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Abstract

The advent of high throughput RNA-seq at the single-cell level has
opened up new opportunities to elucidate the heterogeneity of gene
expression. One of the most widespread applications of RNA-seq is to
identify genes which are differentially expressed between two experi-
mental conditions. Here, we present a discrete, distributional method
for differential gene expression (D3E), a novel algorithm specifically
designed for single-cell RNA-seq data. We use synthetic data to evalu-
ate D3E, demonstrating that it can detect changes in expression, even
when the mean level remains unchanged. Since D3E is based on an an-
alytically tractable stochastic model, it provides additional biological
insights by quantifying biologically meaningful properties, such as the
average burst size and frequency. We use D3E to investigate experi-
mental data, and with the help of the underlying model, we directly
test hypotheses about the driving mechanism behind changes in gene
expression.

Background

Over the last two decades, several methods for global quantitative profiling
of gene expression have been developed [22, 27, 36]. One of the most common
uses of gene expression data is to identify differentially-expressed (DE) genes
between two samples collected from distinct experimental conditions, e.g.
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stimulated vs unstimulated, mutant vs wild-type, or at separate time-points.
The goal of DE analysis is to identify genes that underlie the phenotypical
differences between the conditions.

The first method for genome-wide expression profiling was microarrays,
but as sequencing costs have decreased, direct sequencing of the transcrip-
tome (RNA-seq) has become more popular. Initially, RNA-seq experiments
were carried out in bulk on samples of up to 105 cells. Consequently, only
information about the mean expression of each gene in a sample could be
extracted. However, it has been known since the 1950s [21] that gene ex-
pression varies from cell to cell, and more recently it has been shown that
stochastic variation may play an important role in development, signaling
and stress response [25, 26, 38]. Thus, recently developed single-cell RNA-
seq protocols [14, 34], could potentially provide a greater understanding of
how the transcriptome varies between cells with the same genotype and cell-
type. To take full advantage of single-cell data, for DE analysis as well as
for other types of investigation, e.g. inference of gene regulatory networks,
novel analysis methods are required.

Single-cell DE analysis is complicated by the fact that comparison of
two probability distributions is an ambiguous task. With the exception of
SCDE [16], most common tools for preforming single-cell DE analysis - DE-
Seq2 [19], Cuffdiff [35], limma [29] and EdgeR [30] - are all adaptations of
bulk RNA-sequencing methods. They mainly focus on filtration and nor-
malisation of the raw data, and DE genes are identified based on changes in
mean expression levels. The main drawback of using only the mean is that
one ignores the gene expression heterogeneity, and will thus fail to detect
situations where, for example, there is only a change in the variance of gene
expression. Alternative methods for comparing probability distributions are
the Kolmogorov-Smirnov test, the Anderson-Darling test, Kullback-Leibler
divergence, Akaike’s Information Criterion, and the Cramér-von Mises test.
What these methods have in common is that they summarize the difference
between two distributions as a single value, which can be used to test for
significance.

To get the most out of the analysis of single-cell data, one should em-
ploy an underlying theoretical model of gene expression. The transcriptional
bursting model [23, 24] provides a mechanistic description of the stochastic
switching of the promoter as well as the the production and degradation
of transcripts at the single cell level (Fig. 1A,B). The model is analytically
tractable, and it allows us to derive several other biologically relevant prop-
erties of gene expression (Fig. 1C). Despite its simplicity, the transcriptional
bursting model enjoys strong experimental support [6, 33, 39, 40].
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In this paper, we present D3E, a method based on the comparison of two
probability distributions for performing differential gene expression analy-
sis. D3E consists of two separate modules: a module for comparing ex-
pression profiles using the Cramér-von Mises, the Anderson-Darling or the
Kolmogorov-Smirnov test, and a module for fitting the transcriptional burst-
ing model. Thus, D3E allows the user to go beyond merely identifying DE
genes and provides biological insight into the mechanisms underlying the
change in expression. We demonstrate the power of D3E to detect changes
in gene expression using synthetic data. Finally, we apply D3E to experi-
mental data to demonstrate its ability to detect significant changes which
are not reflected by the mean.

Results and Discussion

Algorithm and Implementation

D3E takes a read-count table as an input, with rows and columns corre-
sponding to transcripts and cells, respectively. The user should split the
columns into two or more groups by providing cell labels in the input file.
If there are more than two groups of cells, they must be compared one pair
at a time. D3E uses four steps to process the data. First, input data is
normalised using the same algorithm as DESeq2 (see Methods) and filtered
by removing the genes that are not expressed in any of the cells. Second,
the Cramér-von Mises test, the Anderson-Darling test, or the Kolmogorov-
Smirnov test [9] is used to identify the genes with a significant change in
expression between the two samples of interest. Third, the transcriptional
bursting model is fitted to the expression data for each gene in both samples
using either the method of moments or a Bayesian method [17]. Fourth, the
change in parameters between the two samples is calculated for each gene
(Fig. 1D).

A command-line version of D3E written in Python can be downloaded
from GitHub (https://github.com/hemberg-lab/D3E), and the source code
is available under the GPL licence. Furthermore, there is also a web-version
available at http://wwww.sanger.ac.uk/sanger/GeneRegulation D3E. Due
to the time required to run D3E, the web version limits the number of genes
and cells that may be analyzed, and it can only use the method of moments
for estimating parameters.
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DE Analysis Module

To compare distributions, D3E uses either the Cramér-von Mises, the Anderson-
Darling test or the Kolmogorov-Smirnov test to quantify the difference in
gene expression (see Methods). All three tests are non-parametric which is
advantageous since it allows us to apply D3E to any single-cell dataset, not
just the ones collected using RNA-seq. The null hypothesis for all three tests
is that the two samples are drawn from the same distribution. The premise
of D3E is that when two samples are drawn from the same population of
cells, the test should result in a high p-value. On the other hand, if the cells
are drawn from two populations with different transcriptome profiles, then
the resulting p-value should be low. For the remainder of this paper, we will
only present results obtained using the Cramér-von Mises test.

We first evaluated D3E using synthetic data. Fortunately, there is a
widely used, experimentally validated stochastic model available for single-
cell gene expression [23]. We refer to this model as the transcriptional burst-
ing model (Fig. 1A), and it is characterized by three parameters: α, the rate
of promoter activation; β, the rate of promoter inactivation; γ, the rate of
transcription when the promoter is in the active state. For the purpose of
calculating the stationary distribution, all three parameters are normalised
by the rate of mRNA degradation λ. Thus, it is only approprite to apply the
transcriptional bursting model to DE analysis when λs are constant between
the compared samples, or when the degradation rates are known for both
samples. The stationary distribution of the transcriptional bursting model
takes the form of a Poisson-Beta mixture distribution [24]

PB(n | α, β, γ) = Poi(n | γx)
∧

x

Beta(x | α, β)

=
γne−γΓ(α+ n)Γ(α+ β)

Γ(n+ 1)Γ(α+ β + n)Γ(α)
Φ(α, α+ β + n; γ), (1)

where n is the number of transcripts of a particular gene, x is an auxiliary
variable, Γ is the Euler Gamma function, and Φ(a, b; c) is the confluent
hypergeometric function.

To evaluate the sensitivity of the Cramér-von Mises test to changes in the
parameters, we selected triplets of parameters (α, β, γ) from a range that is
characteristic for single-cell RNA-seq data. For each parameter triplet one
of the parameters was varied, while fixing the remaining two, and a series of
Cramér-von Mises tests was carried out on the corresponding Poisson-Beta
samples. For each combination of parameters, we assumed that there were
50 cells from each condition when generating the data. The results can be
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summarized by a set of matrices, where rows and columns correspond to
values of the varied parameter, and the elements in the matrix are p-values
from the Cramér-von Mises tests (Fig. 2B). Ideally we would like to find
high p-values close to the diagonal and low p-values away from the diagonal.
We used a heuristic for characterizing the pattern of p-values, and for each
matrix we obtained a single Spearman correlation score, ρ (see Methods). A
high ρ indicates that the high p-values are concentrated along the diagonal,
suggesting that D3E has successfully identified genes where there was a
change in one of the parameters.

The results suggest that the Cramér-von Mises test is sensitive to changes
in all three parameters with an average score equal to 0.86 (Fig. 2A). The
exceptions are the regions in parameter space where γ is small and either β
is large or α is small. In this regime, the Poisson-Beta distribution is similar
to the Poisson distribution with a mean close to zero, and it is challenging to
identify which parameter has changed, and by how much. From a biological
perspective, when a transcription rate is small and a gene has a small duty
cycle (small α or big β) there are almost no transcripts produced since the
promoter spends most of its time in the inactive state. Therefore, changes
in either of the three parameters will be difficult to distinguish.

We also considered the scenario when the two distributions are different,
but the mean is identical. This is a situation where it is all but impossible
for methods which only use the mean to reliably detect that there has been a
change in the expression profile. In contrast, D3E is able to reliably identify
a change in expression. Our results show that a change of α and β by a
factor of 2, which is roughly equivalent to changing the variance by the
same factor, is sufficient for the p-value to drop below .05 for a sample of 50
cells (Fig. 2C).

A particular challenge for DE analysis is to determine the p-value thresh-
old for when a change can be considered significant. The traditional ap-
proach is to use a fixed value, e.g. .05, and then adjust for multiple hy-
pothesis testing. D3E takes an empirical approach whereby one of the two
datasets is first split into two parts. By definition, the two parts should
have identical distributions for all genes, which means that it can be used
as a negative control. D3E applies the Cramér-von Mises test to the nega-
tive control, and records the lowest p-value identified, p∗. When comparing
the two original distributions, only genes with a p-value below a × p∗ are
considered significant, where the default value for the parameter a is .1.

We used the strategy outlined in the paragraph above, and as a control
we generated 1,000 pair of samples with the same number of reads and cells,
using identical parameter values for the samples in each pair. We recorded
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the lowest observed p-value, p∗, and we used .1× p∗ as a threshold for when
to call a test significant. For both the method of moments and the Bayesian
method, we found that 97% of the genes were detected as DE. The control
experiment demonstrates that D3E is capable of accurately distinguishing
situations where the parameters have truly changed.

To further evaluate the performance of D3E relative to other DE meth-
ods, we generated additional synthetic data sets where one of the three
parameters was varied while the other two were fixed as before. For each
data set we designated genes as DE where the parameter had changed by at
least a factor of 1.1, 1.5 or 2. The arbitrary decision of what constitutes a
significant change allows us to define the calls of the DE algorithms as either
true positive, false positive, true negative or false negative. The results can
be summarized as a ROC curve, and again we find that changes in β are
more difficult to detect compared to the other two parameters (Fig. 3). We
also find that when the threshold for significant changes is set to 10%, then
all methods perform at chance level. Importantly, we find that for larger
parameter changes, D3E is always amongst the best performing methods
(Fig. 3).

Parameter Estimation Module

Even though the rate parameters α, β and γ have well-defined biochemical
meanings, they do not represent quantities which can be easily measured.
Fortunately, it is possible to use the transcriptional bursting model (Fig.
1) to derive other quantities - the average burst size, the burst frequency,
the mean expression level, and the proportion of time in the active state
(duty cycle) - which are easier to measure and interpret biologically. How
accurately the parameters can be estimated, and how well changes can be
identified depends on the sequencing depth. Increasing the sequencing depth
will make it easier to identify DE genes, but the total number of reads is
typically limited by budgetary constraints. Thus, a key choice when design-
ing an RNA-seq experiment is the trade-off between the total number of
cells and the number of reads sequenced per cell.

To determine how the sequencing depth and the number of cells affect
our ability to detect DE genes, we generated sets of synthetic data with
1,000 genes in each, while varying the number of cells and the sequencing
depth. We evaluated how well D3E is able to identify changes of the in-
ferred parameters in a procedure involving four steps: (i) For each gene,
two independent samples were generated by drawing from a Poisson-Beta
distributions with separate triplets of randomly generated parameters. The
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fold-change of α, β and γ between the two samples was recorded for each
gene. (ii) The sequencing procedure was simulated by multinomial sampling
(see Methods). (iii) The parameters α, β, and γ were estimated by applying
either the method of moments or Bayesian inference (see Methods) [17] (iv)
The performance of the estimation methods was evaluated by comparing
the list of genes, sorted based on changes of one of the derived quantities
to the ground truth by calculating the normalized number of inversions (see
Methods). An ideal DE analysis would result in an inversion score equal to
1, i.e. the order in the sorted set of estimated changes for a particular set
of parameters would match exactly that of the actual changes. A randomly
ordered set of genes would result in an inversion score of 0.5, and a set of
genes sorted in reverse order would have an inversion score of zero. The
inversion score for both the method of moments and the Bayesian estimates
demonstrate a positive trend as the number of cells and the library size in-
crease, although the method of moments performs worse than the Bayesian
inference. Comparison of the different quantities reveals that D3E is best at
sorting genes by changes in average burst size and burst frequency (Fig. 4A).
Assuming ideal sequencing and 100 cells per sample, the inversion scores are
.81 and .82, respectively. The inversion score for duty cycle is always close
to 0.5, regardless of sequencing depth or number of cells, suggesting that
this quantity is difficult to estimate.

Comparing the benefits of increasing the seqeuncing depth and increasing
the sample size, we find that the differences are insignificant when the total
number of reads is large. When the total number of reads is small, it is
better to have a larger number of cells with shallow sequencing than the
other way around. We conclude that the most important recommendation
is to avoid operating at the edges of the parameter space. That is, if a small
number of cells is used, then the maximum inversion score will be reached
sooner than for a larger sample size. For example, if only 10 cells are used,
then the maximum inversion score for the burst size is reached with 60 reads
per gene. If one instead uses 200 cells, then the maximum inversion for the
burst size is reaced with 200 reads per gene (dashed red line in Fig. 4A).

Treatment of zeros

The number of zeros in a read-count table can be large. For example, 72%
of entries are zeros in the data reported by [14], 57% for [15], 61 % for [8],
81% for [41], and 52 % for [11]. Zeros originate either from the absence of
transcripts in a cell due to stochastic expression, or from technical noise due
to low starting levels of mRNA [16]. Thus, removal of zeros may increase

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2015. ; https://doi.org/10.1101/020735doi: bioRxiv preprint 

https://doi.org/10.1101/020735
http://creativecommons.org/licenses/by/4.0/


the quality of the analysis by decreasing the technical noise. However, zeros
that represent a natural variation would also be removed, which could have
an adverse effect on the quality of the results.

To test whether D3E benefits from removing zeros, we generated sets
of synthetic data, and randomly substituted a fraction, z, of read-counts
with zeros. Next, we applied D3E to the data sets, both before and after
having removed the zeros. The effect of removing the zeros was evaluated
by the relative change of the inversion score (Fig. 4B). Our results suggest
that the effect of removing zeros varies from parameter to parameter, and
the results also depend significantly on the magnitude of z. When z is
below 25%, estimation of both average burst size and burst frequency suffer
significantly from the removal of zeros, as the inversion score drops by ∼ .2.
However, while the effect remains negative for estimation of frequency for
z ≥ 25%, estimation of average burst size is no longer adversely affected. The
estimation accuracy of the duty cycle seems to have improved slightly (up to
10%) after removing zeros. However, taking into account the low predictive
power of duty cycle estimates, the absolute value of the improvement is
quite modest. In summary, whether or not one should exclude the zeros
depends on the estimate of z. According to our simulation studies, it is
not advisable to remove zeros when z is below 25%, or when estimating the
burst frequency is a high priority.

Application to Experimental Data

The tests on synthetic data suggest that D3E can reliably identify differen-
tially expressed genes. A more useful test of the algorithm, however, involves
experimental data which has been reliably validated. Unlike bulk data [27],
unfortunately there are no gold-standard datasets available. Nonetheless,
to further evaluate D3E, we considered the single-cell RNA-seq data from
two and four-cell mouse embryos where qPCR data from the same cell-types
was collected for 90 genes [4]. Unfortunately, the correlation of changes in
gene expression between the qPCR and RNA-seq data (ρ∆ = .46) (Fig. S1)
is even worse than the correlation of the individual samples (ρ2 = .6, ρ4 =
.5). Thus, it does not come as a surprise that the overlap between the genes
which are considered DE in the qPCR experiment has little overlap with
genes which are considred DE from RNA-seq by any of the five algorithms
that we compared (Table S1). Even so, we find large differences in the
number of genes identified as DE, ranging from 1 (edgeR) to 35 (DESeq2).

To further evaluate D3E, we applied it to the two datasets collected
by Islam et al. [14] from 48 mouse embryonic stem cells and 44 mouse
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embryonic fibroblasts. To establish the p-value threshold, we first separated
the stem cells into two groups, and compared the expression (see Methods).
We used this approach for determining the threshold for D3E, SCDE, edgeR
and limma, while for DESeq2, we used the adjusted p-value reported by the
software. When comparing the two cell-types, D3E identified 4197 genes
as DE, DESeq2 identified 5183 genes, limma-voom identified 14170 genes,
edgeR identified 890 genes, and SCDE identified 1086 genes (Fig. 5A).
Surprisingly, the agreement between the five methods is quite low with only
a core set of 380 genes identified by all three methods. If we require a
gene to be identified of 4 out of 5 methods, then an additional 495 genes
are idenitified as DE, suggesting that there is a set of around 900 genes
which can confidently considered DE. To further evaluate the set of genes
identified as DE by each method, we investigated the distiribution of fold-
change values (Fig. 5B). The distributions gives an indication of how large
fold changes are required for detection, and we note most of the genes have
a higher expression in fibroblasts compared to stem cells. Compared to
DESeq2, SCDE and edgeR, we also notice that D3E is able to identify genes
with a lower fold change. Indeed, there were several examples of genes where
the change in mean expression was modest, but they were still identified by
D3E as differentially expressed (Fig. 5C).

Next, we took advantage of the transcriptional bursting model underly-
ing D3E, and we fitted the parameters α, β, and γ for all genes. We found
that for 85% of the genes, at least one of the parameters changed by at
least 2-fold, suggesting that there are substantial differences between the
two cell-types. The results show that all three parameters follow log-normal
distributions, spanning approximately one or two orders of magnitude in
both cell-types (Fig. 5D). With the exception of the duty cycle which is
constrained to be in the interval [0, 1], the derived quantities showed a
similar distribution.

Importantly, the transcriptional bursting model allows us to learn more
about how the expression level has changed between the two conditions. In
the transcriptional bursting model, there are three different ways to increase
the mean expression level; by decreasing the degradation rate, by increasing
the burst frequency, or by increasing the burst size. We calculated the three
derived quantities for each condition for the 2105 genes where we were able
to obtain degradation rates for both cell-types [31, 32]. Next, we compared
the changes in degradation rate, burst frequency and burst size to the change
in mean expression level (Fig. 5E). The results clearly demonstrate that it is
the change in burst size which underlies the change in mean expression levels
(ρ = .91), suggesting that altering the burst size is the driving mechanism
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behind differences in mean expression between conditions.
Another property of interest is the coefficient of variation (CV), defined

as the standard deviation divided by the mean, which is used to quantify
the gene expression noise. The CV is inversely correlated with the mean,
and the transcriptional bursting model reveals that the change in CV is
mainly correlated with the change in the duty cycle (ρ = .47), while the
effect of a change in burst size is considerably smaller (ρ = .24, Fig. S2).
To further demonstrate the use of the transcriptional bursting module, we
also investigated changes in the auto-correlation times of each gene. The
auto-correlation provides information about the time-scale of the noise, i.e.
how quickly the gene expression level varies. The expected value of the
autocorrelation, τc, is given by (Methods)

τc =
σ2

µ
λ + 1

α+β

. (2)

Comparison of τc and the change in the mean for the Islam et al data reveals
that the two quantities are strongly correlated (ρ = .87, Fig. S3). However,
when investigating all the quantities on the right hand side of Eq. (2) the
comparison shows that it is the change in variance which is most strongly
correlated with the change in autocorrelation times (ρ = .90, Fig. S3).
Taken together, these results demonstrate that it is possible to generate
testable hypotheses about how changes in the property of a gene has come
about. The results also show that there is a complex relation between the
different properties, and as additional datasets become available, it will be
interesting to determine if the correlations observed for the Islam et al data
can be generalized.

Discussion

DE analysis is one of the most common uses of bulk RNA-seq, and we
expect that it will become an important application for single-cell RNA-seq
as well. Here, we have presented D3E, a tool for analyszing DE for single-
cell data. The main difference between D3E and other methods is that
D3E compares the full distribution of each gene rather than just the first
moment. Therefore, it becomes possible to identify genes where the higher
moments have changed, with the mean remaining constant. To the best of
our knowledge, D3E is the first method for DE analysis which takes the full
distribution into consideration. Using synthetic data, we demonstrate that
D3E can reliably detect when only the shape, but not the mean is changed.
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One of the main challenges in developing a DE analysis method for
single-cell RNA-seq data is that, unlike for bulk data, there are no gold-
standards available [27]. Comparison of qPCR and RNA-seq data revealed
only a modest correlation between the two methods, implying that the two
methods are inconsistent. Thus, one must resort to synthetic data for eval-
uation. Fortunately, for single-cell gene expression, there is an analytically
tractable transcriptional bursting model available which has been experi-
mentally validated. Even with synthetic data, it is not obvious how one
should define a change in expression. Consider the situation where one of
the parameters changes by a small amount which is just sufficient to be
detected given the limits of the technical noise, the read depth and the sam-
ple size. Then the question is whether or not the change is sufficient to be
biologically meaningful.

Another challenge stems from the difficulty of disentangling the techni-
cal and the biological noise. The transcriptional bursting model does not
account for the technical noise in single-cell experiments which can be con-
siderable [3, 5, 11, 28]. Our simulations show, however, that it is possible to
improve DE analysis by accounting for the technical noise, demonstrating
the importance of estimating the transcript drop-out rate.

D3E implements three different non-parametric methods for comparing
probability distributions. The three methods emphasize different aspects
of the distributions, and there are other techniques available for compar-
ing probability distributions. An important future research question is to
determine what method is the most appropriate for single-cell DE analysis.

We have shown that the transcriptional bursting model makes it possi-
ble to extract additional, biologically relevant results from the DE analysis.
However, to be able to fully utilize the transcriptional bursting model, the
mRNA degradation rates must be known, or assumed to be constant. Deter-
mining degradation rates directly remains experimentally challenging, and
today they are only available for a handful of cell-types. However, alterna-
tive strategies has been proposed, whereby degradation rates are estimated
from RNA-seq data using distribution of reads along the length of a gene
[12, 37]. The RNA-seq based methods make it possible to estimate degra-
dation rates without further experiments, and they could thus significantly
expand the range of samples where the transcriptional bursting model can
be applied.
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Conclusions

Our work combines three important aspects of genomics - high-throughput
sequencing technologies, computational data analysis, and systems biology
modelling. In the present study, we have combined single cell RNA-seq, non-
parametric comparison of distributions and an analytical model of stochastic
gene expression which allows us to extract biologically meaningful quantities,
providing insights not just about which genes have changed between two
conditions, but also how the change has come about.

Materials and Methods

Cramér-von Mises criterion

To compare two empirical distributions of read counts from different cell
samples, the Cramér-von Mises test was used. Given two discrete distribu-
tions F (x) and G(x) with sizes N and M respectively, the Cramér-von Mises
test statistic is given by:

T =
NM

N +M

∫ ∞

−∞
[F (x)−G(x)]2H(x), (3)

where H(x) is an empirical distribution function of a union of two samples

H(x) =
N

N +M
F (x) +

M

N +M
G(x). (4)

Criterion T was estimated through ranks qi and si of the read-counts
from a first and a second samples, in the ordered pooled sample [1]:

T =
U

NM(N +M)
− 4NM + 1

6(N +M)
, (5)

where

U = N
N
∑

i=1

(qi − i)2 +M
M
∑

j=1

(si − j)2. (6)

The p-value associated with a null-hypothesis that two samples are drawn
from the same distribution was calculated as [2]:

p(T ) = 1− 1

π
√
T

∞
∑

j=0

(−1)j
(−0.5

j

)

(4j + 1)0.5

exp
−(4j + 1)2

16T
K0.25

(4j + 1)2

16T
, (7)
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where
(−0.5

j

)

=
(−1)jΓ(j + 0.5)

Γ(0.5)j!
, (8)

Γ(z) is Euler’s Gamma function, and Kν(z) is a modified Bessel function of
the second kind.

The infinite sum in (7) converges fast after the first few terms. In prac-
tice, the p-value was calculated using first 100 terms of the sum for values
of T less or equal to 12. For values of T greater than, 12 the p-value was set
to zero.

Parameter estimation

A fast but inaccurate method for estimating parameters of a Poisson-Beta
distribution is a moments matching technique. The parameters can be ex-
pressed through the sample exponential moments [23]:

α =
2r1(r3 − r2)

r1r2 − 2r1r3 + r2r3
(9)

β =
2(r2 − r1)(r1 − r3)(r3 − r2)

(r1r2 − 2r1r3 + r2r3)(r1 − 2r2 + r3)
(10)

γ =
−r1r2 + 2r1r3 − r2r3

r1 − 2r2 + r3
, (11)

where ri is a successive ratio of exponential moments ei:

ri =
ei
ei−1

, e0 = 1, (12)

for an i’th exponential moment: ei = E[X(X − 1)...(X − i+1)], where X is
a sample of read counts.

The parameters of a Poisson-Beta distribution can also be estimated by
a Bayesian inference method [17]. The Bayesian method is more accurate,
but it requires more computational power. A Gamma distribution was used
as a prior for the parameters α, β and γ:

α ∼ Gamma(kα, θα) (13)

β ∼ Gamma(kβ , θβ) (14)

γ ∼ Gamma(kγ , θγ), (15)

where

kα = kβ = kγ = 1 (16)

θα = θβ = 100 (17)

θγ = max{x : x ∈ X}, (18)
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The number of read counts, x, was drawn from a Poisson-Beta distribution:

x ∼ Pois(x | γc)
∧

c

Beta(c | α, β) (19)

Parameter estimation was performed by a collapsed Gibbs sampler, us-
ing Slice sampling [20]. Conditional distributions for parameters during
sampling were given by:

P (ci) ∼ Beta(ci|α, β)Poisson(xi|ciγ) (20)

P (α) ∼ Gamma(α|kα, θα)
n
∏

i=1

Beta(ci|α, β) (21)

P (β) ∼ Gamma(β|kβ, θβ)
n
∏

i=1

Beta(ci|α, β) (22)

P (γ) ∼ Gamma(γ|kγ , θγ)
n
∏

i=1

Pois(xi|ciγ) (23)

Synthetic data

Synthetic data was produced by sampling from a Poisson-Beta distribution,
i.e. first drawing an auxiliary variable c from Beta distribution with param-
eters α and β: c ∼ Beta(α, β) and then drawing from a Poisson distribution
with parameter λ = cγ: x ∼ Poisson(cγ).

The effect of imperfect sequencing was simulated using a Monte Carlo
method. A uniformly distributed random variable, v, was drawn from the
the interval [0, 1]. Then, a read was assigned to a gene i, where

i = min{j : C(xj) ≤ v, x ∈ X}, (24)

where C is a empirical cumulative distribution function for a set of reads for
all genes in a particular cell. The operation was performed n times, where
n is a total number of reads in a library.

Analyis of the Cramér-von Mises sensitivity

To evaluate how well D3E is capable of detecting changes in different regimes
of the parameter space, we systematically varied the three parameters of the
Poisson-Beta model across the range of values representative of the biological
data, α ∈ [.4, 3], β ∈ [2, 100], and γ ∈ [2, 3000]. We fixed a pair of parameters
and varied the third in 10 steps over its range, recording the p-value for

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2015. ; https://doi.org/10.1101/020735doi: bioRxiv preprint 

https://doi.org/10.1101/020735
http://creativecommons.org/licenses/by/4.0/


the Cramér-von Mises test. For each of the 100 different combinations, it
was assumed that the sample consisted of 50 cells from each condition was
generated. Close to the diagonal, the changes in the parameters are small,
and we expect a high p-value in these positions. To summarize the matrix of
p-values, we calculate the Spearman correlation between the row and column
indices where p > .05. This value is mapped to a color and reported in Fig.
2A.

Goodness of fit

To evaluate the parameter estimation, the following goodness of fit measure
was used. First, a random Poisson-Beta sample with the estimated param-
eters was generated. The size of the synthetic sample was equal to the size
of the real sample. Then the Cramér-von Mises test was performed between
the real sample, and the synthetic sample. The p-value of the test is used
as a metric for goodness of fit.

Normalization

The normalization of the raw read counts was performed by the same method
used by DESeq2 [19]. Let xij represent the raw number of reads for i =
1, 2..N and j = 1, 2..M , where N is the number of genes, and M is the total
number of cells in the experiment. Then, the size factor sj is found as

sj = mediani
xij

(
M
∏

k=1

xik)1/M
. (25)

The corrected read counts are then calculated as x∗ij =
xij

sj . The size factors
are calculated based on spike-ins data only if it is available.

Performance analysis

To test how good D3E is at identifying differences in parameters it was as-
sumed that the power of a DE method depends on it’s ability to highlight
the biggest changes the in the parameters, i.e. how well it sorts the genes
in order of decreasing change in a particular parameter. To quantify this
property, we used a normalized number of inversions (inversion score). As-
sume that X = {x1, x2...xn} is a set of numbers sorted descending by some
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method. Then, the number of inversions s is given by

s(X) =
n
∑

i=1

|{xj : xi ≥ xj , j > i}| (26)

If the set X is perfectly sorted, then it’s number of inversions s0 is
s0(X) =

∑n
i=1 i− 1.

Thus, we can define a normalised number of inversions (inversion score)

s∗(X) as s∗(X) = s(X)
s0(X) .

Determining p-value threshold

To determine the p-value threshold for D3E, we first take the sample which
will be used as the control group (i.e. in the denominator when calculating
the fold-change), and split it into two non-overlapping subsets. Next, the
Cramér-von Mises test is applied to the split sample, and the lowest p-value
observed, p∗, is recorded. When comparing the case and the control sets,
0.1 ∗ p∗ is used as a threshold, and only genes with a p-value lower than
0.1 ∗ p∗ are considered significant.

SCDE reports a z-score which we transform to a p-value using the for-
mula p = 2Φ(−|z|), where Φ(x) is the cumulative density of the standard
normal distribution. When choosing the threshold for SCDE, we used the
same strategy as for D3E.

For DESeq2 we used the adjusted p-value reported by the algorithm, and
we required it to be < .1 to be significant.

Calculating auto-correlation times

The power spectral density, S(ω), of the mRNAs for the transcriptional
bursting model is given by [7]

S(ω) =
2

λ2 + ω2

(

dγ +
dαγ2

(α+ β)2 − λ2

)

− 2

(α+ β)2 + ω2

dαγ2

(α+ β)2 − λ2

(27)
where d = α/(α + β). By definition, the auto-correlation, R(t), is given by
the inverse Fourier transform of S(ω),

R(t) = e−λ|t|

(

dγ

λ
+

(α+ β)(dγ)2

λ(α+ β)2 − λ2)

)

− e−(α+β)|t| (dγ)2

(α+ β)2 − λ2
. (28)

The characteristic time of the auto-correlation is defined as τc = S(0)/2R(0).
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Castelo-Branco, Jens Hjerling-Leffler, Sten Linnarsson, 2015, Brain
structure. Cell types in the mouse cortex and hippocampus revealed
by single-cell RNA-seq, Science 347, 1138-1142

Figures

Additional Files

Additional file 1 — Figure S1

Change in expression levels for 90 genes from the 2-cell and 4-cell mouse
embryos as quantified using either qPCR or RNA-seq [4].

Additional file 2 — Table S1

Expression levels for the 90 genes from the 2-cell and 4-cell mouse embryos as
quantified using either qPCR or RNA-seq [4]. The last six columns indicate
the genes that were identified as differentially expressed by different DE
algorithms as well as a t-test for the qPCR data.

Additional file 3 — Parameters for the Islam et al. data with-

out degradation rates

Parameters for the 12,135 genes that were expressed in both cell types.
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Figure 1: Overview of D3E. A) Graphical representation of the transcrip-
tional bursting model. B) Example of a realization of the transcriptional
bursting model with parameters α = 1, β = 10, γ = 100, and λ = 1 [10]. In
this regime, the gene exhibits a bursty behavior with a bimodal stationary
distribution. C) Derivation of the biologically-relevant parameters from the
parameters of the transcriptional bursting model. D) Flowchart of the D3E
algorithm.

Additional file 4 — Parameters for the Islam et al. data with

degradation rates

Parameters for the 2,105 genes that were expressed in both cell types, and
where degradation rates were available.

Additional file 5 — Figure S2

Scatterplots showing the mean fold-change, as well as the fold-change of the
CV compared to the change in degradation rate, burst frequency, duty cycle,
burst size. In all panels, black dots represent genes which did not change,
red dots represent genes which were deemed significant by D3E.

Additional file 6 — Figure S3

Scatterplots showing the mean fold-change and the fold-change of the char-
acteristic time, as well as the fold-change of the characteristic time compared
to the change in degradation rate, variance and characteristic promoter time.
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In all panels, black dots represent genes which did not change, red dots rep-
resent genes which were deemed significant by D3E.
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Figure 2: DE analysis for synthetic data. A) Cramér-von Mises test
sensitivity to changes in parameters of the Poisson-Beta distribution. A
lighter color denotes a high sensitivity to changes of a particular parameter.
B) An example of a matrix which was used to assign the colors in A. Here,
parameters α = .8 and γ = 11, while β is varied from 0 to 100 on a log-scale.
Each element in the matrix reflects a p-value of a Cramér-von Misestest
between two Poisson-Beta distributions with the corresponding parameters.
We expect to find high values along the diagonal, where the changes are
smaller. C) DE analysis for the scenario where the mean is fixed but the
variance is changed. D3E is able to reliably identify differentially expressed
genes based on the change in the shape of distribution alone.
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Figure 3: Comparison of DE methods for synthetic data. Each panel
shows the receiver operator characteristics (ROC) calculated for synthetic
data using five different DE algorithms. The numbers below each panel in-
dicate the area under the curve. The rows correspond to different thresholds
for when a gene is considered significantly changed. For the first row, DE-
Seq2 reports NA for many genes. We treat these calls as false, which explains
the unusual shape of the ROC curve.
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Figure 4: Detection sensitivity as a function of sample size and
sequencing depth. A) Effect of the number of cells and the depth of
sequencing on the performance of D3E analysis using either Bayesian infer-
ence or method of moments. The dashed red line represents the sequencing
depth where the inversion score for the burst size estimate reaches its max-
imum for a given number of cells. B) The effect of removing zeros from the
reads-count table on the performance of D3E analysis is measured by the
change in inversion score.
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Figure 5: Analysis of experimental data. A) Karnaugh table showing
the number of genes identified as differentially expressed by D3E, SCDE,
limma, edgeR, and DESeq2 for the two datasets collected by Islam et al
[14]. B) Histogram showing the fold-changes for the genes which were con-
sidered significantly changed (blue) and not changed (gray) for D3E, DE-
Seq2, limma, edgeR and SCDE. C) Examples of two genes, Cdc42bpb in
the top panel and Hist1h2bb in the bottom panel, which were identified as
DE by D3E. In both cases, the change in mean expression is less than 70%
whereas the variance increases by > 10-fold. D) Histograms showing the
distribution of parameter values for all cells from [14]. From top to bottom,
the panels represent the frequency, the burst size, the inferred parameters
for the transcriptional bursting model, and the duty cycle. E) Scatterplots
showing the mean in mESCs, and the fold-change, as well as the fold-change
of the mean compared to the change in degradation rate, burst frequency and
burst size. In all panels, black dots represent genes which did not change,
red dots represent genes which were deemed significant by D3E.
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