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Abstract 
 

Little is known about the mechanisms that enable organisms to cope with unpredictable 

environments. To address this issue, we used replicate populations of Escherichia coli selected 

under complex, randomly changing environments. Under four novel stresses that had no known 

correlation with the selection environments, individual cells of the selected populations had 

significantly lower lag and greater yield compared to the controls. More importantly, there were 

no outliers in terms of growth, thus ruling out the evolution of population-based resistance. We 

also assayed the standing phenotypic variation of the selected populations, in terms of their 

growth on 94 different substrates. Contrary to expectations, there was no increase in the standing 

variation of the selected populations, nor was there any significant divergence from the 

ancestors. This suggested that the greater fitness in novel environments is brought about by 

selection at the level of the individuals, which restricts the suite of traits that can potentially 

evolve through this mechanism. Given that day-to-day climatic variability of the world is rising, 

these results have potential public health implications. Our results also underline the need for a 

very different kind of theoretical approach to study the effects of fluctuating environments.  
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1 INTRODUCTION 

The last few decades have witnessed a global increase in day-to-day climatic variability 

(Medvigy et al., 2012). As a result of this, many organisms are now subjected to environmental 

changes at much shorter time scales than what they would have probably experienced for much 

of their evolutionary history. This has led to a number of empirical (reviewed in Hedrick, 2006, 

Kassen, 2002) and theoretical (Ishii et al., 1989, Levins, 1968, Taddei et al., 1997) studies, that 

seek to investigate the effects of environmental variability on the physiology (Hagemann, 2011) 

and evolution (Coffey et al., 2011, Ketola et al., 2013) of organisms. The primary insight that 

has emerged from these studies is that various aspects of the environmental heterogeneity, e.g. 

the number of components that constitute the environment (Barrett et al., 2005, Cooper et al., 

2010), the speed with which the environment changes (Ancel, 1999, Cohan, 2005, Meyers et al., 

2005) or the predictability of environmental changes (Alto et al., 2013, Hughes et al., 2007) - 

can act singly, or in combinations with each other, to affect the evolutionary trajectory of 

populations.  More interestingly, such fluctuations can lead to very different patterns of fitness in 

different test environments. For instance, in a recent study, when replicate populations of E. coli 

were subjected to fluctuating complex environments (random, stressful combinations of pH, salt 

and H2O2), the selected populations had no fitness advantage over the controls in stresses in 

which they were selected (i.e. pH or salt or H2O2 or combinations thereof) (Karve et al., 2015). 

Yet, the same selected populations had significantly greater fitness in completely novel 

environments that had never been encountered by the bacteria before and had no known 

correlation with the stresses under which they had been selected (Karve et al., 2015). Similar 

patterns of advantage under novel environments have been observed in other bacteria (Ketola et 

al., 2013) and viruses (Turner et al., 2000), when subjected to fluctuating selection pressure 
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(although see Coffey et al., 2011). These results are consistent with the general observation that 

disturbed habitats give rise to a large number of invasive species which, by definition, have 

fitness advantages in novel environments (Lee et al., 2008 and references therein).    

 

Unfortunately, in spite of a considerable corpus of theoretical predictions (Levins, 1968, Meyers 

et al., 2005), there is little empirical work on the mechanisms that allow organisms to adapt to 

novel environments. Two major ways by which organisms can have greater fitness in novel 

environments are through an enhanced capacity to generate adaptive variations or by possessing 

larger amount of standing genetic variation. Although several organisms are known to respond to 

stress through increased mutation rate (Bjedov et al., 2003) or enhanced phenotypic variation 

(Rohner et al., 2013), it is not clear whether such traits can evolve due to exposure to 

environmental fluctuations.  Recently, it has been shown that exposure to complex fluctuating 

environments do not lead to a significant change in mutation rates in E. coli (Karve et al., 2015). 

However, it is hard to generalize on the issue as empirical studies on evolutionary effects of 

environmental fluctuations often do not investigate changes in mutation rates.  The situation is 

not much different w.r.t the evolution of standing genetic variation under fluctuating 

environments. It has been shown in vitro that accumulated cryptic genetic variation in ribozymes 

can increase fitness in novel environments (Hayden et al., 2011). However, chikungunya virus 

populations selected under fluctuating environments, show much less increase in genetic 

diversity compared to those raised in constant environments (Coffey et al., 2011). Again, 

generalization of any kind is difficult, since we could not locate any other study that reports the 

changes in genetic variation in response to selection in fluctuating environments. 
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Apart from these variation-based mechanisms, there are a few other ways in which organisms 

can potentially deal with novel environments. The most well investigated of these seems to be 

phenotypic plasticity (Fusco et al., 2010) which is expected to evolve when the environment 

changes faster than the life span of the organisms (Ancel, 1999, Meyers et al., 2005).  Another 

potential mechanism in this context might be an increase in broad-spectrum stress tolerance 

which is consistent with a recent finding that enhanced efflux activity evolves in E. coli in 

response to selection in fluctuating environments (Karve et al., 2015). The third possible way to 

have greater fitness in novel environments is the evolution of population-based resistance, 

wherein a small fraction of individuals in the population synthesize some chemicals into the 

environment, which allows the entire population to become stress resistant (Lee et al., 2010, 

Vega et al., 2012). This kind of division of labor, in principle, can allow the population to 

become resistant to a wider spectrum of environments, thus enabling them to have greater fitness 

in a multitude of novel environments. 

 

Here we investigate two of the above mentioned mechanisms for improved fitness in novel 

environments. We use replicate E. coli populations previously selected under unpredictable, 

complex environmental fluctuations for ~170 generations (Karve et al., 2015). We test whether 

the phenotypic variation of the selected populations, in terms of usage of 94 substrates, have 

sufficiently diverged from the controls or not. We also count the number of progenies produced 

by individual bacterial cells, to ascertain whether population-based resistance has evolved in our 

selected populations. We find that our selected populations retain the fitness advantage even at 
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the level of individual cells. However, there was no evidence of evolution of either increased 

phenotypic diversity or population-based resistance. Thus we can say that environmental 

fluctuations do not lead to increased variation, at least in the short time scale.  
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2 MATERIALS AND METHODS 

2.1 Selection under constant and fluctuating environments  

In this study, we used three replicate populations (henceforth F populations) of E. coli (strain 

NCIM 5547) that had been previously selected in unpredictably fluctuating, complex stressful 

environments. During the process of selection, the F populations were subjected to stressful 

combinations of salt, hydrogen peroxide and pH that changed unpredictably every 24 hrs. We 

also maintained corresponding controls (henceforth S populations) in the form of three replicate 

E. coli populations that were passaged in Nutrient Broth (see S1 for composition). After 30 days 

of selection (~170 generations, see S1 for calculations) these S and F populations were stored as 

glycerol stocks at -800C. The details of the maintenance regime for both the F and the S 

populations have been mentioned elsewhere (Karve et al., 2015).  

 

2.2 Fitness of the individual bacteria in novel environments 

To estimate the fitness of individual bacterium and characterize the possible heterogeneity within 

a population, we employed a slide-based observation technique (Lele et al., 2011). Pilot studies 

were conducted to determine the sub-lethal concentrations for the four novel environments when 

the bacteria were grown on slides (see Table S2 for concentrations). The identity of these novel 

environments were chosen such that there are no known correlations between the mechanism of 

stress resistance to them and the three stresses used in the fluctuating selection (Karve et al., 

2015). Glycerol stock for S or F population was revived overnight in 50 ml Nutrient Broth. This 

revived culture was used to flood the slide layered with nutrient agar (see S1 for composition) 

containing one of the novel environment. After the broth had dried off (~ 30 minutes at room 
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temperature under aseptic conditions), the agar surface was covered with a cover slip, excess 

agar outside the cover slip was removed with the help of a scalpel, and the sides were sealed with 

the mounting medium DPX (Di-n-butyl phthalate in xylene). The slide was then placed on the 

stage of a microscope (Primo StarTM, Zeiss, Jena, Germany) which in turn was placed at 370 C 

throughout the observation time.  

 A suitable field containing 6 to 20 single, well-spaced cells was focused under 100X 

magnification. For each cell in the field of view, we manually scored the time taken by the cell 

and its progenies to divide over a period of 240 minutes from the preparation of the slide i.e. 

from the time when broth was poured on the agar slide. Two trials were conducted for every 

replicate population of S and F in every novel environment (2 × 6 × 4 = 48 trials). The yield of 

each cell was estimated as the number of progenies produced by the cell at the end of 240 

minutes. We also measured the ‘lag’ as the time taken for the first division. Since the cells were 

not synchronized, the lag estimate is likely to be associated with some amount of error. However, 

there is no reason to believe that this would affect S and F populations differentially. Moreover, 

since we measured substantial number of cells per population, such errors arising due to lack of 

synchronicity should be further ameliorated.  

The yield and lag data were analyzed separately using mixed model ANOVA with novel assay 

environment (4 levels: Cobalt, Zinc, Norfloxacin and Streptomycin) and selection (2 levels: S 

and F) as fixed factors and replication (3 levels, nested within selection) and trial (2 levels, 

nested in assay environment × selection × replication) as random factors.  

We also performed the individual mixed model ANOVAs for each of the novel assay 

environments. For this set of analysis, selection (2 levels: S and F) was treated as a fixed factor 
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and replication (3 levels, nested within selection) and trial (2 levels, nested in selection × 

replication) as random factors. For the control of family-wise error rate, we used sequential 

Holm-Šidàk correction of the p values (Abdi, 2010). All ANOVAs in this study were performed 

on STATISTICA v5 (Statsoft Inc., Tulsa, OK, USA). 

To estimate the effect size of the differences between the means, we computed Cohen’s d 

(Cohen, 1988) using the freeware Effect Size Generator (Devilly, 2004). The effect sizes were 

interpreted as small, medium and large for 0.2 < d < 0.5, 0.5 <  d < 0.8 and d > 0.8 respectively 

(Cohen, 1988).  

 

2.3 Population based resistance in novel environments 

Population-based resistance occurs when a small fraction of the individuals synthesize a 

chemical which is then available to the other individuals of the population. However, as in our 

assay for individual-level fitness, when the bacteria are immobilized over an agar surface at 

extremely low densities for short durations, exchange of such chemicals become almost 

impossible. Thus, only those bacteria can resist the stresses which are able to synthesize the 

stress-fighting chemical on their own. If such bacteria are an extremely small fraction of the 

population, then they are expected to show up as outliers in the growth rate assay (see Discussion 

for further elaboration).  

Most formal tests of outlier detection assume the underlying data to be normally distributed 

(Barnett et al., 1978). Since our yield data did not meet this assumption, we used plots of the 

cumulative yield percentage to check for outliers. For this, we computed the percentage 

contribution of each parental bacteria to the final yield, arranged the values from both trials in 
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ascending order and plotted the cumulative percentage yield against the percentage of the 

parental cells. In this plot, any cell(s) with disproportionate contribution to the overall yield can 

be easily identified by a sharp upward inflection towards the right of the graph.  

 

2.4 Assay for phenotypic variation 

We assayed the phenotypic variation in the population using GEN III MicroPlateTM (Catalog no. 

1030 Biolog, Hayward, CA, USA).  Each of these plates contains 94 separate substrates of which 

71 can be utilized as carbon sources while 23 can act as growth inhibitors.  The presence or 

absence of growth is indicated with the help of tetrazolium redox dye where intensity of purple 

color is proportional to the amount of growth.  

From each of the F and S populations, we obtained 8 clones by streaking the glycerol stock on a 

Nutrient Agar plate and incubating overnight at 370C. Thus a total of 48 clones were isolated 

over the three S and three F populations. Every clone was then characterized for the 94 different 

phenotypes on the Biolog plate using standard protocol (for detailed methods, see S3). An 

ancestral clone was processed in the same way to obtain the ancestral phenotypic profile.  

Following a previous study (Cooper et al., 2000), we measured absorbance of the plates at 590 

nm using a microplate reader (SynergyHT BioTek, Winooski, VT, USA). For the 23 wells with 

inhibitory compounds, considering the recommendations of the product manual, we scored 

optical densities that were 50% or more of the corresponding positive control as 1 (i.e. no 

inhibition) and others as 0 (inhibition). Similarly, for the 71 wells with substrate utilization test, 

optical density that was ≥200% of the corresponding negative control was scored as 1 (i.e. 

utilized) while the others were scored as 0 (i.e. not-utilized). These binary scores were then used 
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to determine standing phenotypic variation as well as the differences from the ancestral 

phenotypic profile. 33 phenotypes showed no variation in S and F (i.e. all individuals in S and F 

were either 0 or 1) and were ignored. For estimating standing phenotypic variation over the 

remaining 61 phenotypes, we computed the sum score of every replicate population over the 

eight clones. These values, ranging from 0 to 8, denote the variation within every population for 

that phenotype. It should be noted here that in some of the 94 substrates, absence of growth (i.e. 

0) was the dominant phenotype while for the other substrates, the presence of growth (i.e. 1) was 

the dominant one. We were not interested in the qualitative nature of the phenotype (1 or 0) and 

wanted to analyze the variation over the entire set of 94 phenotypes. Therefore, we mapped 

phenotypic variation values of 5, 6, 7 and 8 to 3, 2, 1 and 0 respectively. In other words, a 

population in which three clones showed no growth (i.e. 3 zero values) and five clones showed 

growth (i.e. 5 values of 1), was deemed to have the same phenotypic variation for a given 

phenotype as a population which had five non-growers and three growers for a different 

phenotype. These mappings work only across phenotypes and fail if there are differences 

between the three replicates of S or F for the same phenotype. However, only three such cases 

were found in S populations and none at all in the F populations. The interpretations of our 

statistical analysis did not change with or without these points and hence we have retained these 

three data points. The phenotypic variations were then analyzed by a two way ANOVA with 

phenotype (61 levels) and selection (2 levels: S and F) as fixed factors. We also analyzed this 

data using the non-parametric Friedman test (Sokal et al., 1995) after averaging over the three 

replicates populations for S and F. The inferences from both kinds of statistical tests were the 

same. Therefore we present the parametric analysis (i.e. 2-way ANOVA) here and discuss the 

non-parametric analysis, and its strengths and weaknesses, in the SOM (S7).  
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For estimating the phenotypic divergence from the ancestor, we recorded the number of clones 

displaying phenotype that was different from the ancestral one, for all the F and S populations. 

The number of differences for each phenotype was then analyzed using a two way ANOVA with 

phenotype (61 levels for Phenotypes) and selection (2 levels: S and F) as fixed factors.  
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3 RESULTS 

 

3.1 Fitness of individual bacterial cells 

When pooled over all the novel environments, individuals from F populations displayed 

significantly lower lag time (Fig 1A) and higher yield (Fig 1B) than individuals from S 

populations, with medium and high effect sizes respectively (Table 1). There was a significant 

effect of the novel environment in both cases (F3, 12 = 66.75, p < 0.001 for lag and F3, 12 = 88.93, 

p < 0.001 for yield) indicating that the difference in the fitness varies across different novel 

environments. This is intuitive as all the environments are not expected to affect fitness similarly. 

When analyzed separately for each novel environment, F populations had significantly and 

marginally significantly lower lag time in cobalt and streptomycin respectively (Table S4, Fig 

1A) and significantly higher yield in cobalt, streptomycin and norfloxacin (Table S4, Fig 1B). 

The effect sizes were large in all these cases (Table S4). It is important to note that in all the four 

novel environments, F populations showed lower lag time and higher yield compared to S 

populations. The trends were consistent even when the two trials were analyzed separately (see 

SOM S5 for rationale and the results) which underlines the reproducibility of our results. 

However, these quantitative differences were not accompanied by any differences in cell size 

(F1,4 = 1.56, p = 0.279, d = 0.19) or shape (see SOM S6 for details).  

Overall, these results demonstrate the growth advantage for individuals of F populations in the 

four novel environments, corroborating the population level outcomes observed in an earlier 

study (Karve et al., 2015).  
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Fig 1: Fitness of individual bacterial cells. A.  Mean (±SE) lag time is significantly lower for F 

populations than S populations when pooled over four novel environments. When compared 

separately for each novel environment, F populations show significantly lower lag time in cobalt 

and streptomycin and similar lag time in norfloxacin and zinc. B.  Mean (±SE) yield is 

significantly higher for F populations than S populations when pooled over four novel 

environments. When compared separately for each novel environment, F populations show 

significantly higher yield for cobalt, norfloxacin and streptomycin and similar yield for zinc.        

* denotes p < 0.05 (after Holm-Šidàk correction in the case of comparisons under individual 

environments). 
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3.2 Population-based resistance   

Inspection of the data suggested that there were no individual cells whose progeny contributed 

disproportionately to the final population size. This can also be seen from the plot of the 

cumulative percentage yield of the cells, where the F populations showed a linear trend in three 

out of the four novel environments (Fig 2).  Only in zinc, there was a small departure from the 

linearity (Fig 2D). However, even then ~20% of the cells contributing to ~40-60% of the 

observed yield and hence, there was nothing to suggest the presence of a small number of 

outliers that contributed disproportionately to the growth. Interestingly, zinc was the only novel 

environment where F populations did not display a fitness advantage in terms of yield or lag (see 

Discussion), thus ruling out the possibility of a few individuals conferring fitness advantage to 

the entire population.  
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Fig 2: Population-based resistance in F populations.   The cumulative percentage contribution 

of parental bacteria to the final yield is plotted for three replicate F populations in four novel 

environments. Each line in a figure stands for a replicate population of F. A. Cobalt, B. 

Norfloxacin, C. Streptomycin, D. Zinc. In this kind of a graph, the presence of outliers is 

detected as a sharp inflection towards the right, which was not observed. This indicates that no 

individual cells contributed disproportionately to the total yield.   
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3.3 Phenotypic Variation 

For 33 out of the 94 substrates tested, no variation was found i.e. all the 48 clones of S and F 

gave the same phenotype. In the remaining 61 substrates, at least 1 out of the 48 clones (8 clones 

each for three S and three F populations) gave a different phenotype. ANOVA on the phenotypic 

distances showed a significant main effect of phenotype (F60, 244 = 3.69, p << 0.001) suggesting 

some phenotypes harbored more variation than others. This is intuitive as one does not expect 

similar number of variation for 61 traits over six populations.  However, more crucially, there 

was no significant difference for the phenotypic variation across S and F populations, with a low 

effect size for the difference (Table 1 Fig 3A). Thus, we conclude that there was no evidence of 

an increased phenotypic variation in the F populations.  

61 out of 94 phenotypes (not the same 61 as above though) showed at least one clone that was 

phenotypically different from the ancestor. Although, averaged over the 61 phenotypes, the S 

populations showed greater divergence which was marginally statistically significant (Fig 3B) 

the corresponding effect size of the difference was low (Table 1). More crucially, there was no 

phenotype for which all S or F populations were different from the ancestor. Barring two cases, 

no consistent pattern was observed in terms of acquiring or losing a phenotypic trait. 43 out of all 

the 48 clones tested acquired the ability to utilize methyl pyruvate while 39 became capable of 

utilizing β-methyl- D-glucoside.  Although prior studies indicate that the ability to catabolize 

methyl pyruvate (Timonen et al., 1998) and β-methyl- D-glucoside (Perkins et al., 2008) often 

evolves under different kinds of stresses, the reason for the same remains unknown.  Since, both 

S and F populations acquired the ability to utilize these compounds it is possible that there is 

some fitness advantage of these two phenotypes in nutrient broth. Crucially, there were no clear 

patterns in terms of phenotypic divergence from the ancestor, indicating that the variation 
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accumulated is likely to be either neutral or have very weak effect on fitness. Apart from one 

replicate population of S in which all the individuals tested had lost the ability to utilize D-

raffinose and pectin as a carbon source, there was not a single population in S or F in which all 

eight individuals had diverged from the ancestor. This suggests that the observed phenotypic 

variation is unlikely to be a result of a strong and /or directional selection pressure on one of the 

phenotypes. The divergence from ancestral phenotype varied significantly across different 

phenotypes (F60, 244 = 18.82, p << 0.001) with a significant interaction with selection (F60, 244 = 

2.98, p << 0.001). Both these results are intuitive since one neither expects similar levels of 

divergence over 61 substrates nor similar patterns of divergence in S and F populations.   
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Fig 3: Phenotypic variation and divergence from ancestors. A. Mean (±SE) phenotypic 

variation for S and F populations. B. Mean (±SE) phenotypic divergence from the ancestors. The 

S populations show slightly higher variation and divergence albeit with small effect sizes. * 

denotes p < 0.05.  
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4 DISCUSSIONS 

4.1 On measurement of fitness 

Most experimental evolution studies in microbes measure fitness in either of two ways. The first 

is a measure of fitness in terms of growth rate or yield (Ketola et al., 2013, Holder et al., 2001). 

The second involves measuring competitive fitness by mixing the evolved strains with the 

ancestors and scoring their relative densities after a period of growth (Travisano et al., 1995, 

Silander et al., 2007). It is sometimes argued that the second method is more preferable as it also 

includes a measure of the competitive ability and hence gives an estimate of the magnitude of 

adaptation that has occurred in the selected populations over the course of the experiment 

(Kassen, 2014: page 16).  

By definition, measuring competitive fitness equates evolutionary change with change in 

competitive ability and thus equates evolution with the ability of one genotype to replace 

another. It is, therefore, a narrow definition of fitness in the context of a correspondingly narrow 

and strict concept of evolution. However, the present study employs a broader notion of 

evolution as change through time within a species (Losos, 2013) and fitness as a measure of 

number of offspring in a given unit of time (i.e. yield) or any trait that affects that number (i.e. 

lag time). This is because we intuitively find no reason to expect that exposure to randomly 

fluctuating environments would lead to a change in competitive ability. Furthermore, we 

explicitly aimed to study fitness at the level of individual bacterium, which also enabled us to 

investigate phenomenon like population-based resistance. The notion of competitive fitness is 

not congruous with this aim and hence is not used here. To summarize, our concept of fitness is 

similar to the usage of Ketola et al. (2013) and Holder et al. (2001) and may or may not 
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correspond with a change in competitive fitness as used in some other studies (Travisano et al., 

1995, Silander et al., 2007). 

 

4.2 Higher fitness of individuals in novel environments 

For all the four novel environments, the lag times were lower for F populations and yields were 

higher (Fig 1) although the differences were not statistically significant for each comparison 

(Table S4). This corroborates similar observations at the population level in a previous study 

(Karve et al., 2015). Unlike the population level assays, the individual level assays were 

conducted under an anaerobic environment. Though this could have affected the growth of the 

cells, the effect can be assumed to be similar across S and F individuals, and thus do not affect 

the conclusions of this study. 

Increased fitness in multiple novel environments can come about in at least two major ways: an 

increased rate of generating new variation or the existence of larger amount of standing 

variation. If the first case were true, then one would not expect the progenies of all individuals of 

the F populations to acquire the favorable mutations at the same time in a novel environment. If 

the F populations had increased standing variation which was contributing to their enhanced 

fitness under novel environments, then again one would expect that most individuals would fail 

to grow and the progenies of only few individuals would primarily contribute to the final 

population size.  However, we found no outliers in terms of contributions to the final size of the 

population (Fig 2) which suggests that whatever the mechanism that had evolved, was 

benefitting all the existing F individuals similarly. This observation does not fit with either 

increased rate of generation of variation or increased standing genetic variation.  
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4.3 No evidence for population-based resistance  

When the magnitude and direction of selection fluctuates continuously, traits that are favorable 

under one set of conditions, might become neutral or even deleterious when the environment 

changes. This can lead to a scenario where a population is continuously changing with each shift 

in environment, without really evolving to greater fitness. One way by which a population can 

escape such a stasis is through the evolution of cooperation which allows subsets of the 

population to specialize in countering particular stresses and then confer resistance to the 

population as a whole (West et al., 2007). For example, it has been shown that in populations of 

the bacteria Pseudomonas aeruginosa, the proportion of individuals that synthesize the iron-

scavenging siderophore pyoverdin, changes based on the kind of competition and genetic 

relatedness (Griffin et al., 2004). Similarly, when E. coli populations are challenged with 

antibiotics, a very small percentage (0.1 ˗ 1%) of the individuals secret excess amounts of indole 

to the external environment, which then allows the entire population to become antibiotic 

resistant (Lee et al., 2010). Since only a small fraction of the population needs to evolve the 

resistant mechanism for a given stress, in principle, this mechanism allows different subsets of 

the population to evolve resistance to different stresses. This should increase the population level 

variation in terms of the ability to resist diverse stresses, and hence increase fitness in different 

kinds of novel environments. Given that antibiotics were among the novel environments that we 

studied, population-based resistance was a possible explanation for the fitness advantages of F 

populations. Our assay for individual fitness was expected to detect the resistant subset as 

outliers with exceptionally high yield. This is because immobilization of cells at extremely low 

density over an agar surface limits the diffusion of extracellular metabolites over long distances 
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and only those cells which synthesize the resistant factors can resist the stresses. However, we 

did not find any outliers in terms of the yield and, except in the case of zinc, all the plots of 

cumulative yield were linear (Fig 2). Even in the case of zinc, where there was a slight departure 

from linearity, at the point of inflection, ~20% of the parents contribute to ~40-60% of the yield. 

Overall, the conclusions are unambiguous, the observed increase in yield of the F populations 

were not attributable to a small fraction of the population. 

The above result could have arisen in at least two other ways. It was possible that the F 

populations do exhibit population-based resistance, but we had managed to sample only those 

bacteria that conferred resistance to the population. The chances of such an event happening are 

probably negligible since, as stated already, the fraction of bacteria that confer the population-

wide resistance is typically very low (Lee et al., 2010). As we had sampled around 12- 40 

bacteria out of ~2 × 108(over two trials) for each F population, it is highly unlikely that only 

individuals with altruistic capacities were sampled. In fact, the second possibility was far more 

likely, namely that we had sampled only those bacteria that did not confer any resistance to the 

population. In principle, this could also explain the absence of outliers in the F populations in 

terms of overall yield. However, in that case, we could not have observed an increase in the yield 

when compared to the S populations. Since the F populations did show a significantly larger 

yield compared to S populations (Fig 1B), we conclude that whatever mechanism was 

responsible for it, was not present only in a small number of individuals.  

There can be multiple, non-exclusive reasons for which population-based resistance failed to 

evolve in our F populations. Our F populations were sub-cultured every 24 hours with 1/50 of 

the existing population forming an inoculum for the next generation (Karve et al., 2015). It is 

difficult for population-based resistance to evolve in such a system due to a high chance of losing 
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the resistant cells (which are in very low frequency) during each sub-culture. Moreover, it is 

known that when the environment changes, the production of the chemical that benefits the 

whole population can be costly for the producer cell (Lee et al., 2010). Thus, in our F 

populations, there could have been a strong selection against the resistant cells, each time the 

environment changed. Taken together, perhaps it is not surprising that population-based 

resistance did not evolve in our F populations.  

 

4.4 Fluctuating selection does not increase standing variation 

Populations with greater standing variation are expected to respond faster to selection pressures 

compared to those with increased mutation rates. This is because with standing variation, the 

population need not wait for a beneficial mutation and such mutations are typically at a slightly 

higher frequency than those that arise de novo after exposure to the selection pressure (Barrett et 

al., 2008). Furthermore, theoretical studies show that fluctuating environments are expected to 

promote standing variation in the populations (Turelli et al., 2004, Gillespie et al., 1989). Taken 

together, the greater fitness of the F populations in novel environments can be potentially 

explained if such populations have greater standing variation. We note here that a larger standing 

variation does not automatically guaranty that a population would be better able to face novel 

environments, it merely increases its chances for the same. However, it is difficult to visualize 

how large standing variation can be maintained when the direction of selection is changing very 

often (Via et al., 1987). One way out of this problem is contextual neutrality, i.e. the assumption 

that at least some genetic changes are neutral in some environments (thus escaping selection) but 

affect fitness in other environments (thus contributing to standing genetic variance)(Wagner, 
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2005b). Thus, a population with a greater “neutral space” (i.e. contextually neutral variation) 

would be expected to have greater fitness across novel environments (Wagner, 2005a).  

Although some studies have directly measured genetic diversity through quantification of the 

number of mutations present (Coffey et al., 2011), it is hard to determine how much of that 

diversity is functionally relevant.  This is because, practically speaking, it is difficult to ascertain 

from the sequence data, whether a particular genomic mutation is deleterious, neutral or 

contextually neutral. Therefore, we favored a direct measurement of the phenotypic variation in 

the populations, through their ability to grow on 94 different conditions on the Biolog GEN III 

MicroPlateTM plate (Cooper, 2002). This way, we quantify those variations that can cause an 

observable change at the phenotypic level and hence, are functionally important.  

 

Our results suggest that selection for unpredictable fluctuations did not increase the phenotypic 

variation in F populations. If anything, the mean phenotypic variation was slightly larger for the 

S populations (Fig 3A), although the difference was not statistically significant. This is 

consistent with a previous study on viruses demonstrating that genetic diversity (as measured by 

genomic mutations) is larger in populations that experience a steady environment as opposed to 

those facing fluctuating ones (Coffey et al., 2011). Our results are also in sync with a previous 

observation that constant selection environments lead to increase in the genetic variance for 

fitness in novel environments (Travisano et al., 1995). In terms of the phenotypic divergence 

from the ancestors, we found no consistent differences or reversal of phenotypes that were 

specific to the F or S populations (Fig 3B).  
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There might be several reasons for which phenotypic variation did not increase in the F 

populations. The duration of selection (~170 generations) might have been too less to lead to a 

significant divergence in terms of phenotypic variation. Moreover, the fact that the environment 

(and hence the selection pressure) changed every ~6 generations, might have caused a much 

stronger selection pressure that prevented maintenance of phenotypic variation. One way by 

which standing variation can be increased even in the face of changing environments, is through 

increased mutation rates (Ishii et al., 1989). However, since the mutation rates of the F 

populations did not evolve to be significantly larger than the S populations (Karve et al., 2015), 

this route was closed to the selected populations. It is important to note here that we only scored 

the presence or absence of phenotypes, a process that is biased towards catching large 

phenotypic differences. In principle, one can also think of variations which affect the rate at 

which the substrates are metabolized or the intensity of the effect of stress substrates on the 

bacterial cells. However, quantifying such effects would require replicate measurements at the 

level of single clones and increased number of replicate clones due to the inherent variation in 

the metabolic rates of the cells, and hence was beyond the scope of this work.  

 

4.5 Conclusion 

Bacterial populations exposed to randomly fluctuating environments evolve to have greater 

fitness in novel stresses (Karve et al., 2015, Ketola et al., 2013). However, this is not attributable 

to an increase in standing variation, nor evolution of population-based resistance, nor an increase 

in the rate of generation of variation through mutations (Karve et al., 2015). This suggests that 

the greater fitness in novel environments is perhaps due to direct individual-level selection on 
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broad-spectrum stress resistance traits like change in membrane structure (Viveiros et al., 2007), 

multi-drug efflux pumps (Nikaido et al., 2012) etc. This observation is consistent with a previous 

result that the efflux activity of the F populations had increased significantly (Karve et al., 2015). 

If the evolved increase in fitness were due to mutations or standing genetic variations, then there 

are a large number of ways available for the bacteria to evolve. However, the number of 

individual-level broad-spectrum resistance mechanisms is relatively small and typically well-

studied, which at least gives some hopes in terms of developing containment strategies against 

such mechanisms.  Moreover, most theoretical studies on evolutionary effects of fluctuating 

environments seek to model changes in mutation rates and standing variation (Ishii et al., 1989, 

Leigh, 1970, Taddei et al., 1997). Our results suggest that such studies have perhaps failed to 

consider the critical mechanism that enables organisms to adapt to such situations in nature and a 

new class of theoretical modeling is needed to investigate this issue.  
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Assay 
Means ANOVA F 

(df effect, df 

error) 

ANOVA 

p 

Effect 

size 

±95%CI 

Interpretatio

n S F 

Lag 

 

147.6

6 
118.69 19.20 (1,4) 0.012 0.50±0.18 Medium 

Yield 

 
3.89 6.26 92.94 (1,4) 0.0006 0.94±0.19 Large 

Phenotypic 

variation 
0.61 0.51 1.51 (1,244) 0.22 0.11±0.2 Small 

Phenotypic 

divergence 

from ancestor 

0.97 0.79 3.98 (1,244) 0.047 0.1±0.2 Small 

 

Table 1: Summary of the main effects of selection in the pooled ANOVAs. 

 Effect size was measured as Cohen’s d statistic and interpreted as small, medium and large for 

0.2 < d < 0.5, 0.5 < d < 0.8 and d > 0.8 respectively.    
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S1 – Composition of Nutrient Agar and Nutrient Broth 

 

Composition of Nutrient Agar (NA): 

 

Ingredients 

 

g/L 

Peptic digest of animal tissue 

 

5.00 

Sodium chloride 

 

5.00 

Beef extract 

 

1.50 

Yeast extract 

 

1.50 

Agar 20.00 

 

Final pH (at 250C) 7.4 ± 0.2 

 

The composition for Nutrient Broth (NB) is the same as above except the absence of agar. 

 

For the slide based technique, we used 12 g / L of Agar. 
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Calculation of generation time in the experiment: 

 

We computed the number of generations (g) using the standard expression in the microbiology 

literature (Bennett et al., 1997) 

g = log2 (NF / N0) 

where, NF is the population density (measured as OD) at the end of the growth cycle and N0 is the 

population density at the start of the growth cycle. It seems intuitive that F populations would 

have undergone less number of generations than S populations over the span of 30 days, due to 

the fact that the former were experiencing stress. However, this was not found to be the case, as 

seen from the data below:  

 

Population No. of 

generations 

SA 170.50 

SB 170.51 

SC 170.37 

HA 170.62 

HB 170.54 

HC 170.59 
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This seeming anomaly is explained by the fact that at every passage, we transferred fixed volume 

of culture to the next environment. Thus, though S populations reached higher OD600 value at 

almost every passage as compared to F populations, they started the next generation with higher 

numbers as well. As a result, the S populations hit stationary phase earlier than the F populations 

and, in effect, spent similar number of generations over the experimental duration. 
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Table S2 – Novel Environments used for estimating fitness at the individual level 

  

Assay Environment Concentration 

Cobalt chloride  28.5 mg% 

Zinc sulfate 120 mg% 

Streptomycin   0.0065mg% 

Norfloxacin 0.0032 mg% 
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S3 – Protocol for using the Biolog plates 

 

We used GEN III MicroPlateTM along with inoculating fluid A (IF-A) for estimating the 

phenotypic variation. Both plates and inoculating fluid were stored at 40C and thawed at room 

temperature before use.  

A part of glycerol stock was streaked on nutrient agar plate for every replicate population of S 

and F.  The plates were incubated at 370C overnight. 8 isolated clones of comparable sizes were 

selected for every population and inoculated into the separate inoculation fluid tube.  The 

transmittance was in the range of 95% to 98% for the selected clones. 100 µl of this well mixed 

inoculation fluid was used to inoculate the GEN III plate. The plates were incubated at 370C for 

24 hours after which they were stored at 40C for another day, during which time we measured 

optical density for all the 48 plates at 590 nm (Cooper et al., 2000) using a microplate reader 

(SynergyHT Biotek, Winooski, VT, USA).  
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Table S4 – Summary of the main effects of selection in the ANOVAs under individual 

environments.  

 

Fitness 

Measure 

Environment 

Means 
ANOVA 

F(1,4) 

Holm- Šidàk 

corrected p 

values 

Effect 

Size±95% 

CI 

Interpretation 

S F 

Yield 

Cobalt 4.877 7.759 43.33 0.008 1.79±0.43 Large 

Norfloxacin 5.396 7.479 40.77 0.006 1.15±0.42 Large 

Zinc 1.897 3.306 6.47 0.064 0.69±0.34 Medium 

Streptomycin 4.000 7.519 99.53 0.002 1.77±0.42 Large 

Lag 

Cobalt 119.070 77.000 34.53 0.017 1.46±0.36 Large 

Norfloxacin 118.854 108.208 0.99 0.375 0.26±0.4 Small 

Zinc 206.059 185.056 1.62 0.47 0.42±0.33 Small 

Streptomycin 131.667 84.278 14.93 0.053 1.22±0.4 Large 

 

 

This table shows yield and lag measurements for individual cells under four novel environments. 

Effect size was measured as Cohen’s d statistic and interpreted as small, medium and large for 

0.2 < d < 0.5, 0.5 < d < 0.8 and d > 0.8 respectively.   
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S5 – Summary of the main effects of the ANOVA for pooled data as well as under 

individual environments, for separate analyses for two trials 

We had not treated trials as repetitions at the level of the whole experiment because then we will 

have to conduct double the number of statistical tests than what we have done, which would have 

greatly inflated our overall error rates. Therefore, in the main manuscript, we treat trial as a 

random factor and analyze the data from the two trials together. However, as pointed out by a 

reviewer, the two trials can also be used to check for reproducibility of the results. Therefore, we 

have reanalyzed the individual cell data for two trials separately and find that the results are 

consistent with our earlier analysis. 

Trial I  

Main effect of selection in pooled data  

Assay  

  

Means  

ANOVA F 

(df effect,df error) 

ANOVA 

p  

  

Effect 

Size  

  

Effect Size 

Interpretation 

  S F 

Lag 141.68 115.49 15.12(1,4) 1.80E-02 0.5±0.26 Medium 

Yield 3.80 6.33 43.03(1,4) 0.003 1.04±0.28 Large 
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Main effect of selection in individual environments 

Assay  Environment Means  

ANOV

A 

F(1,4) 

Holm-

Sidak 

Correctio

n p values  

Effect 

Size  

Effect Size 

Interpretatio

n 

  

Lag 

  

  

  

  S F         

Cobalt 

123.1

3 77.57 11.36 0.108 1.3±0.57 Large 

Norfloxacin 

126.2

6 

106.1

5 0.77 0.676 0.44±0.6 Small 

Zinc 

187.8

4 

180.0

0 0.14 0.729 0.14±0.48 Small 

Streptomycin 

124.3

3 81.83 6.08 0.194 1±0.54 Large 

                

Yield 

  

  

  

Cobalt 4.07 7.71 44.55 0.01 2.6±0.7 Large 

Norfloxacin 5.35 7.05 7.42 0.103 0.79±0.62 Large 

Zinc 2.52 4.09 3.96 0.117 0.65±0.5 Medium 

Streptomycin 3.67 7.17 35.8 0.012 1.61±0.58 Large 

 

Trial II 

Main effect of selection in pooled data  

Assa

y  Means  ANOVA F 

ANOVA 

p  

Effect 

Size  

Effect Size 

Interpretation 

  S F 

(df effect,df 

error)       

Lag 153.39 121.72 7.27(1,4) 0.054 0.54±0.26 Medium 

Yield 3.97 6.20 30.96(1,4) 0.005 0.85±0.27 Large 
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Main effect of selection in individual environments 

Assay  Environment Means  

ANOV

A 

F(1,4) 

Holm-

Sidak 

Correctio

n p values  

Effect 

Size  

Effect Size 

Interpretatio

n 

    S F         

Lag 

  

  

  

Cobalt 

114.5

6 76.467 1114.07 0.00002 1.9±0.63 Large 

Norfloxacin 

112.0

4 109.679 0.04 0.852 

0.06±0.5

3 Small 

Zinc 

221.3

2 189.838 1.62 0.47 

0.76±0.4

7 Large 

Streptomycin 

139.0

0 87.333 9.59 0.105 1.51±0.6 Large 

                

Yield 

  

  

  

Cobalt 5.778 7.800 6.41 0.125 

1.26±0.5

7 Large 

Norfloxacin 5.440 7.786 26.07 0.021 1.6±0.62 Large 

Zinc 1.378 2.568 1.87 0.243 

0.94±0.4

8 Large 

Streptomycin 4.333 7.958 324.06 0.0002 

2.15±0.6

7 Large 

 

The trends were consistent even when the two trials are analyzed separately, which underlines 

the reproducibility of our results. 
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S6 – Quantitative analysis of the cell size 

One of the ways in which the F populations might have evolved could have been by change in 

cell shape or cell size. To study this, we exposed individuals from all the replicate S and F 

populations to the same concentration of Norfloxacin as used in the study. We used ImageJ 

software (Schneider et al., 2012) to measure the cell sizes right after the cells divided (to make 

sure that all cells are measured at the same age). Cell lengths were measured for first two 

divisions and data was analyzed using a 2-way ANOVA where selection (two levels – S and F) 

was a fixed factor and replicate (three levels) was a random factor nested in selection. The 

difference in cell sizes is non-significant with very small effect size (F1,4 = 1.56, p = 0.279, d = 

0.19). We also provide representative images.  

 

  

F S 
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S7 – Nonparametric statistics for phenotypic variation 

The discrete nature of the phenotypic variation scores violates the normality assumption of 

ANOVA (Zar, 1999). However, it is important to note that: 

a) ANOVA is known to be robust to departures from normality, particularly when the 

numbers of observations in each cell are the same (Quinn et al., 2002), which they are in 

this case. 

b) The effect sizes for all comparisons have been computed and Cohen’s d does not depend 

on the nature of the underlying distribution. The interpretation from the effect sizes was 

the same as that of the parametric analysis: there were no major differences between the 

phenotypic variation of S and F.  

In spite of this, as recommended by an editor, we conducted a non-parametric analysis of the data. 

The use of the non-parametric alternative of the two way ANOVA (Scheirer-Ray-Hare test) is 

controversial in the statistical literature (Dytham, 2011), and hence was not used here. Instead, we 

performed another commonly used nonparametric test, namely the Friedman test (Sokal et al., 

1995). Phenotypic distance for every environment was averaged over three replicate populations 

for S and F. This yielded 61 different values of distance each for S and F, every single value 

corresponding to one environment. This data was then analyzed using the Friedman test and we 

detected no significant difference in phenotypic variance between the S and F populations (p = 

0.473) which is consistent with the results obtained from the 2-way ANOVA (p = 0.22; Table 1 of 

the manuscript). This is not surprising as non-parametric tests have considerably lower power than 

the corresponding parametric ones (Zar, 1999), and therefore any difference between means that 

is statistically non-significant in parametric tests will remain non-significant in non-parametric 

tests. 
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To summarize, whatever way we analyzed the phenotypic variance (ANOVA, effect size, 

Friedman test), the conclusions were the same: there was no significant difference between the 

phenotypic variance in S and F populations.  
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