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The striatum is an input structure of the basal ganglia implicated in several time-dependent 
functions including reinforcement learning, decision making, and interval timing. To 
determine whether striatal ensembles drive subjects' judgments of duration, we 
manipulated and recorded from striatal neurons in rats performing a duration 
categorization psychophysical task. We found that the dynamics of striatal neurons 
predicted duration judgments, and that simultaneously recorded ensembles could judge 
duration as well as the animal. Furthermore, striatal neurons were necessary for duration 
judgments, as muscimol infusions produced a specific impairment in animals' duration 
sensitivity. Lastly, we show that time as encoded by striatal populations ran faster or slower 
when rats judged a duration as longer or shorter, respectively. These results demonstrate 
that the speed with which striatal population state changes supports the fundamental 
ability of animals to judge the passage of time.

Time, like space, is a fundamental dimension of the environment, yet how it is processed 
in the brain is poorly understood. A number of recent studies have identified dynamics that allow 
for robust representation of time by populations of neurons in multiple areas including the 
hippocampus1,2, prefrontal3,4, parietal5,6 and motor7 cortices, cerebellum8, and the striatum9-12. 
However, any dynamics that result in a continuously-evolving and non-repeating population state 
can be used to encode time13, and it is not known whether such temporal representations would 
inform subjects’ judgments of duration or merely covary with elapsing time. The striatum, a brain 
structure known to be involved in reinforcement learning and decision making14-16, has been 
implicated in interval timing by several lines of evidence17-21. However, whether dynamics in striatal 
activity can explain the perceptual performance of behaving subjects is unknown. To determine 
whether striatal ensembles drive subjects’ judgments of duration, we manipulated and recorded 
from striatal neurons in rats performing a duration categorization psychophysical task.
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To measure the duration sensitivity of subjects’ timing judgments, we trained rats to judge 
whether time intervals belonged to a long or short category22 (see Methods; Figure 1a). At each 
self-initiated trial, two brief tones (interval onset, offset) were presented separated in time by an 
interval randomly selected from the set I = {0.6, 1.05, 1.26, 1.38, 1.62, 1.74, 1.95, 2.4} seconds. 
Judgments about interval duration were reported at two laterally located nose ports: choosing the 
left side was reinforced with water after intervals longer than 1.5 seconds (long stimuli), and the 
right side otherwise (short stimuli, Figure 1b). Animals were required to withhold choice until 
interval offset. Animals made virtually no errors when categorizing the easiest (i.e. shortest and 
longest) intervals, but categorization performance declined as intervals approached the 1.5 
seconds categorical boundary (Figure 1c). 

We recorded action potentials (see Methods) from populations of single striatal neurons 
during task performance (Figure 2a). We observed that striatal neurons displayed diverse firing 
patterns, with different units firing at different times within the interval period (Figure 2b-d). Can 
such firing patterns support duration judgments? To determine whether and the degree to which 
individual neurons could contribute to duration judgments, for each trial, we counted spikes in the 
last 500 ms of the interval period and compared spike count distributions of short vs long stimulus 
trials using a receiver operating characteristic (ROC) analysis (see Methods). We found that the 
majority of neurons (~57%) preferred either short or long stimuli (Figure 2e; short-preferring: n = 
159/433, 36.7%; long-preferring: n = 87/433, 20.1%; permutation test, p<0.05).  As expected, 
short-preferring neurons displayed higher firing on average prior to the 1.5 s category boundary, 
after which long-preferring neurons displayed higher firing (Figure 2f). These averaged activity 
patterns resemble the likelihood of receiving reward on moment-by-moment by basis should the 
animal choose short or long (compare with reward contingency in Figure 1b). Such signals, 

previously observed in the parietal cortex of monkeys performing a similar timing task5 
and in the 

striatum in a value based decision task14, are potentially useful for guiding choice. However, were 
animals’ judgments indeed guided by such signals, it should be possible to predict choices 
reported later in the trial using neural activity collected during interval stimuli. Indeed, in trials 
wherein a near boundary interval was judged as long, firing of the short (long) preferring 
subpopulation dropped (rose) faster, so that the two curves crossed before the 1.5 s boundary 
(Figure 2g). Conversely, in trials wherein the same interval was judged as short, the two curves 
evolved more slowly so that at the time of interval offset the short preferring subpopulation was still 
firing at a higher level and a crossing point had not yet been reached (Figure 2h).

The observation of large proportions of short- and long-preferring neurons whose 
dynamics predicted choice is evidence that duration judgments are guided by the state of striatal 
populations. Might the information afforded by ensembles of striatal neurons account for the 
pattern of subjects’ judgments across all stimuli? To test this hypothesis, we compared session to 
session fluctuations in behavioral performance with the separability of activity states of 
simultaneously recorded ensembles at the offset of short as compared to long intervals. Briefly, for 
each trial in a session we characterized neural population state as a vector r = (r1, r2, ..., rN), 
where rn is the number of spikes fired by neuron n ∈ [1,N] within the last 500 ms of the interval 
period. Next, for each session we found the linear discriminant that best separated population 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2015. ; https://doi.org/10.1101/020883doi: bioRxiv preprint 

https://doi.org/10.1101/020883
http://creativecommons.org/licenses/by-nc/4.0/


Wednesday 9 September 2015 Page �  of �3 24

state vectors according to whether they came from a long or a short interval trial (Figure 3a; see 
Methods). A threshold placed along the linear discriminant was then used as a decision rule (black 
line in Figure 3a) to generate a ‘neural duration judgment’ for each trial. This procedure allowed us 
to obtain, for each session, a quantitative description of how well simultaneously recorded neurons 
could categorize stimuli, i.e., a neurometric function comparable to the behavioral psychometric 
function (Figure 3b). Consistent with duration information being encoded at the population level, 
we found that for sessions in which greater numbers of neurons were recorded simultaneously (i.e. 
upper tercile of sessions with regard to population size) psychometric and neurometric 

performances were similar and strongly correlated (r
2 

= 0.76, p<0.001; Figure 3c). These results 
demonstrate that a read out of stimulus category from even modestly-sized ensembles of striatal 
neurons was in many cases sufficient to explain the pattern of duration judgments produced by 
behaving subjects. 

It has been previously reported22-27 
that duration judgments could be predicted by animals’ 

ongoing behavior during the interval period. In addition, it is well known that striatal neurons can 
fire around movements28,29. Could the categorization performance of striatal ensembles reflect 
activity related to movements the animal might be making during the task? To test to what degree 
ongoing behavior could explain the categorization performance of striatal neural activity, we 
applied an analogous classification analysis to video images taken of the animal just before 
interval offset (see Methods). We found that our ability to categorize intervals using video frames 
was consistently poorer as compared to neural data collected at the analogous time periods during 
the task (Figure 3b, inset in Figure 3c). In contrast, we were able to categorize stimuli as well as 
the animal using video frames taken at the point when animals expressed their choice at one of 
the reward ports (Figure 3-figure supplement 1). Furthermore, movement related responses in the 
striatum are known to occur both pre- an post-movement onset, much later than in other motor 
areas such as pre-motor and motor cortex28. Thus, if purely movement-related activity were 
responsible for the categorization performance of striatal ensembles,  we would expect ensemble 
performance to display a similar time course to that of video frames. Applying the same analyses 
at multiple points in time ranging from 500 ms preceding to 500 ms following stimulus offset 
revealed a strikingly different profile of categorization performance for video frames as compared 
to neural ensembles (Figure 3d-e). Specifically, the time course of duration categorization by 
neural ensembles was best correlated with the duration categorization by video frames when using 
spikes collected between 400 ms and 200 ms preceding a reference video frame. These indicate 
that the categorization performance of striatal neurons was not simply related to the immediate 
sensorimotor state of the animal, and instead likely reflects that striatal neurons encode an internal 
neural representation of the state of animals’ categorical decisions. 

We have shown thus far that categorical information about interval duration contained in 
the firing of striatal populations at the time of stimulus offset can explain the precision of animals’ 
judgments about duration. However, in the task employed here, categorical judgments must be 
derived from a continuously evolving decision variable that represents how much time has elapsed 
since the onset of the stimulus. As indicated by the diversity of firing patterns (Figure 2d), the state 
of population activity evolved continuously during interval stimuli (Figure 3g, Figure 4a), a feature 
not captured by binary classification. Might trial to trial variations in population state predict the 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2015. ; https://doi.org/10.1101/020883doi: bioRxiv preprint 

https://doi.org/10.1101/020883
http://creativecommons.org/licenses/by-nc/4.0/


Wednesday 9 September 2015 Page �  of �4 24

apparent speed of animals’ internal representation of elapsed time? To test this possibility, we 
performed two additional analyses.

First, we projected the state of simultaneously recorded neuronal populations at stimulus 
offset in individual trials onto the mean trajectory within each session, noted the fraction of the 
mean trajectory traversed for each trial, and pooled the data for each stimulus over all sessions 
within a given subject. Indeed, when population state at stimulus offset had advanced relatively 
more or less along the mean trajectory, animals were more likely to judge intervals as long or short 
respectively (Figure 3f-g). This effect was observed most consistently for interval stimuli that were 
closer to the category boundary, and thus variations in projected population state led to horizontal 
shifts in the psychometric curves (see Methods).  These data are consistent with striatal population 
state encoding a representation of elapsed time that is used by animals to determine categorical 
judgments. Indeed, such a pattern of population activity has been proposed as a suitable neural 
code for elapsing time13,30. 

However, if such a representation encodes elapsed time, and not only subjects’ judgments 
in this task, neural activity should continuously traverse a non-repeating trajectory in state space in 
a manner that predicts duration judgments during presentation of particular stimuli.  Indeed, even 
in a low dimensional projection of population activity, we found that network state ran ahead or 
behind depending on whether the animal judged a near boundary stimulus as long or short (Figure 
4b-c). The correspondence between population trajectory and duration judgments further suggests 
that striatal dynamics may form an internal representation of elapsed time that informed categorical 
decisions about duration. To directly test this hypothesis, we focused on stimuli near the category 
boundary and decoded time from the population using a naive bayes decoder and asked whether 
such a representation correlated with animals’ judgments, exhibiting choice probability31. We found 
that decoded estimates of time ran faster or slower when animals judged a given stimulus as long 
or short, respectively (Figure 4d-g; cross validated naive Bayes decoder; see Methods). This 
indicates that striatal activity provides information about elapsing time, the continuously varying 
decision variable necessary to inform judgments in the task. Furthermore, if this information were 
read out and used to guide judgments, those judgments would match those of the rats. 

If the striatal activity we describe above directly supported task performance, manipulating 
the striatum should modify duration judgments. To test whether this was the case, we bilaterally 
injected the GABAa receptor agonist muscimol (see Methods). As a result, the duration sensitivity 
of animals’ judgments dropped significantly as compared to interleaved saline control sessions 
(Figure 1c; psychometric slope on saline sessions = [1.53 2.04] vs on muscimol sessions = [0.43 
0.77]; 95% confidence intervals), yet animals otherwise performed normally. These results, by 
demonstrating that duration categorization in this task was dependent on a normally functioning 
striatum, suggest that the neural signals we observed directly supported duration judgments.

Attempts to understand the neural mechanisms of time estimation have begun to focus on 
continuously evolving population dynamics as a general mechanism for time encoding across the 
brain2,8,13,30,32. According to this view, time may be encoded by any reproducible pattern of activity 
across a population of neurons for as long as the pattern is continuously changing and non-
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repeating. However, no study to date has directly compared the speed of such “population clocks” 
with the duration judgments of the behaving subjects in which they are found. We show that as rats 
judged the duration of interval stimuli, striatal neurons displayed dynamics in firing rate that 
contained information about elapsed time. Furthermore, this information was sufficient to account 
for the animals’ perceptual decisions, and was not accompanied by systematic differences in 
outwardly expressed behavior over time. Combined with the observation that striatal inactivation 
caused a specific decrement in timing performance, these data suggest that striatal dynamics form 
a central neural representation of time that guides animals’ decisions about duration. Such a 
coding mechanism in the striatum is well situated to inform the appropriate selection of actions 
through downstream circuitry involving the globus pallidus, substantia nigra, and various extrinsic 
connections between the basal ganglia and brainstem, thalamic, and cortical motor areas33. 
However, the coding properties tested here could be generally tested in other brain areas where 
timing signals have been identified such as the hippocampus1,2, medial prefrontal3,4, parietal5,6 and 
motor7 cortices, and the cerebellum8, among others. Such an approach promises to elucidate 
where and how time information encoded at the population level is used by the brain to support the 
myriad time-dependent functions we and other organisms rely on for survival. 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Methods
Subjects. Five male Long-Evans hooded rats (Rattus norvegicus) between the ages of 6 and 24 
months were used for this study.  Three rats were used for neural recordings and two rats for 
pharmacological manipulations. All experiments were in accordance with the European Union 
Directive 86/609/EEC and approved by the Portuguese Veterinary General Board (Direcção-Geral 
de Veterinária, project approval 014303 - 0420/000/000/2011).

Behavior. Rats were trained to perform a two-alternative forced choice timing task22. Briefly, 
animals had to categorize time intervals as either long or short by making left/right choices. For 
each session the animals were placed in a custom made behavioral box containing 3 nose ports 
and a speaker. Each trial was self-initiated by entry into the central nose port and was followed by 
a pair of brief auditory tones (square pulses at 7,500 Hz, 150 ms) separated by an interval 
selected randomly out of 8 possible durations (0.6, 1.05, 1.26, 1.38, 1.62, 1.74, 1.95 and 2.4 s). 
Judgments were reported at two laterally located nose ports. Left responses were reinforced with a 
drop of water (solenoid valves, Lee Company) after intervals longer than 1.5 seconds, and right 
responses otherwise. Incorrect responses were punished with a brief white noise burst (150 ms) 
and a time out. High speed video (120 fps) was collected from above during task performance. 
Psychometric functions were fitted using the following two-parameter logistic function

where b controls the slope and c is the inflection point of the curve.

Electrophysiology. Rats were implanted with 32-channel tungsten microwire moveable array 
bundles (Figure 5a, Innovative Neurophysiology) under isoflurane anaesthesia. All recordings  
(Figure 5b) targeted dorsal striatum with coordinates centred at +0.2mm AP and ±3 mm ML (rat 
Bertrand), and +0.84mm AP and ±2.5mm ML (rats Edgar and Fernando), from Bregma. Rats were 
given a week of post-surgical recovery and array placements were confirmed with histology (Figure 
5c). Neural signals were recorded at 30 kHz during behavior, amplified and band-pass filtered at 
250-750 Hz (Cerebus - Blackrock Microsystems). Each independent bundle was moved 50-100 
μm after every recording session to ensure that independent neural populations were sampled 
across recording sessions. Waveforms corresponding to action potentials from single neurons 
were sorted offline using principal component analysis (PCA) (offline sorter, Plexon). All remaining 
analysis were run in custom Matlab (Mathworks) software. We selected all isolated units with a 
mean session firing rate >0.5 Hz and from sessions with >70% correct performance (averaged 
across all stimuli) and a minimum of 250 trials (n=433 cells, 37 recording sessions, 3 animals; rat 
Bertrand: 136 units, 10 sessions; rat Edgar: 163 units, 9 sessions; rat Fernando: 134 untis, 18 
sessions). The general result was found in all subjects. Sample size was not computed during 
study design. To build PSTHs, spikes were counted in 2-ms bins and convolved with a gaussian 
kernel with 25-bin standard deviation. PSTHs in Figure 2d were ordered by angular position in the 
space formed by the first 2 principal components describing firing dynamics (i.e. dimensions are all 
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time bins within interval period, samples are each neuron’s mean PSTH). This method34 orders 
cells with respect to their dynamics while taking into consideration the full response profile over the 
relevant temporal window, and not just a single response feature such as peak response time.

Pharmacology. We implanted 3-mm 20-gauge stainless steel guide cannulas (Bilaney) bilaterally 
into the striatum of 2 rats [+0.84mm anterior-posterior (AP),±2.5mm medial-lateral (ML), from 
Bregma, and -3mm dorsal-ventral (DV, from cortex surface) under isoflurane anesthesia. After one 
week of post-surgical recovery and 4 days of training, rats were injected with either vehicle (saline, 
PBS 1x) or muscimol (GABA-A agonist, 20 mg/L, SigmaTM) solutions in four alternate days. Two 1-
μL syringes (Hamilton), attached to an injection pump (Harvard Apparatus) through 20-gauge 
internal cannulas that extended 1.5 mm bellow the guide cannulas, injected 0.6 μL of solution per 
site during 2.5 min. The internal cannulas were left in place for an additional 1.5 min and the rats 
were given a 45-min recovery period in their home-cage before starting the task. Cannula 
placements were confirmed by histology (Figure 5d). The general result was found in all sessions 
of all subjects. Sample size was not computed during study design.

Preference index. We counted spikes during the last 500 ms of the stimulus period,  and built two 
separate spike count distributions for short and long judgment trials. Next, we used a ROC 
analysis to measure the separation between distributions (95% bootstrap confidence interval, 1000 
iterations). We then transformed the area under the ROC curve (auROC ∈ [0,1]) into a preference 
index (k = 2*auROC - 1; k ∈ [-1,1]). We adopted the convention that neurons with positive 
preference indices fired preferentially for long stimuli (Figure 2e).

Low dimensional representations of population state. We refer to the vector describing 
instantaneous firing rates (measured within an integration window) across a population of neurons 
as the population state. The population state vector is a high dimensional variable (i.e. it has as 
many dimensions as neurons). With the purpose of visualizing population state in 2d plots, we 
employed standard dimensionality reduction techniques. In Figure 3a, we chose to represent in the 
abscissa a direction that emphasizes the separability between short and long stimulus trials (i.e. 
the direction that maximizes variance between groups while minimizing variance within groups; 
Fisher’s linear discriminant; see below), and in the ordinate the axis of maximal variance that is 
also orthogonal to the abscissa (i.e. first principal component calculated in the null space of the 
linear discriminant). In Figure 4a-b, population state is represented in the space formed by the first 
2 principal components describing population state, calculated during presentation of the interval 
for which choice variance is maximal (i.e. dimensions are neurons, samples are averaged spike 
counts for the time bins within that interval).

Neurometric curves. For each trial in a session we characterized neural population state as a 
vector r = (r1, r2, ..., rN), where rn is the number of spikes fired by neuron n ∈ [1,N] within the last 
500 ms of the interval period in that trial. Next, for all trials but one from each session (training set; 
leave-one-out cross-validation procedure), we found the linear discriminant that best separated 
population state vectors according to whether they came from long or short interval trials (Fisher’s 
linear discriminant analysis, LDA). The linear discriminant is given by
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where w is the vector of coefficients for the linear discriminant, SB is the between class covariance, 
SW the within class covariance and µ1 and µ2 are the means of all points in class 1 and class 2 
respectively. A threshold placed along the linear discriminant was then used as a decision rule 
applied to neural data from the remaining trial (test set). Figure 3a depicts population vectors from 
an example session (projection 1: linear discriminant, no cross-validation; projection 2: first 
principal component of the orthogonal subspace; black line: decision rule). We iterated over this 
procedure until all trials had been tested, thus obtaining for each trial a ‘neural duration judgment’. 
In analogy with behavioral judgments, we used two parameter logistic fits to obtain a quantitative 
description of the performance of simultaneously recorded neurons in categorizing stimuli - the 
neurometric function (Figure 3b, orange curve).

Videometric curves. Full session videos (256x192 pixels resolution) were cut into 3-s long clips 
with Bonsai35. Individual frames from approximately 75 ms before interval offset were used for this 
analysis. This buffer was added to ensure that all frames used preceded stimulus offset. Images 
were first represented as vectors composed of individual pixel luminance values. Given that image 
sequences tend to lie on curved low dimensional manifolds in pixel space36, any slight differences 
in behavioral state reflected in images collected at the offset of short and long interval categories 
are not necessarily expected to be linearly separable.  Thus, we employed isomap37, a non-linear 
dimensionality reduction method, to obtain an information rich yet low dimensional representation 
of animals’ ongoing behavior. This approach has the advantage over tracking methods that it does 
not make assumptions as to what part of the animals’ movements might provide information about 
stimulus category. The neighborhood size, used to compute the shortest paths between data 
points, was set to 25 frames to minimize, on average, the dimensionality at which the 
reconstruction error elbow occurred. In analogy with the neurometric curves, for each stimulus 
type, we then trained a linear discriminant (leave-one-out cross-validation procedure) to classify 
frames into those that were recorded during trials where a ‘short’ or ‘long’ stimulus interval was 
presented. The classification was performed in the reduced space determined by isomap. As a 
positive control for the method, we repeated the same analysis for frames captured at the moment 
animals expressed their judgment by inserting their snout at one of the two choice ports. Here, the 
neighborhood size was chosen to be the minimum for which all frames (from a single session) 
could be included in a single embedding. This analysis was done for all usable videos (8 out of 11) 
of sessions in the upper tercile with regard to population size. 

Time course of classification performance from neural and video data. To compare how the 
decoding performance using neural and video data evolved over time, the classification analyses 
described in Neurometric curves and Videometric curves was performed every 100 ms within a 
one second window centered around stimulus offset. Video frames at the each time point and 
neural data in a 200 ms time bin terminating at each time point were used for the analysis. This 
generated neural and video classification curves that described the ability of simultaneously 
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recorded neural ensembles and video frames to correctly classify interval stimuli as long or short 
(Figure 3d). To determine the relative timing of classification ability in neural ensembles and 
behavior, we regressed the neural classification curve against the video classification curve for 
shifts ranging from -300 ms to 300 ms in 100 ms steps (Figure 3e).  

Psychometric curves split by population state at interval offset. We projected neural activity 
(composed of simultaneously recorded neurons) on individual trials in high dimensional neural 
space onto the mean trajectory of those neurons during the delay period. We normalized these 
projections by the length of the mean trajectory of that group of neurons for the longest interval. 
Pooling normalized projections over all sessions for each animal, we plotted, for each stimulus, 
distributions of normalized projections at interval offset. To test whether distance traversed along 
the mean trajectory is predictive of animals' perceptual report, we separated the distribution of 
pooled projections for each stimulus into 3 bins. Psychometric curves were constructed using trials 
from each bin. To quantify the key differences between each of these psychometric curves, we 
performed model comparison using the following 4 parameter logistic function

where b controls the slope, c is the inflection point and a and d are the maximum and minimum 
values of the curve respectively. For two of three animals (Bertrand and Edgar), the model that 
best accounted for the differences between the three curves (based on Bayesian Information 
Criterion (BIC) scores) was one with only horizontal shifts between the curves. In the third animal 
(Fernando), the model that best fit the data was one in which the fit to the three curves differed in 
both horizontal shift and slope.

A trial's projection on the mean trajectory can be interpreted as a method for decoding time from 
neural state. Hence, trials that are outliers in the distribution of projections on the mean could 
potentially correspond to trials where the animal was disengaged. To remove such trials we 
defined a fraction (60%) of normalized trajectory around the mode of the distribution of pooled 
projections for each stimulus and excluded trials with projections outside this window.

Population decoder. We decoded elapsed time from striatal population activity using a cross 
validated, flat prior naive Bayes decoder. For each neuron n ∈ [1,N], spike counts rn were observed 
in 500-ms wide, 10-ms apart, overlapping time bins within the interval period (time referring to the 
right edge of the bin). For a given rn, the probability that the current time is t was estimated as the 
likelihood of observing rn spikes at time t: 

To obtain the likelihood term P(rn | t), we estimated the joint distribution P(rn, t) by computing, for 
each time bin, a weighted histogram of spike counts across all correct trials. For trials in which 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2015. ; https://doi.org/10.1101/020883doi: bioRxiv preprint 

https://doi.org/10.1101/020883
http://creativecommons.org/licenses/by-nc/4.0/


Wednesday 9 September 2015 Page �  of �13 24

stimulus interval i was presented, spike counts contributed to the histogram with weight wi  defined 
as the normalized choice variance associated with that interval,

where CS and CL indicate short and long choices, respectively. As a result, near boundary interval 
trials had a greater influence on the estimate of the joint distribution. Histograms were then 
smoothed using local linear regression (lowess) and normalized to unit area. When decoding from 
correct trials, leave-one-out cross validation was implemented by computing the joint distribution 
from all correct trials but the decoded one; incorrect trials were decoded using an estimate of the 
joint distribution computed from all correct trials. Multi-session population state vectors r = (r1, 
r2, ..., rN) were obtained by concatenating together data from trials of same stimulus and choice 
type. By assuming statistical independence between spike counts of different neurons in r, we 
could compute population estimates of t as the product of single neuron estimates:

Data presented is the average over 100 random concatenations. 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Figure 1. Rats judged interval durations as either long or short. (a) Rats triggered 
interval stimuli (i.e. two brief auditory tones  separated by a silent interval of random duration) by 
inserting their snout into a central port. Following interval offset, animals reported their long vs 
short judgment at two lateral choice ports. Correct trials yielded a water reward, while incorrect or 
premature responses produced a white noise sound and a time out. Top view, high-speed video 
was acquired throughout task performance. (b) Reward contingency. (c) Averaged psychometric 
curves following bilateral muscimol or saline injections in dorsal striatum (mean±standard deviation 
across session means, and logistic fit; n = 2 rats, 4 sessions each). Inset: slope of psychometric 
curves on consecutive saline and muscimol sessions.
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Figure 2. Dynamics of striatal subpopulations predict duration judgments.  (a) 
Psychometric function for neural recording sessions (mean±standard deviation across sessions 
and logistic fit, n = 37 sessions from 3 rats). (b,c) Raster plot and peri-stimulus time histogram 
(PSTH) of two example cells for trials in which the longest stimulus interval (2.4 s) was presented. 
Time = 0 corresponds to stimulus onset. (d) Normalized PSTHs of all neurons in the dataset for 
trials in which the longest stimulus interval was presented. Arrowheads indicate cells shown in 
(b,c). Blue and red ticks indicate cells with significant short and long preferences, respectively. (e) 
Histogram of preference indices. Blue and red outlines indicate subpopulations with significant 
short and long preferences, respectively. (f) Averaged, normalized PSTH of the two subpopulations 
outlined in (e) for trials in which the longest stimulus interval was presented (mean±SEM). (g) 
Same as in (f), for trials in which a near-boundary stimulus interval (1.62 s) was judged as long. 
For comparison, curves shown in (f) are reproduced as a watermark. (h) same as (g) for trials in 
which the stimulus was judged as short. For single subjects, see Figure 2-figure supplement 1.
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Figure 2 - figure supplement 1. Dynamics of striatal subpopulations predict 
duration judgments. (a,e,i) Psychometric functions for the recording sessions of rats Bertrand (a), 
Edgar (e) and Fernando (i) (mean±standard deviation across sessions and logistic fit). (b,f,j) 
Histograms of preference indices for the same individual animals. Blue and red outlines indicate 
subpopulations with significant short and long preferences, respectively. (c,g,k) Averaged, 
normalized PSTHs of the two subpopulations outlined in (b,f,j) for trials in which the a near-
boundary stimulus interval (1.62 s) was judged as long (mean±SEM). (d,h,l) same as in (c,g,k) for 
short judgment trials. 
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Figure 3. Simultaneously recorded population state at interval offset can explain 
behavioral performance. (a) Low dimensional representation of population state at interval offset 
for one example session. Black line is the decision rule (see text). (b) Example psychometric, 
neurometric and videometric curves for the same session as in (a). (c) Slopes of psychometric and 
neurometric curves for all sessions. Color indicates terciles of population size. Highlighted data 
point corresponds to the session in (a-b). Inset: regression slope of neurometric and videometric 
curves for sessions in the upper tercile. See Figure 3-figure supplement 1 for psychometric-
videometric comparison at interval offset and choice. (d) Performance of an ideal observer analysis 
in predicting stimulus category, applied to neural (orange) and video (blue) data obtained at 
different times relative to interval offset. Each line corresponds to an individual session. (e) The 
orange and blue curves (shown in panel (d)) for corresponding sessions were regressed against 
each other at different time shifts. The regression R2 values for each session are shown in thin 
grey lines. The average over all sessions is shown in black. Sizes of black squares indicate the 
number of sessions with significant positive correlations (largest squares at 200 and 100 ms 
correspond to 5 sessions and smallest one at -200 ms to 1, out of a total of 8 sessions). (f) 
Psychometric curves constructed from trials separated according to whether the population state at 
stimulus offset had advanced more or less along the mean trajectory. Color indicates terciles 
shown in (g). (g) Distributions of projection on normalized mean trajectory for all trials for each 
stimulus are shown (stimuli color coded as in (a)). The equal area bins shown correspond to the 
groups of trials used for constructing the three psychometric curves shown in panel (f). Data in f-g 
are from rat Bertrand. See Figure 3-figure supplement 2 for the remaining two subjects.
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Figure 3 - figure supplement 1. Behavior at the end of the neural analysis window 
did not explain the categorization performance of neural populations. (a) Neurometric 
(orange data points) or videometric (purple data points) logistic slope plotted against the 
psychometric slope for each session in the upper tercile with respect to simultaneously recorded 
population size. (b) Videometric slope plotted against the psychometric slope where the 
videometric curve was built using image frames taken at the time that animals expressed their 
choice. 
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Figure 3 - figure supplement 2. Population state at interval offset can explain 
behavioral performance. (a) Psychometric curves constructed from trials separated according to 
whether the population state at stimulus offset had advanced more or less along the mean 
trajectory for rats Edgar (top) and Fernando (bottom) (b) Distributions of projection on normalized 
mean trajectory for all trials for each stimulus are shown for rats Edgar (left) and Fernando (right). 
The equal area bins shown correspond to the groups of trials used for constructing the three 
psychometric curves shown in (a). 
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Figure 4. Smoothly changing population state encodes elapsing time in accordance 
with perceptual report for a long stimulus. (a) Low dimensional representation of population 
state during entire interval period of correct trials. Line colors indicate interval duration (warmer 
colors are longer intervals, as in Figure 3). Dots are placed at the interval offset end, and their 
color indicates judgment (blue: short; red: long). (b-g) Population state and decoded time for a 
single long, near boundary stimulus interval (1.62 s). (b) Yellow curve is same as in (a). Red dots 
are 6 time points evenly spaced between interval onset and offset. Blue dots are projections of 
population state during short judgment trials. Grey lines link population states at equivalent time 
points. (c) Average cumulative distance travelled in full neural space along trajectory represented 
in (b) on long versus short judgment trials. (d) Posterior probability of time given population state at 
the time points indicated in (b), averaged within trials of each judgment type. (e,f) Same as (d) for 
the entire interval period. (g) Difference between posteriors for long and short judgment trials. 
Arrowheads indicate same time points used in (b,d). n = 433 neurons from 3 rats. See Figure 4-
figure supplement 1 for a different near boundary stimulus, and Figure 4-figure supplement 2 for 
data from individual subjects.
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Figure 4 - figure supplement 1. Smoothly changing population state encodes 
elapsing time in accordance with perceptual report for a short stimulus. (a) Low dimensional 
representation of population state during entire interval period of correct trials. Line colors indicate 
interval duration (same color code as in Figure 3 and 4). Dots are placed at the interval offset end, 
and their color indicates judgment (blue: short; red: long). (b-g) Population state and decoded time 
for a single short, near boundary stimulus interval (1.38 s). (b) Green curve is the population state 
trajectory for long judgment trials. Red dots are 6 time points evenly spaced between interval onset 
and offset. Blue dots are projections of population state during short judgment trials. Grey lines link 
population states at equivalent time points. (c) Average cumulative distance travelled in full neural 
space along trajectory represented in (b) on long versus short judgment trials. (d) Posterior 
probability of time given population state at the time points indicated in (b), averaged within trials of 
each judgment type. (e,f) Same as (d) for the entire interval period. (g) Difference between 
posteriors for long and short judgment trials. Arrowheads indicate same time points used in (b,d). 
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Figure 4 - figure supplement 2. Single subjects show smoothly changing population 
states that encode elapsing time in accordance with perceptual report. (a,e,i) Low 
dimensional representation of population state during entire interval period of correct trials of rats 
Bertrand (a), Edgar (e) and Fernando (i). Line colors indicate interval duration (warmer colors are 
longer intervals, as in Figures 3 and 4). Dots are placed at the interval offset end, and their color 
indicate choice (blue: short; red: long). (b,f,j) Yellow/green line is same as in (a,e,i) for a single 
near boundary stimulus interval (1.62/1.38 s; stimulus of highest choice variance for each subject). 
Red dots are 6 time points evenly spaced between interval onset and offset. Blue dots are 
projections of population state during short judgment trials. Grey lines link population states at 
equivalent time points. (c,g,k) Average cumulative distance travelled in full neural space along 
trajectory represented in (b,f,j) on long versus short judgment trials. (d,h,l) Difference between 
posteriors for long and short judgment trials for rats Bertrand (d), Edgar (h) and Fernando (l). 
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Figure 5. (a) Movable microwire bundle array (Innovative Neurophysiology) used for all 
neural recordings. (b) Histogram of firing rates for all selected cells (bin size 1 spike/s). (c) 
Schematic representation of the striatal recording sites. Coronal slices at intermediate AP positions 
are show for reference (left to right, rats Bertrand, Edgar and Fernando). Colored rectangles show 
the approximate DV position of the wire bundles across recording sessions and horizontal black 
lines represent session-by- session recording sites, for 10, 9 and 18 recording sessions, 
respectively. (d) Schematic representation of the location of saline and muscimol injections. 
Coronal slices at intermediate anterior posterior (AP) positions are shown for reference at +0.84 
mm (left, rat Albert) and +1.68mm (right, rat Yuri) from Bregma. Vertical grey lines represent the 
location of the internal cannulas and show the approximate dorsal-ventral (DV) position of the 
injection sites.
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