An accurate genetic clock

David Hamilton*
*Department of Mathematics, University of Maryland, College Park

Our method for "Time to most recent common ancestor" TMRCA of genetic trees for the first time deals with natural selection by apriori mathematics and not as a random factor. Bioprocesses such as "kin selection" generate a few overrepresented "singular lineages" while almost all other lineages terminate. This non-uniform branching gives greatly exaggerated TMRCA with current methods. Thus we introduce an inhomogenous stochastic process which will detect singular lineages by asymmetries, whose "reduction" then gives true TMRCA. Reduction implies younger TMRCA, with smaller errors. This gives a new phylogenetic method for computing mutation rates, with results similar to "pedigree" (meiosis) data. Despite these low rates, reduction implies younger TMRCA, with smaller errors. We establish accuracy by a comparison across a wide range of time, indeed this is only y-clock giving consistent results for $500-15,000$ ybp. In particular we show that the dominant European y-haplotypes R1a1a \& R1b1a2, expand from c3700BC, not reaching Anatolia before c3300BC. This contradicts current clocks dating R1b1a2 to either the Neolithic Near East or Paleo-Europe. However our dates match R1a1a \& R1b1a2 found in Yamnaya cemetaries of c3300BC by Svante Pääbo et al, together proving R1a1a \& R1b1a2 originates in the Russian Steppes.

Molecular clock \mid Genetic tree \mid y-haplotype \mid Kin Selection

Abbreviations: TMRCA, STR, SNP, R1b1a2, R1a1a

Introduction

he genetic clock, computing TMRCA by genetic mutations, was conceived by Emile Zuckerkandl and Linus Pauling[30] on empirical grounds. However work on genetic drift by Motto Kimura[15] gave a theoretical basis and formula. Soon after pioneering work by L.L. Cavalli-Sforza [6], correlated genetic drift to age of lineages for human populations. Suppose at position j on the genome is distinguished by number x which in the next generation has mutation $x \rightarrow x \pm 1$ occurring at rate μ_{j}. Measuring total variance V from the mode [22] one finds that the TMRCA $=V /\left(\sum_{j} \mu_{j}\right)$. This method and variations (denoted as KAPZ) is used to estimate the TMRCA of y (chromosome) haplotypes defined by a SNP (single nucleotide polymorphism) mutation.
In practice sample sizes were too small to compute accurate mutation rates from "meiosis", i.e. father-son pairs[4]. Alternatively, estimating rates from genetic lineages of known age gave rates with significant discrepancies between different lineages. Indeed for the y-clock these "phylogenetic" rates are often 2 times larger than those from meiosis, while the opposite may be true for other clocks [2], [9], [14], [16].
For the Y-chromosome we show that the mutation rates are essentially constant, at least for the time scale $500-15,000 \mathrm{ybp}$, and over different lineages. However KAPZ cannot give accurate TMRCA, i.e. one needs deeper mathematics to deal with non-uniform branching. Also there is a paradox: we can accurately estimate the mutation rates of "short tandem repeat" (STR) at different DNA Y-chromosome Segments (DYS). But we find they can differ by more than a factor of 100 , so over a very long time scale we expect their rates to vary as the genomes geometry changes. Also we find knowing the average mutation rate does not give accurate TMRCA.

Of course it was noticed that the mathematics underlying KAPZ is most accurate for large populations, indeed continuous distributions, whereas actual populations are small. In this case the same stochastic model generates many discrete distributions, indicating a need for Bayesian methods. These use Monte-Carlo simulations of all possible genealogical trees giving the present sample data, then find TMRCA by a maximum likehood estimate (MLE). An example of this for the y-clock is BATWING[30]. However we shall see that Bayesian methods exaggerate the TMRCA even more than KAPZ. Also MLE is known for large confidence intervals. So our approach is different.
In particular for the y (chromosome)-clock the results have not been reliable. (Similar discrepancies occur for the mitrochondrial clock for "out of Africa", or for the allele clock for human-chimpanzee divergence [9], birds [15], bacteria[19].) A KAPZ due to Zhivotovsky [29] was applied to the y-haplotype R1b1a2 by Myres [18] giving 9000BC, standard deviation $\sigma=2000$. Now for BATWING the TMRCA is often greater than KAPZ, e.g. for the Cinnioglu[7] study of Anatolian DNA both methods were applied to the same data and mutation rates. For R1b1a2 the KAPZ has TMRCA 9800BC compared with 18,000 BC for BATWING. Balaresque [3] used BATWING to give an origin for R1b1a2 in Neolithic Anatolia
c6000BC, but their statistics was disputed by Busby [5]. In verifying the accuracy of our method we simultaneously resolve the problem of the expansion of European y-haplotypes, for example R1b1a2.

Fig. 1. Random tree

Singular Lineages

A fundamental problem is that present populations have highly overrepresented branches we call singular lineages. A well known example is the SNP L21 which is a branch of R1b1a2. Individuals identified as L21 are often excluded from R1b1a2 analysis because they skew the results. Such a singular lineage causes the variance to be much greater, even though the original $T M R C A$ remains unchanged, see figure 1.

For Bayesian methods such lineages are very unlikely giving an even greater apparent $T M R C A$. However one cannot deal with singular branches by excluding them. For one thing, our method will show that 50% of markers show evidence of singular side branches, i.e. more than a SD from expected. Excluding them would also remove some of the oldest branches and produce a TMRCA which is too young. Now these singular lineages are very (mathematically) unlikely to arise from the stochastic system which is the mathematical basis of KAPZ (or the equivalent Monte-Carlo process modeling BATWING). We believe that the standard stochastic process is perturbed by "improbable" biological processes.
First, the Watson-Galton process[18] implies lineages almost certainly die out. Conversely, natural selection causes some branches to flourish, e.g. the "kin selection" of W.D. Hamilton[13], shows kin co-operation gives genetic advantages. Consider three examples with well developed DNA projects. Group A of the Hamiltons has approximately 100, 000 descended from a Walter Fitzgilbert c 1300AD. Group A of the Macdonalds has about 700, 000 descendants from Somerfeld c1100AD, and Group A of the O'Niall has over 6 million descendants from Niall of the Seven Hostages, c300AD. These are elite groups with all the social advantages. One sees lines of chieftains, often polygamous. We emphasize kin selection because it seems dominant over natural selection for recent branching, certainly we do not think the O'Niall are genetically superior! Natural selection would cause similar branching over longer time scales. Our model has many extinct twigs with a few successful branches, whereas current models assume a uniform "star radiation".

Reduction of Singular Lineages

Although our method is for general molecular clocks to be specific we focus on the y-clock. Consider DNA Y-chromosome Segments (DYS) counting the "short tandem repeat" (STR) number of nucleotides. One uses many of these DYS microsatellites, marked by $j=1, \ldots N$, each individual $i, 1=1, . . n$, has STR number $x_{i, j}$. The Y-chromosome is passed unchanged from father to son, except for mutations $x_{i, j} \rightarrow x_{i, j} \pm 1$ occurring at rate μ_{j}.

Modelling singular lineages requires a new stochastic system where instead of a single patriarch we imagine many "virtual patriarchs each originating at a different time and giving a fixed proportion of the present population. Solving for these times and proportions is an inversion problem. But inversion is unstable for such systems, also there is no unique solution. However it turns out that, up to a standard deviation, most DYS markers show at most one singular branch which is found from asymmetries in the distribution. These singular branches are then reduced revealing the original lineage. We then compute a branching time t_{j} for each marker j. Now the nonuniform branching process causes the t_{j} to be randomly distributed so their mean is not the TMRCA see figure 2. Large errors in mutation rates means one cannot simply take the max t_{j} to be the $T M R C A$. Instead stochastic simulations of the branching process, using robust statistics to avoid outliers, find the most likely $T M R C A$. The effect of reduction is dramatic, e.g. the TMRCA for R1b1a2 changes from $5500 \mathrm{BC}(\mathrm{KAPZ})$ to 3700 BC after singular reduction, using the same markers and mutation rates, see Figure 3 and Table 1.

Fig. 2. Branching times t_{j} times(with errors) for R1b1a2 after reduction

Fig. 3. R1b1a2 branching times before(blue) and after (red) reduction

Accurate Mutation rates

By relying on asymmetries of the distribution to find singular lineages we have to be aware that the mutation process itself might not be symmetric. Indeed if ignored we might be just detecting these asymmetries. So the symmetric model has to be changed so the probability of a mutation is

$$
\operatorname{Pr}\left[x_{i, j} \rightarrow x_{i, j}+1\right]=\mu_{j,+1}, \operatorname{Pr}\left[x_{i, j} \rightarrow x_{i, j}-1\right]=\mu_{j,-1}
$$

If this marker is free from singular lineages we find that the ratio of the frequencies to the left and right of the mode is

$$
\frac{P_{j, 1}(t)}{P_{j,-1}(t)}=\frac{\mu_{j, 1}}{\mu_{j,-1}}
$$

which is time independent. So using eight very large SNP projects we find enough markers free of singularities to compute these ratios and their standard deviations. See Supplementary Information (SI) where Figure 5 shows results. In particular about half the markers show asymmetric ratios are significant, i.e more than two SD from ratio 1. These asymmetric ratios play a very important role, for this ratio is all you need to detect a singular lineage and reduce it. Of course not knowing the exact asymmetric ratio means that bootstrap methods are used extensively for singular reduction, both to compute values and SD.

These methods also imply a new way of computing mutation rates. Previously, there were methods based on meiosos data or phylogenetic studies of family DNA projects (which gave quite different rates). We begin with 8 very large SNP projects from FTDNA using 37 markers, of course with unknown $T M R C A$. We first reduce singular lineages. Then taking asymmetry into account we find mutation rates are the fixed points of an iterative process. This takes about 3 iterates to converge. These mutation rates are normally distributed with mean and SD. Discarding markers with mutation $S D>33 \%$ leaves us with 29 markers. We find this advanced phylogenetic method gives mutation rates close to those obtained from meiosis and nearly $1 / 2$ the values obtained from the usual phylogenetic method. Further validation comes from finding that the equivalence of our rates with meiosos implies apriori a human generation of c27 years.

Results

Accuracy is verified by checking for consistency over the whole range of European history beginning with the medieval:

Group	TMRCA	$[S D]$	Origins
Hamilton	$1358 A D$	$[140]$	Fitzgilbert $d 1330 A D$
Macdonald	$900 A D$	$[250]$	Norse $c 800-1000 A D$
O^{\prime} Niall	$200 A D$	$[225]$	Niall 300AD/Conn100AD

Archeological finds convinced Marija Gimbutas to attribute Proto Indo-European (PIE) to the Yamnaya Culture c 3500BC of the Russian Steppes, see [12]. This is consistent with mainstream linguistic theory, some even wrote of linguistic DNA. But actual genetics was ignored because current genetic clocks for R1b1a2 pointed to the Renfrew Hypothesis that PIE spread from Neolithic Anatolia, c 6000BC [34]. Or Mesolithic or Paleolithic, depending on the genetic clock. However noone checked if their clock worked over the whole range of time for different lineages.

The next table shows the expansion times of the dominant European y-haplotypes R1b1a2 \& R1a1a. These are very close to c3700BC, only Scandinavia is significantly later. This data is from FTDNA projects for region X only using individuals with named ancestor from X . These independent results agree within the standard deviation, with dates matching the Corded Ware Culture, a semi-nomadic people with wagons and horses who expanded west from the Urkraine c3500BC. This is consistent with the oldest R1b1a2, R1a1a skeletons being from the Yamnaya Culture, c 3300 BC, see S. Pääbo et al [24].

Region	$R 1 b 1 a 2[S D]$	n	$R 1 a 1 a[S D]$	n
All	$3700 B C[625]$	460	$3800 B C[700]$	1270
Russia	$N A$		$3750 B C[700]$	337
Poland	$3960 B C[950]$	65	$4600 B C[820]$	876
Germany	$2780 B C[500]$	438	$3750 B C[800]$	190
Scandinavia	$2550 B C[500]$	153	$4500 B C[1000]$	140

An interesting intermediate step occurs between the medieval and eneolithic. The mythical Irish Chronicles relate that the O'Niall descend directly from the first Gaelic High Kings, which tradition dated c1300-1600BC. The O'Niall have the unique mutation M222 which is a branch of the haplotype L21. For L21, $n=1029$, we compute $T M R C A=1600 B C$ and $S D=320$. These are dates for proto Celtic, i.e. what archeologists call the pre Urnfelder Cultures, c. 1300-1600BC. Furthermore L21 is in turn a branch of haplotype P312 which we date to 2300 BC . This date suggests the Bell Beaker Culture of Western Europe. Indeed the only known[24] Bell Beaker genome was found to be P312 with ${ }^{14} C$ date 2300 BC .

data	Haplotype	n	TMRCA	$[S D]$
Underhill	R1a1a1	974	$2550 B C$	$[400]$
Rootsi	$G 2 a 2$	536	$18500 B C$	$[3500]$

Our method requires large data sets and many markers which means we have to rely on data from FTDNA, finding 29 useable markers out of standard 37 they use. In fact many researchers[3] have used FTDNA data. We think our method of reduction with robust statistics solves any problems with this data. To test this we compared our results with R1a1a1

Table 1. Major European SNP: Comparing Singular Reduction for 7, 15, 29 markers with KAPZ. Notice similar TMRCA for KAPZ and Singular Reduction, if there is little branching.

SNP	\mathbf{n}	KAPZ	$<\mathrm{SD}$	29 mk RSL	$<\mathrm{SD}$	15 mk RSL	$<\mathrm{SD}$	7 mk RSL	$<\mathrm{SD}$
G2a2b	1221.	4840 BC	1257	5359 BC	900	8600 BC	2120	4800 BC	2050
R1b1a2	460.	5490 BC	2144	3700 BC	625	4300 BC	950	5524 BC	2000
R1a1a	1270.	3670 BC	1066	3800 BC	700	3200 BC	840	3400 BC	1500
I1	2898.	2400 BC	1061	1800 BC	400	2711 BC	950	3500 BC	1500
L21	1029.	3270 BC	1063	1600 BC	325	1700 BC	400	1870 BC	800
U 106	1533.	2530 BC	628	2400 BC	440	2500 BC	600	1800 BC	800
J 2	1241.	11700 BC	2990	15500 BC	2600	18500 BC	3000	6100 BC	2100
P 312	971.	2900 BC	632	2240 BC	420	2850 BC	625	2600 BC	900

data obtained from Underhill[27] with $n=974$ (which involved excluding his four M420 individuals and others with missing markers), and 15 useable markers. The result was $2550 B C$ $\mathrm{SD}=400$, within the CI of our R1a1a results. Table 1 shows the results of extensive simulations using random subsets of our FTDNA data, for 29, 15 and 7 markers. For the same 15 markers as the Underhill[27] the different FTDNA data gives very similar 3300BC SD $=840$ for R1a1a, verifying the correctness of using FTDNA data. However once you get down to 7 markers the confidence interval becomes large, e.g. R1a1a gives $3400 B C \mathrm{SD}=1500$. Also it becomes difficult to deal with outliers.
An example with few markers is the R1b1a2 data of Balaresque[3]. Our method (this time with 7 useable markers) gave $\mathrm{SD}>30 \%$. Now Balaresque used the Bayesian method BATWING[30] to suggest a Neolithic origin in Anatolia. With the same Cinnioglu[7] data our method gives for Turkish R1b1a2 $(n=75)$ a TMRCA $=5300 \mathrm{BC}, \mathrm{SD}=3100$, i.e. anytime from the Ice Age to the Iron Age as seen in

R1b1a2	n	$T M R C A$	$[S D]$
Eire	75	$1750 B C$	$[1250]$
England	74	$1844 B C$	$[1250]$
Spain	207	$4600 B C$	$[1900]$
France	62	$4300 B C$	$[2400]$
Germany	147	$5650 B C$	$[2300]$
Turkey	69	$5300 B C$	$[3100]$

Fortunately, once again, we find good data from FTDNA: the Armenian DNA project, see below. By tradition the Armenians entered Anatolia from the Balkans c 1000 BC so they might not seem a good example of ancient Anatolian DNA. But some 100 generations of genetic diffusion has resulted in an Armenian distribution of Haplotypes J, G, R1b1a2 closely matching that of all Anatolians, therefore representive of typical Anatolian DNA. We see that Anatolian R1b1a2 arrived after c3300BC, ruling out the Neolithic expansion c6000BC. When dealing with regional haplotypes, e.g. R1b1a2 in Anatolia, the TMRCA is only a upper bound for the arrival times, for the genetic spread may be carried by movements of whole peoples from some other region. This means one has to be careful interpreting regional data, e.g. the TMRCA for the R1b1a2(USA) is c3700BC but nobody thinks it arrived then.

Armenian	n	$T M R C A$	$[S D]$
$R 1 b 1 a 2$	99	$3300 B C$	$[800]$
$G 2 a 2 b$	46	$9300 B C$	$[2000]$
$J 2$	97	$12100 B C$	$[2200]$

Observe that our TMRCA for Armenian G2a2b (formerly G2a3) and J2 show them to be the first Neolithic farmers from Anatolia, i.e. older than 7000 BC. From Table 1 we see J2, G2a2b for all of Western Europe (non-Armenian data). Our dates show J2 was expanding at the end of the Ice Age. Modern J2 is still concentrated in the fertile crescent, but also in disconnected regions across the Mediterranean. The old genetic model predicted a continuous wave of Neolithic farmers settling Europe [8]. But you cannot have a continuous maritime settlement: it must be leap-frog. Also repeated resettlement from the Eastern Mediterranean has mixed ancient J2 populations, and our method gives the oldest date. On the other hand G2a2b shows exactly the dates expected from a continuous wave of Neolithic farmers across Central Europe. Our dates are consistent with recent findings that the majority of early Neolithic skeletons found in Western Europe are G2a2, c 5000BC see[33], whereas the oldest R1b1a2 found so far is Bellbeaker c2300BC, [24], [25].

Discussion

Archeology, evolutionary biology, not to mention epidemiology, forensics and genealogy are just some of the applications of molecular clocks. Unfortunately current clocks have been found to give only "ballpark" estimates. Our method is the only one giving accurate time, at least for the human ychromosome verified over the period $500-15,000 y b p$. There should be many applications for this y-clock, not to mention generalizations to mitochondrial and allele clocks.
Some geneticists thought natural selection makes mutation rates too variable to be useful. The problem is confusion between the actual biochemistry giving mutations and superimposed processes like kin selection producing apparently greater rates. Notice that the SD for our mutation rates is on average 14% which is much smaller than the actual previous rates. We believe this proves the reality of neutral mutation rates.
Many applications to genetics, forensics, genealogy require the TMRCA between just two individuals, or between two species, a classic method was given by Walsh[28]. While we are accurate for "big data", for this "two -body problem" one cannot determine what singular lineages the branching has been through. Just using our new asymmetric mutation rates will not work. So it would be important to find an accurate method.
Pääbo et al[24], [25] observed all 6 skeletons from Yamnaya sites, c 3300BC by ${ }^{14} \mathrm{C}$ dating, are either R1a1b1 and R1a1a. This and other work [33] involve very difficult genetic analysis of specimens which may not always be available. Also such analysis cannot date the origin of R1a1b1 and R1a1a. Our TMRCA shows both these haplotypes expanding at essentially the same time c3700BC. This and our later date for Anatolia, combined with Pääbo et al, implies that R1b1a2 and R1a1a must have originated in the Yamnaya Culture.

In checking accuracy we ran into the question of the origins of PIE. Although there are genes for language there is certainly none for any Indo-European language. Thus inferences have to be indirect. Marija Gimbutas saw patterns in symbolism and burial rituals suggesting the Yamnaya Culture was the cradle of Proto Indo-European. Also their physiology was robustly Europeanoid unlike the gracile skeletons of Neolithic Europe, but this could be nutrition and not genetic. From the above we conclude that the spread of this robust type into Western Europe in the late Neolithic marked an influx of Steppe nomads. Now if R1b1a2 had been shown to spread from Anatolia c6000BC it would have been taken as strong evidence for "out of Anatolia" because of the association of R1b1a2, R1a1 with Indo-European languages. But our accuracy check showed that it was G2a, J2 that spread with the Neolithic Expansion from Anatolia. Now these have been associated with Caucasian languages or Semitic, but never with Indo-European.

Materials and Methods

This work is biomathematical theory validified by data from publshed sources, see Supplementary Information SI for full mathematical development, data, algorithms and detailed MATHEMATICA worksheets. To verify the theory and compute mutation rates we use diverse data, from FTDNA y-haplotype projects for G2a2b, R1b1a2, R1a, I1, L21, U106, J2, P312. Also we used regional projects for Germany, Scandinavia, Poland and Russia for their R1b1a2, R1a1a data. The Armenian DNA project was important for its R1b1a2, J2 and G2a2b data. We also used DNA projects M222 (O'Niall), Macdonald (Group A which is R1a1a), Hamilton (group A which is I1). This was compared with non FTDNA data from Balaresque, Underhill and Rootsi.

1. D.W. Anthony, (2007)The Horse, the Wheel and Language, Princeton Univ. Press, Princeton
2. F. J. Ayala et al (2001)Erratic overdispersion of three molecular clocks: GPDH, SOD, and XDH, Proc Natl Acad Sci USA vol. 98 no. 20 pp 1140511410
3. P. Balaresque et al (2010) A predominantly Neolithic Origin for European paternal Lineages, PLoS Biol ; 8: e1000285.
4. C. Burgarella et al (2011) Mutation rate estimates for 110 Y -chromosome STRs combining population and father-son pair data, European Journal of Human Genetics 19 pp.70-75; doi:10.1038/ejhg. 2010.154
5. G. Busby et al The peopling of Europe and the cautionary tale of \mathbf{Y} chromosome lineage R-M269, Philos Trans R Soc Lond. Biol Sci. 2012 Mar 7; 279(1730):884-92. doi: $10.1098 /$ rspb. 2011.1044
6. L.L. Cavalli-Sforza et al (2009)Y chromosome diversity, human expansion, drift, and cultural evolution, Proc Natl Acad Sci USA 106, pp. 20174-20179.
7. C. Cinnioglu et al. (2004) Excavating Y-chromosome haplotype strata in Anatolia. Hum Genet. 114, pp.127-148.
8. C. Edmonds, A.Lillie, L.L.Cavalli-Sforza Mutations arising in the wave front of an expanding population, Proc Natl Acad Sci USA (2004); 10, pp 975-979.
9. N. Elango, J.W. Thomas , S. V. Yi (2006)Variable molecular clocks in hominoids Proc Natl Acad Sci USA vol. 103, no.5,pp13701375
10. C. Epstein, C. and R. Mazzeo(2013)Degenerate Diffusion Operators Arising from Pop ulation Biology, Princeton
11. J.N. Fenner, (2005) Cross-Cultural Estimation of the Human Generation Interval for Use in Genetics-Based Population Divergence Studies American Journal of Physical Anthropology128pp 415-428.
12. M. Gimbutas,(1956) The Prehistory of Eastern Europe, Part 1, Cambridge:American School of Prehistoric Research \#20.
13. W.D. Hamilton (1964)The genetical evolution of social behaviour. I, II. Journal of Theoretical Biology 7 (1) pp 1- 52.
14. S.Y. Ho, M.J. Phillips, A. Cooper, A.J. Drummond (2005), Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology \& Evolution 22 (7): pp 1561-1568.
15. J. Hunt, E. Bermingham, R.Ricklefs, (2001) Molecular systematics and biogeography of Antillean thrashers, tremblers, and mockingbirds Aves: Mimidae. Auk 118 (1)pp. 35-55 doi:10.1642/0004-8038
16. M. Lynch (2010), Rate, molecular spectrum, and consequences of human mutation, Proc NatI Acad Sci USA vol. 107 , no. 3 pp 961968
17. M. Kimura (1968) Evolutionary rate at the molecular level. Nature Vol. 217, pp 624 - 626, doi:10.1038/217624a0
18. D.G. Kendall (1975)The Genealogy of Genealogy Branching Processes before (and after) 1873, Bulletin of the London Mathematical Society 7 (3) pp 225- 253.
19. Andrew H. Knoll et al, (2011), Estimating the timing of early eukaryotic diversification with multigene molecular clocks, Proc Natl Acad Sci USA vol. 108, no. 33, pp 1362413629
20. P. Menozzi, A. Piazza, L.L. Cavalli-Sforza Synthetic maps of human gene frequencies in Europeans. Science(1978) 201:786-792
21. N. Myre, N. et al A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe, European Journal of Human Genetics 19(1) pp 95101
22. Nielsen, R. (Editor)(2005) Statistical Methods in Molecular Evolution, Springer.
23. F. W. J. Olver (1964) Bessel functions of integer order pp. 355-434 Handbook of Mathematical Functions edited by M. Abramowitz National Bureau of Standards, Washington.
24. S. Pääbo et al (2014),Ancient human genomes suggest three ancestral populations for present-day Europeans, Nature 513, pp 409-413.
25. D. Reich et al (2015) Massive migration from the steppe was a source for IndoEuropean languages in Europe, Nature 14317, doi:10.1038/nature1431
26. S. Rootsi S. et al (2012) Distinguishing the co-ancestries of haplogroup G Ychromosomes in the populations of Europe and the Caucasus, Eur J Hum Genet 20(12)pp 1275-82. doi: 10.1038/ejhg.2012.86.
27. Peter A Underhill et al, (2015)The phylogenetic and geographic structure of \mathbf{Y} chromosome haplogroup R1a , European Journal of Human Genetics 23, pp124-131; doi:10.1038/ejhg. 2014.50
28. B. Walsh (2001) Estimating the Time to the Most Recent Common Ancestor for the Y chromosome or Mitochondrial DNA for a Pair of Individuals, Genetics 158, pp 897-912
29. C.F. Wehrhahn(1975) The evolution of selectively similar electrophoretically detectable alleles in finite natural populations, Genetics 80, pp 375-394.
30. I. J. Wilson, M.E. Weale, D.J. Balding (2003) Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities.J Roy Statist Soc A. (2003);166:1-33.
31. L.A. Zhivotovsky, L.A. (2000), Estimating Divergence Time with the Use of Microsatel lite Genetic Distances, Molecular Biology and Evolution 18, No 5, pp 705-709
32. E. Zuckerkandl and L. Pauling (1965) Evolutionary divergence and convergence in proteins. In Bryson, V.and Vogel, H.J. (editors). Evolving Genes and Proteins. Academic Press, New York. pp. 97-166.
33. M. Lacana et al (2011)Ancient DNA suggests the leading role played by men in the Neolithic dissemination, Proc Natl Acad Sci USA vol. 108, no.45, pp1825518259
34. A.C. Renfrew (1987) Archaeology and Language:The Puzzle of Indo-European Origins, London:Pimlico.

ONLINE TEXT: Supplementary Information

1. Biomathematical theory

2. Mutation rates tables

3. Mathematica worksheets
4. Data

Biomathematical theory

We emphasize the role of extraneous forces like kinselection which operates on too big a scale and rarely enough with results that cannot be subsumed into the mutation rates. So we return to basic principles.

Fundamental Solutions: The Y-chromosome has DYS marked by $j=1, \ldots N$, where one can count the STR number x_{j}. Consider the probability $P_{j, k}$ (at time t generations) that at marker j we have $x_{j}=k$. This satisfies the homogenous stochastic system

$$
\frac{P_{j, k}(t)}{d t}=-\mu_{j} P_{j, k}+\sum_{m>0} \mu_{j,-m} P_{j, k-m}+\mu_{j, m} P_{j, k+m}
$$

This homogenous system gives a uniform expansion from a single patriarch.

The system is essentially the model of Wehrhahn[29] who had $\mu_{j,-1}=\mu_{j, 1}$. We introduce asymmetric mutations with total rate

$$
\mu_{j}=\sum_{m>0} \mu_{j,-m}+\mu_{j, m}
$$

About 50% of DYS markers show asymmetric mutations, i.e. $\mu_{j,-1} \neq \mu_{j, 1}$.

The fundamental solution comes from the generator function

$$
G(z, t)=\sum_{-\infty}^{\infty} P_{j, k} z^{k}
$$

with complex variable z, and normalized initial condition $x_{j}=0$ or $P_{j, 0}(0)=1$:

$$
G(z, t)=E x p\left[-\mu_{j} t+t \sum_{m>0} \mu_{j,-m} z^{m}+\mu_{j, m} z^{-m}\right]
$$

Then G can be expanded in powers of z to give $P_{j, k}(t)$. Now for the simplest asymmetric case, with only one step mutations, we have $G(z, t)=e^{-\mu_{j} t} e^{t \mu_{j,-1} z} e^{t \mu_{j, 1} / z}=$

$$
e^{-\mu_{j} t}\left\{\sum_{m=0}^{\infty} \frac{\mu_{j,-1}^{m}}{m!}(z t)^{m}\right\}\left\{\sum_{m=0}^{\infty} \frac{\mu_{j,-1}^{m}}{m!}(t / z)^{m}\right\}
$$

so using the Hyperbolic Bessel Function of Order $k \geq 0$, see Olver ${ }^{7}$

$$
I_{k}[u]=\sum_{m=0}^{\infty} \frac{u^{2 m+k}}{2^{2 m+k} m!(m+k)!}
$$

we see that the homogenous system has fundamental solution

$$
P_{j, k}(t)=e^{-\mu_{j} t}\left(\frac{\mu_{j, 1}}{\mu_{j,-1}}\right)^{k / 2} I_{|k|}\left[2 t \sqrt{\mu_{j,-1} \mu_{j, 1}}\right]
$$

From this we obtain the second moment:

$$
\sum_{k=-\infty}^{k=\infty} k^{2} P_{j, k}=\left.\left\{\frac{d}{d z} z \frac{d}{d z} G(z, t)\right\}\right|_{z=1}=t \mu_{j}+t^{2}\left(\mu_{j, 1}-\mu_{j,-1}\right)^{2}
$$

Also from the fundamental solution we find, independently of time

$$
\frac{P_{j, 1}(t)}{P_{j,-1}(t)}=\frac{\mu_{j, 1}}{\mu_{j,-1}}
$$

which we call the asymmetric ratio. It will be repeatedly used.

Of course the actual initial value is not $x_{j}=0$ but was usually taken to be the mode m_{j} which was assumed to be the value for original patriarch. Assuming symmetry, i.e. $\mu_{j,-1}=\mu_{j, 1}$, the TMRCA is:

$$
T=\frac{1}{n \mu} \sum_{j, i}\left(x_{j}(i)-m_{j}\right)^{2}, \mu=\sum_{j} \mu_{j}
$$

From the present distribution of data we use the frequency

$$
f(j, k)=\frac{\operatorname{Count}\left(x_{j}(i)=k\right)}{n}
$$

One problem with the KAPZ formula is that higher frequencies $f(j, k),|k|=2,3 \ldots$ are overrepresented in the actual data. This is because the probability of a spontaneous two step mutation is much higher then the product of two one step mutations. So instead we use the frequency to solve the transcendental equation for the unknown t

$$
f(j, 0) \sim P_{j, 0}(t)=e^{-\mu_{j} t} I_{0}\left[2 t \sqrt{\mu_{j,-1} \mu_{j, 1}}\right]
$$

This nonlinear equation is easily solved via mathematical software such as MATHEMATICA (I used version 9 running on a boosted 2014 iMac which has accurate hyp erbolic Bessel func-tions. Earlier versions on older iMacs gave inaccuracies so one had to compile one's own functions). Using this formula resolves some other problems with the KAPZ method, e.g. $\mu_{j,-1} \neq \mu_{j, 1}$ gives an extra quadratic term which if ignored causes large errors.

Heterogeneous diffusion equation : However the main problem is singularities in the stochastic process. For a uniform stochastic process, $1-P_{j, 0}(t) \sim 1-f(j, 0)$ is the probability of some mutation. So the expected variance is $f(j, 0)(1-f(j, 0))$. Thus if the actual data variance $V_{j} \gg f(j, 0)(1-f(j, 0))$ we are not uniform. Now a sublineage of very high fertility increases variance, giving apparently greater $T M R C A$ although it is unchanged. One finds similar results for Bayesian methods.

The correct approach to nonuniformity assumes at times t_{i} (generations ago) a certain proportion $0 \leq \rho_{i} \leq 1$ of the present population originated from a "virtual patriarch" with an initial STR value m_{i}. The resulting system :

$$
\frac{p_{j, k}(t)}{d t}=-\mu_{j} p_{j, k}+\sum_{m>0} \mu_{j,-m} p_{j, k-m}+\mu_{j, m} p_{j, k+m}+d \rho
$$

i.e. $d \rho$ are atoms of weight ρ_{i} with STR value m_{i} occurring at time t_{i}. As the system is linear and isotropic the solution is a combination of fundamental solutions P of the homogenous system. Thus the present distribution $f(j, k)$ is

$$
f(j, k)=\sum_{i} \rho_{i} P_{j, k-m_{i}}\left(t_{i}\right)
$$

This allows us to consider populations mixed by having singular lineages from overfertile patriarchs, or by actual immigration from the outside. The inverse problem seeks to find singularities from present data. Unfortunately inversion is ill posed for such systems like the heat equation . This instability produces poor accuracy. Furthermore there is no unique solution, e.g.the present distribution could have been created yesterday.

However we find that $\sim 50 \%$ of the DYS markers show no significant difference from the uniform expansion of a single
patriarch, i.e. the data variance V_{j} is close to the expected variance $f(j, 0)(1-f(j, 0))$. The other markers show at most one significant side branch, i.e. there is an original branch starting at time $t_{j, 0}$ with STR m_{0} and a second one with STR $m_{1}=m_{0} \pm 1$ at time $t_{j, 1}<t_{j, 0}$ with significant $0<\rho_{1}<\rho_{0}$.

Reduction : We locate these singular lineages by looking for asymmetries in the distribution. For a uniform flow from a single patriarch the frequency of STR value k is given by $f(j, k) \sim P_{j, k}(t)$. The asymmetric ratio:

$$
\frac{f(j, 1)}{f(j,-1)} \sim \frac{P_{j, 1}(t)}{P_{j,-1}(t)}=\frac{\mu_{j, 1}}{\mu_{j,-1}},
$$

is completely independent of time t. Therefore if say

$$
\frac{f(j, 1)}{f(j,-1)} \gg \frac{\mu_{j, 1}}{\mu_{j,-1}},
$$

we have a singular lineage at $k=+1$. Thus the excess at $k=+1$ is

$$
f(j,+1)-f(j,-1) \frac{\mu_{j, 1}}{\mu_{j,-1}}
$$

To first order approximation then frequency $f(j,+2)$ is due to this singularity at $j=+1$ which therefore gave a contribution

$$
f(j,+2) \frac{\mu_{j,-1}}{\mu_{j,+1}}
$$

to $k=0$. Thus removing the effect of the singularity at $k=+1$ leads to new frequencies

$$
\begin{aligned}
f^{*}(j,-1) & =f(j,-1) \\
f^{*}(j, 0) & =f(j, 0)-f(j,+2) \frac{\mu_{j,-1}}{\mu_{j,+1}} \\
f^{*}(j,+1) & =f(j,+1)-f(j,-1) \frac{\mu_{j, 1}}{\mu_{j,-1}}
\end{aligned}
$$

These of course are no longer normalized so we rescale to obtain the renormalized frequency $F(j, k)$, e.g.

$$
F(j, 0)=\frac{f^{*}(j, 0)}{f^{*}(j, 0)+f^{*}(j,-1)+f^{*}(j,+1)}
$$

which will be used to compute the expansion time for marker j. There are similar formulae if the singularity was at $k=-1$.

However there is sampling error both in the frequencies and the $\mu_{j, 1}, \mu_{j,-1}$. So we bootstrap taking into account these uncertainties, running the computation thousands of times. Generally we find the branch singularity is always one of $k=0,+1,-1$ with no SD. In a few cases the singularity may seem to wander between $k=0,+1,-1$. So in the case of a wandering singularity we obtain a distribution over $k=0,+1,-1$ with a mean and SD. In these cases we find the singularity is relatively small and does not make much difference to the final result. However to have a stable method we do not throw out these wandering singularities but in the algorithm use the mean to average between $k=0$ and $k= \pm 1$, e.g. if the mean is $k=0$ then we use the original unreduced frequency.

Notice that we assume at most one side branch. In theory there could be many and solving for these produce even better approximations to the present data. In fact you could get perfect matching but find the atoms were created yesterday! The thing is that while many markers show significant deviation from a uniform flow from a single patriarch, after we have
carried out reduction for one possible side branch we find no significant difference from a uniform flow, i.e. the difference is within the SD. This is of course an approximation, the next level beyond Zuckerkandl and Pauling, but given the noise in the data perhaps the best we can do. Later we further reduce the effect of outliers by using robust statistics.

Reducing the singular lineages increases the frequency $f(j, 0)$ of the mode and decreases the computed TMRCA. But as the method of reducing singularities does not respect higher frequencies $f(j, k)$ it follows the KAPZ formula cannot be used and instead we use the probability of no mutations, i.e. solve

$$
F(j, 0)=e^{-\mu_{j} t} I_{0}\left[2 t \sqrt{\mu_{j,-1} \mu_{j, 1}}\right]
$$

This is done for each DYS marker j, giving expansion times $t_{1}, \ldots t_{N}$ for each marker, with computed CI. (An extra fixed source of error is the uncertainty in the mutation rates which we deal with later). We find the reduction of singularities makes striking difference to the t_{j} of the effected markers, often a reduction of $\sim 50 \%$ for $T M R C A$.

Now the existence of side branches implies that the main branch could itself have been the side branch for an earlier branch that did not survive. Thus we do not expect the expansion times $t_{1}, \ldots t_{N}$ for each marker to be essentially equal., i.e they are not within the SD of each other. Indeed we see that the distribution of the times t_{j} for different markers are almost certainly not randomly arranged about a single TRMCA T but distributed from T to the present. This is seen whether you use reduction or not, or our mutation rates or not. (For a given population one could scale mutation rates to get equal t_{j}, but then applying these adhoc mutation rates to other populations does not yield the same values). The spread out distribution of surviving branches is another verification of our theory of many extinctions, few survivors. The distribution of the times t_{j} for different markers we call the branching distribution, which is now discussed.

The Branching Distribution : The times t_{j} for different markers are sorted from the youngest to the oldest, forming a sequence $t_{1}^{*}, \ldots t_{N}^{*}$. The generation of these branches is by an unknown probability distribution $d \tau_{0}$ over $[0, T]$. We model $d \tau_{0}$ by assuming a surviving lineage is generated at random with probability $\beta \Delta t$ in time period $[t, t+\Delta t]$, multiplied by the probability that the branching hasn't already occurred. The constant β averages fertility and extinction rates, the chance of a new lineage surviving. As $\beta \rightarrow \infty$ we get current theory where all lineages originate from a single patriarch at time T. Simulations with the data show that β varies in the range 1 to ∞. We make no a priori estimate of β, unlike Bayesian methods where an overall fertility rate is a predetermined parameter. Instead our stochastic simulation will find the most likely β, T in each case. Assuming independence, then the generation of branches follows the well known exponential distribution:

$$
\tau_{0}[t]=\operatorname{Exp}[\beta(t-T)] \text { UnitStep }[T-t]
$$

Notice this implies a finite probability that some markers have essentially zero mutations. This is actually seen in examples. Both the Hamilton Gp A and Macdonald Gp A have number of individuals $n>100$. For the time scale of >700 years we do not expect there is more than one marker out of 33 which shows absolutely no mutations from the mode. In fact in both cases there are 8 markers where all n individuals have exactly the same STR value.

Estimating the parameter T for an exponential distribution is a well known problem of statistics. Kendall proved the best estimate for T would be $\max t_{j}$. Unfortunately there is also considerable error $\lambda_{j} \%$ for the mutation rates μ_{j}. Later we give a method for reducing this error, even so we find the SD in the range $10 \%-30 \%$ which gives corresponding range in error for each t_{j}. We understand that the t_{j} are being generated by the distribution $d \tau_{0}$ but superimposed on this is a further uncertainty due to mutation rates etc. In particular the largest t_{j} may be wildly inaccurate. Also we found that simply taking the average consistently underestimates the $T M R C A$ by a wide margin.

Assuming the mutation rates have normal distribution with mean μ_{j} and variance $\lambda_{j}^{2} \mu_{j}^{2}$, the t_{j} have $\mathrm{SD} t_{j} \lambda_{j}$. Thus the actual data for t_{j}^{*} has probability density function for $s>0$

$$
d \tau(s)=\int_{0}^{T} \frac{e^{(t-T) / \beta}}{\beta} \frac{e^{\frac{-(t-s)^{2}}{2 \nu}}}{\sqrt{2 \pi \nu}} d t
$$

The variance ν depends on two sources. First from the uncertainty in mutation rates, for each marker we get variance λ_{j}^{2}, giving total

$$
\nu_{1}=\frac{1}{N} \sum_{j} \lambda_{j}^{2}
$$

However a small sample also has inherent error from sampling. We are measuring the probability that there is a mutation. This is binomial with probability $H_{j}=H_{j}(t)=$

$$
1-P_{j, 0}(t)=1-e^{-\mu_{j} t}\left(\frac{\mu_{j, 1}}{\mu_{j,-1}}\right)^{k / 2} I_{0}\left[2 t \sqrt{\mu_{j,-1} \mu_{j, 1}}\right]
$$

Hence for sample size n there is variance $H_{j}\left(1-H_{j}\right) / n$, so the variance in time due to this is scaled by the derivative giving:

$$
\nu_{2}=\frac{H_{j}\left(1-H_{j}\right)}{n\left(H_{j}^{\prime}\right)^{2}}
$$

The function H_{j}^{\prime} has actually to be computed as an inverse function depending on H_{j}. Therefore the total variance averaged over all N markers is $\nu=\nu_{1}+\nu_{2}$. Although for large samples ($n>1000$) the second term is insignificant it does effect the results once you get to $n=100$. In our algorithm the branching distribution is used to generate large numbers of random branching times so as to bootstrap error estimates. In turns out much faster to compile the distribution function as a table which can be repeatedly called on.

Estimating TMRCA by Robust Statistics : Inaccurate large values of t_{j}^{*} are mitigated by using "robust" statistics with quintiles instead of means/variances. Using FTDNA data we began with 37 markers. However the 4 markers of DYS464 are unordered and cannot be used. Also we find that markers DYS 19/394, 385b, 459b, CDYb have errors > 33% in mutation rates so are not used. (These are some of the most popular ones in the literature!). So usually we have $N=29$ markers and take "quintiles" $\theta^{*}=\left(t_{9}^{*}, t_{12}^{*}, t_{15}^{*}, t_{18}^{*}, t_{21}^{*}\right)$. This means that tail end data is not discarded but kept as the information there are 8 values of $t_{j}^{*}>t_{21}^{*}$, which effectively deals with outliers. Bootstrap methods give the confidence interval CI for each quintile.

Thus we wish to find the best estimate of T given θ^{*} (and CI). This well known statistical problem was investigated by Stochastic Simulations (SS). We also tried Maximum Likehood Methods which gave similar results but with larger CI. Monte-Carlo Methods are used to produce very large numbers ($\sim 10^{7}$) of T, β with corresponding Distribution. These
randomly generate ordered times $\left(s_{1} \ldots s_{29}\right)$ for which we take the quintiles $\theta=\left(s_{9}, s_{12}, s_{15}, s_{18}, s_{21}\right)$. We filter by requiring that θ close to the data θ^{*}, i.e. $\left\|\theta^{*}-\theta\right\|<2 S D$. This gives a stochastic neighborhood \mathcal{U} of θ^{*} typically containing $>10^{5}$ sets of data but with T is known for each $\theta \in \mathcal{U}$. Thus we can construct a quasilinear estimator:
$Q L\left(s_{9}, s_{12}, s_{15}, s_{18}, s_{21}\right)=q_{1} s_{9}+q_{2} s_{12}+q_{3} s_{15}+q_{4} s_{18}+q_{5} s_{21}$,
and use least squares over \mathcal{U} to find constants $\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)$ minimizing

$$
\left\|q_{1} s_{9}+q_{2} s_{12}+q_{3} s_{15}+q_{4} s_{18}+q_{5} s_{21}-T\right\| .
$$

The $\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)$ are computed in MATHEMATICA We test this by applying the QL to all of \mathcal{U}, unsurprisingly

$$
\text { Mean }_{\mathcal{U}}\left[q_{1} s_{9}+q_{2} s_{12}+q_{3} s_{15}+q_{4} s_{18}+q_{5} s_{21}-T\right] \sim 0
$$

What is important is that we find the uncertainty in the SS itself. Actually this depends on the data and is calculated in each case but for our examples we find

$$
S D_{\mathcal{U}}\left[q_{1} s_{9}+q_{2} s_{12}+q_{3} s_{15}+q_{4} s_{18}+q_{5} s_{21}-T\right] \sim .05 T
$$

Finally the quasilinear estimator is applied to the experimental data

$$
\left(t_{9}^{*}, t_{12}^{*}, t_{15}^{*}, t_{18}^{*}, t_{21}^{*}\right)
$$

to obtain our best estimate of T. Application of $Q L$ computes the SD for our data, giving part of the overall SD. This must be combined with the SD coming from the uncertainty in the SS. Overall we find that our method has SD $\sim 12 \%$, this includes variances from our data, mutation rates and uncertainty in the SS. We also tested with 15 and 7 markers. Here one must use "quintiles" $\tau=\left(t_{5}^{*}, t_{8}^{*}, t_{11}^{*}\right), \tau=\left(t_{3}^{*}, t_{5}^{*}\right)$, respectively with all the loss of accuracy that implies. See Table 1 for comparisons using $29,15,7$ markers on same data.

Accurate Mutation rates:

Any genetic clock depends on reasonably accurate mutation rates. The meiosos method looks for mutations in father-son studies. However typical rates of $\mu=.002$ would require nearly 50,000 pairs to get an SD of 10%. Small samples have meant large errors. The phylogenetic approach studies large family groups with well developed DNA/genealogy data. So inverting the KAPZ formula would yield accurate rates. However, singular lineages makes this problematic. Genealogical data might give mutation rates much greater than the biochemical rates because kin selection etc tend to exaggerate the apparent mutation rate. An inspection of 10 different sources finds mutation rates claiming SD $\sim 10 \%$ yet they differ from each other by up to 100%. We describe a new method.

To compute our rates we apply our theory to the large DNA projects for the SNP M222, L21, P312, U106, R1b1a2, I1, R1a1a. This avoids dealing with populations such as family DNA projects which are self selecting, i.e only those with the correct surname which neglects distant branches. Also we have very large samples, our average $n>1000$. Greater accuracy should come from more generations and individuals. The problem is that we do not know their $T M R C A$.

Asymmetric Mutation:However before computing mutation rates we must consider asymmetric mutations, i.e. the left and right mutation rates $\mu_{j,-1} \neq \mu_{j, 1}$. For a uniform stochastic process we again use the asymmetric ratio

$$
\frac{p_{j, 1}(t)}{p_{j,-1}(t)}=\frac{\mu_{j, 1}}{\mu_{j,-1}}=\frac{A_{j}}{1-A_{j}}
$$

to define the asymmetric constant $A_{j} \in[0,1]$ for marker j. For example $A_{j}=0.5$ is complete symmetry. Of course singularities will effect this ratio, however these only occur $<50 \%$ of markers. Thus for each marker, SNP we compute this ratio. We find the SD for each SNP is relatively small while the difference between SNP can be large. However for each marker, using 8 SNP enables outliers to be easily removed leaving allowing us to use simple linear regression: i.e. average of the A_{j} over the remaining SNP groups. We see that asymmetry is a real effect: 50% of the A_{j} are more than two SD from symmetry $A_{j}=0.5$.

Observe this is significant. The total second moment is

$$
\sum_{j} \sum_{k=-\infty}^{k=\infty} k^{2} P_{j, k}=t \sum_{j} \mu_{j}+t^{2} \sum_{j}\left(\mu_{j, 1}-\mu_{j,-1}\right)^{2}
$$

So using all our 33 DYS markers with our μ_{j}, we compute constants

$$
\mu=\sum_{j} \mu_{j}=.12006, \tau=\sum_{j}\left(\mu_{j, 1}-\mu_{j,-1}\right)^{2}=0.000236
$$

The KAPZ formula gives variance $V=\mu t$ compared to the corrected formula $\mu t+\tau t^{2}$. The uncorrected KAPZ gives an overestimate $>400 \%$ for >200 generations. This effect can be nullified by using the mean instead of the mode, variance instead of the second moment, however failing to do so gives a large error. Furthermore other methods which assume symmetric mutations will also be inaccurate. Having estimates on the asymmetry is essential to our method because we find singular lineages by looking for asymmetry in the data. Any such anomaly needs to be significantly greater than the natural asymmetry.

Mutation Rates as a fixed Point: Next we compute mutation rates using 8 very large SNP groups. First, using the asymmetric constants we find singular lineages and reduce their effect. We take account of the error in the A_{j} by a bootstrap technique, which gives the variance for each frequency $f(j, 0)$. For a given SNP k if markers j started their expansion at the same time TMRCA T_{k} we could calculate mutation rates μ_{j} via

$$
\begin{equation*}
f(j, 0)=e^{-\mu_{j} T_{j}} I_{0}\left[2 T_{j} \sqrt{\mu_{j,-1} \mu_{j, 1}}\right], \tag{1}
\end{equation*}
$$

or rather average the 8 different μ_{j} we would obtain. However because of branching caused by extinction of lineages the different markers do not originate at the same time but at different times t_{j}. In this case we expect these t_{j} to be randomly distributed about the log mean over a middle set of times t_{j}. So, for each SNP group $k=1, . .8$ define mean time T_{k}, not the TMRCA but the mean log mean over a middle set of markers, which is less. We find that this is very stable. So for a fixed marker j the data $\tau_{k, j}=t_{j}-T_{k}$ should
be randomly distributed about zero over the different SNP $k=1, . ., 8$. However the wrong choose of μ_{j} would give a bias. In fact this is what we see if the mutation rates $\mu_{j}=.002$ were chosen. In appendix graphs show the $\tau_{k, j}, k=1, . .8$ bunched around a nonzero point. Thus we try to find μ_{j} so that the $\tau_{k, j}, k=1,2, . .8$ has mean zero. However the $\tau_{k, j}, k=1,2, . .8$ depend nonlinearly on the rates μ_{j}, as does the mean $T_{k}, k=1, . .8$. We find this nonlinear regression problem is solved by an iterative scheme which starts with any reasonable set of DNA rates, finding any reasonable choice iterates to the same final answer. So choose $\mu_{j}=.002$ to begin. Suppose at some stage we have apparent mutation rates μ_{j}. Then, for each SNP, and each marker we solve equation (1) to obtain the apparent t_{j}. For each SNP $k=1, . .8$ we compute the mean \log time T_{k}. At the next step we get new rates μ_{j}^{*} from

$$
f(j, 0)=e^{-\mu_{j}^{*} T_{k}} I_{0}\left[2 T_{k} \sqrt{\mu_{j,-1}^{*} \mu_{j, 1}^{*}}\right]
$$

Averaging $\mu_{j}^{*}, k=1, . .8$ we get our next set of μ_{j} of mutation rates. However this method would be effected by a marker showing a singular lineage. Fortunately these are few in number and by comparison between the different SNP we remove the outliers. We then repeat the process, computing T_{k} again with the new rates, and another set of mutation rates. So we have an iterative process.

One problem is that the iterates could tend to decrease to zero or increase to ∞, as we are only calculating relative rates. To prevent this we renormalize after each iteration so the total $\sum \mu_{j}$ is constant. We found the iterative scheme quickly converges to a fixed set of mutation rates, unique up to a constant factor. The CI is computed by bootstrap parametrized by the uncertainties in data and the asymmetric constants.

The generation factor γ : This method does not give absolute mutation rates but relative mutation rates $\mu_{j} \gamma$, where γ is universal time scale constant. To find γ we apply our method to compute the $T=T M R C A$ of three famous DNA projects and choose γ so the scaled T / γ best fits the historical record. We choose the DNA projects for the O'Niall(M222), Gp A of Macdonald (R1a1a) and Gp A of the Hamiltons (I1). These are large groups with characteristic DNA and fairly accurate times of origin. Of course finding one constant γ from three projects is inherently more accurate than using one project to find 33 different mutation rates. Actually assuming a generation of 27 years these three projects yield $\gamma=1$ with about 5% error, i.e. there is no actual need for this correction. This is a constant error (like uncalibrated ${ }^{14} C$ dating).

Thus γ is related to the length of a generation. Most researchers use 25yrs for $t>500 y b p$ and $27 y r s$ for $t<500 y b p$. Balaresque and al used $30 y$ ys based on Fenner [11] who sees a $30 y r$ generation for modern hunter-gatherers. Our theory allows any nominal generation as it really doesn't matter, being included in the γ factor which we compute in years not generations. However to give actual mutation rates we need an actual generation so we take 27 years. This appears in our worksheet computation. Notice that choosing a 30 year generation results in a 10% increase in the quoted mutation rate. As we find our mutation rates are close to the actual rates from meiosis this means the 27 year generation is also correct.

\#	DYS	Hamilton ${ }^{4}$	SD ${ }^{3}$	Burgella ${ }^{2}$	SD ${ }^{3}$	Chandler ${ }^{2}$	NIST ${ }^{2}$	FTDNA ${ }^{4}$
1.	393	0.72	0.14	1.03	0.36	0.76	0.08	1.43
2.	390	2.52	0.18	2.12	0.22	3.11	2.4	5.32
3.	$19 / 394^{1}$	1.3	0.52	2.19	0.21	1.51	2.38	1.45
4.	391	4.98	0.2	2.72	0.18	2.65	2.88	4.15
5.	385a	1.26	0.13				2.1	5.68
6.	$385 \mathrm{~b}^{1}$	3.13	0.34				2.1	5.68
7.	426	0.07	0.24			0.09		0.26
8.	388	0.22	0.22	0.42	2.31	0.22		0.25
9.	439	3.76	0.11	5.48	0.16	4.77		4.95
10.	389-I	1.93	0.1	2.53	0.21	1.86	1.88	2.23
11.	392	0.36	0.27	0.43	0.59	0.52	0.58	1.59
12.	389b	2.96	0.11	3.17	0.18	2.42	2.96	2.72
13.	458	7.99	0.08	6.88	0.16	8.14	10.8	6.3
14.	459a	0.39	0.18					
15.	$459 \mathrm{~b}^{1}$	2.98	0.47					
16.	455	0.16	0.21			0.16		0.46
17.	454	0.11	0.22			0.16		0.47
18.	447	3.8	0.15	4.56	0.96	2.64		4.
19.	437	0.99	0.18			0.99	1.5	2.15
20.	448	1.16	0.21			1.35	1.8	2.71
21.	449	11.7	0.14	18.97	0.52	8.38		7.84
22.	460	2.63	0.13	3.82	0.66	4.02		
23.	GATAH4	3.93	0.1	2.24	0.44	2.08	2.51	
24.	YCA IIa	0.32	0.23					
25.	YCA IIb	1.4	0.18					
26.	456	8.1	0.23	4.5	0.21	7.35		
27.	607	2.15	0.13			4.11		4.1
28.	576	10.65	0.11	16.22	0.44	10.22		10.2
29.	570	4.6	0.2	12.61	0.52	7.9		7.9
30.	CDYa	14.71	0.09					35.3
31.	CDYb ${ }^{1}$	13.4	2.					35.3
32.	442	2.9	0.11			3.24		
33.	438	0.43	0.14			0.55	0.7	
	Mean	3.6		5.3		3.2	2.5	6.4

Phylogenetic vs Predigree: MUTATION RATES($\times 10^{-3}$ /generation)

Notes:

1. Too inaccurate to use
2. meiosis: Burgella uses 80 sources, Chandler uses 20
3. $\times 100 \%$ one standard deviation, i.e $\times 2$ for 95% CI
4. phylogenetic : Reduced Singularities(Hamilton) and not(FTDNA)

$\#$	$\mathbf{D Y S}$	$\mathbf{A}_{\mathbf{j}}$	$\mathbf{S D}$	SD to $\mathbf{0 . 5}$
1.	393	0.675	0.087	2.
2.	390	0.463	0.093	0.4
3.	$19 / 394$	0.973	0.032	14.7
4.	391	0.029	0.008	62.8
5.	385 a	0.699	0.096	2.1
6.	385 b	0.82	0.085	3.8
7.	426	0.37	0.232	0.6
8.	388	0.91	0.072	5.7
9.	439	0.734	0.359	0.7
10.	$389-\mathrm{I}$	0.779	0.105	2.7
11.	392	0.954	0.04	11.2
12.	389 b	0.703	0.325	0.6
13.	458	0.512	0.137	0.1
14.	459 a	0.139	0.125	2.9
15.	459 b	0.003	0.001	353.
16.	455	0.277	0.168	1.3
17.	454	0.962	0.03	15.4
18.	447	0.154	0.025	13.6
19.	437	0.09	0.09	4.6
20.	448	0.216	0.172	1.6
21.	449	0.518	0.15	0.1
22.	460	0.107	0.05	7.9
23.	GATAH4	0.17	0.198	1.7
24.	YCAIIa	0.195	0.163	1.9
25.	YCAIIb	0.19	0.175	1.8
26.	456	0.671	0.416	0.4
27.	607	0.243	0.103	2.5
28.	576	0.387	0.157	0.7
29.	570	0.448	0.077	0.7
30.	CDYa	0.37	0.181	0.7
31.	CDYb	0.258	0.082	2.9
32.	442	0.603	0.17	0.6
33.	438	0.715	0.215	1.
Mean*	$\# 1-33$	0.26^{*}	0.134	

Asymmetric Constants

Complete worked example for G2a3, R1b1a2, R1a1, I1, L21, U106, J2, P312.
We use 29 markers (standard method) for G2a3, R1b1a2,R1a1, I1, L21, U106, J2, P312, requires running compiled functions from 29ComFun and its data file W29ComFun
First we enter DNA file $\delta \delta$
$\delta \delta \mathrm{x}$
Each file has NN members

\{NOONI QSMI NOTMI OUVUI NMOVI NRPPI NOQNI VTN\}

We use asymptotic rates $\alpha 0, \beta 0$,LB shown

q~Ää́́[NI \{àI NI PP\}]X__[à|] W= _[[à]]X__M = q~Ää́́E NI \{àI NI PP\}]X

$m=$ fåíéêéçä~íáçå [mm]X
We bootstrap with n02 cycles
åMO $=$ NMMM
RMM

The method of reduction is applied

$\wedge^{\wedge}=c a ̈ \sim 1 ́ 1 ́ E ́ a ̊[q \sim A ̈ a ̈ E[\{` a ̈ E ́ \sim \hat{e ̂}$ ^ää[iNI δI ãMI ÑNI ãNI ãOI ãPI ãQI ãRI ãSI ãI ÑOI ÑPI ãã I
$\delta N I$ ãNMI ãNNI ãNOI ãNPI ãNOI ãNSI ãNTI ãNUI åI oI ooI $\beta I \mu I \alpha I$ eI qpI qpp]x
å $=$ fåíÉÓÉêm~êí [åMN*KR]X iN = O~åççãp~ãéäÉ[o~åÖÉ[åMN]I å]X $\delta=q \sim A ̈ a ̈ E ́[\delta M[[i N[[a ̀]]]] I$ \{àI NI å\}]X

 ã = q~Ää́́ [piã[ãR[[áI à]]*__M[à]I \{àI PP\}]I \{áI å\}] X ãã = k[pĩã[ã[[á]]I \{áI å\}]/å]X
ÑN[â|] W= N - råáípíÉé[^Äë[â] -MKR] X $\delta \mathrm{N}=q$ ê~åëéçëÉ[δ]X ÑO[à|I â|] W=
k[pĩã ÑN[$\delta N[$ [à 1 á]] - â] I \{áI NI å\}]/å]Xo = o~åÇçãoÉ~ä[\{KMMNI KVVV\}I PP]X oo = m[o]X
$\beta=q \sim$ ÄäÉ[bné [i_[[àI N]] + i_[[àI O]] *OO[[à]]]I \{àI NI PP\}]X
$\alpha=q \sim$ Ää́ $\left[\frac{\beta[[a ̀]]}{N+\beta[[a ̀]]} I\{a ̀ I\right.$ NI PP\} $] X$
ãNM $=$ m~ê~ääÉËáóé [q~ÄäÉ[\{ j~ñ[KMMNI ÑO[àI ãN[[à]] -O]]I j~ñ[KMMNI ÑO[àI ãN[[à]] -N]]I j~ñ[KMMNI ÑO[àI ãN[[à]]]]I j~ñ[KMMNI ÑO[àI ãN[[à]] + N]]I j~ñ[KMMNI ÑO[àI ãN[[à]] + O]]\}I \{àI NI PP\}]]X
ãNN $=$ m~ê~ääÉäáóÉ[q~ÄäÉ[\{ jáå[KVVVI j~ñ[KMMNI $\beta[[$ à $]]$ *ãNM[[àI O] $]$]] I jáå[KVVVI j~ñ[KMMNI ãNM[[àI Q]]/ $\beta[[$ à]]]]\}I \{àI NI PP\}]]X
ãNO = m~ê~ääÉäáóE [q~ÄäÉ[\{ ãNM[[àI Q]] - ãNN[[àI N]] I ãNM[[àI O]]-ãNN[[àI O]]\}I \{àI NI PP\}]]X
ãNP $=m \sim \hat{e ̂ \sim a ̈ a ̈ E ́ a ̈ a ́ o ́ E ́[q ~ A ̈ a ̈ E ́[~\{~ r a ̊ a ́ i ́ p i ́ E ́ e ́[a ̃ N O[~[a ̀ I ~ N]] ~-~ K M M N] ~ I ~ r a ̊ a ́ i ́ p i ́ E ́ e ́[a ̃ N O[[a ̀ I ~ O]] ~-~ K M M N]\} I ~\{a ̀ I ~ N I ~ P P\}]] X ~}$
ãNQ $=m \sim \hat{\text { êääÉäáóé }[q \sim \text { ÄäÉE }}$ ãNP[[àI N]] - ãNP[[àI O]]I \{àI NI PP\}]]X
ãNR $=m \sim$ ê~ääÉäáòé [
q~ÄäÉ[\{ ãNM[[àI O]] - ãNP[[àI O]]*ãNN[[àI O]]I ãNM[[àI P]] - ãNP[[àI N]] *ãNM[[àI R]]/ $\beta[[\mathrm{à}]]$ ãNP[[àI O]]*ãNM[[àI N]]* $\beta[[$ à] $] I$ ãNM[[àI Q]] - ãNP[[àI N]] *ãNN[[àI N]]\}I \{àI NI PP\}]]X
 jáå[KVVVI j~ñ[KMMNI ãNR[[àI P]]]]\}I \{àI NI PP\}]]X ãNT = m~ê~ääÉäáóÉ[
q~Ää́ [(ãNS[[àI N]] + ãNS[[àI P]]) /(ãNS[[àI O]] + ãNS[[àI N]] + ãNS[[àI P]])I \{àI NI PP\}]]X

jjM[è|I à|] W= jÉ~å [NKM*q~ÄäÉ[ww[[èI âI NI àI P]] I \{âI NI åMO\}]]X
jjN[è|I à|] W= jÉ~å[NKM*q~ÄäÉ[ww[[èI âI NI àI Q]] I \{âI NI åMO\}]]X
pp[è|I à|] W= (s~êá~åÅÉ[NKM*q~ÄäÉ[ww[[èI âI NI àI O]] I \{âI NI åMO\}]]) \{(KR)X
ppM[è|I à|] W= (s~êá~åÅÉ[NKM*q~ÄäÉ[ww[[èI âI NI àI P]] I \{âI NI åMO\}]]) \{(KR)X

The output is for each file (q), marker (j), reduced frequency fO , unreduced frequency $\mathrm{f0}$, mean \pm then SD for each

```
j~íêáñcçêã[qê~åëeçëÉ[ww]]
```

$\left(\begin{array}{c}\mathrm{N} \\ \mathrm{N} \\ \text { MKOQMRSU } \\ \text { MKOSVPSQ } \\ -\mathrm{NK} \\ \text { MKMNSVMVV } \\ \text { MKMNOSOU } \\ \text { MK }\end{array}\right)$	O N MKPTUSOO MKQMTQT NK MKMOSOQQT MKMOPSUTQ MK	$\left(\begin{array}{c}\text { P } \\ \text { N } \\ \text { MKMPTQTRV } \\ \text { MKMSNMMQT } \\ \text { MKSPS } \\ \text { MKMNNQMOQ } \\ \text { MKMMSTPQVO } \\ \text { MKTQPPTT }\end{array}\right.$	$\left(\begin{array}{c}Q \\ \mathrm{~N} \\ \text { MKMSTTUMP } \\ \text { MKNNUOPT } \\ \text { MKQVS } \\ \text { MKMNUROPO } \\ \text { MKMMRUQRPQ } \\ \text { MKURROQT }\end{array}\right)$	$\left(\begin{array}{c}R \\ \mathrm{~N} \\ \text { MKMQVVVVN } \\ \text { MKMTOOTSP } \\ \text {-MKMQQ } \\ \text { MKMNPMQNR } \\ \text { MKMMUOOOMSP } \\ \text { MKVTNRTO }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { N } \\ \text { MKMRPVTRS } \\ \text { MKMUPOSUV } \\ \text {-MKSVU } \\ \text { MKMMVRNRUP } \\ \text { MKMMTNTQOP } \\ \text { MKTMNOT }\end{array}\right)$	$\left(\begin{array}{c}T \\ \text { N } \\ \text { MKMVVNUNN } \\ \text { MKNNPSRR } \\ \text { NK } \\ \text { MKMMVSPSRQ } \\ \text { MKMMUSPPO } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { N } \\ \text { MKMTNUQVT } \\ \text { MKNMUNO } \\ \text {-MKQOU } \\ \text { MKMNQVQMT } \\ \text { MKMMVVPPMR } \\ \text { MKUUSTUS }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ 0 \\ \text { MKNMTNRU } \\ \text { MKNSSONP } \\ \text { MKTNU } \\ \text { MKMNSVQSP } \\ \text { MKMNNNOSS } \\ \text { MKSUSRVV }\end{array}\right)$	O O MKONUVSV MKPOSRVN MKOR MKMPMROPP MKMONQNOU MKVSQMPP	$\left(\begin{array}{c} \text { P } \\ \text { O } \\ \text { MKNUSSVN } \\ \text { MKOUPVPQ } \\ \text {-MKUTQ } \\ \text { MKMPOPPQS } \\ \text { MKMNORMNV } \\ \text { MKQUQPQU } \end{array}\right)$	$\left(\begin{array}{c} Q \\ 0 \\ \text { MKPSRSNS } \\ \text { MKPTRTSV } \\ \text { NK } \\ \text { MKMNMMOPV } \\ \text { MKMMURUNPV } \\ \text { MK } \end{array}\right)$	$\left(\begin{array}{c} \text { R } \\ 0 \\ \text { MKNTRUMS } \\ \text { MKORTQVQ } \\ \text { MKUOQ } \\ \text { MKMOQUMRQ } \\ \text { MKMNPPVPU } \\ \text { MKRSPSSNP } \end{array}\right)$	$\left(\begin{array}{c} S \\ 0 \\ \text { MKQNSSVT } \\ \text { MKQQRVMN } \\ \text { NK } \\ \text { MKMPROPSR } \\ \text { MKMNOUQUU } \\ \text { MK } \end{array}\right)$	T O MKPOSUNO MKQQVO MKVTU MKMRQVPON MKMNQRTPN MKOMPVRV	U 0 MKNVMMVS MKOTUUTU -MKNO MKMORSRPT MKMNQUQOU MKVURSSV
$\left(\begin{array}{c}\text { n } \\ \text { P } \\ \text { MKNPNTVT } \\ \text { MKNPMO } \\ \text {-MKVSO } \\ \text { MKMRQOTU } \\ \text { MKMMVURRO } \\ \text { MKOSVSPO }\end{array}\right)$	$\left(\begin{array}{c}0 \\ \mathrm{P} \\ \text { MKOSPSTR } \\ \text { MKNPPOOS } \\ \text {-MKVPU } \\ \text { MKOUPNTP } \\ \text { MKMNRSSQN } \\ \text { MKPQQMUP }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ P \\ \text { MKUMNNVS } \\ \text { MKRQSUTO } \\ \text {-NK } \\ \text { MKNTVRPR } \\ \text { MKMNPOSTT } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}Q \\ P \\ \text { MKNUSUPO } \\ \text { MKONONMO } \\ \text {-MKQTQ } \\ \text { MKMVMSSRS } \\ \text { MKMMTSOOS } \\ \text { MKUSSRMO }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { P } \\ \text { MKMVVQTUS } \\ \text { MKNNMSQO } \\ \text {-MKPMS } \\ \text { MKMSQPNOP } \\ \text { MKMMVQUTQQ } \\ \text { MKUVVVVN }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { P } \\ \text { MKMUUURUR } \\ \text { MKMUTSROT } \\ \text {-MKSPO } \\ \text { MKMSRSNUR } \\ \text { MKMMTPUMMR } \\ \text { MKTRQTVR }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { P } \\ \text { MKQNNUMT } \\ \text { MKQRRPQO } \\ \text {-MKOOU } \\ \text { MKNRPOMT } \\ \text { MKMNQOURS } \\ \text { MKVRUMOS }\end{array}\right)$	U P MKNUMSOP MKNOROMQ -MKTPQ MKNSQNVQ MKMNMVSRT MKSSVQPP
$\left\lvert\, \begin{gathered} \mathrm{N} \\ \mathrm{Q} \\ \text { MKNMOMOV } \\ \text { MKNMPNMR } \\ \text { NK } \end{gathered}\right.$	0 Q MKQNUTOP MKPSVPSR MKUVS	$\left(\begin{array}{c}\text { P } \\ \text { Q } \\ \text { MKRTMQQV } \\ \text { MKQVUUQN } \\ \text { MKU }\end{array}\right.$	Q Q MKMVROST MKMVOVNPT NK	$\begin{gathered} R \\ Q \\ \text { MKQQSVPT } \\ \text { MKQPPUUT } \\ \text { NK } \end{gathered}$	S Q MKPTVORR MKPRNRUR NK	T Q MKOOVOST MKONVQVQ NK	U Q MKQNRTTP MKPQOMOR NK

mKMMVUQOUO MKMMUSPPPP MK	mKnmntvn MKMONROSP MKOPMTSN	$\left(\begin{array}{l}\text { MKOOOOQMR } \\ \text { MKMNMSTO } \\ \text { MKRUPSTV }\end{array}\right)$	$\left\|\begin{array}{c}\text { MKMMRURROS } \\ \text { MKMMRPOVOV } \\ \text { MK }\end{array}\right\|$	$\left(\begin{array}{c} \text { MKMOMUMSN } \\ \text { MKMNRTVNP } \\ \text { MK } \end{array}\right)$	$\left(\begin{array}{c}\text { MKMOTOMRO } \\ \text { MKMnORTU } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}\text { MKMNRVQNN } \\ \text { MKMNNUMO } \\ \text { Mk }\end{array}\right)$	MKMTPVSUN mKMNROSVT MK
$\left(\begin{array}{c} \text { N } \\ \text { R } \\ \text { MKPTOVPO } \\ \text { MKPQRO } \\ \text {-NK } \\ \text { MKNRSNVO } \\ \text { MKMNPTMVN } \\ \text { MK } \end{array}\right)$	$\left(\begin{array}{c}0 \\ R \\ \text { MKNRSRRR } \\ \text { MKOPNPP } \\ \text { MKVUU } \\ \text { MKMPOMVVN } \\ \text { MKMNVOSRP } \\ \text { MKNRQSMV }\end{array}\right)$	$\left(\begin{array}{c} \mathrm{P} \\ \mathrm{R} \\ \text { MKNOVQSO } \\ \text { MKNSTSSS } \\ \text {-MKVTU } \\ \text { MKMNSOTS } \\ \text { MKMNMMMOQ } \\ \text { MKOMPVRV } \end{array}\right)$	$\left(\begin{array}{c}Q \\ R \\ \text { MKPOPSQR } \\ \text { MKQOQMQN } \\ \text { NK } \\ \text { MKMPVRPPP } \\ \text { MKMMVNRNNV } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}R \\ R \\ \text { MKMTOORRS } \\ \text { MKNOVOVU } \\ \text { MKNTO } \\ \text { MKMONNTMN } \\ \text { MKMNMPOMO } \\ \text { MKVSVSUV }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { R } \\ \text { MKMSSUVOV } \\ \text { MKNMPTUV } \\ \text {-MKNNU } \\ \text { MKMNSTRMO } \\ \text { MKMMUMSUVQ } \\ \text { MKVTSTON }\end{array}\right)$	$\left(\begin{array}{c}T \\ R \\ \text { MKPPMVVV } \\ \text { MKOVONNP } \\ \text { MKMT } \\ \text { MKMSTNPMO } \\ \text { MKMNOOSVO } \\ \text { MKVVRRPN }\end{array}\right.$	R MKNMROVT MKNTQVVQ mKOSO MKMPMNSNS MKMNOMNNO MKVROQRR
$\left(\begin{array}{c}\text { N } \\ \text { S } \\ \text { MKPMPONQ } \\ \text { MKQRNUQP } \\ \text { MKUV } \\ \text { MKMTTRTUV } \\ \text { MKMNQUMT } \\ \text { MKOQMTUO }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { S } \\ \text { MKPNMMSR } \\ \text { MKQNPUVS } \\ \text {-MKOQ } \\ \text { MKNMVONO } \\ \text { MKMOPQOUN } \\ \text { MKVSRRPU }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { S } \\ \text { MKNVRUOU } \\ \text { MKORRSUR } \\ \text {-MKSVQ } \\ \text { MKMPTSMMS } \\ \text { MKMNOTMST } \\ \text { MKTNSRNP }\end{array}\right)$	$\left(\begin{array}{c}Q \\ S \\ \text { MKOPMSUS } \\ \text { MKPNPPUQ } \\ \text {-MKPQS } \\ \text { MKMRUSTUQ } \\ \text { MKMMUQUOT } \\ \text { MKVPPUOQ }\end{array}\right)$	$\left(\begin{array}{c}R \\ S \\ \text { MKOOUSOV } \\ \text { MKPPQVRT } \\ \text {-MKNMU } \\ \text { MKMTVMSPQ } \\ \text { MKMNQVMVR } \\ \text { MKVURMOS }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { S } \\ \text { MKNVNQMN } \\ \text { MKORONRT } \\ \text {-MKUNO } \\ \text { MKMPTVRNN } \\ \text { MKMNMVMSP } \\ \text { MKRTTPQ }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { S } \\ \text { MKUUNOTS } \\ \text { MKSVTQOV } \\ \text {-MKVPO } \\ \text { MKNQUP } \\ \text { MKMNNORUP } \\ \text { MKPRTORR }\end{array}\right)$	U S MKOQSUMV MKPOMSUR -MKTMQ MKMROQOMQ MKMNRNOMN MKTMUMUT

$\left(\begin{array}{c}\text { P } \\ T \\ \text { MKMNPVTST } \\ \text { MKMNTQVOV } \\ \text { MKPMS } \\ \text { MKMMPRTPNO } \\ \text { MKMMPRPVMU } \\ \text { MKVNPORQ }\end{array}\right)\left(\begin{array}{c}Q \\ T \\ \text { MKMMPRVNU } \\ \text { MKMMQPRSNN } \\ - \text { MKQRU } \\ \text { MKMMNMPMPS } \\ \text { MKMMNOTVRQ } \\ \text { MKRRRTQS }\end{array}\right)\left(\begin{array}{c}\text { (}\end{array}\right)$
$\left(\begin{array}{c}\mathrm{R} \\ \mathrm{T} \\ \text { MKMNTNVSP } \\ \text { MKMOONVQS } \\ \text { MKSNS } \\ \text { MKMMQVMQVT } \\ \text { MKMMQUMNMQ } \\ \text { MKTQSTSS }\end{array}\right)($
$\left(\begin{array}{c}S \\ T \\ \text { MKMNOSQMT } \\ \text { MKMNRSSMS } \\ \text { MKSOQ } \\ \text { MKMMPOSQRR } \\ \text { MKMMPOPTMQ } \\ \text { MKTQMMUN }\end{array}\right)$
$\left(\begin{array}{c}T \\ T \\ \text { MKMMUQUNQS } \\ \text { MKMNNMOV } \\ \text { MKSMU } \\ \text { MKMMORQSNV } \\ \text { MKMMOVPVVN } \\ \text { MKTNOOUS }\end{array}\right)\left(\begin{array}{c}U \\ T \\ \text { MKMMTNTONU } \\ \text { MKMNONVPU } \\ \text { MKTSU } \\ \text { MKMMOROMQV } \\ \text { MKMMPRMVMP } \\ \text { MKRRPUUS }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { U } \\ \text { MKPUOTNN } \\ \text { MKPTTQOS } \\ - \text { NK } \\ \text { MKMNSOPR } \\ \text { MKMNPTMTO } \\ \text { MK }\end{array}\right)\left(\begin{array}{c}\text { N } \\ \text { V } \\ \text { MKPRPMTP } \\ \text { MKPTSMUR } \\ \text { MKQQU } \\ \text { MKNUTMPS } \\ \text { MKMNPPUUR } \\ \text { MKUVOSUT }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { U } \\ \text { MKNONQUR } \\ \text { MKMSUPSRQ } \\ \text {-MKMUQ } \\ \text { MKOTVUTP } \\ \text { MKMMSUTTQT } \\ \text { MKUOPRV }\end{array}\right)\left(\begin{array}{c}Q \\ U \\ \text { MKMROPUST } \\ \text { MKNMPOMQ } \\ \text {-MKRPS } \\ \text { MKMNQQPOP } \\ \text { MKMMRPNMOT } \\ \text { MKUONMMT }\end{array}\right)$
$\left(\begin{array}{c}\text { R } \\ U \\ \text { MKMNNPQOS } \\ \text { MKMOOPMPR } \\ \text { MKRV } \\ \text { MKMMQTNOST } \\ \text { MKMMQRNOPV } \\ \text { MKQVOPOS }\end{array}\right)\left(\begin{array}{c} \\ \text { MK } \\ \hline\end{array}\right.$
$\left(\begin{array}{c}\text { S } \\ \text { U } \\ \text { MKMNNTUSV } \\ \text { MKMOOQTRO } \\ \text { MKPOQ } \\ \text { MKMMQSUUT } \\ \text { MKMMPURQTU } \\ \text { MKSUVVN }\end{array}\right)$
$\left(\begin{array}{c}\text { U } \\ \text { U } \\ \text { MKMNTNSUU } \\ \text { MKMPQVTPO } \\ \text { MKTS } \\ \text { MKMMSTRTMU } \\ \text { MKMMRVRSPO } \\ \text { MKQOTRNN }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { NM } \\ \text { MKMTNPSOU } \\ \text { MKNNUVRT } \\ \text { MKURU } \\ \text { MKMONNMSR } \\ \text { MKMMVNNPUV } \\ \text { MKQVOOSN }\end{array}\right)$
$\left(\begin{array}{c}\text { O } \\ \text { NM } \\ \text { MKNTMVMV } \\ \text { MKOMTSUT } \\ \text {-MKUTS } \\ \text { MKMOTSPQU } \\ \text { MKMNUUMVQ } \\ \text { MKQUOTVQ }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { NM } \\ \text { MKNRPTTT } \\ \text { MKOPOSVS } \\ \text { MKSVU } \\ \text { MKMQSRNQT } \\ \text { MKMNONURN } \\ \text { MKTMNOT }\end{array}\right)$

$$
\left(\begin{array}{c}
Q \\
\text { NM } \\
\text { MKMTTQSU } \\
\text { MKNMNONP } \\
\text { MKVV } \\
\text { MKMNQSTOT } \\
\text { MKMMRUURN } \\
\text { MKNNUMNS }
\end{array}\right)
$$

) T
$\left(\begin{array}{c}\text { T } \\ \text { NM } \\ \text { MKPVTQPS } \\ \text { MKQQNSPR } \\ \text {-MKVTU } \\ \text { MKMPMTMOS } \\ \text { MKMNPUOSR } \\ \text { MKOMPVRV }\end{array}\right)$

$$
\begin{aligned}
& \text { MKMNQMS'TP } \\
& \text { MKRUMUMO }
\end{aligned}
$$

$\left(\begin{array}{c}\text { N } \\ \text { NN } \\ \text { MKMPOUVVR } \\ \text { MKMPRMOP } \\ \text {-NK } \\ \text { MKMMRRVTQS } \\ \text { MKMMRNUPVP } \\ \text { MK }\end{array}\right)$
$\left(\begin{array}{c}\text { O } \\ \text { NN } \\ \text { MKNVRSMR } \\ \text { MKOOSOQP } \\ \text {-MKRRS } \\ \text { MKMRQTPVU } \\ \text { MKMOMSPUN } \\ \text { MKUOOPOQ }\end{array}\right)\left(\begin{array}{c}\text { P } \\ \text { NN } \\ \text { MKMNVQSQ } \\ \text { MKMOTQRUP } \\ - \text { MKNV } \\ \text { MKMMSTNVUU } \\ \text { MKMMQUOMNV } \\ \text { MKTSMVRV }\end{array}\right)$
$\left(\begin{array}{c}\text { Q } \\ \text { NN } \\ \text { MKMOTSMVV } \\ \text { MKMPQQQQQ } \\ \text {-MKQMQ } \\ \text { MKMNMOVNP } \\ \text { MKMMPPQPS } \\ \text { MKUNNOPQ }\end{array}\right)$
$\left(\begin{array}{c}\text { R } \\ \text { NN } \\ \text { MKMVNPOUN } \\ \text { MKMUSOQV } \\ \text {-MKSOO } \\ \text { MKNMRRVO } \\ \text { MKMMURNS } \\ \text { MKTRPUOR }\end{array}\right)$

$$
\left(\begin{array}{c}
\text { T } \\
\text { NN } \\
\text { MKMQOUSPQ } \\
\text { MKMQTPPOP } \\
\text {-MKSUO } \\
\text { MKMNMVTQQ } \\
\text { MKMMRUQSTS } \\
\text { MKSUUPQU }
\end{array}\right)
$$

U

$\left(\begin{array}{c}\text { N } \\ \text { NQ } \\ \text { MKMSOQMPQ } \\ \text { MKMTTUOSO } \\ \text {-MKVVO } \\ \text { MKMNOTVSR } \\ \text { MKMMTSVNRQ } \\ \text { MKMUVNTPQ }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NQ } \\ \text { MKMRPQROS } \\ \text { MKMSUMMUT } \\ \text { MKT } \\ \text { MKMNPQRMQ } \\ \text { MKMNNUSPN } \\ \text { MKTMPRRR }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NQ } \\ \text { MKMPUPTPN } \\ \text { MKMQUNNSR } \\ \text { MKQOU } \\ \text { MKMNMONTU } \\ \text { MKMMRUOMMQ } \\ \text { MKUUOORQ }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NQ } \\ \text { MKMRVRPSV } \\ \text { MKMSTTTSQ } \\ \text { MKUVS } \\ \text { MKMMVQSPQT } \\ \text { MKMMQVNPNQ } \\ \text { MKQPVVST }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { NQ } \\ \text { MKMPOORQV } \\ \text { MKMQQNMNO } \\ \text { MKUV } \\ \text { MKMMSVTNTQ } \\ \text { MKMMSRRRNQ } \\ \text { MKQQVTUP }\end{array}\right)$	$\left.\begin{array}{c}\text { S } \\ \text { NQ } \\ \text { MKMOMOQUN } \\ \text { MKMPNMMTU } \\ \text { MKUSO } \\ \text { MKMMQQPMUN } \\ \text { MKMMQQTPQQ } \\ \text { MKOTOSRR }\end{array}\right)$	T NQ MKQSSPNS MKQTOPNV -MKVOQ MKMNSVTOR MKMNORTQ MKPUOTTR	U NQ MKMQSNRUO MKMRPPMTO MKVQ MKMMUNMOTU MKMMTMPQRN MKPOVRTN
$\left(\begin{array}{c}\text { N } \\ \text { NR } \\ \text { MKNPSTOP } \\ \text { MKMONNNQU } \\ \text { NK } \\ \text { MKOMTQU } \\ \text { MKMMRSTRQQ } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NR } \\ \text { MKPUSQMP } \\ \text { MKOQMRTQ } \\ \text { MKUR } \\ \text { MKNTOPSQ } \\ \text { MKMOMONST } \\ \text { MKONORQ }\end{array}\right)$	$\left(\begin{array}{c} \text { P } \\ \text { NR } \\ \text { MKPPSPQ } \\ \text { MKNVPMNN } \\ \text { NK } \\ \text { MKNRMNUS } \\ \text { MKMNNRTVN } \\ \text { MK } \end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NR } \\ \text { MKMSQQNVS } \\ \text { MKMPORRQV } \\ \text { NK } \\ \text { MKNMRQMO } \\ \text { MKMMPPTSMO } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { NR } \\ \text { MKOTTVUU } \\ \text { MKNUOVSN } \\ \text { MKSSU } \\ \text { MKNQQSVN } \\ \text { MKMNORNOS } \\ \text { MKRMMOTS }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NR } \\ \text { MKOTPNRN } \\ \text { MKNRUONT } \\ \text { MKUVQ } \\ \text { MKNQTNNP } \\ \text { MKMMVPPRPN } \\ \text { MKPMUNOS }\end{array}\right)$	T NR MKNPSTUO MKMTSNMVT NK MKMVUSTNR MKMMTVTMMN MK	U NR MKPTVUUQ MKONVMOP MKVVU MKNRUPNN MKMNOUOOT MKMQOTONQ
$\left(\begin{array}{c}\text { N } \\ \text { NS } \\ \text { MKMNVPRUS } \\ \text { MKMPOUQVO } \\ \text { MKQU } \\ \text { MKMMRMRPVT } \\ \text { MKMMRORQPT } \\ \text { MKUPNORP }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NS } \\ \text { MKMNUURVV } \\ \text { MKMOQSSVS } \\ \text {-MKQNO } \\ \text { MKMMTMNSTO } \\ \text { MKMMTOTTMP } \\ \text { MKUTURON }\end{array}\right)$	$\left.\begin{array}{c}\text { P } \\ \text { NS } \\ \text { MKMNVPVRS } \\ \text { MKMOSNTMN } \\ \text { MKTOU } \\ \text { MKMMOROORR } \\ \text { MKMMQQNTOS } \\ \text { MKSRPPRP }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NS } \\ \text { MKMMVSTRT } \\ \text { MKMNMTRTU } \\ \text { NK } \\ \text { MKMMNVPVSR } \\ \text { MKMMNVTMTR } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c} \text { R } \\ \text { NS } \\ \text { MKMORMVOV } \\ \text { MKMPNTRN } \\ \text { MKTRS } \\ \text { MKMMRUTMRR } \\ \text { MKMMRQUQ } \\ \text { MKSPPQRS } \end{array}\right)$	$\left.\begin{array}{c}\text { S } \\ \text { NS } \\ \text { MKMNUQVRR } \\ \text { MKMOQMSOT } \\ \text { MKSPS } \\ \text { MKMMQMQSPT } \\ \text { MKMMPTSTUS } \\ \text { MKTQPPTT }\end{array}\right)$	T NS MKMORTPNV MKMQRPPRR -MKMTO MKMMTSOUVO MKMMRURTMO MKVRTQNU	U NS MKMNSVQNR MKMOMPRQS MKVS MKMMQQVRPP MKMMORTMPT MKOTPMPT
$\left(\begin{array}{c}\text { N } \\ \text { NT } \\ \text { MKMQOPSUT } \\ \text { MKMRSOPOU } \\ \text { MKNOQ } \\ \text { MKMNTMMUV } \\ \text { MKMMSSPMVP } \\ \text { MKUQNUPO }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NT } \\ \text { MKMNOTNUR } \\ \text { MKMNOVVNP } \\ \text {-MKQRQ } \\ \text { MKMMRONUO } \\ \text { MKMMRPMUSV } \\ \text { MKSMPUPO }\end{array}\right)$	$\left.\begin{array}{c}\text { P } \\ \text { NT } \\ \text { MKMNTVTOS } \\ \text { MKMNUTVPT } \\ \text {-MKPU } \\ \text { MKMMOTOUPN } \\ \text { MKMMPVPRTV } \\ \text { MKSMPRVS }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NT } \\ \text { MKMNNVMMQ } \\ \text { MKMNOQV } \\ \text {-MKTNS } \\ \text { MKMMOPRQQQ } \\ \text { MKMMNVSQOO } \\ \text { MKRORORU }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { NT } \\ \text { MKMMVVTOVT } \\ \text { MKMMVUTNS } \\ \text { MKMR } \\ \text { MKMMPOOSQQ } \\ \text { MKMMPNRVTV } \\ \text { MKONUNSP }\end{array}\right)$	$\left.\begin{array}{c}\text { S } \\ \text { NT } \\ \text { MKMNORRSU } \\ \text { MKMNPMRTQ } \\ \text {-MKSPQ } \\ \text { MKMMPMVOUO } \\ \text { MKMMPMOUOS } \\ \text { MKROVTOO }\end{array}\right)$	$\left(\begin{array}{c}T \\ \text { NT } \\ \text { MKMVMUSMO } \\ \text { MKNOVTTT } \\ \text {-MKSR } \\ \text { MKMOROUN } \\ \text { MKMMVVPTQP } \\ \text { MKTOVTTN }\end{array}\right)$	U NT MKMOPRQUO MKMOQRTPO -MKTOQ MKMMSRMOVT MKMMRMPNS MKRVPTOO
$\left(\begin{array}{c}\text { N } \\ \text { NU } \\ \text { MKORQRSN } \\ \text { MKOTTNPQ } \\ \text { NK } \\ \text { MKMNQQVPQ } \\ \text { MKMNPOVNR } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}0 \\ \text { NU } \\ \text { MKOVPUNQ } \\ \text { MKPNOTMO } \\ \text { NK } \\ \text { MKMOURMQ } \\ \text { MKMOMSQQO } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c} \text { P } \\ \text { NU } \\ \text { MKROTOVP } \\ \text { MKRPSSUP } \\ \text { MKSSS } \\ \text { MKNQUQVP } \\ \text { MKMNPUSRP } \\ \text { MKTOVMQR } \end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NU } \\ \text { MKPOMUNR } \\ \text { MKPROUTU } \\ \text { NK } \\ \text { MKMNPSRPT } \\ \text { MKMMVQTMUN } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c} \mathrm{R} \\ \text { NU } \\ \text { MKOUPVMS } \\ \text { MKPMPRTO } \\ \text { NK } \\ \text { MKMNTRON } \\ \text { MKMNPUROQ } \\ \text { MK } \end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NU } \\ \text { MKQUPNNQ } \\ \text { MKRNVQPS } \\ \text { MKVVS } \\ \text { MKMOQRMTN } \\ \text { MKMNPMUPU } \\ \text { MKMUVQOOT }\end{array}\right)$	$\left.\begin{array}{c}\text { T } \\ \text { NU } \\ \text { MKVOPSS } \\ \text { MKRUTOOO } \\ \text { NK } \\ \text { MKNMTQU } \\ \text { MKMNQMPO } \\ \text { MK }\end{array}\right)$	U NU MKPNTNVV MKPQRQMO NK MKMOMRTSU MKMNQRPSQ MK
$\left(\begin{array}{c}\text { N } \\ \text { NV } \\ \text { MKMUQNVSN } \\ \text { MKNNMUUR } \\ \text { MKQQU } \\ \text { MKMONVTRQ } \\ \text { MKMMUQUVON } \\ \text { MKUTVNNQ }\end{array}\right)$	$\left.\begin{array}{c}\text { O } \\ \text { NV } \\ \text { MKNPRURN } \\ \text { MKNQOVPV } \\ \text { MKUU } \\ \text { MKMPNVQRU } \\ \text { MKMNRUVSP } \\ \text { MKQTNONS }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NV } \\ \text { MKMMTRMSV } \\ \text { MKMMTUPPMT } \\ \text { MKVT } \\ \text { MKMMOQQTOS } \\ \text { MKMMORNUVO } \\ \text { MKNTMTRU }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NV } \\ \text { MKMROUTVN } \\ \text { MKMSPOPQ } \\ \text { MKSMU } \\ \text { MKMNOPVVR } \\ \text { MKMMOPRMSR } \\ \text { MKTTQOVT }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{R} \\ \mathrm{NV} \\ \text { MKNMOSTN } \\ \text { MKNNNRON } \\ \text { MKUNS } \\ \text { MKMNVOOVV } \\ \text { MKMNMOVUN } \\ \text { MKRTNSSO }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NV } \\ \text { MKNOUNVU } \\ \text { MKNQMSUV } \\ \text { MKTQS } \\ \text { MKMORSVQT } \\ \text { MKMMUQTOMN } \\ \text { MKSSOMUU }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { NV } \\ \text { MKQRUSMR } \\ \text { MKQSPSOP } \\ \text { MKUVO } \\ \text { MKMUMOMTN } \\ \text { MKMNQTOU } \\ \text { MKOROQUU }\end{array}\right)$	U NV MKOPNPMT MKOUPOOR MKMSQ MKMSUURPT MKMNQSTNR MKVUUUSU
$\left(\begin{array}{c}\text { N } \\ \text { OM } \\ \text { MKPMNVNN } \\ \text { MKPOSOMP } \\ \text { MKSPQ } \\ \text { MKMVNNUON } \\ \text { MKMNPVNUQ } \\ \text { MKTTOUNO }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { OM } \\ \text { MKNOMNVT } \\ \text { MKNPSU } \\ \text { MKVOO } \\ \text { MKMONQMMV } \\ \text { MKMNSTRMQ } \\ \text { MKPUQVUQ }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { OM } \\ \text { MKNNVQUT } \\ \text { MKNQQPQS } \\ \text { MKRTO } \\ \text { MKMOPNQT } \\ \text { MKMNMNRTS } \\ \text { MKUNSNTV }\end{array}\right)$	$\left(\begin{array}{c} Q \\ \text { OM } \\ \text { MKMVUNTRU } \\ \text { MKNNVMUS } \\ \text { MKUNQ } \\ \text { MKMNQVNRV } \\ \text { MKMMSMUSQN } \\ \text { MKRTVTON } \end{array}\right)$	$\left(\begin{array}{c} \text { R } \\ \text { OM } \\ \text { MKNOTMPT } \\ \text { MKNROVOS } \\ \text { MKTUS } \\ \text { MKMORNMPT } \\ \text { MKMNNMRTT } \\ \text { MKSNPVSV } \end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { OM } \\ \text { MKMRUTQRU } \\ \text { MKMTOTQNR } \\ \text { MKTSS } \\ \text { MKMNMOPNO } \\ \text { MKMMSSONVN } \\ \text { MKSPOOV }\end{array}\right)$	$\left.\begin{array}{c}\text { T } \\ \text { OM } \\ \text { MKTPMVOV } \\ \text { MKSPVNPV } \\ \text { MKUNS } \\ \text { MKNTSUOV } \\ \text { MKMNOSMS } \\ \text { MKRTUSPN }\end{array}\right)$	$\left.\begin{array}{c}\text { U } \\ \text { OM } \\ \text { MKOPSNON } \\ \text { MKPMOONS } \\ \text {-MKNMS } \\ \text { MKMRVSUMQ } \\ \text { MKMNRNRSU } \\ \text { MKVVMPNS }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { ON } \\ \text { MKSNMOVP } \\ \text { MKTMPURV } \\ \text { MKMNS } \\ \text { MKNVMUN } \\ \text { MKMNOSNOQ } \\ \text { MKVVOUOU }\end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { ON } \\ \text { MKSMUMR } \\ \text { MKSSSVUP } \\ \text { MKNSU } \\ \text { MKNPMROP } \\ \text { MKMONTSUQ } \\ \text { MKVUOTON }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { ON } \\ \text { MKRQUSUP } \\ \text { MKSOQROS } \\ \text {-MKQPQ } \\ \text { MKNNNVTU } \\ \text { MKMNQPMOV } \\ \text { MKUVUOTS }\end{array}\right)$	$\left(\begin{array}{c} Q \\ \text { ON } \\ \text { MKROQSPT } \\ \text { MKRUUSSN } \\ \text { MKVUQ } \\ \text { MKNOTRQU } \\ \text { MKMMVUMQOR } \\ \text { MKNTUPQT } \end{array}\right)$	$\left(\begin{array}{c} \mathrm{R} \\ \text { ON } \\ \text { MKSMPTON } \\ \text { MKSPONQU } \\ \text {-MKN } \\ \text { MKNPVNVT } \\ \text { MKMNMSQPT } \\ \text { MKVVRVUQ } \end{array}\right)$	$\left(\begin{array}{c} \text { S } \\ \text { ON } \\ \text { MKQUNQQ } \\ \text { MKRUNRRQ } \\ \text { MKSMO } \\ \text { MKMVSVSUT } \\ \text { MKMNPMRSO } \\ \text { MKTVRROS } \end{array}\right)$	$\left(\begin{array}{c} \text { T } \\ \text { ON } \\ \text { MKTVSMPU } \\ \text { MKTQPUSU } \\ \text { MKRQO } \\ \text { MKNTTNRV } \\ \text { MKMNMQVTV } \\ \text { MKUQMMOU } \end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { ON } \\ \text { MKQOVUUQ } \\ \text { MKRPOMVN } \\ \text { MKTQ } \\ \text { MKNMSMUP } \\ \text { MKMNTQRQ } \\ \text { MKSSTPMN }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { OO } \\ \text { MKRRPUON } \\ \text { MKPVTSRO } \\ \text { NK } \\ \text { MKNQOVVQ } \\ \text { MKMNQOVO } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}0 \\ \text { OO } \\ \text { MKOUOURO } \\ \text { MKPMTPQU } \\ \text { MKVTU } \\ \text { MKMOVMSTT } \\ \text { MKMONPMMU } \\ \text { MKOMPVRV }\end{array}\right)$	$\left(\begin{array}{c} \mathrm{P} \\ \text { OO } \\ \text { MKORQPQV } \\ \text { MKOSRTVR } \\ \text { NK } \\ \text { MKMNSOQPS } \\ \text { MKMNOTVU } \\ \text { MK } \end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { OO } \\ \text { MKOTOTPO } \\ \text { MKOSMVPQ } \\ \text { NK } \\ \text { MKMNTOTSN } \\ \text { MKMMURVRRV } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { OO } \\ \text { MKNVVUR } \\ \text { MKOOUTST } \\ \text { MKTTO } \\ \text { MKMQOPPMU } \\ \text { MKMNOTTMO } \\ \text { MKSOPRPP }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { OO } \\ \text { MKOPVTTU } \\ \text { MKOSVQUP } \\ \text { MKTVQ } \\ \text { MKMQRNRN } \\ \text { MKMNNNQUT } \\ \text { MKRVSUUV }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { OO } \\ \text { MKSRSQTS } \\ \text { MKQSUMUQ } \\ \text { NK } \\ \text { MKNRPRQP } \\ \text { MKMNQQSUT } \\ \text { MK }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { OO } \\ \text { MKORNSON } \\ \text { MKPMSNPO } \\ \text { MKRMU } \\ \text { MKMTRMOOO } \\ \text { MKMNQTMMU } \\ \text { MKURRONV }\end{array}\right)$
$\begin{gathered} \mathrm{N} \\ \mathrm{OP} \end{gathered}$	0 OP	$\stackrel{\mathrm{P}}{\mathrm{OP}}$	$\stackrel{\mathrm{Q}}{\mathrm{OP}}$	R OP	S OP	T OP	U OP

MKPOUSSP	MKOUOOPV	MKSNPRMR	mKNPSSUO	MKOSOUMP	MKPPQ ${ }^{\text {M }}$	KRNTUSQ	mкоUVOMU
MKPUUPTQ -MKNS	MKQNPUPR MKVMU	MKQOTMUT MKVTU	MKNRNNRV MKRRU	MKOUUUSU mкто	MKPSTVVR -MKNPS	MKOOMVTQ MKVTS	MKPQRPOQ MKMSQ
MKMTUUQSS	MKOMNMRP	MKOPQNTV	MKMSNQPST	MKMQSRPPU	mKNPmVno	mkonnnov	MKMSRNRUO
MKMNOMOT	MKMOPPQUR	MKMNPVMUN	MKMMSSPNPS	MKMNQPOVO	MKMNOSQUQ	MKMNPQUQV	MKMnoouvo
MKVUQMON	MKQNVPV	MKOMPVRV	(mKUOVQSR	MKSVNTTU	mKVUVSTU	MKONTVUV	MKVvovnP

$\left(\begin{array}{c}\text { N } \\ \text { OQ } \\ \text { MKONVQRR } \\ \text { MKOPROVR } \\ - \text { NK } \\ \text { MKMNRRQQO } \\ \text { MKMNOMMUP } \\ \text { MK }\end{array}\right)\left(\begin{array}{c}\text { O } \\ \text { OQ } \\ \text { MKMPSVOMQ } \\ \text { MKMSVRNP } \\ \text { MKOQQ } \\ \text { MKMNUSOP } \\ \text { MKMNOOUO } \\ \text { MKVQRSQV }\end{array}\right)\left(\begin{array}{c} \\ \text { M }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { OQ } \\ \text { MKMNRORQN } \\ \text { MKMPTUVVO } \\ \text { MKSTU } \\ \text { MKMMOROSMQ } \\ \text { MKMMRNSVPU } \\ \text { MKSUSQUP }\end{array}\right)($
$\left(\begin{array}{c}Q \\ O Q \\ \text { MKMSPURSS } \\ \text { MKMRVUSPQ } \\ \text { MKTRO } \\ \text { MKNTOVSV } \\ \text { MKMMOOSNUQ } \\ \text { MKSPRMSN }\end{array}\right)\left(\begin{array}{c}R \\ O Q \\ \text { MKMNTNPUP } \\ \text { MKMQNRMNV } \\ \text { MKTV } \\ \text { MKMMQQTMVU } \\ \text { MKMMSMPVSN } \\ \text { MKRTUQO }\end{array}\right)$
$\left(\begin{array}{c}\mathrm{S} \\ \text { OQ } \\ \text { MKMOQUQVU } \\ \text { MKMQUSVNV } \\ \text { MKRTU } \\ \text { MKMQOQQTU } \\ \text { MKMMRPNUMQ } \\ \text { MKTUMOTN }\end{array}\right)\left(\begin{array}{c}\mathrm{T} \\ \text { OQ } \\ \text { MKMTOMOUP } \\ \text { MKMVVSQRO } \\ \text { MKUT } \\ \text { MKNPSTNR } \\ \text { MKMMUPVVNS } \\ \text { MKQUTQNT }\end{array}\right)\left(\begin{array}{c}\mathrm{U} \\ \text { OQ } \\ \text { MKMOVRPUT } \\ \text { MKMQSUMQN } \\ \text { MKVUS } \\ \text { MKMMSONMSV } \\ \text { MKMMSVSMSR } \\ \text { MKNSMTVT }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { OR } \\ \text { MKNPNURU } \\ \text { MKNOQTUT } \\ \text { NK } \\ \text { MKMTPSOUU } \\ \text { MKMMVRMSSO } \\ \text { MK }\end{array}\right)\left(\begin{array}{c}\text { O } \\ \text { OR } \\ \text { MKMSOUNNQ } \\ \text { MKNNNNUP } \\ \text {-MKONQ } \\ \text { MKMONQQMV } \\ \text { MKMNOQSVO } \\ \text { MKVRUNQQ }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { OR } \\ \text { MKNMRSP } \\ \text { MKOPVVTR } \\ \text { MKQQ } \\ \text { MKMQVMOTP } \\ \text { MKMNNTUMS } \\ \text { MKUVQQOT }\end{array}\right)\left(\begin{array}{c}Q \\ \text { OR } \\ \text { MKMPMMRQN } \\ \text { MKMRQPMVO } \\ \text { MKSPS } \\ \text { MKMMRVVPQP } \\ \text { MKMMQORMSU } \\ \text { MKTRQMUP }\end{array}\right)\left(\begin{array}{c}\text { R } \\ \text { OR } \\ \text { MKNSUQMR } \\ \text { MKOQRON } \\ \text { MKVSQ } \\ \text { MKMOSRPQN } \\ \text { MKMNQNMSS } \\ \text { MKOSSNSV }\end{array}\right)$
$\left(\begin{array}{c}S \\ \text { OR } \\ \text { MKNMUMN } \\ \text { MKNRVMMU } \\ \text { MKOU } \\ \text { MKMOMSPMV } \\ \text { MKMMUUOPP } \\ \text { MKUTNOTQ }\end{array}\right)$
$\left(\begin{array}{c}T \\ \text { OR } \\ \text { MKONUTTU } \\ \text { MKPRTMSU } \\ \text { MKSVQ } \\ \text { MKNOTQP } \\ \text { MKMNOTUVO } \\ \text { MKTNVPMQ }\end{array}\right)$
$\left(\begin{array}{c}U \\ \text { OR } \\ \text { MKMSUUSVP } \\ \text { MKNNURQ } \\ \text { MKNTU } \\ \text { MKMNVUTTU } \\ \text { MKMNMOTPT } \\ \text { MKVTNTMO }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { OS } \\ \text { MKOTTVRS } \\ \text { MKOVTNVT } \\ \text {-MKMNS } \\ \text { MKNRVQTV } \\ \text { MKMNORUSR } \\ \text { MKVVQUQU }\end{array}\right)\left(\begin{array}{c}\text { O } \\ \text { OS } \\ \text { MKRSSPVN } \\ \text { MKRQROSN } \\ \text { MKSMO } \\ \text { MKOORMUS } \\ \text { MKMONUMNT } \\ \text { MKTVROST }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { OT } \\ \text { MKOUSOUQ } \\ \text { MKOVORSN } \\ \text { NK } \\ \text { MKMSPRNU } \\ \text { MKMNPSOU } \\ \text { MK }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { OU } \\ \text { MKUPTVN } \\ \text { MKTMSRVP } \\ \text { MKRRS } \\ \text { MKONTQOQ } \\ \text { MKMNPOTON } \\ \text { MKUOVSMP }\end{array}\right)$
$\binom{$ O }{ N }
$\left(\begin{array}{c}\text { OT } \\ \text { MKSMUVUU } \\ \text { MKOUOOOP } \\ \text { NK } \\ \text { MKNRVORV } \\ \text { MKMORRSVR } \\ \text { MK }\end{array}\right)$
$\left.\begin{array}{c}\text { O } \\ \text { MKSNOOSV } \\ \text { MKSPSOSN } \\ \text { MKNNU } \\ \text { MKNSSROP } \\ \text { MKMOMUQMN } \\ \text { MKVVMVTV }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { OT } \\ \text { MKOUTUT } \\ \text { MKPUUNPV } \\ \text { MKMSO } \\ \text { MKMSTTPTT } \\ \text { MKMNPNVPV } \\ \text { MKVVQMOU }\end{array}\right)($
$\left(\begin{array}{c}R \\ \text { OS } \\ \text { MKSMQRQU } \\ \text { MKRSSNOU } \\ \text { MKPOS } \\ \text { MKONTVSR } \\ \text { MKMNMSTVO } \\ \text { MKVQPNPR }\end{array}\right)$
$\left(\begin{array}{c}\text { S } \\ \text { OS } \\ \text { MKSPQTSP } \\ \text { MKSMTOTQ } \\ \text {-MKPUS } \\ \text { MKNSOOUP } \\ \text { MKMNNTSTN } \\ \text { MKVOOPPT }\end{array}\right)$
$\left(\begin{array}{c}\text { T } \\ \text { OS } \\ \text { MKSVOQOT } \\ \text { MKRNPUPV } \\ \text {-MKMP } \\ \text { MKPMPRUQ } \\ \text { MKMNPUSS } \\ \text { MKVVVROV }\end{array}\right)$
$\left(\begin{array}{c}U \\ \text { OS } \\ \text { MKRRNTRV } \\ \text { MKRNQVSN } \\ \text {-MKTOQ } \\ \text { MKNTUPRR } \\ \text { MKMNRNOQ } \\ \text { MKSVMOVN }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { OU } \\ \text { MKRQSVTU } \\ \text { MKSNNTOP } \\ \text { MKMTQ } \\ \text { MKNMTVTS } \\ \text { MKMNPVVQT } \\ \text { MKVVROQN }\end{array}\right)\left(\begin{array}{c}\text { MKMOQTONQ } \\ \text { OU } \\ \text { MKQVUSUV } \\ \text { MKQVMQUO } \\ \text { MKVUQ } \\ \text { MKNRPRRS } \\ \text { MKMMVNQOTS } \\ \text { MKNTUPQT }\end{array}\right)\left(\begin{array}{c}\text { P } \\ \end{array}\right.$
$\left(\begin{array}{c}R \\ \text { OT } \\ \text { MKNUVN } \\ \text { MKOPMOOQ } \\ \text { MKUQO } \\ \text { MKMOVMTPQ } \\ \text { MKMNOUORP } \\ \text { MKRPMSRV }\end{array}\right)$
$\left(\begin{array}{c}\text { S } \\ \text { OT } \\ \text { MKNRQUNR } \\ \text { MKOMTOVS } \\ \text { MKQTU } \\ \text { MKMPPPQUN } \\ \text { MKMNMMOS } \\ \text { MKUTNOOS }\end{array}\right)$
$\left(\begin{array}{c}T \\ \text { OT } \\ \text { MKPSUTVR } \\ \text { MKOPTSTN } \\ \text { MKUMU } \\ \text { MKMSSQVOR } \\ \text { MKMNPTQOT } \\ \text { MKRUVTTP }\end{array}\right)$
$\left(\begin{array}{c}\text { U } \\ \text { OT } \\ \text { MKNSQTTQ } \\ \text { MKOMUSVT } \\ \text { MKTTU } \\ \text { MKMORRNU } \\ \text { MKMNOSMOU } \\ \text { MKSOMUTS }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { ov } \\ \text { MKQPUVNU } \\ \text { MKRUVO } \\ \text {-MKUNO } \\ \text { MKMRTNOTV } \\ \text { MKMNQMOPV } \\ \text { MKRUQOQO }\end{array}\right)\left(\begin{array}{c}\text { o } \\ \text { ov } \\ \text { MKPRRUQR } \\ \text { MKQRQPMQ } \\ \text { MKVVQ } \\ \text { MKMOVNSTU } \\ \text { MKMOPUPT } \\ \text { MKMVVVNVU }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { OV } \\ \text { MKQSVQUT } \\ \text { MKSMUONQ } \\ \text { MKMSU } \\ \text { MKMRRVOV } \\ \text { MKMNOSNNQ } \\ \text { MKVVQSSP }\end{array}\right)$
$\left(\begin{array}{c}Q \\ \text { OV } \\ \text { MKTQTTOV } \\ \text { MKTMRUTQ } \\ \text { MKTVS } \\ \text { MKNPVOQN } \\ \text { MKMMUMTMNT } \\ \text { MKSMRVMP }\end{array}\right)$
$\left(\begin{array}{c}\text { R } \\ \text { ov } \\ \text { MKOVSRP } \\ \text { MKQOQOP } \\ \text { MKSV } \\ \text { MKMQQVPRO } \\ \text { MKMNRVMUT } \\ \text { MKTNTRUS }\end{array}\right)$
$\left(\begin{array}{c}\text { S } \\ \text { ov } \\ \text { MKPVMVMP } \\ \text { MKQTRSMP } \\ \text { MKVVS } \\ \text { MKMRPUSTP } \\ \text { MKMNOSMQ } \\ \text { MKMUVQOOT }\end{array}\right)$

) (| MKR |
| :--- |
| MKS |
| M |
| MKM |
| MKı |
| MKU |

$$
\left(\begin{array}{c}
\text { T } \\
\text { OU } \\
\text { MKTVTOPQ } \\
\text { MKTNRMTT } \\
\text { MKOTS } \\
\text { MKNVNRTN } \\
\text { MKMNMQPRT } \\
\text { MKVSMMPR }
\end{array}\right.
$$

U
OU
MKRVRQU
MKSMNOSQ
MKPUS
MKNSVSOQ
MKMNSMQPO
MKVOOPPT
$\left(\begin{array}{c}\text { N } \\ \text { PM } \\ \text { MKSVTONV } \\ \text { MKSVVOOS } \\ \text { MKOR } \\ \text { MKNSVNTU } \\ \text { MKMNOMPSN } \\ \text { MKVSUNUN }\end{array}\right)\left(\begin{array}{c}\text { O } \\ \text { PM } \\ \text { MKUNROMV } \\ \text { MKTNQNSR } \\ \text { MKOVU } \\ \text { MKNSSMVP } \\ \text { MKMNUVMOQ } \\ \text { MKUSSUV } \\ \text { min }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { PM } \\ \text { MKTMNMVV } \\ \text { MKSOQOPP } \\ \text { MKVNS } \\ \text { MKOMSVRT } \\ \text { MKMNOMUVN } \\ \text { MKPVSRRU }\end{array}\right)($
$\left(\begin{array}{c}Q \\ \text { PM } \\ \text { MKRURRMT } \\ \text { MKRVNOSP } \\ \text { MKRVO } \\ \text { MKNRVPNV } \\ \text { MKMMVOSMSS } \\ \text { MKUMQORT }\end{array}\right)($
$\left(\begin{array}{c}\text { R } \\ \text { PM } \\ \text { MKTQPPPU } \\ \text { MKSRVTPR } \\ \text { MKUTU } \\ \text { MKNVSONQ } \\ \text { MKMNQUPNT } \\ \text { MKQTTMOQ }\end{array}\right)$
$\left(\begin{array}{c}\text { S } \\ \text { PM } \\ \text { MKSNPUTU } \\ \text { MKSSQNPN } \\ \text {-MKNNQ } \\ \text { MKNRTSNR } \\ \text { MKMNMSNOV } \\ \text { MKVVNQQU }\end{array}\right)$
$\left(\begin{array}{r}\text { MKU } \\ \text { MKT } \\ \text { M } \\ \text { MKN } \\ \text { MKM } \\ \text { MK } \\ \text { M }\end{array}\right.$
$\left.\begin{array}{c}\text { T } \\ \text { PM } \\ \text { MKUUOVRU } \\ \text { MKTSSRNS } \\ \text { MKSR } \\ \text { MKNRNQTO } \\ \text { MKMMVSQNRU } \\ \text { MKTRVPTT }\end{array}\right)$
$\left(\begin{array}{c}\text { U } \\ \text { OV } \\ \text { MKPUOMSU } \\ \text { MKQUSMRQ } \\ \text { MKUQQ } \\ \text { MKMRMSNOO } \\ \text { MKMNRSVNR } \\ \text { MKROVPSO }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { PN } \\ \text { MKVUMOST } \\ \text { MKTSORON } \\ \text { MKVUU } \\ \text { MKMRTNMSQ } \\ \text { MKMMVOOMPU } \\ \text { MKNRQSMV }\end{array}\right)$
$\left(\begin{array}{c}\text { P } \\ \text { PN } \\ \text { MKVTURUO } \\ \text { MKTOVTMN } \\ \text { MKVVS } \\ \text { MKMSNUSSR } \\ \text { MKMNOOMNN } \\ \text { MKMUVOOOT }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { PO } \\ \text { MKNROSNQ } \\ \text { MKOMNOSV } \\ \text { MKIOn }\end{array}\right) \quad\left(\begin{array}{c}\text { O } \\ \text { PO } \\ \text { MKNVQTO } \\ \text { MKORTRVN } \\ - \text { MKCTn }\end{array}\right)$
$\left.\left.\left(\begin{array}{c}\mathrm{P} \\ \text { PO } \\ \text { MKSVVUUV } \\ \text { MKSRQMTS } \\ \text { MKITHIT }\end{array}\right) \right\rvert\, \begin{array}{c}\mathrm{Q} \\ \text { PO } \\ \text { MKNSVVNV } \\ \text { MKOPNOOV } \\ \text {-MKDD }\end{array}\right) \mid$
$\left(\begin{array}{c}R \\ \text { PN } \\ \text { MKUUSONR } \\ \text { MKSUMOP } \\ \text { MKVQU } \\ \text { MKNQQVNP } \\ \text { MKMNQPTQU } \\ \text { MKPNURUV }\end{array}\right)$
$\left(\begin{array}{c}\text { S } \\ \text { PN } \\ \text { MKUQSMVO } \\ \text { MKSSSVVR } \\ \text { MKVU } \\ \text { MKNQMTPO } \\ \text { MKMNNUNOS } \\ \text { MKNVVNVT }\end{array}\right)$
$\left(\begin{array}{c}T \\ \text { PN } \\ \text { MKUTQPRR } \\ \text { MKTSMMOP } \\ \text { MKVOO } \\ \text { MKNPNPOU } \\ \text { MKMNONTRT } \\ \text { MKPPOVRP }\end{array}\right)$
$\left(\begin{array}{c}\text { U } \\ \text { PM } \\ \text { MKTQSNUS } \\ \text { MKSSPNUQ } \\ \text { MKSUQ } \\ \text { MKNUQVSO } \\ \text { MKMNRVOON } \\ \text { MKTPMONP }\end{array}\right)$

mKMOUUTVQ MKMNOPOVU MKPUQVUQ	MKMPVRNS MKMOMVMTR MKTPURUQ	MKOMRVRR MKMNPPUPN MKNRQSMV	mKMOQUTOV MKMMTVVSPU MKVPOPP	-rivue MKMOSPSVQ MKMNPMUT MKVRUNOQ	$\left(\left.\begin{array}{c}\text {-nILIUV } \\ \text { MKMPRNVQS } \\ \text { MKMNNSRTQ } \\ \text { MKVVPMV }\end{array} \right\rvert\,\right.$	Lan vav MKMUSMOUV MKMNQOORN MKPVOOQR	MKMOTTMUQ MKMNPTVQV MKVMQNUR
$\left(\begin{array}{c}\quad \text { N } \\ \text { PP } \\ \text { MKMRNMOOP } \\ \text { MKMTNMNSQ } \\ \text { MKU } \\ \text { MKMNQRTNT } \\ \text { MKMMTPPQS } \\ \text { MKRVMRMS }\end{array}\right)$	O PP MKMSPURO MKMUSPPVN -MKPMQ MKMNSRMUN MKMNPMQVO MKVORNUP	$\left(\begin{array}{c}\text { P } \\ \text { PP } \\ \text { MKMONOMMR } \\ \text { MKMRVRPT } \\ \text {-MKMTU } \\ \text { MKMNMROUP } \\ \text { MKMMSQUUNT } \\ \text { MKVUMTPQ }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { PP } \\ \text { MKMOQSVTP } \\ \text { MKMPOSVT } \\ \text {-MKQSQ } \\ \text { MKMMQURQNU } \\ \text { MKMMPPNSQS } \\ \text { MKUTPMRT }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { PP } \\ \text { MKMPMOPN } \\ \text { MKMQOQMMU } \\ \text {-MKPRQ } \\ \text { MKMMTRRMNT } \\ \text { MKMMSOORSV } \\ \text { MKVNTUMS }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { PP } \\ \text { MKMSQUQON } \\ \text { MKMTTTTOU } \\ \text {-MKVSO } \\ \text { MKMNNSTTU } \\ \text { MKMMSOSUPN } \\ \text { MKOROPPP }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { PP } \\ \text { MKMRPRTNT } \\ \text { MKMUMNQRO } \\ \text { MKTNO } \\ \text { MKMQMVURT } \\ \text { MKMMTSPVRT } \\ \text { MKSURRSP }\end{array}\right.$	$\left.\begin{array}{c}\text { U } \\ \text { PP } \\ \text { MKMPOVMUV } \\ \text { MKMQUORRT } \\ \text {-MKOTO } \\ \text { MKMMUSQTRR } \\ \text { MKMMTNVR } \\ \text { MKVPRUOR }\end{array}\right)$

We conservatively weight the reduction by mean \pm
www = q~Ää́ $[\{$ èn 1 âI ^Äë [ww[[èNI âI R]]]*ww[[èNI âI P]] + (N - ^Äë [ww[[èNI âI R]]]) *ww[[èNI âI Q]] \}I \{èNI NI U\} I \{âI NI PP\}]X
j~íêáñcçêã [qê~åëéçë́́ [www]]

$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{~N} \\ \text { MKOQMRSU } \end{array}\right)$	$\left(\begin{array}{c}0 \\ \mathrm{~N} \\ \text { MKPTUSOO }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{N} \\ \text { MKMOSMOMQ }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \mathrm{~N} \\ \text { MKMVPONMT }\end{array}\right)$	$\left(\begin{array}{c}R \\ \mathrm{~N} \\ \text { MKMTPOMUN }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { N } \\ \text { MKMSOUOOO }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { N } \\ \text { MKMVVNUNN }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { N } \\ \text { MKMVORVSN }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{O} \\ \text { MKNOPUNO } \end{array}\right)$	$\left(\begin{array}{c} 0 \\ 0 \\ \text { MKOVVSUS } \end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{O} \\ \text { MKNVUVQQ }\end{array}\right)$	$\left(\begin{array}{c}Q \\ 0 \\ \text { MKPSRSNS }\end{array}\right)$	$\left(\begin{array}{c}R \\ 0 \\ \text { MKNVMNUP }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ 0 \\ \text { MKQNSSVT }\end{array}\right)$	$\left.\begin{array}{c}T \\ 0 \\ \text { MKPOVMSR }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { O } \\ \text { MKOSUOOR }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{P} \\ \text { MKNPNTPS } \end{array}\right)$	$\left(\begin{array}{c}0 \\ \mathrm{P} \\ \text { MKORRRUT }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{P} \\ \text { MKUMNNVS }\end{array}\right)$	$\left(\begin{array}{c}Q \\ P \\ \text { MKOMMNOQ }\end{array}\right)$	$\left(\begin{array}{c}R \\ P \\ \text { MKNMTOOS }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { P } \\ \text { MKMUUQNQU }\end{array}\right)$	$\left.\begin{array}{c}T \\ P \\ \text { MKQORQNS }\end{array}\right)$	$\left.\begin{array}{c}\text { U } \\ \text { P } \\ \text { MKNTNOMO }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{Q} \\ \text { мклмомор } \end{array}\right)$	$\left(\begin{array}{c}0 \\ 0 \\ \text { MKQNPRUV }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{Q} \\ \text { MKRRSNOU }\end{array}\right)$	$\left(\begin{array}{c}Q \\ Q \\ \text { MKMVROST }\end{array}\right)$	$\left(\begin{array}{c}R \\ Q \\ \text { MKOQSVPT }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ Q \\ \text { MKPTVORR }\end{array}\right)$	T Q MKOOVOST	$\left.\begin{array}{c}\mathrm{U} \\ \mathrm{Q} \\ \text { MKQNRTTP }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{R} \\ \text { MKPTOVPO } \end{array}\right)$	$\left(\begin{array}{c}0 \\ R \\ \text { MKNRTQRP }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{R} \\ \text { MKNPMPMP }\end{array}\right)$	$\left(\begin{array}{c}Q \\ R \\ \text { MKPOPSQR }\end{array}\right)$	$\left(\begin{array}{c}R \\ R \\ \text { MKNNVSRO }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ R \\ \text { MKMVVOPQU }\end{array}\right)$	$\left(\begin{array}{c}T \\ R \\ \text { MKQUOSVR }\end{array}\right)$	$\left(\begin{array}{c}U \\ R \\ \text { MKNRSTPP }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{~S} \\ \text { MKPNVRSQ } \end{array}\right)$	$\left(\begin{array}{c}0 \\ S \\ \text { MKPUUVTS }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{S} \\ \text { MKONONOO }\end{array}\right)$	$\left(\begin{array}{c}Q \\ S \\ \text { MKOUQtts }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { S } \\ \text { MKPOPOTO }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { S } \\ \text { MKOMOUOP }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { S } \\ \text { MKUSUTto }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { S } \\ \text { mKOSUSTS }\end{array}\right)$
$\left(\begin{array}{c}\text { N } \\ \text { T } \\ \text { MKMMRQURUQ }\end{array}\right)$	$\left(\begin{array}{c}0 \\ T \\ \text { MKNSRSTV }\end{array}\right)$	$\left(\begin{array}{c}P \\ T \\ \text { MKMNSQNSV }\end{array}\right)$	$\left(\begin{array}{c}Q \\ T \\ \text { MKMMQMMSMS }\end{array}\right)$	$\left(\begin{array}{c}R \\ T \\ \text { MKMNVNNRS }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ T \\ \text { MKMnPTtSO }\end{array}\right)$	$\left(\begin{array}{c}T \\ T \\ \text { MKMMVQUMNS }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { T } \\ \text { MкммUPрто }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{U} \\ \text { MKPUOTNN } \end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { U } \\ \text { MKMONVNQR }\end{array}\right)$	$\left(\begin{array}{c}P \\ U \\ \text { MкмтоиотQ }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{Q} \\ \mathrm{U} \\ \text { MKMTRVSRT }\end{array}\right)$	$\left(\begin{array}{c}R \\ U \\ \text { MKMNRUPSS }\end{array}\right)$	$\left(\begin{array}{c}S \\ U \\ \text { MKMNVMNOO }\end{array}\right)$	$\left(\begin{array}{c}T \\ U \\ \text { MKORNPPU }\end{array}\right)$	$\left(\begin{array}{c}U \\ U \\ \text { MKMONOQNV }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{v} \\ \text { MKPSRTTS } \end{array}\right)$	$\left(\begin{array}{c}0 \\ \mathrm{~V} \\ \text { MKPSPTMT }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{V} \\ \text { MKPMOPNV }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \mathrm{~V} \\ \text { MKOOMMRV }\end{array}\right)$	$\left(\begin{array}{c}R \\ \mathrm{~V} \\ \text { MKOOVON }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \mathrm{V} \\ \text { MKPVONOS }\end{array}\right)$	$\left(\begin{array}{c}T \\ \mathrm{~V} \\ \text { MKRPPQPN }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \mathrm{V} \\ \text { MK@MPMN }\end{array}\right)$
$\left(\begin{array}{c} \text { N } \\ \text { NM } \\ \text { MKмTUNONO } \end{array}\right)$	$\left(\begin{array}{c} 0 \\ \text { NM } \\ \text { MKNTRQT } \end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NM } \\ \text { MKNTTSNN }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NM } \\ \text { MKMTTTMRQQ }\end{array}\right)$	$\left(\begin{array}{c}R \\ \text { NM } \\ \text { MKNRUMOT }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NM } \\ \text { MKNPTRV }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { NM } \\ \text { MKPVUOQMV }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NM } \\ \text { MKOPOTUN }\end{array}\right)$
$\left(\begin{array}{c} \text { N } \\ \text { NN } \\ \text { MKMPOUVVR } \end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NN } \\ \text { MKOMVOMU }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NN } \\ \text { MKMORVPVQ }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NN } \\ \text { MKMPNSUPP }\end{array}\right)$	$\left(\begin{array}{c}R \\ \text { NN } \\ \text { MKMUVQMUO }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NN } \\ \text { MKMRRNVSU }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { NN } \\ \text { MKMOQOUQR }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NN } \\ \text { MKMQUNSVQ }\end{array}\right)$
$\left(\begin{array}{c} \text { N } \\ \text { NO } \\ \text { MKPQRSUR } \end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NO } \\ \text { MKPQMUVQ }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NO } \\ \text { MKPTTQQO }\end{array}\right)$	$\left(\begin{array}{c}0 \\ \text { NO } \\ \text { MKNSORPR }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { NO } \\ \text { MKORMNON }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NO } \\ \text { MKOOSPUV }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { NO } \\ \text { MKQMTQP }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NO } \\ \text { MKNVTOQQ }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \mathrm{NP} \\ \text { MKQuSogo } \end{array}\right)$	$\left(\begin{array}{c}0 \\ \text { NP } \\ \text { MKRRVRPR }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NP } \\ \text { MKPSUMTS }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NP } \\ \text { MKPMNPPP }\end{array}\right)$	$\left(\begin{array}{c}R \\ \text { NP } \\ \text { MKORMURV }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \mathrm{NP} \\ \text { MKQVOTUS }\end{array}\right)$	$\left(\begin{array}{c}T \\ \text { NP } \\ \text { MKTNQVUP }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NP } \\ \text { MKQSUQQP }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \text { NQ } \\ \text { MKMSOROSU } \end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NQ } \\ \text { MKMRTUNVQ }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NQ } \\ \text { MKMOPVQSQ }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NQ } \\ \text { MKMSMPVPU }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{R} \\ \text { NQ } \\ \text { MKMPPRRU }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NQ } \\ \text { MKMONTPOV }\end{array}\right)$	$\left(\begin{array}{c}T \\ \text { NQ } \\ \text { MKQSSTto }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NQ } \\ \text { MKMOSRUTO }\end{array}\right)$
$\left(\begin{array}{c} \text { N } \\ \text { NR } \\ \text { MKNPSTOP } \end{array}\right)$	$\left(\begin{array}{c}0 \\ \text { NR } \\ \text { MKPSQROV }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NR } \\ \text { MKPPSPQ }\end{array}\right)$	$\left(\begin{array}{c}\text { Q } \\ \text { NR } \\ \text { MKMSQQNVS }\end{array}\right)$	$\left(\begin{array}{c}R \\ \text { NR } \\ \text { MKOQTNMP }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NR } \\ \text { MKOSmVSU }\end{array}\right)$	$\left(\begin{array}{c}\text { T } \\ \text { NR } \\ \text { MKNPSTUO }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NR } \\ \text { MKPTVRSP }\end{array}\right)$
$\left(\begin{array}{c} \text { N } \\ \text { NS } \\ \text { MKMOSPTPT } \end{array}\right)$	$\left(\begin{array}{c}0 \\ \text { NS } \\ \text { мкмооотS }\end{array}\right)$	$\left(\begin{array}{c}\text { P } \\ \text { NS } \\ \text { MKMONOPUO }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NS } \\ \text { MKMMVSTRT }\end{array}\right)$	$\left(\begin{array}{c}\text { R } \\ \text { NS } \\ \text { MKMOSTNTR }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NS } \\ \text { MKMOMROO }\end{array}\right)$	$\left(\begin{array}{c}T \\ \text { NS } \\ \text { MKMOPVOQ }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NS } \\ \text { MKMNTMTU }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \text { NT } \\ \text { MKMRQQMTS } \end{array}\right)$	$\left(\begin{array}{c}\text { O } \\ \text { NT } \\ \text { MKMNOUSTQ }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{P} \\ \mathrm{NT} \\ \text { MKMNUQUNT }\end{array}\right)$	$\left(\begin{array}{c}Q \\ \text { NT } \\ \text { MKMNOMSTU }\end{array}\right)$	$\left(\begin{array}{c}\mathrm{R} \\ \mathrm{NT} \\ \text { MKMMVUTSSS }\end{array}\right)$	$\left(\begin{array}{c}\text { S } \\ \text { NT } \\ \text { MKMNOTQ }\end{array}\right)$	$\left(\begin{array}{c}T \\ \text { NT } \\ \text { MKNMQQUN }\end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NT } \\ \text { MKMOPUPNN }\end{array}\right)$
$\left(\begin{array}{c} \mathrm{N} \\ \text { NU } \\ \text { MKORORSN } \end{array}\right)$	$\left(\begin{array}{c} 0 \\ \text { NU } \\ \text { MKovpuno } \end{array}\right)$	$\left.\begin{array}{c} \mathrm{P} \\ \text { NU } \\ \text { MKRPMOP } \end{array}\right)$	$\left(\begin{array}{c} Q \\ \text { NU } \\ \text { MKPOMUNR } \end{array}\right)$	$\left.\begin{array}{c} \mathrm{R} \\ \text { NU } \\ \text { MKOUPVMS } \end{array}\right)$	$\left(\begin{array}{c} \mathrm{S} \\ \mathrm{NU} \\ \text { MKOUPORV } \end{array}\right)$	$\left.\begin{array}{c} T \\ \text { NU } \\ \text { MKVOPSS } \end{array}\right)$	$\left(\begin{array}{c}\text { U } \\ \text { NU } \\ \text { MKPNTNVV }\end{array}\right)$

This has SD

```
wwp = q~ÄäÉ[ (((^Äë[ww[[èNI âI R]]]* (ww[[èNI âI S]] {O + ww[[èNI âI P]]{O) +
    (N - ^Äë[ww[[èNI âI R]]]) *(ww[[èNI âI T]]{O + ww[[èNI âI Q]]{O) -
    (^Äë[ww[[èNI âI R]]]*ww[[èNI âI P]] + (N - ^Äë[ww[[èNI âI R]]]) *ww[[èNI âI Q]] ) {
    O)) {(KR))I {èNI NI U}I {âI NI PP} ]
```


j~îéãñç̧êã μ MM]
MKMMMTOOOTN
MKNPTUUO
MKMMORONVO MKNTRSMS

Also need hyperbolic Bessel functions

$$
\begin{aligned}
& \text { åå }=\operatorname{SMX} \tau=\text { KMNX } \\
& f M[i ́ \mid] W=k\left[N+\sum_{\hat{a}=N}^{\text {åa }}\left(\frac{(i ́ / O)\{(0 * \hat{a})}{\hat{a}!*(\hat{a}!)}\right) I \text { åa }\right] X f N[i ́ \mid] W=k\left[\frac{1}{0}+\sum_{\hat{a}=N}^{\text {åa }}\left(\frac{(i ́ / O)\{(O * \hat{a}+N)}{\hat{a}!*((\hat{a}+N)!)}\right) I \text { åa }\right] X \\
& f O[i ́ \mid] W=k\left[\frac{1 ́\{O}{U}+\sum_{\hat{a}=N}^{\text {åa }}\left(\frac{(i ́ / O)\{(0 * \hat{a}+0)}{\hat{a}!*((\hat{a}+0)!)}\right) I \text { åa }\right] x b b[i ́ \mid] W=k\left[N+\sum_{\hat{a}=N}^{\text {åa }}\left(\frac{i ́\{\hat{a}}{\hat{a}!}\right) I \text { åå }\right] x
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=q \sim \ddot{A ̈} \text { É }[\alpha M[[a ̀ I N]] I \text { \{àI NI PP\}]X } \\
& \mu=q \sim \text { Ää́ }[\{\mu M[[a ̀]] * \alpha[[a ̀]] I \mu M[[a ̀]] *(N-\alpha[[a ̀]])\} I\{a ̀ I N I \text { PP\}]Xe[í|I à|] W= }
\end{aligned}
$$

qp[â|] W= kçêã~ä[fåîÉêëÉṕééáËë[pÉêáÉë[(N - e[ñI â]) I \{ñ MI SM\}]]]Xqpp[í|I â|] W= qp[â] /K ñíx
which is applied to give expansion times for each marker

j~íêãncçe	[qê-åéé	çëÉ [wwwMi					
(QMTKOMP	TQRKUUU	SRKVQTS	NPUKRN	NMTKMTU	VNKNQUO	NQUKMVO	NPTKROV
RQKORRP	NRSKQVo	VPKQNUU	OMSkVPS	UUKRRP	ORPKMOP	NVPKQOO	NPRKOPO
NMUKTSR	OOUKNVP	NOVRKSR	NTOKPMS	UTKOSTN	TNKNUQU	QRVKQNS	NQQKTSN
ONKSUUP	NMUKVMN	NSTKN	OMKNTON	NONKMRR	VTKNOUO	ROKTNNR	NMVKSTQ
QNPKMQT	NQMKPRU	NNPKRPO	PSTKUOT	NMPKPQR	UQKQVRO	SNVKQNS	NPVKSPN
NPNKMR	NTMKVQV	UMKMQNN	NNPKMVQ	NPPKNQT	TRKNNQN	NMOPKUS	NMRKNUQ
URKMUPQ	OVOTKNR	ORSKSVR	SOKMSQU	OVVKQVR	ONQKVU	NQTKQSU	NOVKRU
OPPTKOS	NVVKRVP	PRPKQQ	PSVKPVP	TQKOQRS	UVKPMNP	OVQMKRT	NMMKURV
NPQKNUN	NPPKNMV	NMOKOSR	SVKSR	NTMKNMN	NQUKPPO	OQRKPVQ	NRQKQSP
QOKRVVP	NMPKNRP	NMOKRVR	QOKPRVT	VNKRVTN	TUKOTOS	OVMKMVS	NQRKNRT
VOKQUTU	SRQKTUR	TOKSPUT	UVKMmun	ORVKSPQ	NRTKNPU	NORKOVP	NPSKRUR
NRUKTRO	NRRKTMR	NTVKUV	SOKPOUV	NMPKVMQ	VNKVPUO	OMNKROV	TTKVUQO
NMOKOP	NPUKQS	SSKMmos	QVKTTQT	VNKNMUU	NMSKUSN	OUVKNQN	VTKQNMQ
NSPKQSP	NRMKSUV	NNPKRMP	NRTKSSR	USKMVRO	RRKPPVP	NTNVKON	NOMKRP
QVKPSOP	NROKPST	NPTKTSP	OOKPRNT	VRKPPQT	NMNKRUQ	QVKPUR	NSMKQOR
NSQKRVS	NPUKSNQ	NPOKMRU	RVKSSVS	NSSKTUP	NOTKRPV	OTTKSQU	NMRKUTR
QVMKNNU	NNPKOUR	NSPKON	NMSKNVV	USKUNPT	NNOKNRS	vSUKTMU	ONNKMST
UMKQPMT	VSKMMOQ	OOOKUPU	NMTKPVN	VNKVSUP	NVNKQRS	NNMOKTS	NMRKUPO
NMRKRTO	NOVKRNQ	TKRURQR	RVKNUSQ	NNNKSUT	NQPKNTT	SRNKVUV	PPVKPMO
PQOKUTR	NNPKUQN	NOOKTOP	VQKOQRP	NORKOVN	RRKSNV	NQROKTR	POPKRQ
NUPKMUU	NQQKPOV	NMTKSVP	UоктQмо	NOSKTSV	UNKPRPO	OVQKVTO	SPKRPMP
PPQKNP	NPMKUOR	NNOKTRN	NOQKUPR	UVKUOSR	NNMKONQ	QRSKTTP	NOUKMPR
NPMKQST	NUPKTQT	OUNKUNV	QMKNSUO	UPKVTUQ	NOPKOOR	OMTKTV	NNPKQQT
UMRKPTP	OMMKOMN	TNKPUT	OMOKSPQ	TMKQRNP	NNNKQST	OQUKPSS	VQKTRQV
NMPKMN	TSKVURT	NOSKTRQ	OUKQOPO	NPTKUOT	NMRKPMU	OOSKRVR	UQKOVVV
QTKQTUS	NOVKMVQ	NRQKRQR	QQKMUOT	NPVKQQP	NSOKOMQ	NNNKVQV	NONKRMR
NSUKPSN	RRNKROU	OQUKQMN	URKTSTU	NMRKUVT	VTKRTTR	OQUKQVN	voktvvo
PMOKNQP	NPTKNRP	NOOKQVQ	UMKRVO	VMKTNQT	NNPKUTS	OPMKTPU	NnUKSTO
NSTKUPN	NMVKNPP	OUMKSQO	RTRKQVT	NMMKPPP	NORKQOU	PQPKVRO	NOUKVPT
NPOKOOR	NVOKMOP	NOVKRSR	UNKQSUV	NRUKUMV	NMVKOVR	PROKVRS	NQTKSQS
NPMNKNN	NVUKOON	NovUKтo	OUNKVTV	POVKVST	OSNKSPQ	PNNKPPV	NVSKMnP
SNKNVQR	UVKMPTP	SVMKVR	USKPOUO	UVKRUON	NRMKNOU	ORSKUNP	vmkouvo
(NPOKONV	NVQKSP	NPVKVRT	SUKPOVP	VmKRTN	NRUKOOO	NQTKUNP	nMRKмto

The SD for T are

[^0]j~íêáñcçêã [qê~åëéçëÉ [wwwMO]]

KPPTQR	VS	RP	QR	RKOONV	OQKRNTU		
UO	PSKVTVQ	OQKVSPN	UKPVRTQ	QMS	PRQ	QRKPPSN	O
KSRSV	PMOKTOP	NOOTKRO	SOKNTT	NKUPPS	QQKPOVU	MV	PT
OKONRUU	PQK	NMPKSTT	NKPMTTO		KMRUQT	QKONUSR	
		NSKRNSQ					R
QS	QRKOQPT						
PMK	RQP	N		USKQPQV	RSKOQUU	QSKSTNQ	ST
	RTK	QON	NQNKNNQ	PPKSPPP	PMKURP	OONOKPQ	QTKUUR
STKRMV	QOKOSMP	SRKQPRU	NNKVSPT	VMKVQRP	RQKRNPP		TRKNOPQ
NOKVOSP	NVKTOS	KOO	UKROSVU	OMKVSTN	TK	OK	OQKPURQ
NSKMORS	NSPKMSU	NTKPPQR	OOKOTRQ	ORSKMMU	NKOOTS	UKSNQ	T
RUKVOS	PVK	QPK	K	UKO	RK	URKQROP	OMKNPS
RRKUSNS	SSKVUM	ONK	NQKMMQQ	ONKVSQR	OOKTVPR	QPKRNT	VQ
PQKVQSO	PVKRNR	OQKU	ORKSNUV	OMKRUVV	QKVPNO	VKTTQ	S
UOKP	VNKU	TTK	PTKVUSU	RSKVQRU	K	KRSRT	NR
RPKVUMV	QUKUMTU	PQKNSNR	NOKMQPT	NKMOQN	KMUOP	RT	OUKRPTU
VQK	QSKTI	PUKNNQ	OMK	OTKVROT	тK	отт	RRKNTQQ
RKRRORV	NNKTO	VK'	RKVMUVV	TKMTQSO	RKPQR	P1	RN
OP	PSKQ	OKQU	NOKMVU	OMKURPV	OTKRPUO	NRUKVVO	PS
NM	OOKMS	OPK	RKU	OSKOROS	MK	NOPUKSR	VT
PNKTOPO	QRKT	QMKOVRQ	QRKN	OSKVVUN	KT	SNUKVUR	UV
NRPKNMQ	NSKRP	K	S	KU	KRTQ	OQMKVRO	Q
NVKPTVT	NOTKRU	OTUK	NQKRNT	SKN	PKSQSN	NRVKPV	NNKOTNT
STKRUOV	STKQ	PTKOT	T	KQ	NOKV	QQTKPR	NKOQON
SPKQTSU	ONKMMQS	SVKSU	SRTM	TKOUU	ORKTVSP	RNKM	Q
RKMPPQR	NMOKPVO	NNV	KPTT	RQ	KSNSQ	ORKUQRR	SS
QUKMPS	PSOKSQT	PMKMRMT	VKTPVNN	KSRTQ	OOKMVO	SOKMQNO	NUKMPTP
OSNTK	PJ	NUKRRTP	RNKQQQO	T	TK	оммкмм	OT
RNKMTNQ	OOKOPOT	QUKOSNT	UMMKOVU	VKVVV	OSKUPON	NPMKONT	MKSNUQ
SQKQPVT	ORVKVRO	OURKSP	QQKSORS	QSPKQNN	OUKTTM	RRQMKVO	ONVKNVR
TSQOKST	QOVKMMV	URONKUO	USQKOSS	SVSKOP	NVKQNN	NNUNKPN	UNKMMQ
NPKTTRS	OOKUMRQ	NVSSKSV	SKRUQ	SKVTTR	NVKNOVN	URKQRSN	VKSRN
PVKNPRO	QRKSOT	ONKOTS	NPKTTQ	ONKRQRS	OVKVQQQ	VPKNQVS	RKNUN

We are only using 29 markers
_ = q~ÄäÉ[à I \{àI NI PP\}]Xrr[ñ|]W= N - råáípíÉé[-ñ]X
_ = rr[\{NI OI MI QI RI MI TI UI VI NMI NNI NOI NPI NQI MI NSI NTI NUI NVI OMI ONI OOI OPI OQI ORI OSI OTI OUI OVI PMI MI POI PP\}]X_ [à|] W= _[[à]]X

We first sketch the spectrum of times
$n n[\tilde{n} \mid I$ è $P \mid I$ èQ $\mid] W=k\left[\frac{N}{\text { èQ } \sqrt{O * \pi}} *\right.$ bné $\left.\left[-\frac{(\tilde{n}-\text { èP) \{O}}{O *(e ̀ Q)\{0}\right]\right] x$
$n[\tilde{n} \mid I$ èn $\mid I$ à $\mid] W=\ldots[a ̀] * n n[n ̃ I ~ w w w M N[[e ̀ N I ~ a ̀]] ~+~ K M N I ~ w w w M O[[e ̀ ̀ N I ~ a ̀ ~]] ~+~ K M N] X ~ m a ́ A ̊ N[e ̀|I ~ ~| I ~ A ̈ \mid] ~ W=~$ mäçí[bî~äìí́ [q~ÄäÉ[n[ñI èI à]I \{àI NI PP\}]]I \{ñ MI ~\}I mäçío~åö́́ $\rightarrow\{M I$ Ä\}I mäçípíóäÉ \rightarrow q~ÄäÉ[od_çäçê[råáípíÉé[OO - à] * (OO-à) / OOI páå[à* / PP]I råáípíÉé[à -NN] * (à - NN) / OO]I \{àI NI PP\}]I mäçíi~ÄËä \rightarrow
\{è\}]
This plots the time distributions for each marker
máÅN[NI NMMMI MKN]

máÅN[OI NMMMI MKMO]
\{O

máÅN[PI SMMI MKMS]

máÅN[QI SMMI MKN]

máÅN[RI SMMI MKMS]

máÅN[SI SMMI MKMS]

máÅN[TI NSMMI MKMP]

máÅN [UI SMMI MKMS]
\{U\}

The individual branches may be combined to obtain average times
nM[ñ|I è|] W= pìã[n[ñ è I à $] / O V I$ \{àI NI PP\}]X
máÅO[è $|I \sim| I ~ A ̈ \mid] W=$ mäçí[nM[ñI è] I \{ñ NI ~\}I mäçío~åÖÉ $\rightarrow\{M I$ Ä\}I mäçíi~ÄÉä \rightarrow \{è\}]
máÅO[NI UMMI MKMN]

máĂO [OI QMMI MKMN]

máÅO[PI QMMI KMN]
\{P\}

máĂO[QI PMMI KMN]

máÅO[RI PMMI KMNR]

máĂO [SI PMMI KMN]

máÅO[TI UMMI KMMR]
\{T\}

J2: Notice the spike at c50 generations ago, i.e. 650AD, the time of the Arab conquests.
máÅO[UI QMMI KMNR]
\{U\}

Some idea of the TMRCA is obtained by averaging, either the individual times or the overall, notice the discrepancy
ãN = q~ÄäÉ[pìã [__[à] *WwwMn[[è è à]] I \{àI NI PP\}]/OVKMI \{èI NI U\}]
\{OSTKUQI OUUKQOOI NSSKRMQI NOOKVQI NNVKQNOI NOOKOVI RMNKUQOI NPPKMUQ\}

OT *ã
\{TOPNKSVI TTUTKPVI QQVRKSNI PPNVKPTI POOQKNPI PPMNKUQI NP RQVKTI PRVPKOT\}
mM = q~ÄäÉ[kfåíÉÖê~íÉ[nM[ñI è]I \{ñI NI UMM\}]I \{èI NI U\}]
\{MKVMSURUI MKVOQPPI MKVPNQORI MKVRTNNOI MKVTQROUI MKVUVPSRI MKTRSRSOI MKVUSRUN\}
ão = q~ÄäÉ[kfåíÉÖê~íÉ[ñ*nM[ñI è]/mM[[è]]I \{ñ NI UMM\}]I \{èI NI U\}]
\{NTTKPOUI NUNKROPI NRPKVVOI NNOKVQPI NOPKVROI NOQKNSSI OTPKPOTI NPSKNOQ\}

OT *ãO
\{QTUTKUSI QVMNKNOI QNRTKTVI PMQVKQTI PPQSKTNI PPROKQUI TPTVKUOI PSTRKPR\}

As the averages are not stable we use robust statistics, and stochastic simultations to get the MLE for the TMRCA
For later use we generate random quintiles at roughly $30,40,50,60,70 \%$

```
åMN = NM MMM MMMX tM = cä~ííÉå [m~ê~ääÉááóÉ[q~ÄäÉ[{`äÉ~ee [ OI w]Xo = o~åÇçãoÉ~ä[{KMMMRI KVVVR}I OV]Xw = pçêí[o]X
    {w[[V]]I w[[NO]]I w[[NR]]I w[[NU]]I w[[ON]]}}I {âI NI åMN}]]I N]x{jÉ~å[tM]I \sqrt{}{s~êá~åÅE[tM]}}
```

\{\{MKPMMNRRI MKQMMMUI MKQVVVTTI MKRVVURTI MKSVVTSV\} I \{MKMUOONVRI MKMUTVNPNI MKMUVTPPSI MKMUTUVUTI MKMUOONSP\} \}

Using the distribution of times ZZZO1 we use bootstrap to generate the same quintiles for our data, inc SD

```
{åMNI åMM} = {NMMMMMI PP}X mmm[ñ|] W= k[fåîÉêëÉ` ac[kçêã~äaáëíêáÄííáçå[MI NKM]I ñ]]X
aa=cä~ííÉå[q~ÄäE[{\äÉ~ê[ ijI ttMI w]Xij = q~ÄäÉ[
    içÖ[ N + (KMMN + wwwMO[[èNI à]]) / (KN + wwwMN[[èNI à]]) ]I {àI NI PP}]XttM = cä~ííEå[m~ê~ääÉäáóÉ[q~ÄäÉ[
        {`äÉ~ê[OOI OMI ONI OOI w]XOM = O~åÇçãoÉ~\ddot{a}[{KMNI KVV}I åMM]X ON= q~ÄäÉ[mmm[OM[[à]]]I {àI NI åMM}]X
            oo = q~ÄäÉ[ __[à] *WwwMN[[èNI à]]*bñé[ ij[[à]]*oN[[à]]] I {àI NI åMM}]Xw = pçêí[oo]X
            {w[[NP]]I w[[NS]]I w[[NV]]I w[[OO]]I w[[OR]]}}I {âI NI åMN}]]I N]X
```


Thus for each file q our data used is the qunitile and its $S D$

```
j~íéáñcçêã[aa]
```

$\left(\begin{array}{cccc}\text { NOON } & \text { \{VMKUQVVI NNRKQPVI NQMKVRQI NTMKPPOI ONTKOVU\} } & \text { \{NMKNPTPI NOKSONI NQKORSSI NTKSSNI OUKTTQN\} } \\ \text { QSM } & \text { \{NNQKUQUI NOUKSOQI NQPKTMTI NSOKQNQI NUVKOT\} } & \text { \{UKQQTVI VKOUSUI NMKUTOI NPKSPPQNI NUKSRNS\} } \\ \text { NOTM } & \text { \{NMMKSUPI NNQKVURI NOVKPNUI NRMKMMUI NUSKNSQ\} } & \text { \{VKMSVOTI UKNPPVRI NMKMURTI NQKUQI OQKMRSP\} } \\ \text { OUVU } & \text { \{RVKOMPVI SVKVUTI UOKPPQOI VTKNVUSI NNSKPUU\} } & \text { \{RKOTRMSI RKVOPUTI SKSTNNQI TKVUNQQI VKVNMOQ\} } \\ \text { NMOV } & \text { \{UVKMMRRI VSKRSOQI NMQKUQOI NNQKPRVI NORKUUS\} } & \text { \{RKPNQOTI RKROVSUI SKNSNVTI SKSPVMNI UKMVNTT\} } \\ \text { NRPP } & \text { \{VOKRUQSI NMOKSSPI NNQKMQI NOTKTPUI NQQKRPO\} } & \text { \{SKNMOORI SKRVORVI TKTQMSRI VKMMNVTI NMKSMVR\} } \\ \text { NOQN } & \text { \{NTSKSNPI OOPKNTSI OTOKUNSI PQMKMMVI RMMKSSV\} } & \text { \{OQKMUMPI OVKNVPNI PNKSRURI RPKQUPI VVKQSTU\} } \\ \text { VTN } & \text { \{VUKQMOVI NMTKSI NNTKNMTI NOUKRUQI NQPKURR\} } & \text { \{SKONSSUI SKNSTRPI TKMMSSNI UKRVVMUI NNKNOVN \} }\end{array}\right)$

This is now applied to each case, begiining with
We do G2a3 using 5 quintiles
$h h=N X a M=a a[[h h]] X\{a ̊ M I$ ãNI ÄNI ÄOI ÄPI ÄOI ÄRI iNI iO\} = \{aM[[N]]I NKM/aM[[N]]I am[[OI N]]I am[[OI O]]I am[[OI P]]I aM[[OI Q]]I aM[[OI R]]I am[[OI O]] I NKR*aM[[OI R]] \}
\{NOONI MKMMMUNVMMNI VMKUQVVI NNRKQPVI NQMKVRQI NTMKPPOI ONTKOVUI NNRKQPVI PORKVQS\}

The stochastic simulation uses the branching distribution $\tau 0$ to generate random quintiles. These are filtered by requiring they are within two SD of the data. To speed the process we compiled the branching distribution in files 29ComFun together with interpolation file W29ComFun which must be loaded. This information is contained in the function F4 used. This are the slowest part of the routine, taking about an hour.

```
åMN = RMMM MMMX `äÉ~ê[ tNM] X ê = OX
tNM = cä~íÉE̊[m~ê~ääÉäáòÉ[q~ÄäÉ[{`äE~ê[ vI ~I gI wI wMI wN]X v = o~åççãoE~ä[{iNI iO}]X
    ~ = O~åççãoÉ~ä[{KMRI NKP}]Xg= O~åççãfåíÉÖÉê[{NI NMMMMMMM}]X wM=tM[[g]]X
    wN = {v*cQ[wM[[N]]I vI ~I ãN]I wM[[O]]I wM[[P]]I wM[[Q]]I wM[[R]]} Xw= gçáå[wNI {vI ~}]X
    {w}}I {âI NI åMN}]]I O]X tNN = pÉäÉÅí[tNMI #[[N]] < aM[[OI N]] + ê*aM[[PI N]] CC
    #[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉEOÖíÜ[tNN]X
tNO= cä~ííE̊[m~\hat{ê}~ääÉäáòÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I wI wM]X wM=tNN[[â]]Xv=wM[[S]]X ~ = wM[[T]]X
        w = {wM[[N]]I v*cQ[wM[[O]]I vI ~I ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMO}]]I O]XtNP = pÉäÉÅí[tNOI #[[O]]< aM[[OI O]] + ê*aM[[PI O]] CC
    #[[O]] > aM[[OI O]] - ê*aM[[PI O]] C]X åMP = iÉåÖíÜ[tNP]X
```



```
        w = {wM[[N]]I wM[[O]]I v*CQ[wM[[P]]I vI ~I ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMP}]]I O]XtNR = pÉäÉÅ[tNQI #[[P]] < aM[[OI P]] + ê*aM[[PI P]] CC
    #[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iÉåÖíÜ[tNR]X
```



```
        w = {wM[[N]]I wM[[O]]I wM[[P]]I v*cQ[wM[[Q]]I vI ~I ãN]I v*cQ[wM[[R]]I vI ~I ãN]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMQ}]]I O]X `äÉ~ê[ tOM]X tOM = pÉäÉÅí[tNSI
    #[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC #[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]] CC
        #[[R]] < aM[[OI R]] + ê*aM[[PI R]] CC #[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]X åMR = iÉåÖíÜ[tOM]
ORP ORM
```

Thus by filtering we now have 253,250 random quintiles within 2 SD of the experimental data. The mean for these is
$\{j E ́ \sim a ̊[q \sim A ̈ a ̈ E ́[t O M[[a ̀ I ~ S]] I\{a ̀ I ~ N I ~ a ̊ M R\}]] I ~ \sqrt{\text { s~êá~åÅÉ[q~Ää́́[tOM[[àI S]] I \{àI NI åMR\}]] }}\}$ \{OPRKURI PUKOPQT\}

We now use least squares to find a quasilinear estimator which gives the best estimate of the TMRCA for all the random quintiles.

```
ttN = q~ÄäÉ[ { tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N}*(tOM[[àI S]]) {(-N)I
    {àI NI åMR}]x ttO = q~ÄäÉ[ NI {àI NI åMR}]X
ttP = iÉ~ëípèi~êÉë[ttNI ttO]X__[{_N|I _O|I _P|I_Q|I_R|}] W=
    ttP[[N]]*_N + ttP[[O]]*_O + ttP[[P]]*_P + ttP[[Q]]*_Q + ttP[[R]]*_R
+ttP[[S]]X__t = q~\ddot{̈äÉ[}
    __[{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] - NI {àI NI åMR}]X
```



```
__N[{_N|I _O|I _P|I_Q|I_R|}] = aO[[O]]*__[{_NI _OI _PI _QI _R}]X
__t = q~⿱艹Ä̈̈́[___N[{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] -N I
    {àI NI åMR}]X aP = { åMNI åMRI jÉå[__t]I \sqrt{}{s~êá~åȦÉ[__t]}}
{RMMMMMMI ORP ORMI -QKQSUVR }\times\mp@subsup{N}{M}{*-NS}\mathrm{ I MKNMOVRT }
```

We see the QL estimates the TMRCA with average accuracy - $\mathrm{Q} K \mathrm{Q} S U V \mathrm{C} \times \mathrm{NM}^{-\mathrm{NS}}$ and overall SD 0.102957 . Thus we estimate the TMRCA from our experimental data in generations

```
ÖN = __N[aM[[O]] ]
```

otokruo

Also we estimate the SD given the variance in the experimental data

ÉÉ = \{\{NI MI MI MI M\}I \{MI NI MI MI M\}I \{MI MI NI MI M\}I \{MI MI MI NI M\}I \{MI MI MI MI N\}\}Xtp=
 $\left\{__\right.$[\{ÄNI ÄOI ÄPI ÄQI ÄR\}]\}\}I \{áI NI R\}I \{àI MI N\}]]X $a Q=\{j E ́ \sim a ̊[t p] I \sqrt{\text { s~êá~åÅÉ[tp] }}\}$
\{OTOKRUOI NUKPQUS\}
$i ́ N=a Q[[N]]$
otokruo

Thus our estimate for the TMRCA in ybp is

OT * aQ
\{TPRVKTI QVRKQNN \}
$a R=a Q[[0]] / a Q[[N]]$
MKMSTPNQ

One should not forget that the overall variance is the sum of the variance from sample error and the intrinsic error of the stochastic simulation
$\hat{e ̂ M}=\sqrt{\operatorname{aP}[[Q]]\{O+\operatorname{aR}\{O}$
MKNOPMN

This \% error gives SD in years:
KNOR * TPMM
VNOKR
ie for G2a3 we have 5359BC ± 912 (1824 at $95 \% \mathrm{CI}$)
This is now repeated for each file, but this time without explanation
Next we do R1b1a2 using 5 quintiles
$h h=O X a M=a a[[h h]] X\{a ̊ m I$ ãNI ÄNI ÄOI ÄPI ÄOI ÄRI iNI iO\} = \{aM[[N]]I NKM/aM[[N]]I
aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] \}
\{QSMI MKMMONTPVNI NNQKUQUI NOUKSOQI NQPKTMTI NSOKQNQI NUVKOTI NOUKSOQI OUPKVMQ\}
åMn $=$ R MMM MMMX `äÉ~ê[tNM] X ê = OX tNM = cä~ííÉå[m~ê~ääÉËáóÉ[q~ÄäÉE\{ wN = \{v*CQ[wM[[N]]I vI ~I ãN]I wM[[O]]I wM[[P]]I wM[[Q]]I wM[[R]]\}Xw=gçáå[wNI \{vI ~\}]X \{w\}\}I \{âI NI åMN\}]]I O]XtNN = pÉáE̊Ái[tNMI \#[[N]] <aM[[OI N]] + ê*aM[[PI N]] CC \#[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉåÖíÜ[tNN]X \(\mathrm{w}=\{\mathrm{wM}[[\mathrm{N}]] \mathrm{I} v * \operatorname{cQ}[\mathrm{wM}[[0]] \mathrm{I}\) vI \(\sim \mathrm{I}\) ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]\}X \{w\}\}I \{âI NI åMO\}]]I O]XtNP = pÉäÉÅíltNOI \#[[O]] < aM[[OI O]] + ê*aM[[PI O]] CC \#[[O]] > aM[[OI O]] - ê*aM[[PI O]] C]X åMP = iÉåÖíÜ[tNP]X \(\mathrm{w}=\) \{wM[[N]]I wM[[O]]I v*CQ[wM[[P]]I vI ~I ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]\} X \{w\}\}I \{âI NI åMP\}]]I O]XtNR = pÉäÉÅí [tNQI \#[[P]] <aM[[OI P]] + ê*aM[[PI P]] CC \#[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iÉåÖíÜ[tNR]X tNS = cä~ííÉå [m~ê~ääÉËáòÉ[q~ÄäÉ[\{`äÉ~ê[vI ~I wI wM]X wM = tNR[[â]]Xv=wM[[S]]X~=wM[[T]]X
 \{w\}\}I \{âI NI åMQ\}]]I O]X `äÉê[tOM]X tOM = pÉäÉÅí[tNSI
\#[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC \#[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]] CC $\#[[R]]<a M[[O I R]]+$ ê*aM[[PI R]] CC \#[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]X åMR = iÉaoöíÜ[tOM]
POM QMR
$\{j E ́ \sim a ̊[q \sim A ̈ a ̈ E[[t O M[[a ̀ I ~ S]] ~ I ~\{a ̀ I ~ N I ~ a ̊ M R\}]] I ~ \sqrt{\text { s~êá~åÅE [q~ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]] }}\}$
\{NVUKSPUI PNKPRON \}

```
ttN = q~ÄäE[ { tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N}*(tOM[[àI S]]) {(-N)I
    {àI NI åMR}]x ttO= q~\ddot{äÉ[NI {àI NI åMR}]X}\{\mp@code{N}
ttP = iÉ~ëípèì~êÉë[ttNI ttO]X_[{_N|I _O|I_P|I_Q|I_R|}] W=
    ttP[[N]]*_N + ttP[[O]]*_O + ttP[[P]]*_P + ttP[[Q]]*_Q + ttP[[R]]*_R
+ ttP[[S]]X__t = q~ÄäÉ[
    __[{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] -NI {àI NI åMR}]X
```



```
__N[{_N|I _O|I _P|I _Q|I _R|}] = aO[[O]] *__[{_NI _OI _PI _QI _R}]X
__t = q~ÄäÉ[__N[{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] -N I
    {àI NI åMR}]x aP = { åMNI åMRI jÉ~å[__t]I \sqrt{}{s~êá~åÅÉ[__t]}}
{RMMMMMMI POMQMRI NKSQNOR }\times\mathrm{ NM NSS I MKMVUTUOP}
ÖN =___N[aM[[O]] ]
ONMKUOO
ÉÉ = {{NI MI MI MI M}I {MI NI MI MI M}I {MI MI NI MI M}I {MI MI MI NI M}I {MI MI MI MIN}}X tp =
    cä~ííEO[q~ÄäÉ[ {`äE~~ê[̈̈NI ÄOI ÄPI ÄQI ÄR]X {ÄNI ÄOI ÄPI ÄQI ÄR} = aM[[O]] + (-N) {à* (aM[[P]]KÉÉ[[á]]) ÉE[[á]]X
        {__N[{ÄNI ÄOI ÄPI ÄQI ÄR}]}}I {áI NI R}I {àI MI N}]]X aQ = {jÉ~å[tp]I \sqrt{}{\mathrm{ s~êá~OOÁÉ[tp] }}}
{ONMKUOOI NNKONTQ}
iN = aQ[[N]]
ONMKUOO
OT * aQ
{RSVOKOI PMOKUSV}
aR = aQ[[O]]/aQ[[N]]
MKMRPOMTT
êM = \sqrt{}{aP[[Q]]{O + aR{O}
MKNNOOMN
ie for R1b1a2 we have 3700BC }\pm625(1250 at 95% CI
Next we do R1a1 using 5 quintiles
```

```
hh = PX aM= aa[[hh]]X{åMI ãNI ÄNI ÄOI ÄPI ÄOI ÄRI iNI iO} = {aM[[N]]I NKM/aM[[N]]I
```

hh = PX aM= aa[[hh]]X{åMI ãNI ÄNI ÄOI ÄPI ÄOI ÄRI iNI iO} = {aM[[N]]I NKM/aM[[N]]I
aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] }
aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] }
{NOTMI MKMMMTUTQMOI NMMKSUPI NNQKVURI NOVKPNUI NRMKMMUI NUSKNSQI NNQKVURI OTVKOQR}

```
{NOTMI MKMMMTUTQMOI NMMKSUPI NNQKVURI NOVKPNUI NRMKMMUI NUSKNSQI NNQKVURI OTVKOQR}
```

```
åMN = R MMM MMMX `äÉ~ê[ tNM] X ê = OX
tNM = cä~íÉE̊[m~ê~ääÉäáòÉ[q~ÄäÉ[{`äE~ê[ vI ~I gI wI wMI wN]X v = o~åççãoE~ä[{iNI iO}]X
    ~ = O~åÇçãoÉ~ä[{KMRI NKP}]X g= O~åÇçãfåíÉÖÉê[{NI NMMMMMMM}]X wM = tM[[g]]X
    wN = {v*cQ[wM[[N]]I vI ~I ãN]I wM[[O]]I wM[[P]]I wM[[Q]]I wM[[R]]} Xw= gçáå[wNI {vI ~}]X
    {w}}I {âI NI åMN}]]I O]X tNN = pÉäÉÅí[tNMI #[[N]] < aM[[OI N]] + ê*aM[[PI N]] CC
    #[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉåÖíÜ[tNN]X
```



```
        w = {wM[[N]]I v*cQ[wM[[O]]I vI ~I ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMO}]]I O]XtNP = pÉäÉÅí[tNOI #[[O]]< aM[[OI O]] + ê*aM[[PI O]] CC
    #[[O]] > aM[[OI O]] - ê*aM[[PI O]] C]x åMP = iÉåÖíÜ[tNP]X
```



```
        w = {wM[[N]]I wM[[0]]I v*cQ[wM[[P]]I vI ~I ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMP}]]I O]XtNR = pÉäÉÅ[tNQI #[[P]] < aM[[OI P]] + ê*aM[[PI P]] CC
    #[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iÉåÖíÜ[tNR]X
```



```
        w = {wM[[N]]I wM[[O]]I wM[[P]]I v*cQ[wM[[Q]]I vI ~I ãN]I v*cQ[wM[[R]]I vI ~I ãN]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMQ}]]I O]X`äÉ~ê[ tOM]X tOM = pÉäÉÅí[tNSI
    #[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC #[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]] CC
        #[[R]] < aM[[OI R]] + ê*aM[[PI R]] CC #[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]X åMR = iÉåÖíÜ[tOM]
PNR OPO
```

$\{j \dot{\sim} \sim$ å [q~ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]]I $\sqrt{\text { s~êá~åÅÉ[q~ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]] }}\}$
\{NUTKOTUI POKNNS \}
ttN = q~Ää́́[\{ tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N\}*(tOM[[àI S]]) \{(-N)I
\{àI NI åMR\}]x tto = q~̈̈äÉ[NI \{àI NI åMR\}]X
ttP = iÉ~ëípèì~êÉë[ttNI tto]X__[\{_N|I _O|I _P|I _Q|I _R|\}] W=

$+t t P[[S]] X \ldots t=q \sim A ̈ a ̈ E[$

__N[\{_N|I _O|I _P|I _Q|I _R|\}] = $\mathrm{aO}[[\mathrm{O}]] *$ _ [\{_NI _OI _PI _QI _R\}]X
__t = q~ÄäÉ[__N[\{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]\}]/tOM[[àI S]] -NI
\{à NI åMR\}]x aP $=\left\{\right.$ åMNI åMRI jÉ~å[__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ̊ E ́\left[__t\right] ~}\right\}$
\{RMMMMMMI PNR OPOI -TKRTQRQ \times NM $^{-N S}$ I MKMVQQSNQ $\}$
Ö $\mathrm{N}=\ldots \mathrm{N}[\mathrm{am}[[0]]]$
ONUKQRN

$\left\{__[\{\ddot{A} N I \text { ÄOI ÄPI ÄQI ÄR\}]\}\}I \{áI NI R\}I \{àI MI N\}]]X } a Q=\{j E ́ \sim a ̊[t p] I \sqrt{\text { s~êá~åÅÉ[tp] }}\}\right.$
\{ONUKQRNI NRKOOUU\}
$i n=a Q[[N]]$
ONUKQRN
OT * QQ
\{RUVUKNTI QNNKNTT \}
$a R=a Q[[O]] / a Q[[N]]$
mKMSVTNOS
$\hat{e} M=\sqrt{\operatorname{aP}[[Q]]\{O+\operatorname{aR}\{O}$
MKNNTQ

KNO * RVMM
TMUK
ie for R1a1 we have $4000 \mathrm{BC} \pm 700$ (1400 at $95 \% \mathrm{CI}$)
Next we do I1 using 5 quintiles
$h h=Q X a M=a a[[h h]] X\{a ̊ M I$ ãNI ÄNI ÄOI ÄPI ÄQI ÄRI iNI iO\} = \{aM[[N]]I NKM/aM[[N]]I
aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] \}
\{OUVUI MKMMMPQRMSSI RVKOMPVI SVKVUTI UOKPPQOI VTKNVUSI NNSKPUUI SVKVUTI NTQKRUN\}

```
åMN = R MMM MMMX `äÉ~ê[ tNM] X ê = OX
tNM = cä~ííÉå[m~ê~ääÉäáòÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I gI wI wMI wN]X v=0~åÇçãoÉ~ä[{iNI iO}] X
    ~ = O~åÇçãoÉ~ä[{KMRI NKP}]Xg= O~åÇçãfåíÉÖÉê[{NI NMMMMMMM}]X wM=tM[[g]]X
    wN = {v*cQ[wM[[N]]I vI ~I ãN]I wM[[O]]I wM[[P]]I wM[[Q]]I wM[[R]]} Xw= gçáå[wNI {vI ~}]X
    {w}}I {âI NI åMN}]]I O]XtNN = pÉäÉÅí[tNMI #[[N]] < aM[[OI N]] + ê*aM[[PI N]] CC
    #[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉåÖíÜ[tNN]X
tNO= cä~ííÉå[m~ê~ääÉäáóÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I wI wM]X wM=tNN[[â]]Xv=wM[[S]]X~= wM[[T]]X
    w= {wM[[N]]I v*cQ[wM[[O]]I vI ~I ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMO}]]I O]XtNP = pÉäÉÅí[tNOI #[[O]] < aM[[OI O]] + ê*aM[[PI O]] CC
    #[[O]] > aM[[OI O]] - ê*aM[[PI O]] C]X åMP = iÉåÖíÜ[tNP]X
tNQ = cä~ííÉå[m~ê~ääËäáòÉ[q~ÄäÉ[{{`äÉ~ê[ vI ~I wI wM]X wM=tNP[[â]]Xv=wM[[S]] X~= wM[[T]]X
    w = {wM[[N]]I wM[[O]]I v*CQ[wM[[P]]I vI ~I ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMP}]]I O]XtNR= pÉäÉÅí[tNQI #[[P]] < aM[[OI P]] + ê*aM[[PI P]] CC
    #[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iEáÖíÜ[tNR]X
```



```
    w = {wM[[N]]I wM[[O]]I wM[[P]]I v*CQ[wM[[Q]]I vI ~I ãN]I v*CQ[wM[[R]]I vI ~I ãN]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMO}]]I O]X 'äE~ê[ tOM]X tOM = pÉäÉÅí[tNSI
    #[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC #[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]] CC
    #[[R]] < aM[[OI R]] + ê*aM[[PI R]] CC #[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]X åMR = iÉåÖíÜ[tOM]
NUQ OMN
```

$\{j E ́ \sim a ̊[q \sim A ̈ a ̈ E ́[t O M[[a ̀ I ~ S]] ~ I ~\{a ̀ I ~ N I ~ a ̊ M R\}]] I ~ \sqrt{\text { s~êá~åÅÉ[q~Ää́é[tOM[[àI S]] I \{àI NI åMR\}]] }}\}$
\{NPNKSMRI NTKTSUT\}
ttN = q~Ää́㇒ [\{ tom[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N\}*(tOM[[àI S]]) \{(-N)I
\{àI NI åMR\}]X tto = q~ÄäÉ[NI \{àI NI åMR\}]X
ttP = iÉ~ëípèi~êÉë[ttNI ttO]X_[\{_N|I _O|I _P|I _Q|I_R|\}] W=
$\operatorname{ttP}[[\mathrm{N}]] *$ _N + ttP[[O]]*_O + ttP[[P]]*_P + ttP[[Q]]*_Q + ttP[[R]]*_R
$+t t P[[S]] X^{-} \quad t=q \sim \ddot{A}$ ё́ $[$

$a N=\left\{\right.$ åMNI åMRI jÉ~å [__t]I $\left.\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ̊ E ́\left[__~\right.}\right] \quad\right\} X a O=\{N+a N[[P]] I N /(N+a N[[P]])\} X$
__N[\{_N|I _O|I _P|I _Q|I _R|\}] = $\mathrm{OO}[[\mathrm{O}]] *$ _ $\left[\left\{\mathrm{C}_{\mathrm{N}} \mathrm{NI}\right.\right.$ _OI _PI _QI _R\}]X

\{àI NI åMR\}]x aP $=\left\{\right.$ åMnI åMRI jÉ~å[__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ́ E ́\left[_c t\right] ~}\right\}$
\{R MMM MMMI NUQ OMNI OKMMMON \times NM $^{-N R}$ I MKMVRRRTN $\}$
ñN = __N[aM[[O]]]

NQNKQMT

```
ÉÉ = {{NI MI MI MI M}I {MI NI MI MI M}I {MI MI NI MI M}I {MI MI MI NI M}I {MI MI MI MI N}}X tp =
    cä~ííE̊[q~ÄäÉ[ {`äÉ~ê[ÄNI ÄOI ÄPI ÄQI ÄR]X {ÄNI ÄOI ÄPI ÄQI ÄR} = aM[[O]] + (-N) {à* (aM[[P]]KÉE[[á]]) ÉE[[á]]X
```



```
{NQNKQMTI SKRVPSR}
ñN = aQ[[N]]
NQNKQMT
OT * aQ
{PUNTKVVI NTUKMOU}
aR = aQ[[O]]/aQ[[N]]
MKMQSSOUV
êm = \sqrt{}{aP[[Q]]{O + aR{O}
MKNMSPOT
KNN * PUMM
QNUK
ie for I1 we have 1800BC }\pm400(800 at 95% CI
```

Next we do L21 using 5 quintiles

```
hh = RX aM = aa[[hh]]X{åMI ãNI ÄNI ÄOI ÄPI ÄOI ÄRI iNI iO} = {aM[[N]]I NKM/aM[[N]]I
    aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] }
{NMOVI MKMMMVTNUNTI UVKMMRRI VSKRSOQI NMOKUQOI NNQKPRVI NORKUUSI VSKRSOQI NUUKUP}
```

åmn $=$ R MMM MMMX `äÉê [tNM] X ê = OX tNM = cä~ííÉå[m~ê~ääÉäáóÉ [q~ÄäÉ[\{`äÉ~ê[vI ~I gI wI wMI wN]X v=o~åççãoÉ~ä[\{iNI iO\}] X

\{w\}\}I \{âI NI åMN\}]]I O]XtNN = pÉä́́Åí[tNMI \#[[N]] < aM[[OI N]] + ê*aM[[PI N]] CC
\#[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉåÖíÜ[tNN]X

$\mathrm{w}=\{\mathrm{wM}[[\mathrm{N}]] \mathrm{I} \mathrm{v} * \mathrm{CQ}[\mathrm{wM}[[\mathrm{O}] \mathrm{I} \mathrm{vI} \sim \mathrm{I}$ ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]\}X
\{w\}\}I \{âI NI åMO\}]]I O]XtNP = pÉäÉÅí[tNOI \#[[O]] < aM[[OI O]] + ê*aM[[PI O]] CC

$t N Q=c a ̈ \sim i ́ i ́ E ́ a ̊[m \sim e ̂ \sim a ̈ a ̈ E ́ a ̈ a ́ o ̀ E ́[q \sim A ̈ a ̈ E ́[\{’ a ̈ E ~ e ̂[~ v I ~ \sim I ~ w I ~ w M] X ~ w M ~=~ t N P[[a ̂]] X v=w M[[S]] X ~=w M[[T]] X ~$
$\mathrm{w}=\{\mathrm{wM}[[\mathrm{N}]] \mathrm{I} \mathrm{wM}[[\mathrm{O}]] \mathrm{I} \mathrm{v} * \mathrm{CQ}[\mathrm{wM}[[\mathrm{P}]] \mathrm{I} \mathrm{vI} \sim \mathrm{I}$ ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]\}X
\{w\}\}I \{âI NI åMP\}]]I O]XtNR = pÉä́̇̊ílt
\#[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iÉåÖíÜ[tNR]X
tNS = cä~íí́å[m~ê~ää́́äáóÉ[q~ÄäÉ[\{’äÉê[vI ~I wI wM]X wM = tNR[[â]]Xv=wM[[S]]X~=wM[[T]]X

\{w\}\}I \{âI NI åMÔ\}]]I O]x `äÉê[tOM]X tOM = pÉäÉÅí[tNSI
\#[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC \#[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]] CC
$\#[[R]]<a M[[O I R]]+$ ê *aM[[PI R]] CC \#[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]x åMR = iÉåÖíÜ[tOM]
OPU PMU
$\{j E ́ \sim a ̊[q \sim A ̈ a ̈ E ́[t O M[[a ̀ I S]] I\{a ̀ I ~ N I ~ a ̊ M R\}]] I ~ \sqrt{\text { s~êá~åÅÉ[q~ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]] }}\}$
\{NPRKTPI NSKUNTN $\}$

```
ttN = q~ÄäE[ { tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N}*(tOM[[àI S]]) {(-N)I
    {àI NI åMR}]X ttO = q~\ddot{̈äE[ NI {àI NI åMR}]X}
ttP = iÉ~ëípèì~êÉë[ttNI ttO]X__[{_N|I _O|I _P|I _Q|I _R|}] W=
    ttP[[N]]*_N + ttP[[O]]*_O + ttP[[P]]*_P + ttP[[Q]]*_Q + ttP[[R]]**R
+ ttP[[S]]X__t = q~\ddot{ÄÉE[__[{tOM[[àI N]]I 位[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] -}
    NI {àI NI åMR}]x aN = { åMNI åMRI jÉ~å[__t]I \sqrt{}{s~êá~åAÉ[__t]}}
{RMMMMMMI OPU PMUI -MKMNNORMPI MKMUSSMTO}
ttP
{-MKSNMRMUI MKMQTQOMRI MKNOPPSOI MKOMOMUTI NKNTSQTI MKQUSPTO}
```

__[am[[0]]]
NPQKPUR
$a O=\{N+a N[[P]] I N /(N+a N[[P]])\}$
\{MKVUUTRI NKMNNPU\}
__N[\{_N|I _O|I _P|I _Q|I _R|\}] = $a O[[O]] *$ _ [\{_NI _OI _PI _QI _R\}]X
ttN = q~Ää́́[\{ tom[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N\}* (tOM[[àI S]]) \{(-N)I
\{àI NI åMR\}]x tto = q~⿰̈̈äÉ[NI \{àI NI åMR\}]X

ttP[[N]]*_N + ttP[[O]]*_O + ttP[[P]]*_P + ttP[[Q]]*_O + ttP[[R]]*_R

__[\{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]\}]/tOM[[àI S]] -NI \{àI NI åMR\}]X

__N[\{_N|I _O|I _P|I _Q|I _R|\}] = $\mathrm{OO}[[\mathrm{O}]] *$ _ [\{_NI _OI _PI _QI _R\}]X

\{à NI åMR\}]x aP $=\left\{\right.$ åMNI åMRI jÉ~å[__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ̊ E ́\left[__t\right] ~}\right\}$
\{R MMM MMMI OPU PMUI SKTUMRT \times NM $^{-N T}$ I MKMUTRVOS $\}$
ÖN $=\ldots N[a M[[O]]]$
NPRKVNQ
ÉÉ = \{\{NI MI MI MI M\}I \{MI NI MI MI M\}I \{MI MI NI MI M\}I \{MI MI MI NI M\}I \{MI MI MI MI N\}\}X tp =

$\left\{__\right.$[\{ÄNI ÄOI ÄPI ÄQI ÄR\}]\}\}I \{áI NI R\}I \{àI MI N\}]]X $a Q=\{j E ́ \sim a ̊[t p] I \sqrt{\text { s~êá~åÁÉ[tp] }}\}$
\{NPRKVNQI QKUROSU\}
$i N=a Q[[N]]$
NPRKVNQ
OT * QQ
\{PSSVKSVI NPNKMOO\}
$a R=a Q[[0]] / a Q[[N]]$
MKMPRTMQ
$\hat{e m}=\sqrt{\operatorname{aP}[[Q]]\{O+\operatorname{aR}\{O}$
MKMVQRUVV

KMV * PSMM
POQK
ie for L21 we have 1600BC ± 325 (650 at $95 \% \mathrm{CI}$)
Next we do U106 using 5 quintiles
$h h=S X a M=a a[[h h]] X\{a ̊ M I$ ãNI ÄNI ÄOI ÄPI ÄOI ÄRI iNI iO\} = \{aM[[N]]I NKM/aM[[N]]I
aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] \}
\{NRPPI MKMMMSROPNSI VOKRUQSI NMOKSSPI NNQKMQI NOTKTPUI NQQKRPOI NMOKSSPI ONSKTVT\}

```
åMN = R MMM MMMX `äÉ~ê[ tNM] X ê = OX
tNM= cä~ííÉa[m~ê~ääÉááòÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I gI wI wMI wN]X v=0~åÇçãoÉ~ä[{iNI iO}]X
    ~ = O~åÇçãoÉ~ä[{KMRI NKP}]Xg= O~åÇçãfåíÉÖÉê[{NI NMMMMMMM}]X wM=tM[[g]]X
    wN = {v*cQ[wM[[N]]I vI ~I ãN]I wM[[O]]I wM[[P]]I wM[[Q]]I wM[[R]]} Xw= gçáå[wNI {vI ~}]X
    {w}}I {âI NI åMN}]]I O]XtNN = pÉäÉAí[tNMI #[[N]] < aM[[OI N]] + ê*aM[[PI N]] CC
    #[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉåÖíÜ[tNN]X
tNO= cä~ííÉå[m~ê~ääÉäáòÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I wI wM]X wM= tNN[[â]]Xv=wM[[S]] X~= wM[[T]]X
    w = {wM[[N]]I v*cQ[wM[[O]]I vI ~I ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
    {w}}I {âI NI åMO}]]I O]XtNP = pÉäÉÅí[tNOI #[[O]] < aM[[OI O]] + ê*aM[[PI O]] CC
    #[[O]] > aM[[OI O]] - ê*aM[[PI O]] C]X åMP = iÉEOÖíÜ[tNP]X
tNQ = cä~ííÉå[m~ê~ääÉäáòÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I wI wM]X wM = tNP[[â]]Xv=wM[[S]] X~= wM[[T]]X
    w = {wM[[N]]I wM[[[O]]I v*CQ[wM[[P]]I vI ~I ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
    {w}}I {âI NI åMP}]]I O]XtNR = pÉäÉÅí[tNQI #[[P]] < aM[[OI P]] + ê*aM[[PI P]] CC
    #[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iÉåÖíÜ[tNR]X
tNS = cä~ííÉå[m~ê~ääÉäáóÉ[q~ÄäÉ[{`äÉ~ê[ vI ~I wI wM]X wM = tNR[[â]]Xv = wM[[S]]X ~ = wM[[T]]X
        w = {wM[[N]]I wM[[O]]I wM[[P]]I v*CQ[wM[[Q]]I vI ~I ãN]I v*cQ[wM[[R]]I vI ~I ãN]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMOQ}]]I O]X `äÉê[ tOM]X tOM = pÉäÉÅí[tNSI
    #[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC #[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]]CC
    #[[R]] < am[[OI R]] + ê*aM[[PI R]] CC #[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]X åMR= iÉOOÖíU[tOM]
ORN RUS
```

aM
\{NRPPI \{VOKRUQSI NMOKSSPI NNQKMQI NOTKTPUI NQQKRPO\}I \{SKNMOORI SKRVORVI TKTQMSRI VKMMNVTI NMKSMVR\}\}
tom [[N]]
\{UTKORTPI NNMKTQPI NNQKVMOI NQOKTSQI NRTKPRUI NTVKNVVI MKQUPQOS\}
$\{j \dot{E} \sim a ̊[q \sim$ ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]]I $\sqrt{\text { s~êá~åÅÉ[q~Ää́ [tom[[àI S]] I \{àI NI åMR\}]] }}\}$
\{NRSKRQRI ONKQMTN \}

```
ttN = q~ÄäE[ { tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N}*(tOM[[àI S]]) {(-N)I
    {àI NI åMR}]X ttO = q~ÄäÉ[ NI {àI NI åMR}]X
ttP = iÉ~ëípèi~êÉë[ttNI ttO]X__[{_N|I _O|I _P|I _Q|I_R|}] W=
    ttP[[N]]*_N + ttP[[O]]*_O + ttP[[P]]*_P + ttP[[Q]]*_Q + ttP[[R]]*_R
+ttP[[S]]X__t = q~\ddot{̈äÉ[}
    __[{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] - NI {àI NI åMR}]X
aN ={ åMNI åMRI jÉ~å[__t]I \sqrt{}{s~êá~åÅÉ[__t] }XaO = {N + aN[[P]]I N/(N + aN[[P]])}X}\{\mp@code{L}
__N[{_N|I _O|I _P|I _Q|I _R|}] = aO[[O]]*__[{_NI _OI _PI _QI __R}]X
__t = q~\ddot{̈äÉ[__N[ {tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]}]/tOM[[àI S]] -NI}
    {àI NI åMR}]x aP = { åMNI åMRI jÉ~å[__t]I \sqrt{}{s~êá~åÅÉ[__t]}}
```

\{R MMM MMMI ORN RUSI -NKRPMMQ \times NM $^{- \text {NS }}$ I MKMUVPUON $\}$
ÖN $=\ldots{ }^{N}[a m[[0]]]$
nsoktut

\{NSOKTUTI SKUSTOR\}
$i n=a @[[N]]$
nSOKTUT
от*a@
\{QPVRKORI NURKQNS \}
$a R=a Q[[0]] / a Q[[N]]$
mKMQONURR
$\hat{e m}=\sqrt{\operatorname{aP}[[0]]\{0+\operatorname{aR}\{O}$
mKMVUUPTN

KNM * QQMM
QQмк
ie for U106 we have $2400 \mathrm{BC} \pm 440(880$ at $95 \% \mathrm{CI})$
Next we do J2 using 5 quintiles

```
hh = TX aM = aa[[hh]]X {åMI ãNI ÄNI ÄOI ÄPI ÄQI ÄRI iNI iO} = {aM[[N]]I NKM/aM[[N]]I
    aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] }
{NOQNI MKMMMUMRUMOI NTSKSNPI OOPKNTSI OTOKUNSI PQMKMMVI RMMKSSVI OOPKNTSI TRNKMMP}
```


\#[[N]] > am[[OI N]] - ê*am[[PI N]] C]X åMO = iÉEäÖíü[tNN]X

\#[[O]] > am[[OI O]] - ê*am[[PI O]] C]X åMP = iÉãöíü[tNP]X

$w=\{w M[[N]] I W M[[0]] I v * C Q[w M[[P]] I \quad v I \sim I$ ãN]I wM[[Q] $] I \mathrm{wM}[[R]] I \mathrm{wM}[[S]] I \mathrm{wM}[[T]]\} \mathrm{x}$

\#[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMO = iÉãöíü $[t N R] X$

PPUTTP

\{QUOKSTRI NMSKNSP\}
ttN = q~Ää́ [\{ tom[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N\}* (tOM[[àI S]]) \{(-N)I
\{àI NI åMR\}]x tto = q~ÄäÉ[NI \{àI NI åMR\}]X

$+t t P[[S]] X _t=q \sim$ Ää́ $[$ __ [\{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]\}]/tOM[[àI S]] -NI \{àI NI åMR\}]X $a N=\left\{\right.$ åMNI åMRI jÉ~å [__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ̊ E ́\left[__\right] ~} \quad\right\} X a O=\{N+a N[[P]] I N /(N+a N[[P]])\} X$
 __t = q~Ä̈̈́ [__N[\{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]\}]/tOM[[àI S]] -NI \{à NI åMR\}]X aP $=\left\{\right.$ åMNI åMRI jÉ~å[__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ̊ E ́\left[__t\right] ~}\right\}$
\{R MMM MMMI PPU TTPI - VKRUPRS \times NM $^{-N S}$ I MKNMTVVU $\}$
íN = \qquad N[am[[0]]]

SRMKTVU

ÉÉ $=\{\{N I M I M I M I M\}\{$ MI NI MI MI M\}I $\{M I M I N I M I M\} I\{M I M I M I N I M\}\{M I M I M I M I N\} X t p=$ cä~ííÉå[q~ÄäÉ[\{`äE~̂ [ÄNI ÄOI ÄPI ÄQI ÄR]X \{ÄNI ÄOI ÄPI ÄQI ÄR\} = aM[[O]] + (-N) \{à* (aM[[P]]KÉE[[á]]) ÉÉ[[á]]X $\left\{__\right.$[\{ÄNI ÄOI ÄPI ÄQI ÄR\}]\}\}I \{áI NI R\}I \{àI MI N\}]]X $a Q=\{j E ́ \sim a ̊[t p] I \sqrt{\text { s~êá~åÅÉ[tp] }}\}$
\{SRMKTVUI SSKRVVO\}
íN $=a Q[[N]]$
SRMKTVU

OT * QQ
\{NT RTNKSI NTVUKNU \}
$a R=a Q[[0]] / a Q[[N]]$
MKNMOPPR
$\hat{e} M=\sqrt{\operatorname{aP}[[Q]]\{O+\operatorname{aR}\{O}$
MKNQUTUN

KNR * NT RMM
OSORK
ie for J2 we have 15500BC ± 2600 (5200 at $95 \% \mathrm{CI}$), this is definitely Paleolithic.
Next we do P312 using 5 quintiles

```
hh = UX aM = aa[[hh]]X{åMI ãNI ÄNI ÄOI ÄPI ÄQI ÄRI iNI iO} = {aM[[N]]I NKM/aM[[N]]I
    aM[[OI N]]I aM[[OI O]]I aM[[OI P]]I aM[[OI Q]]I aM[[OI R]]I aM[[OI O]] I NKR*aM[[OI R]] }
{VTNI MKMMNMOVUTI VUKQMOVI NMTKSI NNTKNMTI NOUKRUQI NQPKURRI NMTKSI ONRKTUO}
```

```
åMN = RMMM MMMX `äÉ~ê[ tNM] X ê = OX
tNM = cä~íÉÉ[m~ê~ääÉäáòÉ[q~ÄäÉ[{`äE~ê[ vI ~I gI wI wMI wN]X v = o~åççãoE~ä[{iNI iO}]X
    ~ = O~åÇçãoÉ~ä[{KMRI NKP}]X g= O~åÇçãfåíÉÖÉê[{NI NMMMMMMM}]X wM = tM[[g]]X
    wN = {v*cQ[wM[[N]]I vI ~I ãN]I wM[[O]]I wM[[P]]I wM[[Q]]I wM[[R]]} Xw= gçãå[wNI {vI ~}]X
    {w}}I {âI NI åMN}]]I O]XtNN = pÉäÉÅí[tNMI #[[N]] < aM[[OI N]] + ê*aM[[PI N]] CC
    #[[N]] > aM[[OI N]] - ê*aM[[PI N]] C]X åMO = iÉäÖíÜ[tNN]X
```



```
        w = {wM[[N]]I v*cQ[wM[[O]]I vI ~I ãN]I wM[[P]]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMO}]]I O]XtNP = pÉäÉÅí[tNOI #[[O]]< aM[[OI O]] + ê*aM[[PI O]] CC
    #[[O]] > aM[[OI O]] - ê*aM[[PI O]] C]X åMP = iÉåÖíÜ[tNP]X
```



```
        w = {wM[[N]]I wM[[O]]I v*cQ[wM[[P]]I vI ~I ãN]I wM[[Q]]I wM[[R]]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMP}]]I O]XtNR = pÉäÉÅ[tNQI #[[P]] < aM[[OI P]] + ê*aM[[PI P]] CC
    #[[P]] > aM[[OI P]] - ê*aM[[PI P]] C]X åMQ = iÉåÖíÜ[tNR]X
```



```
        w = {wM[[N]]I wM[[O]]I wM[[P]]I v*cQ[wM[[Q]]I vI ~I ãN]I v*cQ[wM[[R]]I vI ~I ãN]I wM[[S]]I wM[[T]]} X
        {w}}I {âI NI åMQ}]]I O]X`äÉ~ê[ tOM]X tOM = pÉäÉÅí[tNSI
    #[[Q]] < aM[[OI Q]] + ê*aM[[PI Q]] CC #[[Q]] > aM[[OI Q]] - ê*aM[[PI Q]] CC
        #[[R]] < aM[[OI R]] + ê*aM[[PI R]] CC #[[R]] > aM[[OI R]] - ê*aM[[PI R]] C]X åMR = iÉåÖíÜ[tOM]
osu oso
```

$\{j \dot{\sim} \sim$ å [q~ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]]I $\sqrt{\text { s~êá~åÅÉ[q~ÄäÉ[tOM[[àI S]] I \{àI NI åMR\}]] }}\}$
\{NRPKUQQI OMKTMT\}
ttN = q~Ää́́[\{ tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]I N\}*(tOM[[àI S]]) \{(-N)I
\{àI NI åMR\}]x tto = q~̈̈äÉ[NI \{àI NI åMR\}]X
ttP = iÉ~ëípèi~êÉë[ttNI tto]X_[\{_N|I _O|I _P|I _Q|I _R|\}] W=

$+\operatorname{ttP}[[S]] X \ldots t=q \sim A ̈ a ̈ E[$

$a N=\left\{\right.$ åMnI åMRI jÉ~å[__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ́ E ́\left[__t\right] ~}\right\} X a O=\{N+a N[[P]] I N /(N+a N[[P]])\} X$
__N[\{_N|I _O|I _P|I _Q|I _R|\}] = $\mathrm{aO}[[\mathrm{O}]] *$ _ [\{_NI _OI _PI _QI _R\}]X
__t = q~ÄäÉ[__N[\{tOM[[àI N]]I tOM[[àI O]]I tOM[[àI P]]I tOM[[àI Q]]I tOM[[àI R]]\}]/tOM[[àI S]] -NI
\{à NI åMR\}]x aP $=\left\{\right.$ åMNI åMRI jÉ~å[__t]I $\left.\sqrt{s \sim e ̂ a ́ \sim a ̊ A ̊ E ́\left[__\right] ~}\right\}$
\{R MMM MMMI OSU OSOI -PKOORPU $\times \mathrm{NM}^{-\mathrm{NT}}$ I MKMUUSPUS $\}$
íN = __N[aM[[0]]]
NRSKUPU

\{__N[\{ÄNI ÄOI ÄPI ÄQI ÄR\}]\}\}I \{áI NI R\}I \{àI MI N\}]]X $a Q=\{j E ́ \sim a ̊[t p] I \sqrt{\text { s~êá~åÁÉ[tp] }}\}$
\{NRSKUPUI SKSSUOP\}
$i n=a Q[[N]]$
NRSKUPU
OT * aQ
\{QOPQKSPI NUMKMQO\}
$a R=a Q[[O]] / a Q[[N]]$

MKMQORNSS

```
em = \sqrt{}{aP[[Q]]{O + aR{O}
MKMVUPMU
ie for P312 we have 2240BC }\pm420(820 at 95% CI
This information can be summarized by following showing the two means compared with our calc TMRCA and SD
\begin{tabular}{|c|c|c|c|c|}
\hline pkm & ãÉ~åN & ãÉ~åo & qjo \({ }^{\wedge}\) & pa \\
\hline dO~P & ROPN & QTQT & RPRV & VNO \\
\hline ONÄN~O & RTUT & OVMN & PTMM & SOR \\
\hline \(\mathrm{ON} \sim \mathrm{N}\) & OQVR & ONRT & PUMM & TMM \\
\hline fN & NPNV & NMQV & NUMM & QMM \\
\hline iON & NOOQ & NPQS & NSMM & POR \\
\hline rNMS & NPM & NPR & OQ & QQM \\
\hline gO & NN RQV & R & NR RMM & OSMM \\
\hline mPNO & NRVP & NSTR & OOQM & QOM \\
\hline
\end{tabular}
```

The means only give the right ballpark estimate, usually more than a SD less than the true TMRCA.

[^0]: wwwMmn = m~ê~ääÉäáòÉ[q~ÄäÉ[qpp[(www[[ènI âI P]] + wwp[[è̀NI â]])I â] I \{èNI NI U\}I \{âI NI PP\}]]X wwwMMO = m~ê~ääÉäáòÉ [q~ÄäÉ[qpp[(www[[èNI âI P]] - wwp[[èNI â]])I â] I \{èNI NI U\}I \{âI NI PP\}]]X wWwMO = MKR * (wwwMMN - wwwMMO)

