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Abstract 21 

Human genes perform different functions and exhibit different effects on fitness 22 

in cancer and normal cell populations. Here, we present an evolutionary approach to 23 

measuring the selective pressure on human genes in both cancer and normal cell 24 

genomes using the well-known dN/dS (nonsynonymous to synonymous substitution 25 

rate) ratio. We develop a new method called the mutation-profile-based Nei-Gojobori 26 

(mpNG) method, which applies sample-specific nucleotide substitution profiles 27 

instead of conventional substitution models to calculating dN/dS ratios in cancer and 28 

normal populations. Compared with previous studies that focused on positively 29 

selected genes in cancer genomes, which potentially represent the driving force 30 

behind tumor initiation and development, we employed an alternative approach to 31 

identifying cancer-constrained genes that strengthen negative selection pressure in 32 

tumor cells. In cancer cells, we found a conservative estimate of 45 genes under 33 

intensified positive selection and 16 genes under strengthened purifying selection 34 

relative to germline cells. The cancer-specific positively selected genes were enriched 35 

for cancer genes and human essential genes, while several cancer-specific negatively 36 

selected genes were previously reported as prognostic biomarkers for cancers. Thus, 37 

our computation pipeline used to identify positively and negatively selected genes in 38 

cancer may provide useful information for understanding the evolution of cancer 39 

somatic mutations. 40 

 41 
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Introduction 44 

Since the pioneering work of Cairns and Nowell1,2, the evolutionary concept of 45 

cancer progression has been widely accepted3-7. In this model, cancer cells evolve 46 

through random somatic mutations and epigenetic changes that may alter several 47 

crucial pathways, a process that is followed by the clonal selection of the resulting 48 

cells. Consequently, cancer cells can survive and proliferate under deleterious 49 

circumstances8,9. Therefore, knowledge of evolutionary dynamics will benefit our 50 

understanding of cancer initiation and progression. For example, there are two types 51 

of somatic mutations in cancer genomes: driver mutations and passenger 52 

mutations10,11. Driver mutations are those that confer a selective advantage on cancer 53 

cells, as indicated by statistical evidence of positive selection. However, some 54 

passenger mutations undergo purifying selection because they would have potentially 55 

deleterious effects on cancer cells12,13. Between these two extremes are passenger 56 

mutations that are usually considered to be neutral in cancer. 57 

  Analyses of large-scale cancer somatic mutation data have revealed that the effects 58 

of positive selection are much stronger on cancer cells than on germline cells14,15. 59 

Given that many of the genes positively selected for in tumor development act as the 60 

driving force behind tumor initiation and progression, it is understandable that almost 61 

all previous studies focused on the positively selected genes in cancer genomes3,16-19. 62 

We have realized that an alternative approach, i.e., identifying cancer-constrained 63 

genes that are highly conserved in tumor cell populations (under purifying selection), 64 

is also valuable. Because essential genes are more evolutionarily conserved20, it 65 
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would be feasible to identify cancer essential genes from the genes that are 66 

evolutionarily conserved in cancer cells. Because cancer essential genes may not be 67 

the driver genes for carcinogenesis but are crucial for cancer cell proliferation and 68 

survival21, using evolutionary conservation to identify relevant genes may be 69 

advantageous in addressing therapeutic issues related to drug resistance, especially in 70 

cancers with high intratumor heterogeneity.  71 

Many previous studies have used the ratio of nonsynonymous to synonymous 72 

substitution rates (dN/dS) to identify genes that might be under strong positive 73 

selection both in organismal evolution and tumorigenesis11,14,15,22-24. However, most of 74 

these studies applied well-known methods that are usually based on simple nucleotide 75 

mutation/substitution models, where every mutation or substitution pattern has the 76 

same probability 25. Unfortunately, this may not be a realistic biological model 77 

because many recent cancer genomics studies have shown that mutation profiles are 78 

quite different between different cancer samples15,26. In addition, context-dependent 79 

mutation bias (i.e., base-substitution profiles that consider the flanking 5’ and 3’ bases 80 

of each mutated base) should be taken into consideration26,27.  81 

In this study, we describe a new method, called the mutation-profile-based 82 

Nei-Gojobori (mpNG) method, to estimate the selective constraint in cancer somatic 83 

mutations. Simply stated, the mpNG method removes an unrealistic assumption 84 

inherent in the original NG method (named NG86), wherein each type of nucleotide 85 

change has the same mutation rate25. This assumption can lead to nontrivial biased 86 

estimations when it is significantly violated. In contrast, mpNG implements an 87 
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empirical nucleotide mutation model that simultaneously takes into account several 88 

factors, including single-base mutation patterns, local-specific effects of surrounding 89 

DNA regions, and tissue/cancer types. Using 7,042 tumor-normal paired 90 

whole-exome sequences (WESs), as well as rare germline variations from 6,500 91 

exome sequences (ESP6500) as references, we used the mpNG method to identify the 92 

selective constraint of human genes in cancer cells. The potential for our 93 

computational pipeline to identify cancer-constrained genes may provide useful 94 

information for identifying promising drug targets or prognostic biomarkers. 95 

 96 

Results 97 

The mutation profiles of cancer genomes and human populations are different 98 

Estimating evolutionary selective pressure on human genes is a practical method 99 

for inferring the functional importance of genes to a specific population. By 100 

comparing selective pressures on genes in cancer cell populations with those in 101 

normal cell populations, we may be able to identify different functional and fitness 102 

effects of human genes in cancer and normal cells. The conventional method for 103 

measuring selective pressure is to calculate the dN/dS ratio using the NG86 method25, 104 

which assumes equal substitution rates among different nucleotides. In our study, we 105 

used the cancer somatic mutations from 7,042 tumor-normal pairs, as well as rare 106 

variations from 6,500 exome sequences from the National Heart, Lung, and Blood 107 

Institute (NHLBI) Grant Opportunity (GO) Exome Sequencing Project (ESP6500), as 108 

a reference. We used these data to compare the relative mutation probabilities from 109 
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cancer somatic mutations and germline substitutions for all possible base substitutions, 110 

considering the identities of the bases immediately 5’ and 3’ of each mutated base. We 111 

then depicted the mutation profiles as 96 substitution classifications26,27. The mutation 112 

profiles exhibit the prevalence of each substitution pattern for somatic point mutations, 113 

which present not only the substitution types but also the sequence context (see 114 

Methods). The exonic mutation profiles of cancer somatic substitutions and germline 115 

substitutions differed from one another, and the intronic and intergenic mutation 116 

profiles were quite different from the exonic mutation profile of cancer cells (Fig. 1). 117 

We also calculated the exonic mutation profiles of four different cancer types: colon 118 

adenocarcinoma (COAD), lung adenocarcinoma (LUAD), skin cutaneous melanoma 119 

(SKCM), and breast carcinoma (BRCA). These cancer types varied considerably not 120 

only in their mutation rates but also in their mutation patterns. Specifically, the 121 

mutation rate of SKCM was much higher than that of the other three types. 122 

Additionally, the mutation profiles of SKCM were highly enriched in the C-to-T 123 

substitution pattern (Fig. 1). These data indicated a direct mutagenic role for 124 

ultraviolet (UV) light in SKCM pathogenesis28. The different mutation profiles may 125 

lead to different biological progressions in carcinogenesis, which have been depicted 126 

in several publications17,26. Thus, it is inappropriate to use conventional methods such 127 

as NG8625 to measure selective pressure by means of dN/dS calculation because this 128 

approach ignores the mutation bias of different nucleotide substitution types.  129 

 130 

Measuring selective pressure on human genes in cancer and germline cells using 131 
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the mpNG method 132 

We therefore formulated an evolutionary approach that was designed specifically 133 

to estimate the selective pressure imposed on human genes in cancer cells and then to 134 

identify genes that had undergone positive and purifying selection in cancer cells 135 

rather than in normal cells (see Fig. 2 for illustration). We developed the mpNG 136 

method to estimate the dN/dS ratio of each human gene based on the mutation profiles 137 

of cancer somatic mutations and germline substitutions. In contrast to the NG86 138 

method25, our method considered the difference in substitution rate and took the 139 

overall mutation profile as the weight matrix (Fig. 1).  140 

We calculated the expected number of nonsynonymous and synonymous sites 141 

based on the exonic mutation profiles. We then counted the number of 142 

nonsynonymous and synonymous substitutions in the protein-coding region of each 143 

human gene for all cancer somatic mutations or germline substitutions. A χ2 test was 144 

performed to identify the genes whose dN/dS values were either significantly greater 145 

than one or less than one, which indicates positive or negative (purifying) selection, 146 

respectively. Of the 18,602 genes with at least one germline substitution and cancer 147 

somatic substitution, the overall dN/dS value for cancer somatic substitutions 148 

(mean±s.e.=1.367±0.009) was much greater than that of germline substitutions 149 

(mean±s.e.=0.903±0.006) (Wilcoxon test, P<10-16) (Table 1, Supplementary Table S1). 150 

In the cancer genomes, 1,230 genes had dN/dS values significantly greater than one, 151 

and 326 genes had dN/dS values significantly less than one (χ2 test, P<0.05). In 152 

contrast, the germline substitutions included only 306 genes with dN/dS values 153 
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significantly greater than one, whereas 4,357 genes had dN/dS values significantly 154 

less than one (χ2 test, P<0.05) (Table 1). Of these cancer positively selected genes, 155 

1,191 genes exhibited positive selection in cancer genomes but non-positive selection 156 

in germline genomes. Additionally, 275 genes exhibited negative selection in cancer 157 

genomes but non-negative selection in germline genomes. These genes may therefore 158 

be under different selective pressure in cancer and normal genomes. 159 

Considering that different models might provide varying estimates, we used the 160 

NG86 method 25 as the simplest model to calculate the numbers of nonsynonymous 161 

and synonymous sites. The overall dN/dS value for cancer somatic substitutions 162 

(mean±s.e.=0.990±0.006) was greater than that for germline substitutions 163 

(mean±s.e.=0.624±0.004) for the 18,602 genes (Supplementary Table S1), whereas 164 

the ratio was less than that calculated using mpNG method (Wilcoxon test, P<10-16) 165 

(Table 1). Consequently, for both germline and cancer somatic substitutions, the 166 

number of genes with dN/dS values >1 (χ2 test, P<0.05) was much lower than those 167 

calculated using the exonic mutation profiles, whereas the number of genes with 168 

dN/dS values <1 (χ2 test, P<0.05) was much greater (Table 1). We further used the 169 

intergenic and intronic somatic mutation profiles of 507 cancer samples with 170 

whole-genome sequences (WGSs) within the 7,042 tumor-normal pairs as a contrast. 171 

The overall dN/dS values calculated using these mutation profiles were between the 172 

values obtained using the NG86 method and the exonic mutation profiles, as was the 173 

number of genes under positive and negative selection (Table 1, Supplementary Table 174 

S1). Different models show different single-nucleotide substitution properties, which 175 
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resulted in a different list of candidate genes under positive and negative selection. 176 

However, the genes under positive and negative selection calculated using different 177 

models almost overlapped (Fig. 3A,B). The NG86 method ignores the mutation rate 178 

bias between different substitution types, leading to underestimation of the dN/dS 179 

ratio. Therefore, the NG86 method is strict with regard to detecting positive selection, 180 

but it is relaxed about detection of negative selection29. In contrast, the mpNG method 181 

takes the mutation bias, which can be depicted as the internal variance between 182 

mutation rates of different substitution types, into consideration. Thus, the mpNG 183 

method could recover the underestimation of the true dN/dS ratio estimated by the 184 

NG86 method, which would increase the sampling errors and false discovery rates 185 

(FDRs). It would also increase the false positive results for detecting positively 186 

selected genes, but be more conservative in detecting negatively selected genes. The 187 

mutation bias does not affect the detection of genes under strong selection pressure, 188 

while it may affect the detection of genes under weak selection pressure. The 189 

mutation bias could be depicted by the internal variance of different substitution types. 190 

The exonic mutation profile had greater internal variance (σ=0.015) than that of 191 

intronic (σ=0.008) and intergenic (σ=0.008) mutation profiles, leading to the 192 

maximum estimation of dN/dS ratios.  193 

Regardless of the method used to calculate the dN/dS values for germline and 194 

cancer somatic substitutions, we found that the dN/dS value for cancer somatic 195 

substitutions was much greater than that for germline substitutions. Previous studies 196 

have attributed the elevated dN/dS values to the relaxation of purifying selection14 or 197 
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the increased positive selection of globally expressed genes15. Our results show that 198 

the number of genes under positive selection increased, whereas the number of genes 199 

under negative selection decreased, in cancer genomes compared with germline 200 

genomes. This result indicates that both the relaxation of purifying selection on 201 

passenger mutations and the positive selection of driver mutations may contribute to 202 

the increased dN/dS values of human genes in cancer genomes.  203 

 204 

Relaxation of purifying selection for human genes in cancer cells 205 

In this study, we used the mpNG method with exonic mutation profiles to 206 

estimate the dN/dS values for germline substitutions and cancer somatic mutations. 207 

The Cancer Gene Census30,31 contains more than 500 cancer genes that have been 208 

reported in the literature to exhibit mutations and that are causally implicated in 209 

cancer development. Of those, 503 genes were included in the 18,602 genes we tested. 210 

These known cancer genes had significantly lower dN/dS values for germline 211 

substitutions (Wilcoxon test, P<10-16), but slightly greater dN/dS values (Wilcoxon 212 

test, P=0.01) for cancer somatic mutations than those of other genes (Table 2A). For 213 

selection over longer time scales, we extracted the dN/dS values between 214 

human-mouse orthologs from the Ensembl database (Release 73)32,33. The known 215 

cancer genes had significantly lower human-mouse dN/dS values than other human 216 

genes. Among the cancer genes, oncogenes (OGs) had significantly lower dN/dS 217 

values than non-cancer genes (Wilcoxon test, P<10-15), whereas the mean dN/dS 218 

values of tumor suppressor genes (TSGs) were not significantly different from those 219 
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of non-cancer genes (Wilcoxon test, P=0.89). These results support the work of 220 

Thomas et al.34, who showed that known cancer genes may be more constrained and 221 

more important than other genes at the species and population levels, especially for 222 

oncogenes. In contrast, known cancer genes are more likely to gain functional somatic 223 

mutations in cancer relative to all other genes. However, within the known cancer 224 

genes, only 53 genes exhibited positive selection (χ2 test, P<0.05) for cancer somatic 225 

substitutions, which suggests that positive selection for driver mutations is obscured 226 

by the relaxed purifying selection of passenger mutations.  227 

We also examined human essential genes35 and cancer common essential genes21. 228 

We extracted 2,452 human essential genes from DEG10 (the Database of Essential 229 

Genes)35. These genes are critical for cell survival and are therefore more conserved 230 

than other genes at species and population levels. Here, we found that human essential 231 

genes had significantly lower dN/dS values of human-mouse orthologs and germline 232 

substitution, and similar dN/dS values for cancer somatic mutations, relative to the 233 

values for non-essential genes (Table 2A). Cancer essential genes were identified by 234 

performing genome-scale pooled RNAi screens. RNAi screens with the 45k shRNA 235 

pool in 12 cancer cell lines, including small-cell lung cancer, non-small-cell lung 236 

cancer, glioblastoma, chronic myelogenous leukemia, and lymphocytic leukemia, 237 

revealed 268 common essential genes21. Compared to other human genes, these 238 

cancer essential genes had significantly lower dN/dS values of human-mouse 239 

orthologs and germline substitutions, and similar dN/dS values for cancer somatic 240 

mutations (Table 2A). 241 
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 The cancer positively selected genes displayed a pattern similar to that of the 242 

cancer genes, cancer common essential genes, and human essential genes. These 243 

genes had lower dN/dS values for human-mouse orthologs (Wilcoxon test, P=4.5×10-4) 244 

and germline substitutions (Wilcoxon test, P=0.01), but significantly greater dN/dS 245 

values for cancer somatic mutations (Wilcoxon test, P<10-16). However, the 246 

negatively selected cancer genes displayed a different pattern, with greater dN/dS 247 

values for human-mouse orthologs (Wilcoxon test, P=7.3×10-4) and germline 248 

substitutions (Wilcoxon test, P=2.3×10--4), and significantly lower dN/dS values for 249 

cancer somatic mutations (Wilcoxon test, P<10-16). These results indicate that the 250 

positively selected genes may include the cancer associated genes or human essential 251 

genes, while the negatively selected genes may include genes under greater selective 252 

constraints in cancer cells than in normal cells. 253 

We further tested the correlation of dN/dS values of human genes for 254 

human-mouse orthologs, germline substitutions and cancer somatic mutations, in 255 

order to compare selective pressures among species, populations and cancers (Table 256 

2B). For different gene sets, the dN/dS values between human-mouse orthologs 257 

showed a weak positive correlation with those of germline substitutions, but no 258 

correlation with the values for cancer somatic substitutions. The dN/dS values for 259 

human germline and cancer somatic substitutions displayed different correlation 260 

patterns between different gene sets. The tumor suppressor genes and positively 261 

selected cancer genes showed weak positive correlation, while other gene sets had no 262 

correlation.  263 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2017. ; https://doi.org/10.1101/021147doi: bioRxiv preprint 

https://doi.org/10.1101/021147
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

 264 

Roles of cancer positively and negatively selected genes in cancer cells 265 

We next tested the genes under positive or purifying selection for their roles in 266 

cancer. Functional annotation analysis based on the Database for Annotation, 267 

Visualization and Integrated Discovery (DAVID) v6.736,37 showed an enrichment of 268 

genes involved in cell morphogenesis and pathways in cancer for positively selected 269 

genes (Table 3A). Additionally, we found an enrichment of genes involved in sensory 270 

perception for cancer negatively selected cancer genes (Table 3B). It is important to 271 

note that we only used a relaxed filter (P<0.05) for detecting cancer positively or 272 

negatively selected genes, which would lead to high FDRs. We further calculated the 273 

FDR for each P-value, using the qvalue (Supplementary Table S1)38. We set the 274 

strengthened filter for detecting positively and negatively selected genes at P<10-3 and 275 

FDR<0.25. Only 61 genes met this requirement, which included 45 cancer positively 276 

selected genes and 16 cancer negatively selected genes (Supplementary Table S2).  277 

Among the 45 cancer positively selected genes, there were three oncogenes 278 

(GANP, NFE2L2, RHOA) and five tumor suppressor genes (TP53, CSMD1, 279 

CDKN2A and SPOP), according to the Cancer Gene Census30. Fourteen of the 61 280 

genes are human essential genes, and seven are orthologs of mouse or yeast essential 281 

genes, according to the DEG1035. In addition, four positively selected genes (IKBIP, 282 

TEX13A, FZD10 and PGAP2) also had dN/dS values significantly greater than one 283 

(P<0.01, FDR<0.05) for germline substitutions. Six genes showed negative selection 284 

(P<0.01, FDR<0.5) in germline substitutions. Among those six genes, CAMD2, 285 
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CSMD1 and CSMD3 have been reported as candidate tumor suppressor genes39-42. 286 

Additionally, ACTG1 is associated with cancer cell migration43. There were also 13 287 

cancer positively selected genes displaying neutral selection for germline substitutions. 288 

It would be interesting to investigate the roles in cancer of these cancer-specific 289 

positively selected genes and the four human essential genes that are not known to be 290 

cancer-related.  291 

Among the 16 cancer negatively selected genes, there were two human essential 292 

genes: an oncogene (FUS) and a tumor suppressor gene (APC). Both were also under 293 

negative selection for germline substitutions (P<0.02, FDR<0.06). BRCA1 mutations, 294 

which would increase cancer risk for breast and ovarian cancer, can be germline 295 

mutations as well as somatic mutations44. The other 13 genes showed greater selective 296 

constraint in cancer cells than in normal cells. It would be quite valuable to uncover 297 

the roles of these evolutionarily conserved genes in cancer cells. Several of these 298 

genes were reported to be required for the survival and proliferation of cancer cells 299 

and might therefore serve as potential drug targets or prognostic biomarkers. For 300 

example, BCL2L12 is a member of the BCL2 family and is an anti-apoptotic factor 301 

that can inhibit the p53 tumor suppressor and caspases 3 and 745,46. Overexpression of 302 

BCL2L12 has been detected in several cancer types, and BCL2L12 is therefore 303 

considered a molecular prognostic biomarker in these cancers47-50. MAP4 is a major 304 

non-neuronal microtubule-associated protein that promotes microtubule assembly. Ou 305 

et al. have reported that the protein level of MAP4 is positively correlated with 306 

bladder cancer grade. Additionally, silencing MAP4 can efficiently disrupt the 307 
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microtubule cytoskeleton, inhibiting the invasion and migration of bladder cancer 308 

cells51. EPPK1 is a member of the plakin family, which plays a role in the 309 

organization of cytoskeletal architecture. Guo et al. used proteomics to identify 310 

EPPK1 as a predictive plasma biomarker for cervical cancer52. These negatively 311 

selected, cancer-specific genes are more conserved in cancer cells than in normal cells, 312 

indicating they may be crucial for the basic cellular processes of cancer cells. 313 

  314 

Discussion 315 

A key goal of cancer research is to identify cancer-related genes, such as OGs 316 

and TSGs, the mutation of which might promote the occurrence and progression of 317 

tumors26. There are also cancer essential genes that are important for the growth and 318 

survival of cancer cells21. Different methods are needed to identify different types of 319 

cancer-related genes. In contrast to recent studies focused on the detection of driver 320 

mutations16-18,53, we aimed to detect cancer essential genes using a molecular 321 

evolution approach. Advances in the understanding of positively selected cancer 322 

drivers, as well as the severe side effects of classical chemotherapy and radiation 323 

therapies that target DNA integrity and cell division, have fueled efforts to develop 324 

anticancer drugs with more precise molecular targeting and fewer side effects. 325 

Although personalized therapeutic approaches that target genetically activated drivers 326 

have greatly improved patient outcomes in a number of common and rare cancers, the 327 

rapid acquisition of drug resistance due to high intra-tumor heterogeneity is becoming 328 

a challenging problem54. In other words, driver mutations may differ considerably 329 
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between tumor sub-clones. Instead of looking for cancer-causing genes with multiple 330 

driver mutations, an alternative approach is to identify cancer essential genes that are 331 

highly conserved in tumor cell populations because they are crucial for carcinogenesis, 332 

progression and metastasis. To some extent, this idea may overcome drug resistance 333 

in targeted cancer therapies, as mutations in cancer essential genes are deleterious in 334 

tumor populations. 335 

Several approaches can be utilized to identify cancer essential genes suitable for 336 

targeting with drugs, including siRNA-mediated knockdown of specific components 337 

and genetic tumor models. The genome-wide pooled shRNA screens promoted by the 338 

RNAi Consortium55, however, can only be performed in cell lines in vitro and are 339 

limited to the analysis of genes important for proliferation and survival21,56. Thus, 340 

these screens will miss certain classes of genes that may function only in the proper in 341 

vivo tumor environment. Furthermore, siRNA screens may not be sensitive to target 342 

genes whose products are components of the cellular machinery. These types of 343 

targets may be frequently stabilized by their participation in complexes with a long 344 

biological half-life. Indeed, this longevity may be the reason why not all such targets 345 

seem to be essential for cancer cells in standard short-term siRNA screens8. Genetic 346 

tumor models can also enable screening strategies within an entire organism to 347 

identify cancer essential genes. However, this method is not suitable for large-scale 348 

screening. With the explosive increase in cancer somatic mutation data from cancer 349 

genome sequencing, it is now possible to investigate the natural selection of each 350 

human gene in cancer genomes using evolutionary genomics methods8. One major 351 
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aim is to identify genes that are under significantly increased purifying selective 352 

constraint in cancer cells relative to normal cells, which would suggest that they are 353 

cancer-specific essential genes. 354 

Through analyses of large-scale cancer somatic mutation data derived from The 355 

Cancer Genome Atlas (TCGA) or International Cancer Genome Consortium (ICGC), 356 

previous studies found important differences between the evolutionary dynamics of 357 

cancer somatic cells and whole organisms6,14,16. However, these studies applied 358 

canonical nucleotide substitution models to identify the molecular signatures of 359 

natural selection in cancer cells or human populations, which neglected the apparently 360 

different mutation profiles between these cell types. Here, we developed a new 361 

mutation-profile-based Nei-Gojobori method (mpNG) to calculate the dN/dS values 362 

of 18,602 human genes for both cancer somatic and normal human germline 363 

substitutions.  364 

 Two prerequisites are crucial to properly apply the mpNG method. First, a large 365 

number of samples with similar mutation profiles is necessary to increase the power 366 

of selection pressure detection. Second, a subset of nucleotide substitutions should be 367 

chosen to represent the background neutral mutation profiles of the samples. In this 368 

study, because of the limited number of cancer samples, especially the number of 369 

whole-genome sequenced tumor-normal tissue pairs, we pooled all of the samples to 370 

analyze pan-cancer-level selection pressures. Mutation profiles are well known to be 371 

heterogeneous, even for samples with the same tissue origin17,26. As an increasing 372 

number of cancer genomes are sequenced in the near future, we will be able to 373 
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classify cancer samples by their specific mutation profiles and infer evolutionarily 374 

selective pressures using the mpNG method. With respect to background neutral 375 

mutation profiles, it will be appropriate to calculate them based on intergenic regions 376 

from the corresponding samples. However, only a small number of tumor-normal 377 

paired WGSs are currently available. Therefore, in this study, we assume that most 378 

exonic somatic mutations in the cancer samples do not have significant effects on the 379 

fitness of cancer cells. Under this assumption, we can apply the mutation profiles of 380 

WESs to approximate the background. The exonic mutation profiles used in our 381 

mpNG method consider the weight of the 96 substitution classifications within the 382 

cancer exomes, which may reflect the mutation bias of different substitution types 383 

within the protein-coding regions. This method would recover the underestimation of 384 

the dN/dS value that occurs with the NG86 method29. Using the mpNG method, the 385 

detection of positive selection would be relaxed, whereas the detection of negative 386 

selection would be conservative relative to the NG86 method. Were more 387 

tumor-normal WGSs available, it would be better to choose suitable mutation profiles 388 

for the mpNG method. With the expansion of these data in the future, we may apply 389 

more precise methods to identify neutral background mutation properties. 390 

 As a conservative estimate of positively and negatively selected genes in cancer, 391 

we found 45 genes under intensified positive selection and 16 genes under 392 

strengthened purifying selection in cancer cells compared with germline cells. The set 393 

of cancer-specific positively selected genes was enriched for known cancer genes 394 

and/or human essential genes, while several of the cancer-specific negatively selected 395 
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genes have previously been reported as prognostic biomarkers for cancers. Because 396 

cancer-specific negatively selected genes are more evolutionarily constrained in 397 

cancer cells than in normal cells, identification of cancer-specific negatively selected 398 

genes would inform the potential options for cancer therapeutic targets or diagnostic 399 

biomarkers. However, cancer somatic mutations vary greatly among different cancer 400 

types and even among individual cancer genomes17,18,26,57, therefore, further studies 401 

will be needed to better understand the evolution of human cancer. 402 

 403 

Methods 404 

Datasets 405 

Cancer somatic mutation data from 7,042 primary cancers corresponding to 30 406 

different classes were extracted from the work of Alexandrov et al.26, which includes 407 

4,938,362 somatic substitutions and small insertions/deletions from 507 WGSs and 408 

6,535 WESs. Data on rare human protein-coding variants (minor allele frequency 409 

<0.01%) from 6,500 human WESs (ESP6500) were extracted from the ANNOVAR 410 

database 58 based on the NHLBI GO Exome Sequencing Project. A total of 522 411 

known cancer genes were extracted from the Cancer Gene Census 412 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/, COSMIC v68)30,31. 413 

Human gene sequences and annotations were extracted from the Ensembl 414 

database (Release 73)32,33. For each gene, we only chose the longest sequence to avoid 415 

duplicate records of each single substitution. The HGNC (HUGO Gene Nomenclature 416 

Committee) database 59 (http://www.genenames.org/) and the Genecards database 60 417 
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(http://www.genecards.org) were also used to map the gene IDs from different 418 

datasets. DAVID v6.7 was utilized for the functional annotation analysis36,37. 419 

 420 

Calculating mutation rate profiles  421 

We calculated the mutation rate profiles using the 96 substitution 422 

classifications26,27, which not only show the base substitution but also include 423 

information on the sequence context of each mutated base. We counted all somatic 424 

substitutions in the protein-coding regions of the 7,042 tumor-normal paired WESs, as 425 

well as all the protein-coding variants of the ESP6500 dataset. We also counted the 426 

total number of each trinucleotide type for the exonic, intronic, and intergenic regions 427 

in the human genome. We calculated the mutation rate of each substitution type as the 428 

number of substitutions per trinucleotide type per patient. The mutation profiles were 429 

depicted as the mutation rate of each mutation type according to the 96 substitution 430 

classifications.  431 

 432 

Detection of positive and negative selections 433 

ANNOVAR was utilized to perform biological and functional annotations of the 434 

cancer somatic mutations and germline substitutions 58. Substitutions within 435 

protein-coding genes were classified as either nonsynonymous or synonymous. We 436 

counted the number of nonsynonymous (n) and synonymous (s) substitutions for each 437 

gene across all somatic mutations in the 7,042 tumor-normal pairs. Somatic mutations 438 

at the same site and with the same mutation type that occurred in different patients 439 
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were counted as different substitutions because they, unlike germline evolution, 440 

occurred independently.  441 

 We further calculated the number of nonsynonymous (N) and synonymous (S) 442 

sites in each human protein-coding gene utilizing different models. The simple 443 

method of Nei and Gojobori was used25. We also considered cancer somatic mutation 444 

profiles, which were depicted as the percentage of each mutation type according to the 445 

96 substitution classifications. For each gene, we calculated the proportion of 446 

substitutions that would be nonsynonymous or synonymous for each protein-coding 447 

site, as the probability of mutation types for each site was determined according to the 448 

mutation profiles. Then, we added up the proportions to calculate the total number of 449 

nonsynonymous (N) and synonymous (S) sites for each gene. 450 

 After counting the number of nonsynonymous (n) and synonymous (s) 451 

substitutions, as well as the number of nonsynonymous (N) and synonymous (S) sites 452 

for each gene, we calculated the ratio of the rates of nonsynonymous and synonymous 453 

substitutions (dN/dS) for each human gene as follows: / N

s +0.5 / +0.5

dN n

dS S
=
（ ）（ ）

. 454 

 The dN/dS for germline substitutions was calculated using the same approach. 455 

 A χ2 test was used to compare the number of nonsynonymous and synonymous 456 

substitutions to the number of nonsynonymous and synonymous sites for each gene in 457 

order to test the statistical significance of the difference between the dN/dS values and 458 

one. The genes with dN/dS values significantly greater than one were classified as 459 

being under positive selection in tumors, whereas the genes with dN/dS values 460 

significantly less than one were classified as being under negative, or purifying, 461 
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selection. The false discovery rate was estimated using the qvalue package from 462 

Bioconductor38. A Wilcoxon test was performed to compare dN/dS values between 463 

cancer somatic substitutions and germline substitutions, as well as between known 464 

cancer genes and all other genes. The software tool R was used for statistical analysis 465 

(http://www.r-project.org/). 466 

 467 
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Figure Legends 634 

Figure 1. Mutation profiles of cancer somatic substitutions and germline substitutions, 635 

including the exonic mutation profile of 7,042 cancer samples, the exonic mutation 636 

profile of ESP6500, the intronic mutation profile of 507 whole cancer genomes, the 637 

intergenic mutation profile of 507 whole cancer genomes, and the exonic mutation 638 

profiles of breast carcinoma (BRCA), lung adenocarcinoma (LUAD), colon 639 

adenocarcinoma (COAD), and skin cutaneous melanoma (SKCM). 640 

Figure 2. The pipeline used to identify positively and negatively selected cancer 641 

genes with the mpNG method. 642 

Figure 3. The overlap of positively selected (A) and negatively selected (B) genes 643 

based on different models. 644 
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Tables 646 

Table 1. The dN/dS values and number of human genes under positive or negative 647 

selection in germline and cancer based on the NG86 and mpNG methods with 648 

different mutation profiles. P-values are according to a χ2 test. 649 

 dN/dS # Positive selection* # Negative selection* 

Germline (NG86) 0.624 ± 0.004 42 9093 

Cancer (NG86) 0.990 ± 0.006 306 2330 

Cancer (intergenic) 1.240 ± 0.008 697 722 

Cancer (intronic) 1.281 ± 0.008 822 624 

Germline (exonic) 0.903 ± 0.006 264 4357 

Cancer (exonic) 1.367 ± 0.009 1230 326 

Note: *P<0.05 650 
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Table 2. The dN/dS values (A) and correlation of dN/dS values (B) of different gene 652 

sets for human-mouse orthologs, and for germline and cancer somatic substitutions.  653 

(A) 654 

  Human-Mouse Germline Cancer 

All genes 0.155 ± 0.006 0.903 ± 0.006 1.367 ± 0.009 

Known cancer genes 0.111 ± 0.005 0.675 ± 0.017 1.350 ± 0.033 

Oncogenes 0.101 ± 0.006 0.665 ± 0.020 1.336 ± 0.038 

Tumor suppressor genes 0.151 ± 0.014 0.732 ± 0.039 1.350 ± 0.066 

Human essential genes 0.093 ± 0.002 0.704 ± 0.013 1.288 ± 0.015 

Cancer essential genes 0.089 ± 0.007 0.698 ± 0.032 1.413 ± 0.067 

Positively selected genes 0.136 ± 0.004 0.918 ± 0.029 3.216 ±0.091 

Negatively selected genes 0.172 ± 0.008 0.915 ± 0.023 0.479 ±0.009 

(B) 655 

 Human-Mouse vs Germline Human-Mouse vs Cancer Germline vs Cancer 

 r P-Value r P-Value r P-Value 

All genes 0.04 3.3×10-7 -0.01 0.47 0.10 <10-16 

Known cancer genes 0.45 <10-16 -0.02 0.72 0.11 0.02 

  Oncogenes 0.43 <10-16 -0.01 0.85 0.04 0.43 

  Tumor suppressor genes 0.52 1.0×10-8 0.04 0.66 0.36 1.6×10--4 

Human essential genes 0.19 <10-16 -0.05 0.01 0.06 1.4×10-3 

Cancer essential genes 0.30 5.7×10-7 -0.07 0.29 0.03 0.65 

Positively selected genes 0.17 2.4×10-9 -0.02 0.57 0.23 <10-16 

Negatively selected genes 0.22 6.3×10-5 0.10 0.07 0.04 0.60 
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Table 3. Functional enrichment of positively and negatively selected genes in cancer 657 

genomes (P<0.01, FDR<10%). 658 

(A) 659 

Category Term P-Value FDR (%) 

GOTERM_BP_FAT GO:0032989~cellular component morphogenesis 7.42×10-4 1.34  

GOTERM_BP_FAT GO:0043009~chordate embryonic development 2.40×10-3 4.28  

GOTERM_BP_FAT 
GO:0009792~embryonic development ending in birth or 

egg hatching 
2.89×10-3 5.13  

GOTERM_BP_FAT GO:0000902~cell morphogenesis 3.28×10-3 5.80  

GOTERM_BP_FAT GO:0030098~lymphocyte differentiation 4.90×10-3 8.55  

GOTERM_BP_FAT GO:0051276~chromosome organization 5.19×10-3 9.02  

KEGG_PATHWAY hsa05200:Pathways in cancer 4.23×10-3 0.52  

KEGG_PATHWAY hsa05215:Prostate cancer 5.88×10-4 0.72 

KEGG_PATHWAY hsa05213:Endometrial cancer 1.46×10-3 1.78 

KEGG_PATHWAY hsa05210:Colorectal cancer 2.27×10-3 2.75 

KEGG_PATHWAY hsa05216:Thyroid cancer 2.74×10-3 3.32 

(B) 660 

Category Term P-Value FDR (%) 

GOTERM_BP_FAT GO:0007600~sensory perception 1.35×10-3 2.20 

GOTERM_BP_FAT GO:0050890~cognition 3.11×10-3 5.00 

GOTERM_BP_FAT GO:0007608~sensory perception of smell 4.27×10-3 6.80 

GOTERM_BP_FAT GO:0007606~sensory perception of chemical stimulus 4.67×10-3 7.41 

KEGG_PATHWAY hsa04740:Olfactory transduction 1.03×10-3 1.11 
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