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Abstract

Background: Reconstructing phylogenies through Bayesian methods has many
benefits, which include providing a mathematically sound framework, providing
realistic estimates of uncertainty and being able to incorporate different sources
of information based on formal principles. Bayesian phylogenetic analyses are
popular for interpreting nucleotide sequence data, however for such studies one
needs to specify a site model and associated substitution model. Often, the
parameters of the site model is of no interest and an ad-hoc or additional
likelihood based analysis is used to select a single site model.

Results: bModelTest allows for a Bayesian approach to inferring and
marginalizing site models in a phylogenetic analysis. It is based on
trans-dimensional Markov chain Monte Carlo (MCMC) proposals that allow
switching between substitution models as well as estimating the posterior
probability for gamma-distributed rate heterogeneity, a proportion of invariable
sites and unequal base frequencies. The model can be used with the full set of
time-reversible models on nucleotides, but we also introduce and demonstrate the
use of two subsets of time-reversible substitution models.

Conclusion: With the new method the site model can be inferred (and
marginalized) during the MCMC analysis and does not need to be pre-determined,
as is now often the case in practice, by likelihood-based methods. The method is
implemented in the bModelTest package of the popular BEAST 2 software,
which is open source, licensed under the GNU Lesser General Public License and
allows joint site model and tree inference under a wide range of models.

Keywords: Model averaging; Model selection; Model comparison; Statistical
phylogenetics; ModelTest; Phylogenetic model averaging; Phylogenetic model
comparison; Substitution model; Site model

Background
One of the choices that needs to be made when performing a Bayesian phylogenetic

analysis is which site model to use. A common approach is to use a likelihood-based

method like ModelTest [1], jModelTest [2], or jModelTest2 [3] to determine the site

model. The site model is comprised of (i) a substitution model defining the rela-

tive rates of different classes of substitutions and (ii) a model of rate heterogeneity

across sites which may include a gamma distribution [4] and/or a proportion of in-

variable sites [5, 6]. The site model recommended by such likelihood-based method

is then often used in a subsequent Bayesian phylogenetic analysis. This analysis

framework introduces a certain circularity, as the original model selection step re-

quires a phylogeny, which is usually estimated by a simplistic approach. Also, by

forcing the subsequent Bayesian phylogenetic analysis to condition on the selected
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site model, the uncertainty in the site model can’t be incorporated into the un-

certainty in the phylogenetic posterior distribution. A more statistically rigorous

and elegant method is to co-estimate the site model and the phylogeny in a single

Bayesian analysis, thus alleviating these issues.

One way to select substitution models for nucleotide sequences is to use reversible

jump between all possible reversible models [7], or just a nested set of models [8].

An alternative is to use stochastic Bayesian variable selection [9], though this does

not address whether to use gamma rate heterogeneity or invariable sites. Wu et al.

[10] use reversible jump for substitution models and furthermore select for each site

whether to use gamma rate heterogeneity or not. Since the method divides sites

among a set of substitution models, it does not address invariable sites, and only

considers a very limited set of five (K80, F81, HKY85, TN93, and GTR) substitution

models.

We introduce a method which combines model averaging over substitution models

with model averaging of the parameters governing rate heterogeneity across sites

using reversible jump. Whether one considers the method to be selecting the site

model, or averaging over (marginalizing over) site models depends on which random

variables are viewed as parameters of interest and which are viewed as nuisance pa-

rameters. If the phylogeny is viewed as the parameter of interest, then bModelTest

provides estimates of the phylogeny averaged over site models. Alternatively if the

site model is of interest, then bModelTest can be used to select the site model aver-

aged over phylogenies. These are matters of post-processing of the MCMC output,

and it is also possible to consider the interaction of phylogeny and site models. For

example one could construct phylogeny estimates conditional on different features

of the site model from the results of a single MCMC analysis.

The method is implemented in the bModelTest package of BEAST 2 [11] with

GUI support for BEAUti making it easy to use. It is open source and available

under LGPL licence. Source code, installation instructions and documentation can

be found at https://github.com/BEAST2-Dev/bModelTest.

Implementation
All time-reversible nucleotide models can be represented by a 4 × 4 instantaneous

rate matrix:

Q =


− πCrac πGrag πT rat

πArac − πGrcg πT rct

πArag πCrcg − πT rgt

πArat πCrct πGrgt −

 ,

with six rate parameters rac, rag, rat, rcg, rct and rgt and four parameters describing

the equilibrium base frequencies Π = (πA, πC , πG, πT ). A particular restriction on

the rate parameters can conveniently be represented by a six figure model number

where each of the six numbers corresponds to one of the six rates in the alphabetic

order listed above. Rates that are constrained to be the same, have the same integer

at their positions in the model number. For example, model 123456 corresponds to

a model where all rates are independent, named the general time reversible (GTR)

model [12]. Model 121121 corresponds to the HKY model [13] in which rates form
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two groups labelled transversions (1 : rac = rat = rcg = rgt) and transitions

(2 : rag = rct). By convention, the lowest possible number representing a model

is used, so even though 646646 and 212212 represent HKY, we only use 121121.

There are 203 reversible models in total [7]. However, it is well known that transi-

tions (A↔C, and G↔T substitutions) are more likely than transversions (the other

substitutions) [14, 15]. Hence grouping transition rates with transversion rates is

often not appropriate and these rates should be treated differently. We can re-

strict the set of substitution models that allow grouping only within transitions

and within transversions, with the exception of model 111111, where all rates are

grouped. This reduces the 203 models to 31 models (see Figure 1 and details in Ap-

pendix). Alternatively, if one is interested in using named models, we can restrict

further to include only Jukes Cantor [16, 17] (111111), HKY [13] (121121), TN93

[18] (121131), K81 [19] (123321), TIM [20] (123341), TVM [20] (123421),and GTR

[12] (123456). However, to facilitate stepping between TIM and GTR during the

MCMC (see proposals below) we like to use nested models, and models 123345 and

123451 provide intermediates between TIM and GTR, leaving us with a set of 9

models (Figure 1).
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Figure 1 Model spaces. The model spaces supported by bModelTest. (a) All reversible models,
(b) transition/transversion split models, and (c) named models. Arrows indicate which models can
be reached by splitting a model. Note all models with the same number of groupings are at the
same height.

The state space consists of the following parameters:

• the model number M ,

• a variable size rate parameter (depending on model number) R,

• a binary variable to indicate whether 1 or k > 1 non-zero rate categories

should be used,

• a shape parameter α, used for gamma rate heterogeneity when there are k > 1

rate categories,
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• a binary variable to indicate whether or not a category for invariable sites

should be used,

• the proportion of invariable sites pinv,

Rates rac, rag, rat, rcg, rct and rgt are determined from the model number M and

rate parameter R. Further, we restrict R such that the sum of the six rates
∑
r..

equals 6 in order to ensure identifiability. This is implemented by starting each

rate with value 1, and ensuring proposals keep the sum of rates in (see details on

proposals below).

Prior

By default, bModelTest uses the flat Dirichlet prior on rates from [7]. From empirical

studies [14, 15], we know that transition rates tend to be higher than transversion

rates. It makes sense to encode this information in our prior and bModelTest allows

for rates to get a different prior on transition rates (default log normal with mean

1 and standard deviation of 1.25 for the log rates) and transversion rates (default

exponential with mean 1 for the rates).

An obvious choice for the prior on models is to use a uniform prior over all

valid models. As Figure 1 shows, there are many more models with 3 parameters

than with 1. An alternative allowed in bModelTest is to use a uniform prior on the

number of parameters in the model. In that case, Jukes Cantor and GTR get a prior

probability of 1/6, since these are the only models with 0 and 5 degrees of freedom

respectively. Depending on the model set, a much lower probability is assigned to

each of the individual models such that the total prior probability summed over

models with K parameters, p(K) = 1/6 for K ∈ {0, 1, 2, 3, 4, 5}.
For frequencies a Dirichlet(4,4,4,4) prior is used, reflecting our believe that fre-

quencies over nucleotides tend to be fairly evenly distributed, but allowing a 2.2%

chance for a frequency to be under 0.05. For pinv a Beta(4,1) prior on the interval

(0, 1) is used giving a mean of 0.2 and for α an exponential with a mean 1. These

priors only affect the posterior when the respective binary indicator is 1.

MCMC proposals

The probability of acceptance of a (possibly trans-dimensional) proposal [21] is

min{1, posterior ratio× proposal ratio× Jacobian}

where the posterior ratio is the posterior of the proposed state S′ divided by that

of the current state S, the proposal ratio the probability of moving from S to S′

divided by the probability of moving back from S′ to S, and the Jacobian is the

determinant of the matrix of partial derivatives of the parameters in the proposed

state with respect to that of the current state [21].

Model merge/split proposal

For splitting (or merging) substitution models, suppose we start with a model M . To

determine the proposed model M ′, we randomly select one of the child (or parent)

nodes in the graph (as shown in Figure 1). This is in contrast to the approach of

Huelsenbeck et al [7], in which first a group is randomly selected, then a subgrouping
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is randomly created. For any set of substitution models organised in an adjacency

graph our merge/split operator applies, making our graph-based method easier to

generalise to other model sets (e.g. the one used in [22]). If there are no candidates

to split (that is, model M = 123456 is GTR) the proposal returns the current state

(this proposal is important to guarantee uniform sampling of models). Likewise,

when attempting to merge model M = 111111, the current state is proposed (M ′ =

111111). Let r be the rate of the group to be split. We have to generate two rates ri

and rj for the split into groups of size ni and nj . To ensure rates sum to 6, we select

u uniformly from the interval (−nir, njr) and set ri = r + u/ni and rj = r − u/nj .
For a merge proposal, the rate of the merged group r from two split groups i and

j with sizes ni and nj , as well as rates ri and rj is calculated as r =
niri+njrj
ni+nj

.

When we select merge and split moves with equal probability, the proposal ratio

for splitting becomes

1
|M ′

merge|
1

|Msplit|

1

r(ni + nj)

where |Msplit| (and |M ′
merge|) is the number of possible candidates to split (and

merge) into from model M (and M ′ respectively). The proposal ratio for merging

is

1
|M ′

split|
1

|Mmerge|
r(ni + nj).

The Jacobian for splitting is
ni+nj

ninj
and for merging it is

ninj

ni+nj
.

Rate exchange proposal

The rate exchange proposal randomly selects two groups, and exchanges a random

amount such that the condition that all six rates sum to 6 is met. A random number

is selected from the interval [0, δ] where δ is a tuning parameter of the proposal (δ is

automatically optimized to achieve the desired acceptance probability for the data

during the MCMC chain). Let ni, ri, nj and rj as before, then the new rates are

r′i = ri − u and r′j = rj + u ni

nj
. The proposal fails when r′i < 0.

The proposal ratio as well as the Jacobian are 1.

Birth/death proposal

Birth and death proposals set or unset the category count flag and sample a new

value for α from the prior when the flag is set. The proposal ratio is d(α′) for birth

and 1/d(α) for death where d(.) is the density used to sample from (by default an

exponential density with a mean of 1).

Likewise for setting the indicator flag to include a proportion of invariable sites

and sampling pinv from the prior. The Jacobian is 1 for all these proposals.

Scale proposal

For the α, we use the standard scale operator in BEAST 2 [11], adapted so it only

samples if the category count flag is set for α. Likewise, for pInv this scale operator

is used, but only if the indicator flag to include a proportion of invariable sites is

set.
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Results and Discussion
Since implementation of the split/merge and rate exchange proposals is not straight-

forward, nor is derivation of the proposal ratio and Jacobian, unit tests were

written to guarantee their correctness and lack of bias in proposals (available on

https://github.com/BEAST2-Dev/bModelTest).

To validate the method we performed a simulation study by drawing site models

from the prior, then used these models to generate sequence data of 10K sites length

on a tree (in Newick (A:0.2,(B:0.15,C:0.15):0.05)) with three taxa under a strict

clock. The data was analysed using a Yule tree prior, a strict clock and bModelTest

as site model with uniform prior over models and exponential with mean one for

transversions and log-normal with mean one and variance 1.25 for transition rates. A

hundred alignments were generated with gamma rate heterogeneity and a hundred

without rate heterogeneity using a BEASTShell [23] script. Invariant sites can be

generated in the process and are left in the alignment.

Comparing the model used to generate the alignments with inferred models is

best done by comparing the individual rates of these models. Figure 2 shows the

rate estimates for the six rates against the rates used to generate the data. Clearly,

there is a high correlation between the estimated rates and the ones used to generate

(R2 > 0.99 for all rates). Results were similar with and without rate heterogene-

ity. Note values for rates AG and CT (middle panels) tend to be higher than the

transversion rates due to the prior they are drawn from.
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Figure 2 Accuracy of estimated substitution rates. True rates (horizontal) against estimated
rates (vertical) in simulated data for 3 taxa. In reading order, rate AC, AG, AT, CG, CT and GT.
Diamonds are for estimates when no rate heterogeneity was used to simulate the data, circles are
for estimates with rate heterogeneity. Error bars represent 95% HPD intervals for each estimate.

Table 1 summarises coverage of the various parameters in the model, which is

defined as the number of experiments where the 95% HPD of the parameter estimate

contains the value of the parameter used to generate the data. The rows in the
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Site rate coverage mean Subst. Model
Freqs Model AC AG AT CG CT GT rate coverage
equal plain 93 97 94 96 95 95 95 98
equal +G 91 95 93 93 95 93 93.3 97
equal +I 92 94 94 95 93 94 93.6 96
equal +G+I 89 96 95 94 95 95 94 98
unequal plain 96 95 96 97 93 96 95.5 96
unequal +G 95 94 94 94 96 96 94.8 98
unequal +I 89 94 95 95 93 95 93.5 93
unequal +G+I 97 94 94 93 93 96 94.5 97
Mean 94.25 94.25 94.75 94.75 93.75 95.75 94.6 96

Site Site Model frequency frequency coverage
Freqs Model coverage α pinv coverage A C G T
equal plain 100 100 100 100 100 100
equal +G 96 94 100 100 100 100 100
equal +I 98 95 100 100 100 100 100
equal +G+I 99 89 88 100 100 100 100 100
unequal plain 100 100 92 95 97 96
unequal +G 97 94 100 97 92 92 98
unequal +I 98 92 100 95 94 94 89
unequal +G+I 100 93 91 100 99 96 96 98
Mean 98.75 93.50 91.50 100.00 97.38 97.88 97.13 97.38

Table 1 Coverage summary for simulation study. The first column lists the frequency and site models
used to generate the data, and the last row is the mean coverage over all 800 runs. Coverage for rate
parameters and frequencies is defined as the number of replicate simulations in which the true
parameter value was contained in the estimated 95% HPD interval. The mean rate column contains
the coverage averaged over all six rate coverage columns (i.e. the proportion of the 600 parameter
estimates whose values were contained in their respective 95% HPD intervals. For details of
substitution model coverage see text. The site model coverage is the number of replicate simulations
that contained the correct model specification for rate heterogeneity across sites in the 95% credible
set of models. Columns α and pinv are coverages of the shape and proportion invariable parameter
conditioned on sampling from the true site model.

table show the four different models of rate heterogeneity among sites; plain means

a single category without gamma or invariable sites, +G for discrete gamma rate

categories, +I for two categories, one being invariable, and +G+I for discrete gamma

rate categories and one invariable category. Furthermore, the experiment was run

estimating whether base frequencies were equal or not. The first four rows are for

data simulated with equal frequencies, the latter four with unequal frequencies. The

last row shows results averaged over all 800 experiments. On average, one would

expect the coverage to be 95% if simulations are drawn from the prior [24], so each

entry in Table 1 has an expected value of 95, but can deviate due to small sample

size. According to the binomial probability distribution there is a ∼ 1.1% chance

of seeing 89 or less successes when sampling 100 times with a success rate of 0.95.

The sample size for the mean rows is 800, so is expected to be much closer to 95%.

Coverage of rate estimates and frequencies are as expected, as shown in the table.

Substitution model coverage is measured by first creating the 95% credible set of

models for each simulation and then counting how often the model used to generate

the data was part of the 95% credible set. The 95% credible set is the smallest set of

models having total posterior probability ≥ 0.95. As Table 1 shows, model coverage

is as expected (Subst. Model coverage column). The situation with gamma shape

parameter estimates and proportion of invariable sites is not as straightforward as

for the relative rates of the substitution process. The site model coverage can be

measured in a similar fashion: the site model coverage column shows how often

the 95% credible sets for the four different site models (plain, +G. +I and +G+I)

contains the true model used to generate the data. The coverage is as expected.

When looking at how well the shape parameter (α column in Table 1) and the

proportion invariable sites (pinv column in the table) is estimated, we calculated
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the 95% HPD intervals for that part of the trace where the true site model was

sampled. Coverage is as expected when only gamma rate heterogeneity is used,

or when only a proportion of invariable sites is used, but when both are used an

interaction between the two site model categories appears to slightly reduce the

coverage of both parameters. In these experiments the coverage for the frequency

estimates for the individual nucleotides was as expected. In summary, the statistical

performance of the model is as expected for almost all parameters except for the case

where gamma and a proportion of invariable sites are used due to their interaction

as discussed further below.

To investigate robustness of the approach, we repeated the study with a log normal

uncorrelated relaxed clock [25] with a gamma(α = 30, β = 0.005) prior over the

standard deviation for the log normal distribution. Trees with 5 taxa were randomly

sampled from a Yule prior with log normal distribution (the birth rate was drawn

from a distribution with a mean of the rate of 5.5, and a standard-deviation of the

log-rate of 0.048) giving trees with mean height ≈ 0.25 and 95% HPD interval of

0.015 to 0.7. The study as outlined above was repeated, and results are summarised

in Table S1, which looks very similar to that of Table 1. So, we conclude that the

model is not sensitive to small variation in molecular clock rates among branches.

Truth is no Γ−distributed rates

Posterior support for Γ−distributed rates

F
re

q
u

e
n

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

0
0

2
0

0
3

0
0

Truth is Γ−distributed rates

Posterior support for Γ−distributed rates

F
re

q
u

e
n

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
1

5
0

2
5

0

0.02 0.10 0.50 2.00 10.00

0
.0

2
0

.2
0

2
.0

0

True shape parameter

E
s
ti
m

a
te

d
 s

h
a

p
e

 p
a

ra
m

e
te

r

Figure 3 Accuracy of inference of rate heterogeneity across sites. Posterior probability for
inclusion of gamma rate heterogeneity when the data is generated without (left) and with
(middle) rate heterogeneity for 5 taxa. Right, True gamma shape parameter (horizontal) against
estimated shape parameter (vertical) when rate heterogeneity is used to generate the data.

Figure 3 shows histograms of estimated posterior probability of gamma-distributed

rate heterogeneity across sites for the data sets simulated over 5 taxa. When data

was generated without gamma-distributed rate heterogeneity across sites, the pos-

terior probability was often estimated to be close to zero (left of Figure 3), while the

posterior probability was estimated to be close to one for most of the analyses on

data in which gamma rate heterogeneity was present (middle of Figure 3).[1] When

rate heterogeneity was present, shape estimates were fairly close to the ones used

to generate the data (right of Figure 3). However, there were quite a few outliers,

especially when the shape parameter was high (although this is harder to see on a

log-log plot which was used here because of the uneven distribution of true values).

[1]Estimated shape parameters only take values of the shape parameter in account

in the portion of the posterior sample where gamma rate heterogeneity indicator is

1.
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This can happen due to the fact that when the gamma shape is small, a large

proportion of sites gets a very low rate, and may be invariant, so that the invariable

category can model those instances. The mean number of invariant sites was 6083

when no rate heterogeneity was used, while it was 6907 when rate heterogeneity

was used, a difference of about 8% of the sites.
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Figure 4 Accuracy of inference of proportion of invariant sites. Posterior probability for inclusion
of a proportion of invariant sites when the data is generated without (left) and with (middle)
invariant sites for 5 taxa. Right, empirical proportion invariant in alignment (horizontal) against
estimated proportion of invariant sites (vertical) when a proportion invariable category is used to
generate the data.

Figure 4 shows similar plots as Figure 3 but for the proportion of invariable sites

for 5 taxa. [2] Empirically for the parameters that we used for our simulations, it

appears that if there are less than 60% invariant sites, adding a category to model

them does not give a much better fit. When a proportion of invariable sites was

included in the simulation, there was a high correlation between the true proportion

and the estimated proportion of invariable sites.

The same study with 5 taxa was repeated with the substitution model fixed to

HKY and GTR, but estimating the other parts of the model. Results are summarised

in Tables S2 and S3 respectively. Fixing the model to HKY results in severe degra-

dation of accuracy in all parameter and model estimates. The lack of coverage of

frequency estimates when the true model has equal frequencies suggests that lack of

degrees of freedom in substitution model parameters is compensated by estimating

frequencies instead of keeping them equal. So substitution model misspecification

can result in considerable misspecification of the remainder of the model. Results

when fixing the substitution model to GTR shows a table with results very similar

to that of bModelTest, however the substitution model parameters have on average

a 95% HPD interval of size 0.17 while that of bModelTest is only 0.13. The extra

parameters that need to be estimated for GTR compared to bModelTest result in

more uncertain estimates, and thus more uncertainty in the analysis.

To see the impact of the model set, the experiment was repeated with sampling

from all 203 reversible models instead of using only the 30 transition/transversion

split models. Results are shown in Table S4, which do not differ substantially from

Table 1. Further, to investigate the effect of the number of taxa and sequence length,

the study was repeated with 16 taxa and sequence lengths 1K and 0.5K base pairs

[2]The estimated proportion of invariable sites only take values of the parameter in

account in the posterior sample where the invariant category was present.
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long under a relaxed clock as before. Results are summarised in Tables S5 and S6

respectively. The tables do not show significant differences to Table 1 or degradation

with decreasing sequence length, so the ability of our Bayesian method to correctly

estimate the posterior distribution of substitution models and their parameters does

not appear to depend substantially on sequence length or number of taxa.

Comparison with jModelTest

We ran jModelTest version 2.1.10 [3] on the sequence data used for the last simula-

tion study with 5 taxa (using all reversible models, since only that set is the same

for both jModelTest and bModelTest) and the two simulation studies using 16 taxa

and compared the substitution model coverage (with settings -BIC -AIC -f -g 4 -i

-s 203). For each dataset, we collected the top models according to the AIC and

BIC criteria such that the cumulative weight exceeded 95% of the models as shown

in the jModelTest output and registered whether the true model was contained in

the resulting set. Results are summarised in Table S7, which shows that both AIC

and BIC do not cover the true model 95% of the time as would be desirable. For

some combinations the coverage is close to the desirable value (88.4% for AIC with

5 taxa) and for some it is much lower (60.1% for BIC with 0.5K length sequences

and 16 taxa). Coverage of both AIC and BIC appears to decrease with increasing

number of taxa and decreasing sequence length in contrast to bModelTest, which

has coverage of ∼ 95% for all scenarios. jModelTest uses a single maximum likeli-

hood tree and it seems that increasing uncertainty in the true tree (by increasing

the number of taxa or decreasing sequence length) results in an increasing chance

of incorrect model weights from jModelTest.

In practice, users of Bayesian phylogenetic packages only use the most highly

weighted model returned by jModelTest. Table S7 shows how often the best fitting

model according to AIC and BIC matches the true model, which ranges from 72.6%

for BIC on 5 taxa to 29.9% for AIC on 0.5K length sequences and 16 taxa, suggesting

that the probability of model misspecification using this approach increases with

phylogenetic uncertainty.
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Figure 5 Posterior inference on primate data. Model distribution for primate data using the
transition/transversion split models (left). Numbers on x-axis correspond to models in Appendix.
The middle panel plots rates A↔ C versus A↔ G (middle) and the right panel plots A↔ C
versus A↔ T .

To compare the application of bModelTest to jModelTest (with settings -f -i -g

4 -s 11 -AIC -a) we applied both to two real datasets. The first data set used was
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an alignment from 12 primate species [26] (available from BEAST 2 as file exam-

ples/nexus/Primates.nex) containing 898 sites. In this case the model recommended

by jModelTest was TPM2uf+G and the substitution model TPM2 (=121323) has

the highest posterior probability using bModelTest (21.12% see Appendix for full list

of supported models) when empirical frequencies are used. However, when frequen-

cies are allowed to be estimated, HKY has highest posterior probability (16.19%),

while TPM2 (10.25%) has less posterior probability then model 121123 (14.09%).

So, using a maximum likelihood approach (jModelTest and/or empirical frequen-

cies) makes a substantial difference in the substitution model being preferred. Figure

5 left shows the posterior probabilities for all models, and it shows that the 95%

credible set is quite large for the primate data. Figure 5 middle and 5 right show

correlation between substitution model rates. The former shows correlation between

transversion rate AC (horizontally) and transition rate AG (vertically). One would

not expect much correlation between these rates since the model coverage image

shows there is little support for these rates to be shared. However, since HKY is

supported to a large extent and the rates are constrained to sum to 6, any proposed

change in a transition rate requires an opposite change in transversion rates in order

for the sum to remain 6. So, when sampling HKY, there is a linear relation between

transition and transversion rates, which faintly shows up in the Figure 5 (middle).

Figure 5 (right) shows the correlation between transversion rates AC and AT. Since

they are close to each other, a large proportion of the time rate AC and AT are

linked, which shows up as a dense set of points on the AC=AT line.
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Figure 6 Posterior inference on HCV data. Like Figure 5, but the data is split into two
partitions, the first containing codon positions 1+2 (panel a, b and c) and second containing
codon position 3 (panel d, e and f). The partitions support distinctly different site models. The
left panels show the posterior distribution over models, the middle panel plots transition rates
A↔ G versus C ↔ T , and the right panel plots transversion rates A↔ C versus A↔ T .

The second data set used was an alignment of 31 sequences of 9030 sites of coding

hepatitis C virus (HCV) from [27]. It was split into two partitions, the first con-

taining codon 1 and 2 positions (6020 sites) and the second all codon 3 positions

(3010 sites). Figure 6 left show the model distributions for the first partition at the

top and second at the bottom. The 95% credible sets contain just 7 and 6 models
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respectively, much smaller than those for the primate data as one would expect from

using longer, more informative sequences. Note that the models preferred for the

first partition have transition parameters split while for the second partition mod-

els where partitions are shared have higher posterior probability, resulting in quite

distinct model coverage images. For the first partition, bModelTest recommends

TIM2+I+G. TIM2 is model 121343, the model with highest posterior probability

according to bModelTest, as shown in Figure 6. For the second partition, jModel-

Test recommends GTR+G, and though GTR is in the 95% credible set, it has a

lower posterior probability than TVM, even though TVM was considered by jMod-

elTest. Again, we see a substantial difference in likelihood and Bayesian approaches.

The correlation between transition rates A↔ G and C ↔ T as well as between two

transversion rates A↔ C and A↔ T are shown in Figures 6 top middle and right

for the first partition and Figures 6 bottom middle and right for the second. The

transition rates A↔ G and C ↔ T have a posterior probability of being the same

of 0.024 in the first partition, whereas the posterior probability is 0.66 in the second

partition containing only 3rd positions of the codons. This leads to most models for

the first partition distinguishing between A↔ G and C ↔ T , while for the second

partition most models share these rates. For the two transversion rates A↔ C and

A ↔ T the partitions display the opposite relationship, with the second partition

preferring to distinguish them. As a result, overall the two partitions only have one

model in common in their respective 95% credible sets, but that model (GTR) has

quite low posterior probability from both partitions.

Implementation details

The calculation of the tree likelihood typically consumes the bulk (� 90%) of com-

putational time. Note that for a category with invariable sites, the rate is zero,

hence only sites that are invariant (allowing for missing data) contribute to the tree

likelihood. The contribution is 1 for those sites for any tree and for any param-

eter setting, so by counting the number of invariant sites, the tree likelihood can

be calculated in constant time. Switching between with and without gamma rate

heterogeneity means switching between one and k rate categories, which requires k

time as much calculation. Having two tree likelihood objects, one for each of these

two scenarios, and a switch object that selects the one required allows use of the

BEAST 2 updating mechanism [9] so that only the tree likelihood that needs up-

dating is performing calculations. So, jModelTest and bModelTest can, but do not

necessarily agree on the most appropriate model to use.

Conclusions
bModelTest is a BEAST 2 package which can be used in any analysis where trees are

estimated based on nucleotide sequences, such as multi-species coalescent analysis

[28, 29], various forms of phylogeographical analyses, sampled ancestor analysis

[30], demographic reconstruction using coalescent [31], birth death skyline analysis

[32], et cetera. The GUI support provided through BEAUti makes it easy to set up

an analysis with the bModelTest site model: just select bModelTest instead of the

default gamma site model from the combo box in the site model panel.

bModelTest allows estimation of the site model using a full Bayesian approach,

without the need to rely on non-Bayesian tools for selecting the site model.
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Table S1-S7 tables with simulation study results

simstudy.tgz

Archive containing XML input files for simulation study, and summaries of log files. Use tar fxz simstudy.tgz to

uncompress this archive. Once uncompressed, the following files become available:

simstudy/equalFreqGammInv/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with equal

frequencies, gamma rate heterogeneity and a proportion invariable sites

simstudy/equalFreqGamm/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with equal

frequencies, gamma rate heterogeneity and no proportion invariable sites

simstudy/equalFreqInv/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with equal

frequencies, no gamma rate heterogeneity and a proportion invariable sites

simstudy/equalFreq/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with equal

frequencies, no gamma rate heterogeneity and no proportion invariable sites

simstudy/unequalFreqGammInv/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with

unequal frequencies, gamma rate heterogeneity and a proportion invariable sites

simstudy/unequalFreqGamm/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with

unequal frequencies, gamma rate heterogeneity and no proportion invariable sites

simstudy/unequalFreqInv/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with unequal

frequencies, no gamma rate heterogeneity and a proportion invariable sites

simstudy/unequalFreq/analysis-out0.xml ... analysis-out99.xml XML input files for data generated with unequal

frequencies, no gamma rate heterogeneity and no proportion invariable sites

simstudy/*/out/summary contains log-analyser summary of the output for a run of the XML files in its parent

directory.

simstudy/*/out/coverage contains coverage summary of the output for a run of the XML files in its parent directory.

simstudy/*/out/run.sh shell script to run XML files in its parent directory. Assumes that ‘runbeast.sh’ is a script in

the path that starts BEAST 2 and that the bModelTest package installed.

simstudy/truth.dat table with parameters of site models used to generate sequence data. Note only those parameters

relevant for a particular site model are used, and the others are ignored if they are not relevant. For example, for

cases where equal frequencies are used to simulate the data, the frequency entries in truth.dat are ignored.

The log files are quite large (about 4 Gigabyte) and since the summary files are as informative they are not included

in the available data. However, they can be reconstructed using the run.sh scripts.

In addition, the following files are available from

https://github.com/BEAST2-Dev/bModelTest/releases/tag/simstudy
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simstudy5taxa.tgz

As simstudy.tgz but with 5 taxa, relaxed clock and sampled trees.

simstudy5taxaHKY.tgz

As simstudy5taxa.tgz but with substitution model fixed to HKY.

simstudy5taxaGTRtgz

As simstudy5taxa.tgz but with substitution model fixed to GTR.

simstudy5taxaAll.tgz

As simstudy5taxa.tgz but with substitution models sampled from all reversible models. Contains fasta alignments for

jModelTest and jModelTest output.

simstudy16taxa1k.tgz

As simstudy16taxa.tgz but with 16 taxa and sequences of 1K length.

simstudy16taxa0.5k.tgz

As simstudy16taxa1k.tgz but with sequences of 0.5K length.

hcv1.xml

XML input file for the hepatitis analysis. Requires BEAST 2 and the bModelTest package to run.

hcv1.log

Can be inspected using Tracer (available from http://tree.bio.ed.ac.uk/software/tracer/);

It can be analysed using the BModelAnalyser utility that package, by starting BEAUti (the GUI that comes with

BEAST), select File/Launch Apps, then select BModelAnalyser from the list of available utilities. Select this log file

in the dialog that shows up and a report with coverage statistics and a graph of the models is shown.

primates.xml

XML input file for the primate analysis using empirical frequencies. Requires BEAST 2 and the bModelTest package

to run.

Primates.log

Log files of a run of primates.xml. Can be analysed like hcv1.log.

primatesE.xml

XML input file for the primate analysis using estimated frequencies. Requires BEAST 2 and the bModelTest

package to run.

PrimatesE.log

Log files of a run of primatesE.xml. Can be analysed like hcv1.log.
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