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Abstract 17 

Single-cell transcriptomic profiling enables the unprecedented interrogation of gene 18 
expression heterogeneity in rare cell populations that would otherwise be obscured in 19 
bulk RNA sequencing experiments. The stochastic nature of transcription is revealed in 20 
the bimodality of single-cell transcriptomic data, a feature shared across single-cell 21 
expression platforms. There is, however, a paucity of computational tools that take 22 
advantage of this unique characteristic.  We present a new methodology to analyze 23 
single-cell transcriptomic data that models this bimodality within a coherent generalized 24 
linear modeling framework. We propose a two-part, generalized linear model that allows 25 
one to characterize biological changes in the proportions of cells that are expressing 26 
each gene, and in the positive mean expression level of that gene. We introduce the 27 
cellular detection rate, the fraction of genes turned on in a cell, and show how it can be 28 
used to simultaneously adjust for technical variation and so-called “extrinsic noise” at the 29 
single-cell level without the use of control genes. Our model permits direct inference on 30 
statistics formed by collections of genes, facilitating gene set enrichment analysis. The 31 
residuals defined by such models can be manipulated to interrogate cellular 32 
heterogeneity and gene-gene correlation across cells and conditions, providing insights 33 
into the temporal evolution of networks of co-expressed genes at the single-cell level. 34 
Using two single-cell RNA-seq datasets, including newly generated data from Mucosal 35 
Associated Invariant T (MAIT) cells, we show how model residuals can be used to 36 
identify significant changes across biologically relevant gene sets that are missed by 37 
other methods and characterize cellular heterogeneity in response to stimulation.  38 

 39 
Introduction: 40 
Whole transcriptome expression profiling of single cells via RNA-seq (scRNA-seq) is the logical 41 
apex to single cell gene expression experiments. In contrast to transcriptomic experiments on 42 
mRNA derived from bulk samples, this technology provides powerful multi-parametric 43 
measurements of gene co-expression at the single-cell level.  However, the development of 44 
equally potent analytic tools has trailed the rapid advances in the biochemistry and molecular 45 
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biology, and several challenges need to be addressed to fully leverage the information in single-46 
cell expression profiles.   47 
 48 
First, single-cell expression has repeatedly been shown to exhibit a characteristic bimodal 49 
expression pattern, wherein the expression of otherwise abundant genes is either strongly 50 
positive, or undetected within individual cells. This is due in part to low starting quantities of 51 
RNA such that many genes will be below the threshold of detection, but there is also a biological 52 
component to this variation (termed extrinsic noise in the literature) that is conflated with the 53 
technical variability1-3.  We and other groups4-6 have shown that the proportion of cells with 54 
detectable expression reflects both technical and biological differences between samples.  55 
Results from synthetic biology also support the notion that bimodality can arise from the 56 
stochastic nature of gene expression2,3,7,8.   57 
 58 
Secondly, measuring single cell gene expression might seem to obviate the need to normalize 59 
for starting RNA quantities. Recent work shows that cells scale transcript copy number with cell 60 
volume (a factor that affects gene expression globally) to maintain a constant mRNA 61 
concentration and thus constant biochemical reaction rates9,10. In scRNA-seq, cells of varying 62 
volume are diluted to an approximately fixed reaction volume leading to differences in detection 63 
rates of various mRNA species that are driven by the initial cell volumes. Technical assay 64 
variability  (e.g. mRNA quality, pre-amplification efficiency) and extrinsic biological factors (e.g. 65 
nuisance biological variability due to cell size) remain, and can significantly influence expression 66 
level measurements. Consequently, this may render traditional normalization strategies using 67 
the expression level of a few “housekeeping” genes, like GAPDH, infeasible10. Recently, Shalek 68 
et al5 observed a strong relationship between average expression and detection efficiency, and 69 
have proposed a computational approach to correct the estimated gene-specific probability of 70 
detection. Our approach easily allows for estimation and control of the CDR simultaneously 71 
while estimating treatment effects as opposed to previous approaches5 that relied on a set of 72 
control genes and could not jointly model both factors.  73 
 74 
Previously, Kharchenko et al6 developed a so-called three-component mixture model to test for 75 
differential gene expression while accounting for bimodal expression. Their approach is limited 76 
to two-class comparisons and cannot adjust for important biological covariates such as multiple 77 
treatment groups and technical factors such as batch or time information, severely limiting its 78 
utility in more complex experimental designs. On the other hand, several methods have been 79 
proposed for modeling bulk RNA-seq data that permit complex modeling through linear11 or 80 
generalized linear models12,13 but these models have not yet been adapted to single-cell data as 81 
they do not properly account for the observed bimodality in expression levels. This is particularly 82 
important when adjusting for covariates that might affect the expression rates. As we will 83 
demonstrate later, such model mis-specification can significantly affect sensitivity and specificity 84 
when detecting differentially expressed genes and gene-sets.   85 
 86 
Here, we propose a Hurdle model tailored to the analysis of scRNA-seq data, providing a 87 
mechanism to address the challenges noted above. It is a two-part generalized linear model that 88 
simultaneously models the rate of expression over background of various transcripts, and the 89 
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positive expression mean. Leveraging the established theory for generalized linear modeling 90 
allows us to accommodate complex experimental designs while controlling for covariates 91 
(including technical factors) in both the discrete and continuous parts of the model. We 92 
introduce the cellular detection rate (CDR): the fraction of genes that are turned on / detected in 93 
each cell, which, as discussed above, acts as a proxy for both technical (e.g. dropout, 94 
amplification efficiency, etc.) and biological factors (e.g. cell volume and other extrinsic factors 95 
other than treatment of interest) that can influence gene expression. As a result it represents an 96 
important source of variability in scRNA-seq data that needs to be considered (Figure 1). Our 97 
approach of modeling the CDR as a covariate, offers an alternative to the weight correction of 98 
Shalek et al5 that does not depend on the use of control genes and allows us to jointly estimate 99 
nuisance and treatment effects. Our framework permits the analysis of complex experiments, 100 
such as repeated single cell measurements under various treatments and/or longitudinal 101 
sampling of single cells from multiple subjects with a variety of background characteristics (e.g. 102 
gender, age, etc.) as it is easily extended to accommodate random effects. Differences between 103 
treatment groups are summarized with pairs of regression coefficients whose sampling 104 
distributions are available through bootstrap or asymptotic expressions, enabling us to perform 105 
complementary differential gene expression and gene set enrichment analyses (GSEA). We use 106 
an empirical Bayesian framework to regularize model parameters, which helps improve 107 
inference for genes with sparse expression, much like what has been done for bulk gene 108 
expression14. Our GSEA approach accounts for gene-gene correlations, which is important for 109 
proper control of type I errors15. This GSEA framework is particularly useful for synthesizing 110 
observed gene-level differences into statements about pathways or modules. Finally, our model 111 
yields single cell residuals that can be manipulated to interrogate cellular heterogeneity and 112 
gene-gene correlations across cells and conditions. We have named our approach MAST for 113 
Model-based Analysis of Single-cell Transcriptomics.  114 
 115 
We illustrate the method on two data sets. We first apply our approach to an experiment 116 
comparing primary human non-stimulated and cytokine-activated Mucosal-Associated Invariant 117 
T (MAIT) cells. MAST identifies novel expression signatures of activation, and the single-cell 118 
residuals produced by the model highlights a population of MAIT cells showing partial activation 119 
but no induction of effector function. We then illustrate the application of MAST to a previously-120 
published complex experiment studying temporal changes in murine bone marrow-derived 121 
dendritic cells subjected to LPS stimulation.  We both recapitulate the findings of the original 122 
publication and describe additional coordinated gene expression changes at the single-cell level 123 
across time in LPS stimulated mDC cells. 124 
 125 
Results 126 
 127 
MAST can account for variation in the cellular detection rate. As discussed previously and 128 
as shown on Figure 1 by principal component analysis (PCA), the cellular detection rate (CDR, 129 
see Methods for exact definition), is an important source of variability. It is highly correlated with 130 
the second principal component (PC, Pearson’s rho=0.76 grouped, 0.91 stimulated, 0.97 non-131 
stimulated) in the MAIT dataset and the first PC (rho=0.92 grouped, 0.97 non-stimulated, 0.92 132 
LPS, 0.89 PAM, 0.92 PIC) in the mDC dataset. We observe larger CDR variability within 133 
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treatment groups than across groups, suggesting that it is likely to be a nuisance factor. This is 134 
further supported by the fact that the CDR calculated within control (e.g. housekeeping) genes 135 
is highly correlated with the CDR calculated over all genes (Supplementary Figure 1). Its role as 136 
a principal source of variation persists across experiments (Figure 1).   137 
 138 
We thus conjecture that CDR is a proxy for unobserved nuisance factors that should be 139 
explicitly modeled. In particular, it is not unreasonable to suggest that the CDR captures 140 
variation in global transcription rate due to variations in cell size (among other factors)10, as well 141 
as technical variation such as dropout, with dropout rates  possibly correlated with cell-size. 142 
Fortunately, MAST easily accommodates covariates, such as the CDR, and more importantly 143 
allows joint, additive modeling of them with other biological variables of interest, with the effect 144 
of each covariate decomposed into its discrete and continuous parts. This two-part modeling is 145 
key to account for the CDR that directly reflects the gene-level transcription rates. Applying an 146 
analysis of deviance with MAST (see Methods), we quantified the amount of variability that 147 
could be attributed to CDR. The CDR accounts for 5.2% of the deviance in the MAIT data set 148 
and 4.8% in the mDC data set for the average gene, and often times much more than that: it 149 
comprises more than 9% of the deviance in over 10% of genes in both data sets, particularly for 150 
the discrete component of the model (Supplementary Figure 2). It should also be noted that the 151 
CDR deviance estimates for many of the genes are comparable (if not greater) to the treatment 152 
deviance estimates showing that it. 153 
 154 
That CDR predicts expression levels contradicts the model of independent expression between 155 
genes, since the level of expression (averaged across many genes) would not affect the level in 156 
any given gene were expression independent. This pervasiveness suggests latent factors are 157 
creating coordinated changes in expression across genes. In light of the work of Padovan-158 
Merhar et al10, we conjecture the latent factor relates to differences in cell volumes, since cells 159 
of different volumes compensate to conserve mRNA species molarity, which implies higher copy 160 
numbers of all transcripts in larger cells. Higher copy numbers result in higher scRNA-seq 161 
detection rates globally across transcripts. 162 
 163 
Finally, we have investigated the relationship between our approach and the weight correction 164 
of Shalek et al5 (Supplementary Figure 3). We observe a strong linear relationship between the 165 
CDR and the weights of Shalek et al5. Thus, use of the CDR as a covariate can be seen as a 166 
statistically rigorous way to correct for the dropout biases of Shalek et al5, without the need to 167 
use control genes,, and more importantly with the ability to control for these while estimating 168 
treatment effects.   169 
 170 
Single-cell sequencing identifies a transcriptional profile of MAIT cell activation 171 
We applied MAST to our MAIT dataset to identify genes up- or down-regulated by cytokine 172 
stimulation while accounting for variation in the CDR (see Methods). We detected 291 173 
differentially expressed genes, as opposed to 1413 when excluding CDR. To determine whether 174 
this was due to a change in ranking or a simply a shift in significance, we compared the overlap 175 
between the top � genes in both models (varying � from 100 to 1413), and found that, on 176 
average, 35% (range 32% - 38%) of genes are excluded when CDR is modeled, suggesting that 177 
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inclusion of this variable allows global changes in expression, manifest in the CDR, to be 178 
decomposed from local changes in expression.  This is supported by gene ontology enrichment 179 
analysis (Supplementary Figure 4) of these CDR-specific genes (n=539), where we see no 180 
enrichment for modules associated with treatment of interest.  181 
 182 
In order to assess the type-I error rate of our approach, we also applied MAST to identify 183 
differentially expressed genes across random splits of the non-stimulated MAIT cells. As 184 
expected, MAST did not detect any significant differences (Supplementary Figure 5A), whereas 185 
DEseq and edgeR, designed for bulk RNA-seq, detected large number of differentially 186 
expressed genes even at very low FDR thresholds. We examined the GO enrichment of genes 187 
detected by limma or edgeR or DESeq but not MAST and found that these sets lacked 188 
significant enrichment for modules related to the treatment of interest (Supplementary Figures 189 
5B and 6-8). MAST’s testing framework evidently has better specificity than these approaches. 190 
 191 
Figure 2A shows the single-cell expression (log2-TPM) of the top 100 genes identified as 192 
differentially expressed between cytokine (IL18, IL15, IL12) stimulated (purple) and non-193 
stimulated (pink) MAIT cells using MAST.  Following stimulation with IL12/15/18, we observe 194 
increased expression in genes with effector function including Interferon�� (IFN��), granzyme-195 
B (GZMB) as has been reported in NK, NKT and memory T cells, and a concomitant 196 
downregulation of the AP-1 transcription factor network. CD69 is an early and only transient 197 
marker of activation that can be induced by stimulation of the T cell receptor or by cytokine 198 
signals. Its downregulation at the mRNA level after 24h is likely preceding subsequent protein-199 
level downregulation16-18. 200 
 201 
We used these lists of up- and down-regulated genes to define a MAIT activation score that 202 
differentiates between stimulated and non-stimulated MAITs as shown in Figure 2B. This score 203 
(see Methods), for each cell, is defined as the expected expression level across genes in a 204 
module (based on the model fit) corrected for nuisance factors (such as CDR, see Methods). 205 
The score enables us to cleanly differentiate stimulated and non-stimulated cells, and 206 
demonstrates that the stimulated MAIT population is much more heterogeneous in its 207 
expression phenotype. In particular, a few stimulated MAIT cells (SC08, SC54, SC48, SC15, 208 
SC46, and SC61 in Figure 2A) exhibit low expression of IFN�� response genes, suggesting 209 
these cells did not fully activate despite stimulation. Post-sort experiments via FCM show that 210 
the sorted populations were over 99% pure MAITs (Supplementary Figure 9A), and exhibited a 211 
change in cell size upon stimulation (Supplementary Figure 9B), and that up to 26% of 212 
stimulated MAITs didn’t express IFN-� or GZMB following cytokine stimulation (Supplementary 213 
Figure 9C). The non-responding cells in the RNA-seq experiment likely correspond to these 214 
non-responding cells from the flow cytometry experiment, and the observed frequencies of 215 
these cells in the RNA-seq and flow populations are consistent with each other ( Pr(observing 6 216 
or fewer non-responding cells) = 0.16 under binomial sampling). We discuss this heterogeneity 217 
in a further section. Importantly, the lists of up- and down-regulated genes can be used to define 218 
gene sets for gene set enrichment analysis in order to identify transcriptional changes related to 219 
MAIT activation in bulk experiments.  220 
 221 
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Gene set enrichment analysis highlights pathways implicated in MAIT cell activation. 222 
We used MAST to perform gene set enrichment analysis (GSEA, see methods) in the MAIT 223 
data using the blood transcriptional modules of Li et al19. The cell-level scores for the top 9 224 
enriched modules (Figure 3A) continue to show significant heterogeneity in the stimulated cells, 225 
particularly for modules related to T-cell signaling, protein folding, proteasome function, and the 226 
AP-1 transcription factor network.  Enrichment in stimulated cells (green) and non-stimulated 227 
cells (pink) is displayed for each module for the discrete and continuous components of the 228 
model (Figure 3B, see Methods), as well as a Z-score combining the discrete and continuous 229 
parts. The enrichment in the T-cell signaling module is driven by the increased expression of 230 
IFN-�, GZMB, IL2RA, IL2RB, and TNFRSF9, 5 of the 6 genes in the module.  Stimulated cells 231 
also exhibit increased energy usage, translation and protein synthesis, while down-regulating 232 
genes involved in cell cycle growth and arrest (and other cell cycle related modules). The down-233 
regulation of cell cycle growth inhibition genes indicates that IL-12/15/18 signals are sufficient to 234 
prepare MAIT cells for cell proliferation. Interestingly, we observe down-regulation of mRNA 235 
transcripts from genes in the AP-1 transcription factor network. This has been previously 236 
described in dendritic cells in response to LPS stimulation20 and, indeed, we observe this effect 237 
in the mDC data set analyzed here (Supplementary Figure 10).  238 
 239 
Our GSEA approach is more powerful than existing methods for bulk RNA-seq data 240 
(Supplementary Figure 11), and we discover significantly enriched modules with clear patterns 241 
of stimulation-induced changes that other methods omit (Supplementary Figure 12). Two such 242 
modules include the “T-cell surface signature” and “chaperonin mediated protein folding, whose 243 
component genes show elevated expression in response to stimulation (Supplementary Figure 244 
12A-D). These additional discoveries are not solely due to greater permissiveness in MAST.  245 
We applied MAST to identify differentially expressed gene sets across random partitions of the 246 
non-stimulated cells, to examine its false discovery rate. As expected, MAST did not detect any 247 
significant differences, which suggests that it has good type I error control. 248 
 249 
Residual analysis identifies networks of co-expressed genes implicated in MAIT cell 250 
activation. Much of the heterogeneity between the non-responding and responding stimulated 251 
cells remains even after removal of marginal (gene level) stimulation effects. Since, MAST 252 
models the expected expression value for each cell, we can compute residuals adjusted for 253 
known sources of variability (See Methods). The residuals can be compared across genes to 254 
characterize cellular heterogeneity and correlation. We observe co-expression in the residuals 255 
from stimulated cells that is not evident in the non-stimulated group (Figure 4A,B).  Since the 256 
residuals have removed any marginal changes due to stimulation in each gene, the average 257 
residual in the two groups is comparable. The co-expression observed, meanwhile, is due to 258 
individual cells expressing these genes dependently, where pairs of genes appear together 259 
more often than expected under a model of independent expression.   260 
 261 
Two clusters of co-expressed genes stand out in the residuals of the stimulated cells (Figure 4 262 
B). These clusters show coordinated, early up-regulation of GZMB and IFN-� in response to 263 
stimulation in MAIT cells and a concomitant decrease in CD69 expression, an early and 264 
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transient activation marker. PCA of the model residuals highlights the non-responsive stimulated 265 
MAIT cells (Figure 4C).  266 
 267 
Accounting for the CDR reduces the background correlation observed between genes 268 
(Supplementary Figure 13) where nearly 25% of pairwise correlations decrease after CDR 269 
correction. When the CDR is included in the model, the number of differentially expressed 270 
genes with significant correlations across cells (FDR adjusted p-value < 1%) decreases from 73 271 
to 61 in the stimulated cells, and from 808 to 15 in non-stimulated cells. This shows that 272 
adjusting for CDR is also important for co-expression analyses as it reduces background co-273 
expression attributable to cell volume, which otherwise results in dense, un-interpretable gene 274 
networks.  275 
 276 
 277 
MAST on complex experimental designs: temporal expression patterns of mouse 278 
dendritic cell maturation 279 
Shalek et al5 analyzed murine bone-marrow derived dendritic cells simulated using three 280 
pathogenic components over the course of six hours and estimated the proportion of cells that 281 
expressed a gene and the expression level of expressing cells.  We compared results from 282 
applying our model to those obtained by Shalek et al5 when analyzing their lipopolysaccharide 283 
(LPS) stimulated cells. As with the MAIT analysis, we used MAST adjusting for the CDR. MAST 284 
identified a total of 1359 differentially expressed genes (1996 omitting the CDR), and the CDR 285 
accounted for 5.2% of the model deviance in the average gene.   286 
The most significantly elevated genes at 6h include CCL5, CD40, IL12B, and Interferon-287 
inducible (IFIT) gene family members, while down-regulation was observed for EGR1 and 288 
EGR2, transcription factors that are known to negatively regulate dendritic cell 289 
immunogenicity21.  290 
 291 
GSEA of mouse bone marrow-derived dendritic cells  292 
We performed GSEA with the Mouse GO modules and three modules Shalek et al5 identified. 293 
The blood transcriptional modules of Li et al19 are shown in Supplementary Figure 10. Figure 5 294 
shows module scores for significant GSEA modules for the LPS stimulated cells where the 295 
heatmap represents Z values (see methods for details). Besides finding signatures consistent 296 
with the modules from Shalek et. al. (Figure 5A), we identify modules that show similar 297 
annotation and overlap significantly with the core antiviral and sustained inflammatory 298 
signatures, including several modules linked to type 1 interferon response and antiviral 299 
signatures (Figure 5B).  The “cellular response to interferon- beta” signature (n = 22) overlaps 300 
with the original core antiviral signature (n = 99) by 13 genes (hypergeometric p = 1.24x10-23). 301 
The response and defense response to virus signatures overlap with the core antiviral signature 302 
by 17 of 43 and 22 of 74 genes (hypergeometric p=3.64x10-26 and 4.08x10-29, respectively), 303 
suggesting the core antiviral signature captures elements of these known signatures. The 304 
chemokine (n=16) and cytokine activity (n=51) modules overlap with the sustained inflammatory 305 
(n = 95) module by 5 and 12 genes, respectively (hypergeometric p=5.10x10-9 and 9.53x10-16). 306 
Our modeling approach identifies the two “early marcher” cells in the core antiviral module 307 
(marked with triangles on Figure 5A) corresponding to the same cells highlighted in Figure 4b of 308 
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Shalek et al5. Other modules exhibiting significant time-dependent trends include a module of 309 
genes involved in the AP-1 transcription factor network that is down-regulated (Supplementary 310 
Figure 10), a finding which has been previously shown in human monocytes following LPS 311 
stimulation20. As with the MAITs, GSEA permutation analysis to evaluate type I error rates did 312 
not identify any significant modules (data not shown). These results further confirm the original 313 
findings and demonstrate the increased sensitivity of our approach. GSEA heatmaps for the 314 
other stimulations can be found in Supplementary Figure 14. 315 
 316 
Residual analysis of mouse bone marrow-derived dendritic cells identifies sets of co-317 
expressed genes.  318 
We also explored stimulation-driven correlation patterns. Principal component analysis (Figure 319 
6A) of the model residuals demonstrates a clear time trend associated with PC1, as cells 320 
increase co-expression of interferon-activated genes. After removing the marginal stimulation 321 
and adjusting for the CDR, we observe correlation between chemokines CCL5, TNF receptor 322 
CD40, and interferon-inducible (IFIT) genes (Figure 6B). A principal finding of the original 323 
publication was the identification of a subset of cells that exhibited an early temporal response 324 
to LPS stimulation. Recapitulating the original results here, when we examine the PCA of the 325 
residuals using the genes in the core antiviral module, we can identify the “early marcher” cells 326 
at the 1h time-point (Supplementary Figure 15).  The co-expression plot for other stimulations 327 
can be found in the supplementary material (Supplementary Figures 16 and 17).  328 
 329 
Discussion 330 
We have presented MAST, a flexible statistical framework for the analysis of scRNA-seq data. 331 
MAST is suitable for supervised analyses about differential expression of genes and gene-332 
modules, as well as unsupervised analyses of model residuals, to generate hypotheses 333 
regarding co-expression of genes. MAST accounts for the bimodality of single-cell data by 334 
jointly modeling rates of expression (discrete) and positive mean expression (continuous) 335 
values. Information from the discrete and continuous parts is combined to perform inference 336 
about changes in expression levels using gene or gene-set based statistics. Because our 337 
approach uses a generalized linear framework, it can be used to jointly estimate nuisance 338 
variation from biological and technical sources, as well as biological effects of interest. In 339 
particular, we have shown that it is important to control for the proportion of genes detected in 340 
each cell, which we refer to as the cellular detection rate (CDR), as this factor can single-341 
handedly explain 13% of the variability in the 90% percentile gene. Adjusting for CDR at least 342 
partially controls for differences in abundance due to cell size (and other extrinsic biological and 343 
technical effects), while omitting it would lead to overestimated effects of the treatment on the 344 
system. Using several scRNA-seq datasets, we showed that our approach provides a 345 
statistically rigorous improvement to methods proposed by other groups in this context5.  346 
 347 
Because our approach is regression-based, it can be used to compute residuals to explore 348 
cellular heterogeneity and gene-gene correlations after selected technical and/or biological 349 
effects have been removed. In particular, using this approach, we identify MAIT cells that do not 350 
have a typical activated expression profile in response to stimulation (Figures 2 and 3). The 351 
proportion of these cells detected in the scRNASeq experiment is consistent with what was 352 
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detected in the flow cytometry experiment. These cells do not produce IFN-� or GZMB upon to 353 
cytokine stimulation and exhibit expression profiles intermediate to non-stimulated and 354 
stimulated cells (Supplementary Figure 18C). The cells exhibit lower levels of IFN-� and GZMB 355 
than activated cells (Supplementary Figure 18A), but also exhibit decreased expression of AP-1 356 
component genes Fos and FosB, consistent with other stimulated cells (Supplementary Figure 357 
18B).  358 
 359 
As discussed by Padovan-Merhar et al10, care must be taken when interpreting experiments 360 
where the system shows global changes in CDR across treatment groups, as this could result in 361 
confounding treatment effect with differences in cell volume, which are not necessarily of 362 
biological interest. Our approach addresses this issue as MAST allows joint modeling of CDR 363 
and treatment effects, so the interpretation of the treatment effect is that the cell volume/CDR 364 
has been held constant. It is also possible to only use CDR as a precision variable by centering 365 
the CDR within each treatment groups, which makes the CDR measurement orthogonal to 366 
treatment.  This would implicitly assume that the observed changes are treatment induced, 367 
while still modeling the heterogeneity in cell volume within each treatment group. An alternative 368 
approach would be to estimate the CDR coefficient using a set of control genes assumed to be 369 
treatment invariant, such as housekeeping or ERCC spike-ins22,23 and including it as an offset to 370 
the linear predictors in the regression. An analogous approach is undertaken by Buettner et. 371 
al.22, however it does not account for bimodality and does not jointly model technical and 372 
biological effects.  373 
 374 
MAST is available as an R package (http://www.github.com/RGLab/MAST, doi: 375 
10.5281/zenodo.18539). All data and results presented in this paper – including code to 376 
reproduce the results – are available at: 377 
(http://github.com/RGLab/MASTdata/archive/v1.0.0.tar.gz, doi: 10.5281/zenodo.18540). It 378 
should also be noted that while most of the methodology presented here was developed for 379 
scRNA-seq, it should be applicable to other single-cell gene expression platforms.  380 
 381 
Figure Captions 382 
Figure 1. The fraction of genes expressed, or cellular detection rate (CDR), explains the 383 
principal components of variation in MAIT and DC data sets. 384 
 385 
Figure 2.  Single-cell expression (log2-TPM) of the top 100 genes identified as differentially 386 
expressed between cytokine (IL18, IL15, IL12) stimulated (purple) and non-stimulated (pink) 387 
MAIT cells using MAST (A).  Partial residuals for up- and down- regulated genes are 388 
accumulated to yield an activation score (B), and this score suggests that the stimulated cells 389 
have a more heterogeneous response to stimulation than do the non-stimulated cells. 390 
 391 
Figure 3. Module scores for individual cells for the top 9 enriched modules (A) and decomposed 392 
Z-scores (B) for single-cell gene set enrichment analysis in MAIT data set, using the blood 393 
transcription modules (BTM) database. The distribution of module scores suggests 394 
heterogeneity among individual cells with respect to different biological processes. Enrichment 395 
of modules in stimulated and non-stimulated cells is due to a combination of differences in the 396 
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discrete (proportion) and continuous (mean conditional expression) of genes in modules. The 397 
combined Z-score reflects the enrichment due to differences in the continuous and discrete 398 
components. 399 
 400 
Figure 4. Gene-gene correlation (Pearson’s rho) of model residuals in non-stimlated (A) and 401 
stimulated (B) cells, and principal components analysis biplot of model residuals (C) on both 402 
populations using the top 50 marginally differentially expressed genes. As marginal changes in 403 
the genes attributable to stimulation and CDR have been removed, clustering of subpopulations 404 
in (C) indicates co-expression of the indicated genes on a cellular basis. 405 
 406 
Figure 5. Module scores (A) and decomposed Z-scores (B) for single-cell gene set enrichment 407 
analysis for LPS stimulated cells, mDC data set, using the mouse GO biological process 408 
database. The change in single-cell module scores over time for the nine most significantly 409 
enriched modules in response to LPS stimulation are shown in A. The core antiviral, peaked 410 
inflammatory and sustained inflammatory modules are among the top enriched modules, 411 
consistent with the original publication. Additionally we identify GO modules cellular response to 412 
interferon-beta and response to virus, which behave analogously to the core antiviral and 413 
sustained inflammatory modules. No GO analog for the peaked inflammatory module was 414 
detected. The majority of modules detected exhibit enrichment relative to the 1h time point (thus 415 
increasing with time). The “early marcher” cells identified in the original publication are 416 
highlighted here with triangles. We show the top 50 most significant modules (B). The combined 417 
Z-score summarizes the changes in the discrete and continuous components of expression. 418 
 419 
Figure 6. Principal components analysis biplot of model residuals (A) and Gene-gene 420 
correlation (Pearson’s R) of model residuals (B) by time point for LPS cells, mDC experiment 421 
using 20 genes with largest log-fold changes, given significant (FDR q <.01) marginal changes 422 
in expression. PC1 is correlated with change over time. The two “early marcher” cells are 423 
highlighted by an asterisk at the 1h time-point. Correlation structure in the residuals is 424 
increasingly evident over time and can be clearly observed at the 6h time-point compared to the 425 
earlier time-points.  426 
 427 

METHODS 428 
 429 
Data Sets 430 
Data for the MAIT study were derived from a single donor who provided written informed 431 
consent for immune response exploratory analyses. The study was approved by the 432 
relevant institutional review boards. 433 
 434 
MAIT cell isolation and stimulation 435 
Cryopreserved PBMC were thawed and stained with Aqua Live/Dead Fixable Dead Cell Stain 436 
and the following antibodies: CD3, CD8, CD4, CD161, Vα7.2, CD56 and CD16. CD8+ MAIT 437 
cells were sorted as live CD3+CD8+ CD4-CD161hiVα7.2+ cells and purity was confirmed by post-438 
sort FACS analysis. Sorted MAIT cells were divided into aliquots and immediately processed on 439 
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a C1 Fluidigm machine or treated with a combination of IL-12 (eBioscience), IL-15 440 
(eBioscience), and IL-18 (MBL) at 100ng/mL for 24 hours followed by C1 processing.  441 
 442 
 443 
C1 processing, Sequencing, and Alignment 444 
After flow sorting, single cells were captured on the FluidigmTM C1 Single-Cell Auto Prep 445 
System (C1), lysed on chip and subjected to reverse transcription and cDNA amplification using 446 
the SMARTer® Ultra™ Low Input RNA Kit for C1 System (Clontech).  Sequencing libraries were 447 
prepared using the Nextera XT DNA Library Preparation Kit (Illumina) according to C1 protocols 448 
(Fluidigm).  Barcoded libraries were pooled and quantified using a Qubit® Fluorometer (Life 449 
Technologies). Single-read sequencing of the pooled libraries was carried out either on a 450 
HiScanSQ or a HiSeq2500 sequencer (Illumina) with 100-base reads, using TruSeq v3 Cluster 451 
and SBS kits (Illumina) with a target depth of >2.5M reads. Sequences were aligned to the 452 
UCSC Human genome assembly version 19 and gene expression levels quantified using 453 
RSEM25 and TPM values were loaded into R26  for analyses. See supplement for more details 454 
on data processing procedures. 455 
 456 
 457 
Time-series stimulation of mouse bone-marrow derived dendritic cells (mDC) 458 
Processed RNA-seq data (transcripts-per-million, TPM) were downloaded from GEO under 459 
accession number GSE41265. Alignment, pre-processing and filtering steps have been 460 
previously described5. Low quality cells were filtered as described in Shalek et al5. 461 
 462 
Single Cell RNA Seq Hurdle model 463 
We model the log2(TPM+1) expression matrix as a two part generalized regression model. The 464 
cell expression rate given a design is modeled using logistic regression and the expression level 465 
is modeled as conditionally Gaussian given that they are expressed.   466 
 467 
Given normalized, possibly thresholded (see supplementary material), scRNA-seq expression 468 
� � �����, the rate of expression and the level of expression for the expressed cells are modeled 469 

conditionally independent for each gene g.  Define the indicator Z � �
��� indicating whether 470 

gene g is expressed in cell i, i.e. 
�� � 0 if ��� � 0 and 
�� � 1 if ��� � 0.  We fit logistic 471 

regression models for the discrete variable � and Gaussian linear model for the continuous 472 
variable (� | � � 1) independently, as follows, 473 
 474 

����� ������ � 1�� � X� β�� 

Pr���� � ����� �  1� �  N�X�β��, "��� 

 475 
The regression coefficients of the discrete component are regularized using a Bayesian 476 
approach as implemented in the bayesglm function of the arm R package, which uses weakly 477 
informative priors27 to provide sensible estimates under linear separation (See supplementary 478 
material for details). We also perform regularization of the continuous model variance 479 
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parameter, as described below, which helps increases robustness of gene-level differential 480 
expression analysis when a gene is only expressed in a few cells.  481 
 482 
We define the cellular detection rate (CDR) as the proportion of genes detected in each cell. 483 
The CDR for cell � is: 484 

CDR� � 1/' ( 
��
�

�	

 

An advantage of our approach is that it is straightforward to account for CDR variability by 485 
adding the variable as a covariate in the discrete and continuous models (column of the design 486 
matrix, ), defined above). In the context of our hurdle model, inclusion the CDR covariate can 487 
be thought of as the discrete analog of global normalization, and as we show in the examples, 488 
this normalization yields more interpretable results and helps decrease background correlation 489 
between genes, which is desirable for detecting genuine gene co-expression.  490 
 491 
Shrinkage of the continuous variance 492 
As the number of expressed cells varies from gene to gene, so does the amount of information 493 
available to estimate the residual variance of the gene.  On the other hand, many genes can be 494 
expected to have similar variances. To accommodate this feature of the assay, we shrink the 495 
gene-specific variances estimates to a global estimate of the variance using an empirical Bayes 496 
method.  Let *�� be the precision (1/variance) for ��|�� � 1 in gene g.  We suppose  497 

*�� + ,-..-/0, 12, find the joint likelihood (across genes) and integrate out the gene-specific 498 

inverse variances. Then maximum likelihood is used to estimate 0 and 1.  Due to conjugacy, 499 
these parameters are interpretable providing 20 pseud-observations with precision 1/0.  This 500 
leads to a simple procedure where the shrunken gene-specific precision is a convex 501 
combination of its MLE and the common precision. This approach accounts for the fact that the 502 
number of cells expressing a gene varies from gene to gene. Genes with fewer expressed cells 503 
end up with proportionally stronger shrinkage, as the ratio of pseudo observations to actual 504 
observations is greater. Further details are available in the supplement. 505 
 506 
Testing for differential expression 507 
Because �� and �� are defined conditionally independent for each gene, tests with asymptotic 508 

4� null distributions, such as the likelihood ratio or Wald tests can be summed and remain 509 
asymptotically 4�, with the degrees of freedom of the component tests added. For the 510 
continuous part, we use the shrunken variance estimates derived through our empirical Bayes 511 
approach described above. The test results across genes can be combined and adjusted for 512 
multiplicity using the false discovery rate (FDR) adjustment28. In this paper, we declare a gene 513 
differentially expressed if the FDR adjusted p-value is less than 0.01 and the estimated fold-514 
change is greater than 1.5 (on log2 scale). 515 
 516 
Gene Set Enrichment Analysis (GSEA) 517 
Our competitive GSEA compares the average model coefficient in the test set (gene set of 518 
interest) to the average model coefficient in the null set (everything else) with a Z-test.  Suppose 519 
the genes are sorted so that the first ,� genes are in the null set, and the last , � ,� genes are 520 
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in the test set.  Then, for example, to test the continuous coefficients in the gene set, the sample 521 
means of the coefficients in the test and null sets are calculated, that is, calculate 56  �522 

1//, � ,�2 ∑ 18���	��
  and 56�   � 1/,�  ∑ 18����	
 .  The sampling variance of 56�, in principle, is 523 

equal to 1/,��∑ 9-:/18�2��	
 ; 2 ∑ <�=/18� , 18�2
������� �, and similarly for  56. 524 

Given this sampling variance, a Z test can be formed by comparing � � ������
����� �������� ���� �

. 525 

 526 
We estimate 9-:/18�  2 and <�=/ 18� , 18�  2 via bootstrap, to avoid relying on asymptotic 527 

approximations. In practice, we find only a few (<100) bootstrap replicates are necessary to 528 
provide stable variance-covariance estimates, however even this modest requirement can be 529 
relaxed for exploratory analysis by assuming independence across genes and using model-530 
based (asymptotic) estimates.   531 
 532 
Z scores are formed and calculated equivalently for the logistic regression coefficients. GSEA 533 
tests are done separately on the two components of the hurdle model and the results from the 534 
two components are combined using the Stouffer’s method29, which favors consensus in the two 535 
components30 (see supplement for details).  The approach is similar to that used by CAMERA15 536 
for bulk experiments in its accounting for inter-gene correlation that is known to inflate the false 537 
significance (type-I error) in permutation-based GSEA protocols15, although it differs in that it 538 
uses the sampling variance of each model coefficient to find the variance of the average 539 
coefficient, whereas CAMERA uses the empirical variance of the model coefficients. In our 540 
analyses we used the Emory blood transcriptional modules19 as well as mouse gene ontology 541 
annotations available from the Mouse Genome Informatics web site32. 542 
 543 
GO Enrichment Analysis 544 
Testing for enriched Gene Ontology terms based on list of genes was performed with the 545 
GOrilla online tool using the approach of comparing an unranked target list against a 546 
background list33. 547 
 548 
Residual Analysis 549 
The hurdle model, in general, provides two residuals: one for the discrete component and one 550 
for the continuous component. Standardized deviance residuals are calculated for the discrete 551 
and continuous component separately, and then we combine the residuals by averaging them.  552 
If a cell is unexpressed, then its residual is missing and it is omitted from the average.  See the 553 
supplement for details. 554 
 555 
Module Scores 556 
In order to assess the degree to which each cell exhibits enrichment for each gene module, we 557 
use quantities available through our model to define module “scores”, which are defined as the 558 
observed expression corrected for CDR effect, analogous to those defined by Shalek et al5. The 559 
score >�� for cell � and gene ? is defined as the observed expression corrected for the CDR 560 

effect: >�� � ��� � �@�� where �@�� is the predicted effect from the fitted model that excludes thre 561 

treatment effects of interest. This can be interpreted as correcting the observed expression of 562 
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gene ? in cell � by subtracting the conditional expectation of nuisance effects. In our two part 563 
model, �@�� �  
̂���B�� where 
̂��  and �B�� are the predicted values from the discrete and continuous 564 

components of our hurdle model.  565 
A gene module score for cell I is the average of the scores for the genes contained in the 566 
module, i.e. ∑ >��/|.�CD�E|��� !"#$%&  567 
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