (2851 versus 293 

923) (Figure 3B and 3C).  294 

We also used the intergenic mutation rate profile from 2,900 tumor-normal whole 295 

genome sequences, which are included in the 9,155 cancer samples of ICGC database, 296 

to calculate the CN/CS value for cancer somatic mutations. The overall CN/CS value 297 

(mean±s.e.=1.503±0.010) is greater than that calculated from the exonic mutation rate 298 

profile (mean±s.e.=1.199±0.008) (Wilcoxon test, p<2.2×10-16), resulting in more 299 

positively selected genes (1526 versus 365) and fewer negatively selected genes (298 300 

versus 923) (Figure 3B and 3C).  301 

The equal-rate method ignores the mutation rate bias between different substitution 302 

types, especially the ratio of transition to transversion, leading to underestimation of 303 

the CN/CS ratio. Therefore, the equal-rate method is strict for positive selection detection 304 

but relaxed for the detection of negative selection [52]. In contrast, the mutation-profile-305 
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based method considers the mutation bias, which can be depicted as the internal 306 

variance between mutation rates of different substitution types. Thus, the mutation-307 

profile-based method can correct the underestimation of the CN/CS ratio estimated by 308 

the equal-rate method. Furthermore, the mutation-profile-based method would also 309 

increase the false-positive results for detecting positively selected genes but be more 310 

conservative in detecting negatively selected genes. The mutation bias may simulate 311 

the detection of genes under strong selection pressure but may suppress the detection 312 

of genes under weak selection pressure.  313 

 314 

DISCUSSION 315 

A key goal of cancer research is to identify cancer-associated genes, such as 316 

oncogenes and tumor suppressor genes, that might promote tumor occurrence and 317 

progression when mutated [28]. Instead of searching for cancer-causing genes with 318 

multiple driver mutations, an alternative approach is to identify cancer essential genes 319 

in tumor cell populations because they are crucial for carcinogenesis, progression and 320 

metastasis. Cancer essential genes are important for the growth and survival of cancer 321 

cells [51] and are expected to be highly conserved in cancer cells. In this study, we 322 

aimed to detect both cancer-specific positively and negatively selected genes using a 323 

molecular evolution approach.  324 

Based on analyses of large-scale cancer somatic mutation data derived from The 325 

Cancer Genome Atlas (TCGA) or International Cancer Genome Consortium (ICGC), 326 

previous studies identified important differences between the evolutionary dynamics of 327 
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cancer somatic cells and whole organisms [6, 16, 18]. However, these studies applied 328 

canonical nucleotide substitution models to identify the molecular signatures of natural 329 

selection in cancer cells or human populations and neglected the apparently different 330 

mutation profiles of these cell types. Here, we developed a new mutation-profile-based 331 

method to calculate the CN/CS values of human genes for cancer somatic mutations. In 332 

our results, a large number of known cancer genes did not show significant positive 333 

selection according to our analysis. One possible reason for this finding suggests that 334 

positive selection for driver mutations is obscured by the relaxed purifying selection of 335 

passenger mutations. Additionally, among the strong positively selected genes, more 336 

than half are known cancer genes. Another possible reason might be that the main 337 

mutation type of more than 300 cancer-associated genes is translocation or copy number 338 

variation, rather than point mutation. Furthermore, some of the positively selected 339 

genes might also be related to cancer, such as DMD, MYO9A, and COL5A2, which have 340 

been identified as cancer-causing genes based on mouse insertional mutagenesis 341 

experiments [40]. 342 

 Two prerequisites are crucial to properly apply the mutation-profile-based method. 343 

First, a large number of samples with similar mutation profiles are necessary to increase 344 

the power of selection pressure detection. Second, a subset of nucleotide substitutions 345 

should be chosen to represent the background neutral mutation profiles of the samples. 346 

In this study, because of the limited number of cancer samples, especially the number 347 

of whole-genome sequenced tumor-normal tissue pairs, we pooled all samples to 348 

analyze pan-cancer-level selection pressures. However, cancer somatic mutation 349 
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profiles are well known to be heterogeneous among different cancer types, even for 350 

samples with the same tissue origin [19, 20, 28, 35]. As the number of sequenced cancer 351 

genomes increases, we will be able to classify cancer samples by their specific mutation 352 

profiles and infer evolutionarily selective pressures more precisely using the mutation-353 

profile-based method.  354 

Background neutral mutation profiles can be calculated based on intergenic regions 355 

from the corresponding samples. In this study, we assumed that most of the exonic 356 

somatic mutations in the cancer samples do not have significant effects on the fitness 357 

of cancer cells. Under this assumption, we can apply the mutation profiles of coding 358 

regions to approximate the background. The exonic mutation profiles used in our 359 

mutation-profile-based method considered the weight of the 96 substitution 360 

classifications within the cancer exomes, which may reflect the mutation bias of 361 

different substitution types within the protein-coding regions. This method would 362 

correct the underestimation of the CN/CS value that occurs with the equal-rate method 363 

[52]. The mutation-profile-based method is more sensitive for the detection of positive 364 

selection but more conservative for the detection of negative selection compared with 365 

the equal-rate method. As more tumor-normal whole genome sequence data become 366 

available, it would be better to choose suitable mutation profiles for the mutation-367 

profile-based method. With the expansion of these data in the future, we may apply 368 

more precise methods to identify neutral background mutation properties. 369 

 370 

MATERIALS AND METHODS 371 
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Datasets 372 

Cancer somatic mutation data from 9,155 cancer samples corresponding to 20 373 

primary sites were extracted from the ICGC Data Portal (http://dcc.icgc.org, Release 374 

20), which includes 36,985,985 somatic mutations and small insertions/deletions. Data 375 

on rare human protein-coding variants (minor allele frequency <0.01%) from 6,500 376 

human exomes (ESP6500) were extracted from the NHLBI GO Exome Sequencing 377 

Project (http://evs.gs.washington.edu/EVS, Exome Variant Server NGESPE, Seattle, 378 

WA). A total of 572 known cancer genes were extracted from the Cancer Gene Census 379 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/, COSMIC v72) [31, 32]. 380 

Human gene sequences and annotations were extracted from the Ensembl database 381 

(GRCh37, Release 75) [33]. For each gene, only the longest transcript was selected for 382 

the subsequent analyses. The dN/dS values between human-mouse orthologs were 383 

extracted from the Ensembl database. The HGNC (HUGO Gene Nomenclature 384 

Committee) database [53] (http://www.genenames.org/) and the Genecards database 385 

[54] (http://www.genecards.org) were used to map the gene IDs from different datasets. 386 

DAVID v6.7 was utilized for the functional annotation analysis [36]. ANNOVAR was 387 

utilized to perform biological and functional annotations of the cancer somatic 388 

mutations and germline substitutions [55]. The Oncomine database [56] 389 

(https://www.oncomine.org) was used to compare the gene expression level of 390 

negatively selected genes between cancer and normal tissues. The human orthologs of 391 

mouse essential genes were extracted from the DEG 10 [48] and the OGEE v2 [50] 392 

databases.  393 
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 394 

Statistical measure for gene-specific selection pressure in cancer evolution (CN/CS)  395 

In cancer genomics, distinguishing synonymous from nonsynonymous somatic 396 

mutations is straightforward. Thus, given a set of independent cancer samples, the ratio 397 

of nonsynonymous counts (N) to synonymous counts (S) of a gene, denoted by N/S, is 398 

simply given by the sum over all samples, under the assumption of no double mutations 399 

at the same nucleotide site (e.g., for the observed mutation A>C, the mutation path 400 

A>G>C is almost impossible in cancers). To further explore the underlying mechanisms, 401 

the N/S ratio must be normalized by LN/LS, that is,  402 

CN/CS=(N/LN)/(S/LS)=qN/qS                 (1) 403 

where LN is the number of expected nonsynonymous sites and LS is the number of 404 

expected synonymous sites. Note that CN/CS is specific for cancer somatic mutations, 405 

to avoid notation confusions with dN/dS in molecular evolution and pN/pS in population 406 

genetics. To avoid a calculation error for the small sample size, 0.5 was added to each 407 

parameter for the calculation of CN/CS if N or S was equal to zero. 408 

The calculation of LN and LS from the nucleotide sequence is not a trivial task. For 409 

instance, in the codon TTT (coding for amino acid Phe), the first two positions are 410 

counted as nonsynonymous sites because no synonymous changes can occur at these 411 

positions. At the third position, the transition change (T>C) is synonymous, whereas 412 

the remaining two transversion changes (T>A and T>G) are nonsynonymous. 413 

Apparently, the weight of the third position of codon TTT as synonymous (wS) or 414 

nonsynonymous (wN) depends on the pattern of somatic mutations. At one extreme, if 415 
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the transition mutation is dominant, this position should nearly be counted as a 416 

synonymous site (wS=1); at the other extreme (transversion dominant), this position 417 

would be counted as a nonsynonymous site (wS=0).   418 

 419 

Equal-rate model  420 

The weight of a nucleotide as synonymous (wS) is simple when the rate of base 421 

change is the same. Let IS be the number of possible synonymous changes at a site. This 422 

is counted as wS=IS/3 synonymous and (1- IS/3) nonsynonymous. For instance, in the 423 

codon TTT (Phe), the first two positions are counted as nonsynonymous sites because 424 

no synonymous changes can occur at these positions (wS=0). The third position of 425 

codon TTT is then counted as one third of a synonymous site (wS=1/3) and two-thirds 426 

of a nonsynonymous site (wN=2/3) because only one of the three possible changes is 427 

synonymous. It is then straightforward to calculate the numbers of synonymous and 428 

nonsynonymous sites.  429 

 430 

Empirical mutation profile model 431 

Substantial evidence has demonstrated that the rate of somatic mutations in cancer 432 

depends on not only the nucleotide site (e.g., synonymous or nonsynonymous sites) and 433 

the mutation type (e.g., transition or transversion) but also on the sequence context of 434 

each mutated site, i.e., the effects of near-by nucleotides on somatic mutations are 435 

nontrivial. Recent studies [28, 29, 57] proposed an empirical mutation profile of any 436 

position with base P, considering two immediate neighbor nucleotides (x, y) of a 437 
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trinucleotide string denoted by xPy. Since base P has six base-change patterns (under 438 

Watson-Crick pairing) and both x and y have four types of bases, there are a total of 439 

4×6×4=96 substitution classifications, with the empirical profile denoted by 440 

M(xPy>xPi*y), where Pi* (i=1,2,3) for the other three bases instead of P. To determine 441 

the probability of the mutation type (xPy>xPi*y), we divided the number of mutations 442 

in that trinucleotide context (xPy>xPi*y) by the number of occurrences of the 443 

trinucleotide (xPy). Our computational pipeline is illustrated by the following example.  444 

In the encoding sequence with two codons … TTT-ATG…., we consider the third 445 

position of codon TTT (Phe). Under the trinucleotide TTA for the mutation profile (not 446 

the codon), the corresponding three substitution configurations are given by 447 

M(TTA>TCA), M(TTA>TAA) and M(TTA>TGA), respectively, and the number of 448 

occurrences of TTA is M(TTA). Next, we consider codon TTT. Because TTT and TTC 449 

are synonymous codons but TTA and TTG are not, the probabilities that this site will 450 

be synonymous and nonsynonymous are simply given by the following: 451 

wS= M(TTA>TCA)/M(TTA) 452 

wN= (M(TTA>TGA) + M(TTA>TAA)) / M(TTA) (2)    453 

We counted all somatic mutations in the protein-coding regions of the 9,155 tumor-454 

normal paired cancer samples, as well as all the rare protein-coding variants of the 455 

ESP6500 dataset. The mutation profiles were depicted as the mutation rate of each 456 

mutation type according to the 96 substitution classifications.  457 

The ratio of transition to transversion for each trinucleotide context was calculated 458 

based on the mutation rate of transitions and transversions. For example, the ratio of 459 
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transition to transversion for ACA=M(ACA>ATA)/(M(ACA>AAA)+M(ACA>AGA)). 460 

 461 

Detection of positive and negative selections 462 

The χ2 test was used to compare the number of nonsynonymous and synonymous 463 

substitutions to the number of nonsynonymous and synonymous sites for each gene to 464 

test the statistical significance of the difference between the CN/CS values and one. 465 

Genes with CN/CS values significantly greater than one were classified as under positive 466 

selection in tumors, whereas genes with CN/CS values significantly less than one were 467 

classified as under negative, or purifying, selection. The false-discovery rate was 468 

estimated using the qvalue package from Bioconductor [58]. The software tool R was 469 

used for statistical analysis (http://www.r-project.org/). 470 
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FIGURE LEGENDS 644 

Figure 1. Mutation profiles of cancer somatic mutations and germline substitutions, 645 

including the exonic mutation profile of 9,155 cancer samples and the exonic mutation 646 

profile of ESP6500. 647 

Figure 2. The pipeline used to identify positively and negatively selected cancer genes 648 

with the mutation-profile-based method. 649 

Figure 3. The overall omega ratio (A) and overlap of cancer positively selected (B) and 650 

negatively selected (C) genes based on different models. 651 
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TABLES 653 

Table 1. The ω ratios (dN/dS, pN/pS, CN/CS values) (A) and the correlations of the ω 654 

ratios (B) for the different gene sets for the human-mouse orthologs and for germline 655 

and cancer somatic mutations. The positively and negatively selected genes indicates 656 

the genes that are under positive and negative selection in cancer cells, respectively (χ2 657 

test, p<0.01, FDR<0.1). 658 

(A) 659 

  dN/dS pN/pS CN/CS 

All genes 0.154 ± 0.006 0.738 ± 0.005 1.199 ± 0.008 

Cancer genes 0.106 ± 0.005 0.537 ± 0.014 1.550 ± 0.116 

Oncogenes 0.088 ± 0.009 0.473 ± 0.029 1.940 ± 0.508 

Tumor suppressor genes 0.121 ± 0.017 0.545 ± 0.037 1.994 ± 0.497 

Human essential 

genes(DEGs) 
0.092 ± 0.002 0.559 ± 0.007 1.217 ± 0.032 

Cancer essential genes 0.090 ± 0.008 0.587 ± 0.030 1.465 ± 0.190 

Positively selected genes 0.137 ± 0.007 0.757 ± 0.029 3.264 ±0.198 

Negatively selected genes 0.129 ± 0.004 0.600 ± 0.012 0.471 ±0.005 

(B) 660 
 

dN/dS vs pN/pS dN/dS vs CN/CS pN/pS vs CN/CS 

 

r p-value r p-value r p-value 

All genes 0.03 6.6×10-5 0.00 0.80 0.09 <2.2×10-16 

Known cancer genes 0.38 <2.2×10-16 -0.01 0.87 -0.04 0.36 

  Oncogenes 0.12 0.23 -0.01 0.94 -0.05 0.65 

  Tumor suppressor genes 0.34 3.5×10-3 0.02 0.86 -0.07 0.56 

Human essential genes(DEG) 0.32 <2.2×10-16 0.01 0.58 0.04 0.06 

Cancer essential genes 0.20 1.4×10-3 -0.02 0.73 -0.04 0.50 

Positively selected genes 0.34 1.0×10-10 -0.02 0.67 0.13 0.01 

Negatively selected genes 0.35 <2.2×10-16 -0.04 0.22 -0.07 0.03 
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Table 2. Classification of cancer genes according to cancer-specific selection pressures 664 

 #Positive selection #Negative selection #Neutral 

Known cancer genes 45 29 479 

Oncogenes 11 7 79 

Tumor suppressor genes 10 6 54 

 665 
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Table 3. The selection pressure in different cancer types 667 

Cancer type #Samples CN/CS 
#Positive 

selection 

#Negative 

selection 

Bladder cancer 233 1.389±0.010 5 99 

Blood cancer 686 1.145±0.014 4 86 

Bone cancer 164 1.078±0.022 1 0 

Brain cancer 797 1.392±0.021 10 57 

Breast cancer 1072 1.589±0.012 15 105 

Cervix cancer 194 1.402±0.011 3 67 

Colorectal cancer 443 1.563±0.014 41 472 

Esophagus cancer 347 1.350±0.012 4 67 

Gall bladder cancer 239 1.251±0.010 2 57 

Head and neck cancer 521 1.315±0.012 10 256 

Kidney cancer 668 1.381±0.010 2 70 

Liver cancer 966 1.551±0.011 10 125 

Lung cancer 224 1.410±0.011 11 141 

Nervous system cancer 108 1.585±0.134 1 0 

Ovary cancer 181 1.244±0.010 1 13 

Pancreas cancer 685 1.333±0.014 5 81 

Prostate cancer 499 1.232±0.011 3 41 

Skin cancer 584 1.148±0.011 45 1303 

Stomach cancer 298 1.560±0.013 20 163 

Uterus cancer 246 1.827±0.013 56 135 

 668 

  669 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2017. ; https://doi.org/10.1101/021147doi: bioRxiv preprint 

https://doi.org/10.1101/021147
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

FIGURES 670 

 671 

Figure 1 672 

 673 
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Figure 2 676 
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Figure 3 679 
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