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Time, like space, is a fundamental dimension of the environment, yet how time is 
processed in the brain is poorly understood. Prior studies have shown that population 
dynamics in a number of brain areas encode information about the passage of time1-9,23-25. 
However, it is not known whether such temporal representations inform subjects’ 
judgments of duration or merely covary with elapsing time. The striatum is an input 
structure of the basal ganglia implicated in several time-dependent functions such as 
reinforcement learning, decision making, and interval timing1,10-15. To determine whether 
striatal ensembles drive subjects’ judgments of duration, we manipulated and recorded 
from striatal neurons in rats performing a duration categorization psychophysical task. We 
found that striatal neurons displayed diverse firing patterns and that the dynamics of these 
patterns predicted duration judgments. In fact, using the state of a simultaneously recorded 
ensemble to judge duration produced performance that matched that of the animal. 
Importantly, these findings were not explained by the immediate sensorimotor state of the 
animals as assessed by analysis of high speed video of behavior. Furthermore, striatal 
neurons were necessary for duration judgments, as infusions of the GABAa agonist 
muscimol into the striatum produced a specific impairment in the duration sensitivity of 
animals’ judgments. Lastly, we show that elapsing time, the relevant decision variable for 
the task, was encoded by striatal populations and ran faster or slower when rats judged a 
given duration as longer or shorter, respectively. These results demonstrate that striatal 
dynamics form an internal “neural population clock”16-17 that supports the fundamental 
ability of animals to judge the passage of time.

To measure the duration sensitivity of subjects’ timing judgments, we trained rats to judge 
whether time intervals belonged to a long or short category18 (see Methods; Figure 1a). At each 
self-initiated trial, two brief tones (interval onset, offset) were presented separated in time by an 
interval randomly selected from the set I = {0.6, 1.05, 1.26, 1.38, 1.62, 1.74, 1.95, 2.4} seconds. 
Judgments about interval duration were reported at two laterally located nose ports: choosing the 
left side was reinforced with water after intervals longer than 1.5 seconds (long stimuli), and the 
right side otherwise (short stimuli, Figure 1b). Animals were required to withhold choice until 
interval offset. Animals made virtually no errors when categorizing the easiest (i.e. shortest and 
longest) intervals, but categorization performance declined as intervals approached the 1.5 
seconds categorical boundary (Figure 1c). 

Several lines of evidence implicate the striatum in interval timing1-4,10-14, but whether 
striatal neural activity can explain the perceptual performance of behaving subjects is unknown. 
We recorded action potentials (spiking activity, Extended Figure 1a-c) from populations of single 
striatal neurons during task performance (Figure 2a, Extended Figure 2a,e,i). We observed that 
striatal neurons displayed diverse firing patterns, with different units firing at different times within 
the interval period (Figure 2b-d). Can such firing patterns support duration judgments? To 
determine whether and the degree to which individual neurons could contribute to duration 
judgments, for each trial, we counted spikes in the last 500 ms of the interval period and compared 
spike count distributions of short vs long stimulus trials using a receiver operating characteristic 
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(ROC) analysis (see Methods). We found that the majority of neurons (~57%) preferred either short 
or long stimuli (Figure 2e, Extended Figure 2b,f,j; short-preferring: n = 159/433, 36.7%; long-
preferring: n = 87/433, 20.1%; permutation test, p<0.05).  As expected, short-preferring neurons 
displayed higher firing on average prior to the 1.5 s category boundary, after which long-preferring 
neurons displayed higher firing (Figure 2f). These averaged activity patterns resemble the 
likelihood of receiving reward on moment-by-moment by basis should the animal choose short or 
long (compare with reward contingency in Figure 1b). Such signals, previously observed in the 
parietal cortex of monkeys performing a similar timing task5 and in the striatum in a value based 
decision task15, are potentially useful for guiding choice. However, were animals’ judgments indeed 
guided by such signals, it should be possible to predict choices reported later in the trial using 
neural activity collected during interval stimuli. Indeed, in trials wherein a near boundary interval 
was judged as long, firing of the short (long) preferring subpopulation dropped (rose) faster, so that 
the two curves crossed before the 1.5 s boundary (Figure 2g, Extended Figure 2c,g,k). Conversely, 
in trials wherein the same interval was judged as short, the two curves evolved more slowly so that 
at the time of interval offset the short preferring subpopulation was still firing at a higher level and a 
crossing point had not yet been reached (Figure 2h, Extended Figure 2d,h,l).

The observation of large proportions of short- and long-preferring neurons whose dynamics 
predicted choice is evidence that duration judgments are guided by the state of striatal populations. 
Might the information afforded by ensembles of striatal neurons account for the pattern of subjects’ 
judgments across all stimuli? To test this hypothesis, we compared session to session fluctuations 
in behavioral performance with the separability of activity states of simultaneously recorded 
ensembles at the offset of short as compared to long intervals. Briefly, for each trial in a session we 
characterized neural population state as a vector r = (r1, r2, ..., rn), where rn is the number of spikes 
fired by neuron n within the last 500 ms of the interval period. Next, for each session we found the 
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Figure 1. Rats judged interval durations 
as either long or short. (a) Rats triggered 
interval stimuli (i.e. two brief auditory tones  
separated by a silent interval of random 
duration) by inserting their snout into a 
central port. Following interval offset, 
animals reported their long vs short 
judgment at two lateral choice ports. 
Correct trials yielded a water reward, while 
incorrect or premature responses produced 
a white noise sound and a time out. Top 
view, high-speed video was acquired 
throughout task performance. (b) Reward 
contingency. (c) Averaged psychometric 
curves following bilateral muscimol or saline 
injections in dorsal str iatum (mean
±standard deviation across sessions and 
logistic fit; n = 2 rats, 4 sessions each). 
Inset: slope of psychometric curves on 
consecutive saline and muscimol sessions.
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linear discriminant that best separated population state vectors according to whether they came 
from a long or a short interval trial (Figure 3a; see Methods). A threshold placed along the linear 
discriminant was then used as a decision rule (black line in Figure 3a) to generate a ‘neural 
duration judgment’ for each trial. This procedure allowed us to obtain, for each session, a 
quantitative description of how well simultaneously recorded neurons could categorize stimuli, i.e., 
a neurometric function comparable to the behavioral psychometric function (Figure 3b). Consistent 
with duration information being encoded at the population level, we found that for sessions in which 
greater numbers of neurons were recorded simultaneously (i.e. upper tercile of sessions with 
regard to population size) psychometric and neurometric performances were similar and strongly 
correlated (r2 = 0.76, p<0.001; Figure 3c). These results demonstrate that a read out of stimulus 
category from even modestly-sized ensembles of striatal neurons was in many cases sufficient to 
explain the pattern of duration judgments produced by behaving subjects. 

Figure 2. Dynamics of striatal subpopulations predict duration judgments.  (a) Psychometric 
function for neural recording sessions (mean±standard deviation across sessions and logistic fit, 
n = 37 sessions from 3 rats). (b,c) Raster plot and peri-stimulus time histogram (PSTH) of two 
example cells for trials in which the longest stimulus interval (2.4 s) was presented. Time = 0 
corresponds to stimulus onset. (d) Normalized PSTHs of all neurons in the dataset for trials in 
which the longest stimulus interval was presented. Arrowheads indicate cells shown in (b,c). Blue 
and red ticks indicate cells with significant short and long preferences, respectively. (e) 
Histogram of preference indices. Blue and red outlines indicate subpopulations with significant 
short and long preferences, respectively. (f) Averaged, normalized PSTH of the two 
subpopulations outlined in (e) for trials in which the longest stimulus interval was presented 
(mean±SEM). (g) Same as in (f), for trials in which a near-boundary stimulus interval (1.62 s) was 
judged as long. For comparison, curves shown in (f) are reproduced as a watermark. (h) same as 
(g) for trials in which the stimulus was judged as short.
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It has been previously reported18 that duration judgments could be predicted by animals’ 
ongoing behavior during the interval period. In addition, it is well known that striatal neurons can 
fire around movements19. Could the categorization performance of striatal ensembles reflect 
activity related to movements the animal might be making during the task? To test to what degree 
ongoing behavior could explain the categorization performance of striatal neural activity, we 
applied an analogous classification analysis to video images taken of the animal just before interval 
offset (see Methods). We found that our ability to categorize intervals using video frames was 
consistently poorer as compared to neural data collected at the analogous time periods during the 
task (Figure 3b, inset in Figure 3c, Extended Figure 3a). In contrast, we were able to categorize 
stimuli as well as the animal using video frames taken at the point when animals expressed their 
choice at one of the reward ports (Extended Figure 3b). Furthermore, movement related responses 
in the striatum are known to occur both pre- an post-movement onset, much later than in other 
motor areas such as pre-motor and motor cortex20. Thus, if purely movement-related activity were 
responsible for the categorization performance of striatal ensembles,  we would expect ensemble 
performance to display a similar time course to that of video frames. Applying the same analyses at 
multiple points in time ranging from 500 ms preceding to 500 ms following stimulus offset revealed 
a strikingly different profile of categorization performance for video frames as compared to neural 
ensembles (Extended Figure 4). Specifically, the time course of duration categorization by neural 
ensembles was best correlated with the duration categorization by video frames when using spikes 
collected between 400 ms and 200 ms preceding a reference video frame. These data strongly 
suggest that the categorization performance of striatal neurons was not simply related to the 
immediate sensorimotor state of the animal, and instead likely reflects that striatal neurons encode 
an internal neural representation of the state of animals’ categorical decisions and not a signal that 
is already on a final path to the muscles. 

We have shown thus far that categorical information about interval duration contained in the 
firing of striatal populations can explain the precision of animals’ judgments about duration. 

Figure 3. Simultaneously recorded population state at interval offset can explain behavioral 
performance. (a) Low dimensional representation of population state at interval offset for one 
example session. Black line is the decision rule (see text). (b) Example psychometric, 
neurometric and videometric curves for the same session as in (a). (c) Slopes of psychometric 
and neurometric curves for all sessions. Color indicates terciles of population size. Highlighted 
data point corresponds to the session in (a-b). Inset: regression slope of neurometric and 
videometric curves for sessions in the upper tercile.
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However, in the task employed here, categorical judgments must be derived from a continuously 
evolving decision variable that represents how much time has elapsed since the onset of the 
stimulus. As suggested by the diversity of firing patterns (Figure 2d), the state of population activity 
evolved continuously during interval stimuli (Figure 4a, Extended Figure 5a,e,i, Extended Figure 
6a,e,i), a feature not captured by binary classification. Such a pattern of population activity has 
been proposed as a suitable neural code for elapsing time16-17. However, if such a representation 
underlies subjects’ duration judgments in this task, neural activity should continuously traverse a 
non-repeating trajectory in state space in a manner that predicts duration judgments. Indeed, even 
in a low dimensional projection of population activity, we found that network state ran ahead or 
behind depending on whether the animal judged a near boundary stimulus as long or short (Figure 
4b-c, Extended Figure 5b-c,f-g,j-k, Extended Figure 6b-c,f-g,j-k). The correspondence between 
population trajectory and duration judgments suggests that striatal dynamics may form an internal 

Figure 4. Smoothly changing population state encodes elapsing time in accordance with 
perceptual report for a long stimulus. (a) Low dimensional representation of population state 
during entire interval period of correct trials. Line colors indicate interval duration (warmer colors 
are longer intervals, as in Figure 3). Dots are placed at the interval offset end, and their color 
indicates judgment (blue: short; red: long). (b-g) Population state and decoded time for a single 
long, near boundary stimulus interval (1.62 s). (b) Yellow curve is same as in (a). Red dots are 6 
time points evenly spaced between interval onset and offset. Blue dots are projections of 
population state during short judgment trials. Grey lines link population states at equivalent time 
points. (c) Average cumulative distance travelled in full neural space along trajectory represented 
in (b) on long versus short judgment trials. (d) Posterior probability of time given population state 
at the time points indicated in (b), averaged within trials of each judgment type. (e,f) Same as (d) 
for the entire interval period. (g) Difference between posteriors for long and short judgment trials. 
Arrowheads indicate same time points used in (b,d).
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representation of elapsed time that informed categorical decisions about duration. To directly test 
this hypothesis, we decoded time from the population using a naive bayes decoder. We found that 
decoded estimates of time ran faster or slower when animals judged a given stimulus as long or 
short, respectively (Figure 4d-g; Extended Figure 5d,h,l; Extended Figure 6d,h,i; cross validated 
Naive Bayes decoder; see Methods). This indicates that striatal activity provides information not 
only about categorical judgments of interval duration, but also about elapsing time, the 
continuously varying decision variable necessary to inform those judgments. 

If the striatal activity we describe above directly supports task performance, manipulating 
the striatum should modify duration judgments. To test whether the striatum was necessary for 
duration judgments, we bilaterally injected the GABAa receptor agonist muscimol (Extended Figure 
1d). As a result, the duration sensitivity of animals’ judgments dropped significantly as compared to 
interleaved saline control sessions (Figure 1c; psychometric slope on saline sessions = [1.53 2.04] 
vs on muscimol sessions = [0.43 0.77]; 95% confidence intervals), yet animals otherwise 
performed normally. These results, by demonstrating that duration categorization in this task was 
dependent on a normally functioning striatum, suggest that the neural signals we observed directly 
supported duration judgments.

Attempts to understand the neural mechanisms of time estimation have begun to focus on 
continuously evolving population dynamics as a general mechanism for time encoding across the 
brain6-7,16-17,21. According to this view, time may be encoded by any reproducible pattern of activity 
across a population of neurons for as long as the pattern is continuously changing and non-
repeating. However, no study to date has directly compared the speed of such “population clocks” 
with the duration judgments of the behaving subjects in which they are found. We show that as rats 
judged the duration of interval stimuli, striatal neurons displayed dynamics in firing rate that 
contained information about elapsed time. Furthermore, this information was sufficient to account 
for the animals’ perceptual decisions, and was not accompanied by systematic differences in 
outwardly expressed behavior over time. Combined with the observation that striatal inactivation 
caused a specific decrement in timing performance, these data suggest that striatal dynamics form 
a central neural representation of time that guides animals’ decisions about duration. Such a 
coding mechanism in the striatum is well situated to inform the appropriate selection of actions 
through downstream circuitry involving the globus pallidus, substantia nigra, and various extrinsic 
connections between the basal ganglia and brainstem, thalamic, and cortical motor areas22. 
However, the coding properties tested here could be generally tested in other brain areas where 
timing signals have been identified such as the hippocampus6,25, medial prefrontal8-9, parietal5,23 
and motor24 cortices, and the cerebellum7, among others. Such an approach promises to elucidate 
where and how time information is used by the brain to support the myriad time-dependent 
functions we and other organisms rely on for survival. 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Methods
Subjects. Five male Long-Evans hooded rats (Rattus norvegicus) between the ages of 6 and 24 
months were used for this study.  Three rats were used for neural recordings and two rats for 
pharmacological manipulations. All experiments were in accordance with the European Union 
Directive 86/609/EEC and approved by the Portuguese Veterinary General Board (Direcção-Geral 
de Veterinária, project approval 014303 - 0420/000/000/2011).

Behavior. Rats were trained to perform a two-alternative forced choice timing task18. Briefly, 
animals had to categorize time intervals as either long or short by making left/right choices. For 
each session the animals were placed in a custom made behavioral box containing 3 nose ports 
and a speaker. Each trial was self-initiated by entry into the central nose port and was followed by 
a pair of brief auditory tones (square pulses at 7,500 Hz, 150 ms) separated by an interval selected 
randomly out of 8 possible durations (0.6, 1.05, 1.26, 1.38, 1.62, 1.74, 1.95 and 2.4 s). Judgments 
were reported at two laterally located nose ports. Left responses were reinforced with a drop of 
water (solenoid valves, Lee Company) after intervals longer than 1.5 seconds, and right responses 
otherwise. Incorrect responses were punished with a brief white noise burst (150 ms) and a time 
out. High speed video (120 fps) was collected from above during task performance. Psychometric 
functions were fitted using two-parameter logistic regressions.

Electrophysiology. Rats were implanted with 32-channel tungsten microwire moveable array 
bundles (Supplementary Figure 1a, Innovative Neurophysiology) under isoflurane anaesthesia. All 
recordings targeted dorsal striatum with coordinates centred at +0.2mm AP and ±3 mm ML (rat 
Bertrand), and +0.84mm AP and ±2.5mm ML (rats Edgar and Fernando), from Bregma. Rats were 
given a week of post-surgical recovery and array placements were confirmed with histology 
(Supplementary Figure 1c). Neural signals were recorded at 30 kHz during behavior, amplified and 
band-pass filtered at 250-750 Hz (Cerebus - Blackrock Microsystems). Each independent bundle 
was moved 50-100 μm after every recording session to ensure that independent neural 
populations were sampled across recording sessions. Waveforms corresponding to action 
potentials from single neurons were sorted offline using principal component analysis (PCA) 
(offline sorter, Plexon). All remaining analysis were run in custom Matlab (Mathworks) software. We 
selected all isolated units with a mean session firing rate >0.5 Hz and from sessions with >70% 
correct performance (averaged across all stimuli) and a minimum of 250 trials (n=433 cells, 37 
recording sessions, 3 animals). To build PSTHs, spikes were counted in 2-ms bins and convolved 
with a gaussian kernel with 25-bin standard deviation. PSTHs in Figure 2d were ordered by 
angular position in the space formed by the first 2 principal components describing firing dynamics 
(i.e. dimensions are all time bins within interval period, samples are each neuron’s mean PSTH). 
This method26 orders cells with respect to their dynamics while taking into consideration the full 
response profile over the relevant temporal window, and not just a single response feature such as 
peak response time.

Pharmacology. We implanted 3-mm 20-gauge stainless steel guide cannulas (Belany) bilaterally 
into the striatum of 2 rats [+0.84mm anterior-posterior (AP),±2.5mm medial-lateral (ML), from 
Bregma, and -3mm dorsal-ventral (DV, from cortex surface) under isoflurane anesthesia. After one 
week of post-surgical recovery and 4 days of training, rats were injected with either vehicle (saline, 
PBS 1x) or muscimol (GABA-A agonist, 20 mg/L, SigmaTM) solutions in alternate days. Two 1-μL 
syringes (Hamilton), attached to an injection pump (Harvard Apparatus) through 20-gauge internal 
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cannulas that extended 1.5 mm bellow the guide cannulas, injected 0.6 μL of solution per site 
during 2.5 min. The internal cannulas were left in place for an additional 1.5 min and the rats were 
given a 45-min recovery period in their home-cage before starting the task. Cannula placements 
were confirmed by histology (Supplementary Figure 1d).

Preference index. We counted spikes during the last 500 ms of the stimulus period,  and built two 
separate spike count distributions for short and long judgment trials. Next, we used a ROC analysis 
to measure the separation between distributions (95% bootstrap confidence interval, 1000 
iterations). We then transformed the area under the ROC curve (auROC = [0,1]) into a preference 
index (pi = 2*auROC - 1; pi = [-1,1]). We adopted the convention that neurons with positive 
preference indices fired preferentially for long stimuli (Figure 2e, Extended Figure 2b,f,j).

Low dimensional representations of population state. We refer to the vector describing 
instantaneous firing rates (measured within an integration window) across a population of neurons 
as the population state. The population state vector is a high dimensional variable (i.e. it has as 
many dimensions as neurons). With the purpose of visualizing population state in 2d plots, we 
employed standard dimensionality reduction techniques. In Figure 3a, we chose to represent in the 
abscissa a direction that emphasizes the separability between short and long stimulus trials (i.e. 
the direction that maximizes variance between groups while minimizing variance within groups; 
Fisher’s linear discriminant; see below), and in the ordinate the axis of maximal variance that is 
also orthogonal to the abscissa (i.e. first principal component calculated in the null space of the 
linear discriminant). In Figure 4a-b and corresponding panels in Extended Figure 5, population 
state is represented in the space formed by the first 2 principal components describing population 
state, calculated during presentation of interval the interval for which choice variance is maximal 
(i.e. dimensions are neurons, samples are averaged spike counts for the time bins within that 
interval).

Neurometric curves. For each trial in a session we characterized neural population state as a 
vector r = (r1, r2, ..., rn), where rn is the number of spikes fired by neuron n within the last 500 ms of 
the interval period in that trial. Next, for a subset of trials from each session (training set; 20-fold 
cross validation), we found the linear discriminant that best separated population state vectors 
according to whether they came from long or short interval trials (Fisher’s linear discriminant 
analysis, LDA). A threshold placed along the linear discriminant was then used as a decision rule 
applied to neural data from the remaining trials (test set). Figure 3a depicts population vectors from 
an example session (projection 1: linear discriminant; projection 2: first principal component of the 
orthogonal subspace; black line: decision rule). We iterated over this procedure until all trials had 
been tested, thus obtaining for each trial a ‘neural duration judgment’. In analogy with behavioral 
judgments, we used two parameter logistic fits to obtain a quantitative description of the 
performance of simultaneously recorded neurons in categorizing stimuli - the neurometric function 
(Figure 3b, orange curve).

Videometric curves. Full session videos (256x192 pixels resolution) were cut into 3-s long clips 
with Bonsai27. Individual frames from approximately 75 ms before interval offset were used for this 
analysis. This buffer was added to ensure that all frames used preceded stimulus offset. Images 
were first represented as vectors composed of individual pixel luminance values. Given that image 
sequences tend to lie on curved low dimensional manifolds in pixel space28, any slight differences 
in behavioral state reflected in images collected at the offset of short and long interval categories 
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are not necessarily expected to be linearly separable.  Thus, we employed isomap29, a non-linear 
dimensionality reduction method, to obtain an information rich yet low dimensional representation 
of animals’ ongoing behavior. This approach has the advantage over tracking methods that it does 
not make assumptions as to what part of the animals’ movements might provide information about 
stimulus category. The neighborhood size, used to compute the shortest paths between data 
points, was set to 25 frames to minimize, on average, the dimensionality at which the 
reconstruction error elbow occurred. In analogy with the neurometric curves, for each stimulus 
type, we then trained a linear discriminant (leave-one-out cross-validation procedure) to classify 
frames into those that were recorded during trials where a ‘short’ or ‘long’ stimulus interval was 
presented. The classification was performed in the reduced space determined by isomap. As a 
positive control for the method, we repeated the same analysis for frames captured at the moment 
animals expressed their judgment by inserting their snout at one of the two choice ports. Here, the 
neighborhood size was chosen to be the minimum for which all frames (from a single session) 
could be included in a single embedding. This analysis was done for all usable videos (8 out of 11) 
of sessions in the upper tercile with regard to population size. 

Time course of classification performance from neural and video data. To compare how the 
decoding performance using neural and video data evolved over time, the classification analyses 
described in Neurometric curves and Videometric curves was performed every 100 ms within a 
one second window centered around stimulus offset. Video frames at the each time point and 
neural data in a 200 ms time bin terminating at each time point were used for the analysis. This 
generated neural and video classification curves that described the ability of simultaneously 
recorded neural ensembles and video frames to correctly classify interval stimuli as long or short 
(Extended Figure 4a-h). To determine the relative timing of classification ability in neural 
ensembles and behavior, we regressed the neural classification curve against the video 
classification curve for shifts ranging from -300 ms to 300 ms in 100 ms steps (Extended Figure 4i).  

Population decoder. We decoded elapsed time from striatal activity using a cross validated, flat 
prior naive Bayes decoder. First, spikes were counted in 500-ms wide, 10-ms apart overlapping 
time bins (time referring to the right edge of the bin). For each neuron, we captured cross-trial 
variability in spike counts at each time bin by building empirical distributions. We did it by 
computing, for each neuron and time bin, a weighted histogram of spike counts across all correct 
trials. We defined the weight applied to the spike count observed at a given trial as the choice 
variance associated with the stimulus presented in that trial. Specifically, weights were defined for 
each stimulus value s as the product of the probabilities of long and short judgments, i.e., P(long 
judgment | stimulus = s) * P(short judgment | stimulus = s). Histograms were then smoothed using 
local linear regression (lowess), and normalized to unit area. As a result, near boundary trials had a 
greater contribution to the final shape of the histograms. Iterating this procedure over all time bins 
within the interval period produced the conditional probability distribution P(rn | time), a.k.a. 
likelihood function. Whenever appropriate (i.e. when decoding from correct trials), leave-one-out 
cross validation was performed by recomputing the likelihood function with all correct trials but the 
one being decoded from. Populations of neurons were built by concatenating together trials of 
same stimulus and judgment type. For each of 100 such trials, posteriors were computed for each 
neuron with a flat prior, then multiplied across neurons and renormalized to unit area to generate 
the population posterior.
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Extended Figure 1. (a) Movable microwire bundle array (Innovative Neurophysiology) used for 
all neural recordings. (b) Histogram of firing rates for all selected cells (bin size 1 spike/s). (c) 
Schematic representation of the striatal recording sites. Coronal slices at intermediate AP 
positions are show for reference (left to right, rats Bertrand, Edgar and Fernando). Colored 
rectangles show the approximate DV position of the wire bundles across recording sessions and 
horizontal black lines represent session-by-session recording sites, for 10, 9 and 18 recording 
sessions, respectively. (d) Schematic representation of the location of saline and muscimol 
injections. Coronal slices at intermediate anterior posterior (AP) positions are shown for reference 
at +0.84  mm (left, rat Albert) and +1.68mm (right, rat Yuri) from Bregma. Vertical grey lines 
represent the location of the internal cannulas and show the approximate dorsal-ventral (DV) 
position of the injection sites. 
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Extended Figure 2. Dynamics of striatal subpopulations predict duration judgments. (a,e,i) 
Psychometric functions for the recording sessions of rats Bertrand (a), Edgar (e) and Fernando (i) 
(mean±standard deviation across sessions and logistic fit). (b,f,j) Histograms of preference 
indices for the same individual animals. Blue and red outlines indicate subpopulations with 
significant short and long preferences, respectively. (c,g,k) Averaged, normalized PSTHs of the 
two subpopulations outlined in (b,f,j) for trials in which the a near-boundary stimulus interval (1.62 
s) was judged as long (mean±SEM). (d,h,l) same as in (c,g,k) for short judgment trials. 
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categorization performance of neural populations. (a) Neurometric (orange data points) or 
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session in the upper tercile with respect to simultaneously recorded population size. (b) 
Videometric slope plotted against the psychometric slope where the videometric curve was built 
using image frames taken at the time that animals expressed their choice.
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Extended Figure 4. Information about stimulus category contained in neural activity 
cannot be explained by immediate sensorimotor state. (a-h) Performance of an ideal 
observer analysis in predicting stimulus category, applied to neural (orange) and video (blue) 
data obtained at different times relative to interval offset. Panels are sessions in the upper tercile 
with regard to population size. Dashed line is the behavior performance. (i) The orange and blue 
curves were regressed against each other at different time shifts. The regression R2 values for 
each session are shown in thin grey lines. The average over all sessions is shown in black.
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Extended Figure 5. Single subjects show smoothly changing population states that encode 
elapsing time in accordance with perceptual report. (a,e,i) Low dimensional representation of 
population state during entire interval period of correct trials of rats Bertrand (a), Edgar (e) and 
Fernando (i). Line colors indicate interval duration (warmer colors are longer intervals, as in 
Figures 3 and 4). Dots are placed at the interval offset end, and their color indicate choice (blue: 
short; red: long). (b,f,j) Yellow/green line is same as in (a,e,i) for a single near boundary stimulus 
interval (1.62/1.38 s; stimulus of highest choice variance for each subject). Red dots are 6 time 
points evenly spaced between interval onset and offset. Blue dots are projections of population 
state during short judgment trials. Grey lines link population states at equivalent time points. 
(c,g,k) Average cumulative distance travelled in full neural space along trajectory represented in 
(b,f,j) on long versus short judgment trials. (d,h,l) Difference between posteriors for long and 
short judgment trials for rats Bertrand (d), Edgar (h) and Fernando (l).
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Extended Figure 6. Smoothly changing population state encodes elapsing time in 
accordance with perceptual report for a short stimulus. (a) Low dimensional representation 
of population state during entire interval period of correct trials. Line colors indicate interval 
duration (same color code as in Figure 3 and 4). Dots are placed at the interval offset end, and 
their color indicates judgment (blue: short; red: long). (b-g) Population state and decoded time 
for a single short, near boundary stimulus interval (1.38 s). (b) Green curve is the population 
state trajectory for long judgment trials. Red dots are 6 time points evenly spaced between 
interval onset and offset. Blue dots are projections of population state during short judgment 
trials. Grey lines link population states at equivalent time points. (c) Average cumulative 
distance travelled in full neural space along trajectory represented in (b) on long versus short 
judgment trials. (d) Posterior probability of time given population state at the time points 
indicated in (b), averaged within trials of each judgment type. (e,f) Same as (d) for the entire 
interval period. (g) Difference between posteriors for long and short judgment trials. Arrowheads 
indicate same time points used in (b,d).
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