
Fast and sensitive mapping of error-prone nanopore sequencing
reads with GraphMap

Ivan Sovic1,2*, Mile Sikic3,4*, Andreas Wilm1, Shannon Nicole Fenlon1, Swaine
Chen1,5, Niranjan Nagarajan1#
1Genome Institute of Singapore, Singapore 138672, Singapore

2Centre for Informatics and Computing, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb,
Croatia

3Department of Electronic Systems and Information Processing, University of Zagreb, Faculty of
Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

4Bioinformatics Institute, Singapore 138671, Singapore

5Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine,
National University of Singapore, Singapore 119074

*Contributed equally.
#Correspondence should be addressed to: nagarajann@gis.a-star.edu.sg

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Exploiting the power of nanopore sequencing requires the development of new
bioinformatics approaches to deal with its specific error characteristics. We present
the first nanopore read mapper (GraphMap) that uses a read-funneling paradigm to
robustly handle variable error rates and fast graph traversal to align long reads with
speed and very high precision (>95%). Evaluation on MinION sequencing datasets
against short and long-read mappers indicates that GraphMap increases mapping
sensitivity by at least 15-80%. GraphMap alignments are the first to demonstrate
consensus calling with <1 error in 100,000 bases, variant calling on the human
genome with 76% improvement in sensitivity over the next best mapper (BWA-
MEM), precise detection of structural variants from 100bp to 4kbp in length and
species and strain-specific identification of pathogens using MinION reads.
GraphMap is available open source under the MIT license at
https://github.com/isovic/graphmap.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

With the release of Oxford Nanopore Technologies (ONT) MinION sequencers in 2014, a new
era of cheap and portable nanopore sequencers, producing ultra-long reads has become reality.
Potential applications for the new technology are varied and, in addition to its use in research, its
compact form factor and affordability have drawn interest for its use in point-of-care diagnostics.
While some initial nanopore sequencing based applications have been reported (e.g. scaffolding
and resolution of repeats in genomes1 and variant detection in clonal haploid samples2), many
others remain to be explored. In particular, diploid and rare-variant calling3, de novo genome
assembly4, metagenome assembly and pathogen identification are all promising applications that
will likely see the development of new in silico techniques to realize them.

Read mapping and alignment tools are critical building blocks for many such applications as they
help solve the difficult problem of efficiently aligning a large number of error-prone read
sequences (to each other or to a reference genome) without sacrificing sensitivity or specificity.
Reads from nanopore sequencing can be particularly challenging as, in addition to the volume of
long reads that they generate, they also have a propensity for higher and non-uniform error
profiles5. For example, 1D reads from the MinION sequencer have been reported to have
accuracy less than 65% while a smaller fraction of high-quality (<25%; 2D) reads had accuracy
greater than 70%1. Thus, despite the length of the reads, a sizable fraction of reads can remain
unmapped (10-70%) and thus unusable for downstream applications. This is particularly the case
for 1D reads which often form the bulk of the data1,2. While error rates continue to improve on
the MinION system2, their variability across chemistries, sequencing runs and even within a read
can be a challenge for bioinformatics pipelines. Furthermore, as new nanopore sequencing
technologies become available, having a robust mapping and alignment tool that can
accommodate different error profiles (i.e. ratio of insertions, deletions and substitutions) and
error rates in a consistent fashion would be essential for downstream applications.

While alignment algorithms have been widely studied, gold-standard solutions such as dynamic
programming (or even fast approximations such as BLAST) are too slow or infeasible in practice
for aligning high-throughput sequencing reads. To address this need, a range of read mapping
tools have been developed that exploit the characteristics of second-generation sequencing reads
(relatively short and accurate) by trading-off a bit of sensitivity for dramatic gains in speed6,7.
The design decisions employed in these mappers are often tuned for specific error characteristics
of a sequencing technology, potentially limiting their utility across technologies and error
profiles. The less than ideal results reported in recent studies using MinION data8 could therefore
be in part due to the use of mappers (e.g. BWA-MEM6 and BLASR9) or genome aligners (e.g.
LAST10) that are not suited to its error characteristics.

In this work, we present the first nanopore mapper (GraphMap) that is adept at mapping long and
error-prone nanopore sequencing data with high sensitivity and precision. GraphMap was
designed for ease-of-use, aligning reads with a wide range of lengths and error profiles without

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

having to tune parameters. This is an important feature for a technology where error rates and
profiles can vary widely across sequencing runs. Correspondingly, GraphMap also allows users
to uniformly map read datasets from disparate technologies (e.g. Illumina, PacBio or ONT) with
BLAST-like sensitivity and runtime comparable to state-of-the-art mappers. Experiments with
several real and synthetic datasets demonstrate that GraphMap is a more sensitive mapper (than
BWA-MEM, BLASR and LAST) while reporting alignments that provide highly accurate
consensus sequences (Q50) with nanopore sequencing data. This in turn translates into notable
advantages in real-world applications such as the use of nanopore data for single-nucleotide and
structural variant calling as well as the use of MinION reads for real-time pathogen
identification.

Results

Overview of the GraphMap algorithm

The GraphMap algorithm is structured to achieve high-sensitivity and speed using a five-stage
read-funneling approach as depicted in Figure 1a. The underlying design principle is to have
efficiently computable stages that conservatively reduce the set of candidate locations based on
progressively defined forms of the read-to-reference alignment. For example, in stage I,
GraphMap uses a novel adaptation of gapped spaced seeds11 to efficiently reduce the search
space (Figure 1b) and get seed hits as a form of coarse alignment. These are then refined in
stage II using graph-based vertex-centric processing of seeds to efficiently (allowing seed-level
parallelism) construct alignment anchors (Figure 1c). GraphMap then chains anchors using a k-
mer version of longest common subsequence (LCS) construction (stage III; Figure 1d), refines
alignments with a form of L1 linear regression (stage IV; Figure 1e) and finally evaluates the
remaining candidates to select the best location to reconstruct a final alignment (stage V).
GraphMap computes a BLAST-like E-value as well as a mapping quality for its alignments.
Further details about each of these stages can be found in the Methods section.

GraphMap maps reads accurately independent of error rates and profiles

GraphMap was designed to be efficient while being largely agnostic of error profiles and rates.
To evaluate this feature, we generated a wide range of synthetic datasets that mimic the output of
various sequencing technologies (Illumina, PacBio, ONT 2D, ONT 1D) and over a range of
different genome sizes (Figure 2). We then measured GraphMaps’s precision and recall in terms
of identifying the correct read location and in reconstructing the correct alignment to the
reference (Methods). We distinguish between the two as, in principle, a mapper can identify the
correct location but compute an incorrect alignment of the read to the reference. To provide for a
gold-standard to compare against, we used BLAST12 as a representative of a highly sensitive but
slow aligner that likely defines the achievable limits of sensitivity. On synthetic Illumina and
PacBio sequencing datasets we noted that GraphMap and BLAST have high precision and recall
(~98%) for both location and alignment measures and are almost indistinguishable in these

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

metrics. Intriguingly, the slight variations in performance that were observed were not defined by
the size of the genomes that were studied. In addition, despite the marked difference in error
profiles for Illumina and PacBio sequencing, the observed performance metrics were
comparable, highlighting the robustness of GraphMap and its similarity to the gold-standard
BLAST.

On synthetic ONT data, we noted that slight differences between BLAST and GraphMap were
observable but this was less than 3% in the worst case (Figure 2). Notably, GraphMap improved
over BLAST by similar margins in finding the right mapping location in some cases (e.g. for N.
meningitidis on ONT 1D data). These slight differences are likely a reflection of the design
choices in a sensitive homology detection tool (BLAST) versus a fast and sensitive read mapper
(GraphMap), and the impact they have on aligning reads with high error rates. Even with the
error rates of ONT 1D data, GraphMap's precision and recall in selecting the correct mapping
location was consistently greater than 95% and 94% respectively. Constructing the correct
alignment is more challenging for ONT data as the number of correct bases in the input data is
around 70%, but despite this GraphMap correctly aligned ~70% of the bases. This is likely at the
limits of base-level alignment precision and recall as the use of alternate alignment algorithms
and parameters did not alter results significantly (Supplementary Table 1). Alignments using
raw nanopore signal information could be an alternative avenue to boost performance further.
These results highlight GraphMap's ability to identify the precise genomic location based on
robust alignments without the need for customizing and tuning alignment parameters to the often
unknown error characteristics of the data.

While having BLAST-like sensitivity, GraphMap was designed to work with large genomes and
sequencing datasets and correspondingly is usually several orders of magnitude faster than
BLAST and comparable to other state-of-the-art mappers (Supplementary Table 2). For read to
reference alignment, BLAST can be feasible for small genomes but can quickly become
infeasible for larger genomes (e.g. C. elegans or the human genome; Supplementary Table 2).
GraphMap retains BLAST’s sensitivity while scaling well with genome size. It is possible to
tune GraphMap’s settings to make it even faster for short reads with lower error rates, but its
sensitivity and speed over a wide range of read characteristics showcases its versatility as a read
mapper. Read mappers such as BWA-MEM also exhibit the ability to map varying qualities of
reads but need careful tuning of parameters to elicit high sensitivity (Supplementary Figure
1a). In addition, for synthetic ONT 1D datasets, we observed a significant drop in precision and
recall for read mappers such as BWA-MEM and BLASR in comparison to GraphMap suggesting
that they may not be appropriate for such data (Supplementary Figure 1b, c). While genome
aligners such as LAST can perform better in these settings, they exhibit lower recall for large
genomes (a 30% reduction for LAST compared to GraphMap; Supplementary Figure 1c) and
require significant computational resources for analyzing them (e.g. building the index for a 4
Gbp bacterial genome database with LAST can take more than a week).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sensitivity and mapping accuracy on nanopore sequencing data

Encouraged by GraphMap’s performance on synthetic ONT data, we evaluated and compared its
results on several published datasets against mappers and aligners that have previously been used
(LAST, BWA-MEM and BLASR; see Methods). While our synthetic datasets provided a
convenient starting point to evaluate performance, they may not capture all features of ONT
reads. On the other hand, in the absence of ground truth, evaluating performance using real data
can be challenging. To address this, we compared various mappers on their ability to provide
accurate (to measure precision of alignments) and complete consensus sequences (as a measure
of recall). Overall, the closest competitor to GraphMap was LAST, though it appeared a distant
second in terms of these metrics (Figure 3). The differences between GraphMap and LAST were
apparent even when comparing their results visually, with LAST alignments having low
consensus quality even in a high coverage setting (Figure 3a). We noted that across datasets,
GraphMap mapped the most reads and aligned the most bases, improving sensitivity by 15-80%
over LAST and even more compared to other tools (Figure 3b; Supplementary Figure 2). This
led to fewer uncalled bases compared to LAST, BWA-MEM and BLASR, even in an otherwise
high-coverage dataset (Figure 3c, d). In addition, GraphMap analysis resulted in >10-fold
reduction in errors on the lambda phage genome (Figure 3c) and reported less than 40 errors on
the E. coli genome compared to more than a 1000 errors for LAST and BWA-MEM (Figure 3d).
With ~80X coverage of the E. coli genome, GraphMap mapped ~90% of the reads and called
consensus bases for the whole genome with <1 error in 100,000 bases (Q50 quality). The next
best aligner i.e. LAST did not have sufficient coverage (20X) on >7000 bases and reported
consensus with a quality of ~Q36. BWA-MEM aligned less than 60% of the reads and resulted
in the calling of >200 deletion errors in the consensus genome. Similar results were replicated in
other genomes and datasets as well (Supplementary Figure 2). In terms of runtime
requirements, GraphMap was typically more frugal than BWA-MEM and slightly slower than
LAST (Supplementary Table 3).

Encouraged by GraphMap’s ability to provide accurate alignments and high quality consensus
calls, we used them as a starting point to reanalyze the error profiles of 1D and 2D ONT reads.
We reconfirmed substantial variability in the shape and modes of error rate distributions
computed by different mappers2, but noted that GraphMap’s alignments resulted in lower
mismatch rate estimates (Supplementary Figure 3). In particular, GraphMap’s distributions
were very similar to a maximum-likelihood based realigner (marginAlign2), without the need for
an expensive realignment step. Overall, deletion and mismatch rates were observed to be higher
than insertion rates and significantly reduced from 1D reads (~15%) to 2D reads (~7%).

Application 1: Single-nucleotide variant calling in the human genome with high precision

Variant calling using ONT data has multiple potential hurdles including the lack of a dedicated
read mapper or variant caller for it. Not surprisingly, a recent report for calling single nucleotide
variants (SNVs) from high-coverage targeted sequencing of the diploid human genome reported

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

that existing variant callers were unable to call any variants and a naive approach requiring 1/3 of
the reads to support an allele could lead to many false positive variants13. To evaluate if
improved read mappings from GraphMap could increase sensitivity and precision, we reanalyzed
data reported in Ammar et al13, adopting a variant caller (LoFreq) that directly utilizes
information about base qualities for being robust to high error rates3. We used a set of confident
calls for this sample (NA12878) as our gold standard14. Our results provide the first
demonstration that nanopore data can be used to call heterozygous variants in challenging
regions of the human genome (in the genes CYP2D6, HLA-A and HLA-B) with high precision
(>96% with GraphMap; Table 1). These can then be the foundation for reconstructing
haplotypes, in these complex but clinically important regions of the human genome, by
exploiting the advantages of long spanning reads. Significantly, we noted that alignments from
GraphMap provided many more true positives than the next best mappers (BWA-MEM, LAST)
providing a 76% improvement in recall overall (Table 1). Confirming the report in Ammar et
al13, our results suggest that targeted nanopore sequencing reads can be mapped to the correct
location on the human genome despite the presence of very similar decoy locations (94% identity
between CYP2D6 and CYP2D7), with GraphMap providing the most on-target reads
(Supplementary Figure 4).

Application 2: GraphMap enables sensitive and accurate structural variant calling

Long reads from the MinION sequencer are, in principle, ideal for the identification of large
structural variants (SVs) in the genome15, but this has not been explored before with the
limitations of existing tools1. Using real E. coli data mapped to a mutated reference we
systematically evaluated this application and observed that GraphMap’s alignments could readily
detect SVs, both insertions and deletions, over a range of event sizes (100bp-4kbp; Table 2).
Furthermore, GraphMap produced alignments that accurately demarcated the alignment event
and did this without reporting any false positives (Figure 4a,b and Table 2). These alignments
provided perfect recall over the entire range of indel sizes (100bp-4kbp) and a 35% improvement
in recall over the next best mapper (which was BLASR for this application). Highlighting the
non-trivial nature of this problem, BWA-MEM alignments resulted in low precision and recall
(� 10%), with many false positives, while LAST alignments were unable to detect any of the
events under a range of parameter settings (Table 2). These results emphasize GraphMap’s
advantage for the purpose of systematically cataloging point mutations as well as structural
variations using nanopore sequencing data.

Application 3: Sensitive and specific pathogen identification with ONT reads

Due to its form factor and real time nature, an application of MinION sequencing that has
garnered interest in the community is in the identification of pathogens in clinical samples.
Sequencing errors (particularly in 1D data) and the choice of read mapper could significantly
influence results in such an application and lead to misdiagnosis. GraphMap’s high specificity in
read mapping as seen in the results for Ammar et al (Supplementary Figure 4) suggested that it

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

could be useful in this setting. Using clonal sequencing data on the MinION and a database of
microbial genomes we created several synthetic benchmarks to evaluate the performance of
various mappers for this application (see Methods). For species level identification, we noted
that all mappers reported high precision (typically >95%) but recall varied over a wide range
from 20% to 90% (Table 3). GraphMap had the highest recall and F1 score in all datasets
providing an improvement of up to 10% over other mappers. For this application, BWA-MEM
was the next best mapper while LAST and BLASR exhibited 20% reduced recall compared to
GraphMap (Table 3). Not surprisingly, strain level identification using MinION data appears to
be much more difficult and in some cases a closely related strain can attract more reads than the
correct strain (Figure 4c). However, in the datasets that we tested we noted that GraphMap
assigned most reads to a handful of strains that were very similar to the correct strain (Figure 4c-
e; 99.99% identity for E. coli K-12 and BW2952). Moreover, the use of strain specific sequences
was able to unambiguously identify the correct strain from this subset (e.g. there were no reads
mapping to NC_012759.1:4.13Mbp-4.17Mbp, a region unique to BW2952), suggesting that this
approach could be used to systematically identify pathogens at the strain level.

Discussion

The development of GraphMap provides a new opportunity in the tradeoff between mapping
speed and sensitivity. It demonstrates BLAST-like sensitivity while being comparable in speed
to other state-of-the-art short and long-read mappers. On recently available nanopore sequencing
data, GraphMap is unmatched in terms of sensitivity, mapping more than 90% of reads and bases
on average. Our comparisons with BLAST suggest that reads that cannot be mapped by
GraphMap may essentially be unmappable. High sensitivity is a key requirement for mapping
tools as typically reads that cannot be mapped are lost from downstream analysis.

GraphMap’s speed and sensitivity do not come at the expense of location and alignment
precision, as demonstrated by our experiments with synthetic and real datasets. For determining
the correct genomic location, GraphMap’s precision is typically greater than 98% and it is able to
distinguish between candidate locations that are more than 94% identical on the human genome.
For alignment precision, GraphMap’s performance scales according to sequencing error rate, is
comparable to BLAST and was observed to be robust to choice of alignment algorithms and
parameters. It should thus provide a better starting point for downstream analysis tools including
realigners and consensus calling algorithms such as marginAlign2 and Nanopolish
(https://github.com/jts/nanopolish).

Applications such as variant calling and species identification can be challenging with PacBio
and nanopore sequencing data, due to ambiguities in mapping and alignment. We show that
despite the lack of custom variant callers, read mappings from GraphMap can lead to sensitive
and precise variant calls. Particularly exciting is the ability to call structural variations over a
range of event sizes without having to assemble the reads. No doubt, the development of new
nanopore-specific tools is likely to improve the quality and precision of structural variant calls

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

even further, but GraphMap alignments can provide a useful starting point for such applications.
We also observed that GraphMap alignments could be used to identify the species-level origin of
reads with high precision and recall. The sensitivity of mapping with GraphMap can be a key
advantage in applications where MinION sequencing reads are used in real-time to identify
pathogens16. With further downstream processing, these read mappings could be used for strain-
level typing and characterization of antibiotic resistance profiles16, meeting a critical clinical
need.

In principle, the approach used in GraphMap could be adapted for the problem of computing
overlaps and alignments between reads. As was recently shown, nanopore sequencing reads can
be used to construct high-quality assemblies de novo17. GraphMap’s sensitivity and specificity as
a mapper could thus serve as the basis for fast computation of overlap alignments and de novo
assemblies in the future.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

Description of the GraphMap Algorithm

Stage I: Region selection

GraphMap starts by roughly determining regions on the reference genome where a read could
potentially be aligned. This step is performed in order to reduce the search space for the next step
of the algorithm, while still providing very high sensitivity. As a first step, region selection relies
on finding seeds between the query sequence and the reference, before clustering them into
candidate regions. For seed finding, we found that commonly used approaches such as maximal
exact matches (MEMs) (as used in BWA-MEM6) or Hamming distance based spaced seeds (as
used in LAST10) are either not sensitive enough or not specific enough in the presence of error
rates as high as is feasible in nanopore data. Instead, we employed a form of gapped spaced
seeds similar to gapped q-gram filters for Levenshtein distance11. Specifically, we extended the
approach proposed in Burkhardt and Kärkkäinen11 to use both one- and two-gapped q-grams
(Figure 1b) as detailed below. This allows us to accommodate an arbitrary number of gaps in the
q-gram.

Gapped q-grams are a seeding strategy that allow for fast and very sensitive lookup of inexact
matches, with variations allowed in predefined “don’t care” (DC) positions of the seed.
Concordant with existing terminology, we call the concrete layout of the inclusive and DC bases
a shape and the number of used positions its weight. Gapped q-grams allow for DC positions
within a shape to also contain insertions and deletions (indels). Our approach for implementing
Levenshtein gapped q-grams is based on constructing a hash index of the reference sequence,
where the q-gram positions are hashed by the keys constructed from the shape’s layout – only
inclusive bases are taken for constructing the key, while the DC bases are simply skipped
(Figure 1b). During the lookup step, multiple keys are constructed for each shape and used for
retrieval. For each DC base, three lookup keys are constructed:

(I) A key constructed in the same manner as during the indexing process, which captures
all seeds with a DC base being a match or a mismatch (e.g. “1110111”),

(II) A key where the DC base is not skipped. This key captures up to one deletion at the
specified position (e.g. “111111”), and

(III) A key where the DC base as well as the following base is skipped. This key allows for
at most one insertion and one match/mismatch (e.g. “11100111”).

In total, for each shape �^3 keys are constructed, where � is the number of DC bases. GraphMap
uses two shapes for the region selection process: “1111110111111” (or the 6-1-6 shape) and
“11110111101111” (or the 4-1-4-1-4 shape), where 1 marks the inclusive bases and 0 the DC
positions. This shape combination was selected based on empirical evaluation of a range of
combinations, due to the computational intractability of computing the optimal shape for the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Levenshtein distance. For each shape, a separate index is used. At every seed position, both
shapes are looked up, and all hits are used in the next step for binning.

To derive a general approach for binning seed hits, we draw on the concept of a Hough
Transform (HT), a method commonly used in image processing for detection of shapes such as
lines, circles and ellipses. The HT defines a mapping from image points into an accumulator
space, called the Hough space. In the case of line detection, if a given set of points in Cartesian
space are collinear, then their relation can be expressed with a line equation with common slope
� and intercept 	:

 � ��
 	, (1)

where ��,
� are the coordinates of a point in 2D space. HT attempts to determine parameters �
and 	 of a line that describes the given set of points. One must note that the system is generally
overdetermined (whenever there are more than two points given), and thus the problem can be
solved using linear regression techniques. However, the HT uses an evidence-gathering
approach, which can be used to detect an arbitrary number of lines in the image instead of only
one best. Equation (1) can be converted into its dual in parameter space:

	 � ���

. (2)

The intuition is as follows: given a point ��,
� in Cartesian space, its parameter space
representation defines a line. If multiple Cartesian space points are given, each transforms into a
different line in the parameter space. Their intersections specify potential lines in the original,
Cartesian space. HT defines an accumulator space, in which � and 	 are rasterized so as to take
only a finite range of values. HT then simply counts all the potential solutions in the accumulator
space by tracing all the dual lines for each point in the Cartesian space, and increasing the vote
count for each ��, 	� coordinate. All HT space coordinates with count above a defined threshold
can then be considered as candidate lines in the original Cartesian space.

A single seed hit can be represented with a k-point ��, �� in 2D space, where � is the seed’s
position on the read, and � is the position of the seed hit on the reference. In the case a read is
completely error-free and extracted from the exact reference, its set of k-points would be
perfectly collinear in such defined space. Moreover, under these ideal conditions, they would all
lie on a line tilted at a 45° angle (slope � � 1). This collinearity also corresponds to the main
diagonal in the dynamic programming alignment matrix. Since � is known, only the intercept
parameter 	 needs to be determined to find the accurate mapping position. For this, the HT
voting mechanism can be used. Again, since � is known, the 2D accumulator space is not
required – only an array for the 	 value is sufficient. As 	 corresponds to the (already discrete)
coordinates on the reference sequence, a simple integer array of the length of the reference can

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

be used for counting votes. For each k-point, its 	 parameter value is determined with a simple
expression:

	 � � � �. (3)

The index of the accumulator array with the highest count is the exact mapping position of the
read on the reference. In this simple form, this approach mirrors the techniques used in other
aligners (e.g. FASTA). However, the concept of the Hough Transform (HT) allows us to extend
and generalize this notion.

We account for substitution and indel errors in this framework as follows: substitution errors
cause only the reduction in the maximum vote count for the correct 	 value and induce noise
votes in other locations on the reference. Such type of errors can be addressed using appropriate
thresholding on the hit count (see below). On the other hand, indels are of special interest
because they shift the alignment diagonal and cause more substantial reduction of votes for the
correct location. Additionally, using an accumulator array that is of size equal to the size of the
reference sequence can cause high memory consumption, especially in the case of processing
large sequences in multithreaded environments.

To address both the error-rate and memory consumption issues, we rasterize the reference
sequence into partitions of length �/3, where � is the read length. For each seed hit, we increase
the value of the bin corresponding to its 	 parameter value determined using equation (3). If a bin
has multiple hits from the same seed, only one hit is counted. Bins are then sorted in descending
order of the number of hits. Only bins which have a count � 0.75 · ���� are selected for further
processing, where ���� is the count of the highest scoring bin. We then define a region as a
portion of the reference that expands the corresponding bin’s start and end location by an
additional read length, to compensate for potential indel errors and ensure that the entire
alignment area enters the next step of mapping. In case the reference genome has been specified
as being circular by the user and a selected region should span beyond any end of the reference,
then the region is constructed by concatenating the beginning and the end of the reference
sequence. Regions are then processed separately until the last step of the method, when the
highest scoring region is selected for alignment.

Stage II: Graph-based vertex-centric construction of anchors

In this stage, we attempt to refine candidate regions from stage I by constructing alignment
chains or anchors from short seeds matches. To do this, we introduce the notion of a kmer
mapping graph. Given a pair of sequences (target and query), the method starts by constructing a
kmer mapping graph from the target sequence. Target and query sequences in this case are the
read sequence and a single region of the reference sequence. Whether the read or the region is
chosen to be the target sequence is not essential for the approach to work, but in our
implementation, we chose the read to be the target sequence in order to reduce memory

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

consumption (the region determined is always larger than the read). The vertices of the kmer
mapping graph are the kmers of the target sequence of length �. Unlike the de Bruijn graph,
identical kmers are not truncated into the same vertex of the graph but are kept as separate
individual vertices. For every vertex �� �!" # �0 … � � %��, & directed outbound edges are added
which connect �� to vertices ����, ����, … , ����. Note that, since directed edges are added in this
consecutive manner, the last �& � 1� vertices of the graph cannot have & outbound edges since
there are no vertices to connect them to in the graph. In summary, a kmer mapping graph is a

directed acyclic graph, consisting of �� � %
 1� vertices and & · �� � %
 1� � & ·
���

�
 directed

edges.

The rationale for such a design is as follows. In case & � 1 and if the query is a subset of the
target with no differences or errors, the target’s mapping graph would contain the same kmers in
the exact same order as can be found in the query sequence the read originated from. Thus, an
exact walk exists in both sequences. However, in realistic conditions, variations and sequencing
errors exist in reads. Although the majority of kmers might still be in the same order, a simple
exact linear walk through the reference’s and read’s mapping graphs cannot be found due to the
differing kmers present. Instead, the walk is fragmented into several smaller ones. The
fragmentation is especially large in data with high error rates, such as those obtained with
nanopore sequencing. In these cases, it is sometimes difficult to find even two consecutive
correct kmers. To address this issue, the additional �& � 1� edges act as a bridge between vertices
in the mapping graph. Thus, we allow a linear walk to be found not only by following
consecutive kmers in the graph, but to jump-over those that produce poorer solutions. Figure 1d
depicts such an example.

In order to find an appropriate mapping position, we conduct a simultaneous walk both in the
target sequence and in the query. The mapping graph is constructed from only the target
sequence, while the walk in the query is conducted by iterating through all its consecutive kmers.
In the mapping graph, all walks that correspond to potential mapping sites are simultaneously
monitored and extended. Although this approach may appear to be time-consuming, GraphMap
handles it in an elegant and efficient vertex-centric manner as detailed below.

Note that at this stage of the algorithm, GraphMap does not use the same index as in the region
selection process. Instead, a new index is constructed from the target on the fly, using a much
smaller seed size (default is % � 6). In principle, an arbitrary indexing method such as suffix
arrays, FM index or hashing can be used at this stage. In our implementation, perfect kmer
hashing is used for indexing when % (10 and otherwise suffix arrays are used. Following graph
construction, the next step is to do graph traversal. For each consecutive kmer in the query, a list
of hits on the target sequence is obtained from the index. For every hit, its position on the target
directly points to the vertex in the graph that the kmer belongs to. The vertex-centric walk can
then elegantly be described as follows: for a chosen vertex, collect information from its input
edges, choose the “best” edge and update the information it contains, and transmit this

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

information to all outbound edges simultaneously. We define the “best” edge to be the one
belonging to the longest walk. The information that is transmitted through the edges contains the
walk length, the position of the starting kmer in both the target and the read, and the number of
covered bases and kmers in both sequences. Consistently transmitting this information only
requires updating the current walk length, number of kmers and the number of covered bases.
Since the only operations we perform on a vertex include simple collect, extend and transmit
steps, the runtime complexity of the vertex-update operation is O(1). Initially, the information
stored in the graph is set so that there are no valid walks (all walk lengths are set to zero). The
walk through the graph can then be viewed as propagating the information through the directed
acyclic graph from the initial candidate location of the mapping to the furthest reachable vertex.

After all kmers from the query have been processed, a list of walks in the graph is collected.
Walks which contain less than a user defined amount of covered bases in both sequences (default
of 12 bases) are not processed further. Each walk represents one valid candidate location for
mapping of the query. Intuitively, one would simply choose the longest walk for the most
probable mapping position. Our empirical tests suggest that it is possible to achieve relatively
high accuracy even with this simple heuristic. Indeed, in the presence of low substitution error
rates (as is the case for Illumina as well as PacBio reads), a single walk can cover most of, if not
the entire read. However, accuracy can greatly be impaired in the presence of higher substitution
error rates as seen in nanopore sequencing data. In this case, clusters of errors in reads tend to
cause fragmentation of walks in the mapping graph, resulting in a list of shorter walks (typically
several kmers long), none of which span more than a small percentage of the read length.
Although these small walk fragments do not seem to carry much information, they actually
represent an exact ordering of kmers in both sequences and thus form the basis of a longer
alignment. We refer to these short walks as anchors for simplicity, although they differ from the
traditional definition of an anchor in that walks allow for mismatches and indels to be present
within them.

Stage III: Extending anchors into alignments using LCS

Each anchor reported by GraphMap in stage II represents a shared segment (or subsequence)
between the target and the query sequence with known start and end positions in both sequences.
Due to the presence of repeats, the set of anchors obtained is not necessarily monotonically
increasing in both the target and query coordinates. For this reason, a subset of anchors that
satisfy the monotonicity condition needs to be selected. The problem of identifying such a subset
can be expressed as finding the Longest Common Subsequence in k Length Substrings18 (LCSk).
Recently, an efficient and simple algorithm for solving a variant of the LCSk problem has been
proposed19. In our implementation we follow this paradigm and instead of using substrings of
fixed size k, we allow for variable length substrings. Concretely, the size of each substring is
equal to the length of the corresponding anchor in both sequences. As a result, the reconstruction
of LCSk is obtained in the form of a list of consecutive anchors in the target and the query
sequence.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Stage IV: Refinining alignments using L1 linear regression

The alignments obtained using LCSk tend to be largely accurate but since its definition lacks
constraints on the distance between substrings, the alignments obtained may include outlier
matches and mis-estimation of overall alignment length (Figure 1e). These outliers are caused
by repeats or sequencing errors, but they still satisfy the monotony condition. Similar to the
observation we presented in the region selection step, the LCSk list of anchors should ideally be
collinear in the 2D query-target coordinate space, with a slope of 45°. All deviations from this
line are caused by indel errors, and can be viewed as noise. We start the filtering of the LCSk
outlier anchors by fitting a 2D line with a 45° slope in the query-target space under the least
absolute deviation criteria (LAD, L1). Next, a subset of anchors which are located within

�	� �) · �√2/2 from either side of the L1 line is selected, where) is the expected error rate (by

default, conservatively set to 45%), � is the target (read) length, and the factor √2/2 is used to
convert the distance from target coordinate space to a distance perpendicular to the L1 line. A
confidence interval 	 � 3 · ∑ ��/-

��� is calculated, where �� is the distance from a selected
anchor " to the L1 line. LCSk is then repeated once again but only on the anchors which are
located within the distance .	 from the L1 line in order to compensate for possible gaps caused
by anchor filtering.

After filtering, five scores that describe the quality of the region are calculated. They include: the
number of exact kmers covered by the anchors /��
��, the standard deviation 0 of anchors
around the L1 line, the length of the query sequence which matched the target (distance from the
first to the last anchor) ��
�, the number of bases covered by anchors (includes only exact
matching bases) /�� and the read length. The last four scores are normalized to the range 10,12
with the following equations (4)-(7):

�� � max �0, 1 �
�
��

√�

), (4)

�����
�

����

�
, (5)

��� � min �
���

����·�	
��
, 1�, (6)

�
 � min �
��

���
, 1�, (7)

where 3 is the length of the reference sequence (query in our previous definition). The overall
quality of the alignment in a region is then calculated as:

� � �� · �����
· ��� · �
 . (8)

Stage V: Construction of final alignment

After all selected regions have been processed, they are sorted by the 4 parameter. The region
with the highest value 4��� is selected for the final alignment. Unlike many other methods which
use the seed-and-extend approach, GraphMap aligns the entire read using the semi-global

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

alignment algorithm. The default parameters of GraphMap use an implementation of Myers’ bit-
vector approach for alignment20 with alignment parameters fixed to �5�	6 � 1, �"7�5�	6 �
�1, 859��
� � 0 and 859
��
�� � �1. GraphMap also allows users a choice of aligners and

custom scoring parameters. Current alternative alignment options include an implementation of
Gotoh’s semi-global alignment algorithm21 as well as an option to construct anchored
alignments. Specifically, in the anchored approach, anchors from the LCSk step are clustered and
alignments within and between cluster endpoints computed using Myers’ bit-vector alignment
(extensions to read ends are done without gap penalty). Clustering is done by collecting
neighboring anchors where the ratio of distances in the read and reference coordinates is less
than)/2 (as before,) is the expected error rate in the data). Clusters with very few bases (<30 or
2% of read length) were discarded for this purpose.

GraphMap allows users to output all equally or similarly good secondary alignments by
specifying an ambiguity factor : in the range 10,12 and using that to select regions which have
/��
�� � �1 � :� · /��
��,�
��, where /��
��,�
�� is the number of kmers of the region with the
maximum 4 value. We denote the count of regions with /��
�� above the ambiguity threshold as
-� .

Mapping quality

Since the region filtering process in GraphMap maintains a large collection of possible mapping
positions on the given reference, it enables meaningful calculation of the mapping quality
directly from its definition:

� � �10 · log �, (9)

where 9 is the probability of the read being mapped to the wrong position. We calculate 9 simply

as 9 � min �10��, 1 �
�

�

� and report quality values according to the SAM format specification.

E-value

For each reported alignment, GraphMap calculates the E-value which is given as a custom “ZE”
parameter in the output SAM file. Following the approach used in BLAST, we rescore
alignments and use pre-calculated Gumbel parameters to compute E-values in the same way as in
BLAST (default scoring parameters: �5�	6 � 5, �"7�5�	6 � �4, 859��
� � �8 and

859
��
�� � �6).

Datasets

For evaluating GraphMap and other tools, we used five publicly available MinION sequencing
datasets, 20 synthetic datasets and MinION sequencing reads for an E. coli UTI89 sample as
detailed below.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

MinION library preparation

Genomic DNA was extracted from Escherichia coli UTI89 using the QIAamp® DNA mini kit
(Qiagen). 1µg of the extracted DNA was then sheared in a total volume of 80µl using a Covaris
g-TUBE according to the manufacturer’s instructions with centrifugation for 1min at 6000rpm.
Sheared DNA was end repaired and A-tailed using the GeneRead™ DNA Library Prep I Kit
from Qiagen according to the manufacturer’s protocol. The reaction was purified using 1X
volume of Agencourt Ampure XP beads and eluted in 30µl nuclease-free water. Subsequent
steps of DNA sequencing library preparation were carried out using Oxford Nanopore’s MinION
Genomic DNA Sequencing Kit (SQK-MAP003) according to the manufacturer’s recommended
protocol, including the addition of purified BSA (NEB) to Agencourt Ampure XP beads and
Elution buffer.

MinION sequencing of E. coli UTI89

Immediately prior to sequencing, 12µl of the DNA library was combined with 134µl EP buffer
and 4µl Fuel Mix and mixed by inversion 10 times. The flow cell was primed by washing with
two aliquots of 150µl of EP buffer, with ten minutes in between washes. 150µl of the prepared
DNA Library was then loaded onto the flow cell and the Genomic DNA 48 hour sequencing run
program was selected. Fresh sample was loaded onto the flow cell at 12 hour intervals
throughout the run.

Publicly available sequencing datasets

Five publicly available MinION sequencing datasets were used for evaluation. These included a
lambda phage dataset, two E. coli datasets (each produced with a different version of MinION
chemistry), a S. enterica Typhi dataset and a dataset consisting of three amplicons from the
human genome:

(I) Lambda phage burn-in dataset8. The dataset consists of 40,552 reads in total (211 Mbp of
data), generated using an early R6 chemistry. The reference genome (NC_001416) is 49 kbp
long giving an expected coverage of >4300X.

(II) E. coli K-12 MG1655 R7 dataset22. The dataset has 111,128 reads (668 Mbp) providing
144X coverage of a 4.6 Mbp genome (U00096.2).

(III) E. coli K-12 MG1655 R7.3 dataset22. The dataset has 70,531 reads (311 Mbp) providing
67X coverage of the genome (U00096.2).

(IV) S. enterica Typhi dataset1. The dataset is composed of two runs of strain H125160566
(16,401 reads and 6,178 reads respectively) and one run of strain 08-04776 (10,235 reads).

(V) Amplicon sequencing of human HLA-A, HLA-B and CYP2D6 genes13. The dataset
contains 36,779 reads in total.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Synthetic datasets

Synthetic Illumina reads were generated using the ART simulator23 (150 bp single-end) and
PacBio CLR reads using the PBSIM simulator24 (with default settings). For synthetic MinION
data we adopted PBSIM (as no custom ONT simulators exist currently) and used parameters
learnt from LAST alignments (to avoid bias towards GraphMap) with E. coli K-12 R7.3 data
(Supplementary Table 4). Reads were simulated for five reference sequences: N. meningitidis
serogroup A strain Z2491 (1 chromosome, 2.2 Mbp, NC_003116.1), E. coli K-12 MG1655 (1
chromosome, 4.6 Mbp, U00096.2), S. cerevisiae S288C (16 chromosomes, 12 Mbp), C. elegans
(6 chromosomes, 100 Mbp) and H. sapiens Chr3 (198 Mbp, hg19 v38, CM000665.2).

Evaluation methods

Performance on synthetic data

Mappers were evaluated for precision and recall in meeting two goals:

(1) Finding the correct mapping location – a read was considered correctly mapped if its
mapping position was within 50bp of the correct location.

(2) Reporting the correct alignment at a per-base-pair level – a base was considered correctly
aligned if it was placed in exactly the same position as it was simulated from.

Parameter settings for mappers.

We evaluated BWA-MEM using the nanopore setting (-x ont2d; version: 0.7.10-r1027-dirty) and
for detecting structural variations we increased the alignment bandwidth using “-w 5000 -d
5000”. BLASR was evaluated with the options “-sam -bestn 1” (version: 1.3.1) and in addition
for the database search we set more stringent parameters (“-minMatch 7 -nCandidates 1”). LAST
was run with a commonly used set of nanopore settings22 (“-q 1 -r 1 -a 1 -b 1”) and with
additional overlap mode setting (“-T 1”; to force end-to-end alignment) for structural variant
detection (version: 475). BLAST (version: ncbi-blast-2.2.30+-x64-linux) was run with default
settings for Illumina data and a more suitable nanopore setting25 “-reward 5 -penalty -4 -gapopen
8 -gapextend 6 -dust no” for ONT and PacBio data. GraphMap (version: v0.21) was run with
default settings. In addition, for circular genomes we used the -C option, anchored alignments for
calling structural variations (“-a anchor”) and E-value filtering (“-z 1e0”) for database search and
variant calling. We used marginAlign with the parameter “--em” for variant calling (version: (Git
commit) dfdb05d6d291aab186b6f3668fa3d7c1de28787d).

Consensus calling using MinION data

Consensus was called using a simple majority vote of aligned bases, insertion and deletion
events (insertion sequences were taken into account while counting events) and positions with
<20X coverage were not called. All reads were mapped and analyzed to determine consensus
sequences.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Benchmarking mappers for pathogen identification

Bacterial genomes similar to a list of water-borne pathogens were selected from NCBI’s
bacterial database to construct a database of 268 genomes (550 Mbp; Supplementary Table 5).
MinION sequencing datasets from cultured isolates were used as proxy for sequencing of
pathogen-enriched clinical samples (using data for E. coli K-12 R7.3, S. enterica Typhi and E.
coli UTI89, as specified earlier). This is a simple test case as real samples are likely to have
contaminations from other sources as well (e.g. human DNA). We mapped these three read
datasets to the database of bacterial genomes using each of the mappers to find unique
alignments and test if these could help identify the correct species and strain. For BWA-MEM
and LAST, we chose the best alignment based on alignment score (as long as alignment score
and mapping quality were greater than 0) and for GraphMap and BLASR we used the unique
reported alignment (mapping quality > 0).

Single nucleotide variant calling

All 2D reads from Ammar et al13 were mapped to the human genome (GRCh37.p13; chr 6 and
22) and for each read only the alignment with the highest alignment score (AS) was kept. To
avoid chimeric reads as reported in the original study we used only reads that fully spanned the
amplicon regions for this analysis. Variants were called using LoFreq3 with the parameters “-a
0.01 -q 0 -Q 0 --no-default-filter”. We then compared the detected SNVs with known variants
from dbSNP and a high-confidence set for NA1287814 (the HapMap sample used for sequencing;
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b141_GRCh37p13/VCF/All.vcf.gz; ftp-
trace.ncbi.nih.gov/giab/ftp/data/NA12878/variant_calls/NIST/NISTIntegratedCalls_14datasets_1
31103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.18_all.primitives.vcf.gz) to identify
true positives and false positives.

Structural variation detection

We modified the E. coli K-12 MG1655 reference by inducing 20 SV events (10 insertions and 10
deletions) of different sizes: 100bp, 300bp, 500bp, 1000bp, 1500bp, 2000bp, 2500bp, 3000bp,
3500bp, 4000bp. All 2D reads from both E. coli K-12 datasets (R7 and R7.3) were combined and
mapped. SVs were detected by simple consensus vote of indel events reported in the alignments
(� 20 bases to avoid sequencing errors). Note that a realigner such as marginAlign is not
designed for this application and hence we did not evaluate its use here. In the absence of a
sophisticated SV caller for nanopore data we used a simple rule that identifies windows where
>15% of the reads at each position report an insertion (or deletion) event (at least 5 reads). To
avoid fragmented events due to a local drop in allele frequency, we merged windows which were
less than window-length apart (max of the two windows). We considered a detected event a true
positive if its size was within a 25% margin of the true size and its start and end locations were
less than 25% of event size away from the true locations.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure Legends

Figure 1. A schematic representation of stages in GraphMap. (a) Order of stages in the read-
funneling approach used in GraphMap to refine alignments and reduce the number of candidate
locations to one. (b) Structure of spaced seeds used for index construction and index lookup. (c)
Region selection by clustering of candidate seeds on the reference. (d) Generation of alignment
anchors through a fast graph based ordering of seeds (Graph Mapping). (e) Filtering of seed
matches using LCSk search and L1 regression.

Figure 2. Evaluating GraphMap’s precision and recall against a gold-standard. Results for
GraphMap mapping (shaded bars) were determined for a range of genomes (ordered horizontally
by genome size from smallest to largest) and sequencing profiles (ordered vertically from low to
high error rates) and compared to BLAST (solid bars). For each dataset, the graph on the left
shows performance for determining the correct mapping location (within 50 bp; y-axis on the
left) and the one on the right shows performance for the correct alignment of bases (y-axis on the
right; see Methods).

Figure 3. Sensitivity and mapping accuracy on nanopore sequencing data. (a) Visualization
of GraphMap and LAST alignments for a lambda phage sequencing dataset on the MinION8
(using IGV26). Grey columns represent confident consensus calls while colored columns indicate
lower quality calls. (b) Mapped coverage of the lambda phage8 and the E. coli K-12 genome22
(R7.3 data) using MinION sequencing data and different mappers. (c) Consensus calling errors
and uncalled bases using a MinION lambda phage dataset8 and different mappers. (d) Consensus
calling errors and uncalled bases using a MinION E. coli K-12 dataset (R7.3) and different
mappers.

Figure 4. Variant calling and species identification using nanopore sequencing data and
GraphMap. (a) An IGV view of GraphMap alignments that enable the detection of a 200bp
deletion (delineated by red lines). (b) GraphMap alignments spanning a ~4 kbp deletion
(delineated by red lines). Number of reads mapping various genomes in a database (sorted by
GraphMap counts and showing top 10 genomes) using different mappers (GraphMap, BWA-
MEM, LAST and BLASR) and three MinION sequencing datasets for (c) E. coli K-1222 (R7.3)
(d) S. eneterica Typhi and (e) E. coli UTI89. Note that GraphMap typically maps the most reads
to the right reference genome (at the strain level) and the S. eneterica Typhi dataset is a mixture
of sequencing data for two different strains for which we do not have reference genomes in the
database.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

Tables

Table 1. Comparison of various mappers for single nucleotide variant calling.
Results are based on amplicon sequencing data for a human cell line (NA12878)
for the genes CYP2D6, HLA-A and HLA-B. Precision values are likely to be an
underestimate of what can be expected genome-wide due to the repetitive nature of
the regions studied and the incompleteness of the gold-standard set.

 LAST marginAlign BWA-
MEM

BLASR GraphMap

Precision
(%)

94 100 96 100 96

True
Positives

49 1 47 43 86

Table 2. Comparison of various mappers for structural variant calling. Results
are based on mapping a MinION dataset for E. coli K-1222 (R7.3) on a mutated
reference containing insertion and deletions in a range of sizes ([100bp, 300bp,
500bp, 1kbp, 1.5kbp, 2kbp, 2.5kbp, 3kbp, 3.5kbp, 4kbp]; 20 events in total). Bold
values indicate the best results for each metric. The F1 score is given by a weighted
average of precision and recall.

 LAST BWA-MEM BLASR GraphMap

Precision (%) 0 5 94 100
Recall (%) 0 10 75 100

F1 Score (%) 0 6 83 100

Table 3. Precision and Recall for species identification using MinION reads.
Bold values indicate the best results for each dataset and metric.

 E. coli K-12 (R7.3) S. enterica Typhi E. coli UTI89

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
BLASR 93 22 36 99 28 44 98 55 70

LAST 94 37 53 97 34 51 95 65 78

BWA-MEM 94 47 63 98 45 61 98 85 91

GraphMap 95 51 67 97 56 72 99 88 93

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

1. Ashton, P.M. et al. MinION nanopore sequencing identifies the position and structure of
a bacterial antibiotic resistance island. Nat Biotechnol 33, 296-300 (2015).

2. Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat Methods
12, 351-6 (2015).

3. Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for
uncovering cell-population heterogeneity from high-throughput sequencing datasets.
Nucleic Acids Res 40, 11189-201 (2012).

4. Loman, N.Q., J; Simpson JT. A complete bacterial genome assembled de novo using only
nanopore sequencing data. (2014).

5. Wang, Y., Yang, Q. & Wang, Z. The evolution of nanopore sequencing. Front Genet 5,
449 (2014).

6. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754-60 (2009).

7. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat Methods
9, 357-9 (2012).

8. Mikheyev, A.S. & Tin, M.M.Y. A first look at the Oxford Nanopore MinION sequencer.
Molecular Ecology Resources 14, 1097-1102 (2014).

9. Chaisson, M.J. & Tesler, G. Mapping single molecule sequencing reads using basic local
alignment with successive refinement (BLASR): application and theory. BMC
Bioinformatics 13, 238 (2012).

10. Kielbasa, S.M., Wan, R., Sato, K., Horton, P. & Frith, M.C. Adaptive seeds tame
genomic sequence comparison. Genome Res 21, 487-93 (2011).

11. Burkhardt, S. & Kärkkäinen, J. One-Gapped q-Gram Filters for Levenshtein Distance. in
Combinatorial Pattern Matching, Vol. 2373 (eds. Apostolico, A. & Takeda, M.) 225-234
(Springer Berlin Heidelberg, 2002).

12. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment
search tool. J Mol Biol 215, 403-10 (1990).

13. Ammar, R., Paton, T.A., Torti, D., Shlien, A. & Bader, G.D. Long read nanopore
sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res 4, 17
(2015).

14. Zook, J.M. et al. Integrating human sequence data sets provides a resource of benchmark
SNP and indel genotype calls. Nat Biotechnol 32, 246-51 (2014).

15. Patel, A., Schwab, R., Liu, Y.T. & Bafna, V. Amplification and thrifty single-molecule
sequencing of recurrent somatic structural variations. Genome Res 24, 318-28 (2014).

16. Cao, M.D. et al. Real-time strain typing and analysis of antibiotic resistance potential
using Nanopore MinION sequencing, (2015).

17. Loman, N.J., Quick, J. & Simpson, J.T. A complete bacterial genome assembled de novo
using only nanopore sequencing data, (2015).

18. Benson, G., Levy, A. & Shalom, B.R. Longest Common Subsequence in k Length
Substrings. in Similarity Search and Applications, Vol. 8199 (eds. Brisaboa, N., Pedreira,
O. & Zezula, P.) 257-265 (Springer Berlin Heidelberg, 2013).

19. Pavetic, F., Zuzic, G. & Sikic, M. LCSk++: Practical similarity metric for long strings.
CoRR abs/1407.2407(2014).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

20. Myers, G. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. J. ACM 46, 395-415 (1999).

21. Gotoh, O. An improved algorithm for matching biological sequences. J Mol Biol 162,
705-8 (1982).

22. Quick, J., Quinlan, A.R. & Loman, N.J. A reference bacterial genome dataset generated
on the MinION portable single-molecule nanopore sequencer. Gigascience 3, 22 (2014).

23. Huang, W., Li, L., Myers, J.R. & Marth, G.T. ART: a next-generation sequencing read
simulator. Bioinformatics 28, 593-4 (2012).

24. Ono, Y., Asai, K. & Hamada, M. PBSIM: PacBio reads simulator--toward accurate
genome assembly. Bioinformatics 29, 119-21 (2013).

25. Goodwin, S. et al. Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic
Genome, (2015).

26. Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV):
high-performance genomics data visualization and exploration. Brief Bioinform 14, 178-
92 (2013).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/

a

d

b

e

c

Region	
 	

Selec+on	

Graph	
 	

Mapping	

Al
ig
n	

Candidate	
 	

Posi+ons	

LCSk	
 	

+	
 	

L1	

Ref.	
 bases	

Seed	
 base	
 Unused	
 ref.	
 base	

(unless	
 colored)	

"Don't	
 care"	
 base	

Ref.	
 bases:	

Selected	
 bases:	

Hashed	
 seed:	

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Index	
 construc-on	

Query	
 bases:	

(Mis)match	

seed:	

Inser+on	
 seed:	

Dele+on	
 seed:	

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Index	
 lookup	

0Re
ad
	
 c
oo

rd
in
at
es
	
 	

Reference	
 coordinates	

Read	
 sequence	

Reference	
 bins	
 with	

no	
 seed	
 hits	

Reference	
 bins	
 with	

seed	
 hits	

Seeds	

Diagonals	
 of	
 seed	

hits	

Final	
 anchor	
 alignment	

0

GC CT

1

TA

2

AA

3

AA

4

AG

5

GA

6

1

2

3

01234567
G A
-|||x|||
- C

Reference:	

Query:	

01234567
G AAAGA
-|||x|||
- CAGA

Reference:	

Query:	

Vertex-­‐centric	
 mapping	

0

GC CT

1

TA

2

AA

3

AA

4

AG

5

GA

6

Transmit extended
path to out edges
Walk length: 2

Input edge
Walk length: 1

✔	
 ✔	
 ✔	

✔	
 Selected	
 regions	

Ill
um

in
a

E. coli
(4.6 Mbp)

N. meningitidis
(2.2 Mbp)

S. cerevisiae
(12.1 Mbp)

C. elegans
(100 Mbp)

H. sapiens chr3
(198 Mbp)

Pa
cB

io

O
N

T
2d

O

N
T

1d

90	

92	

94	

96	

98	

100	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

90	

92	

94	

96	

98	

100	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

90	

92	

94	

96	

98	

100	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

90	

92	

94	

96	

98	

100	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

90	

92	

94	

96	

98	

100	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

Precision	
 -­‐	
 BLAST	
 Recall	
 –	
 BLAST	
 Precision	
 -­‐	
 GraphMap	
 Recall	
 -­‐	
 GraphMap	

70	

75	

80	

85	

90	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

75	

80	

85	

90	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

75	

80	

85	

90	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

75	

80	

85	

90	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

75	

80	

85	

90	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

60	

65	

70	

75	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

60	

65	

70	

75	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

60	

65	

70	

75	

80	

Alignment	

86	

88	

90	

92	

94	

96	

98	

100	

Loca.on	

90	

92	

94	

96	

98	

100	

Loca.on	

60	

65	

70	

75	

80	

Alignment	

60	

65	

70	

75	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

72	

74	

76	

78	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

72	

74	

76	

78	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

72	

74	

76	

78	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

72	

74	

76	

78	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

70	

72	

74	

76	

78	

80	

Alignment	

90	

92	

94	

96	

98	

100	

Loca.on	

0" 0" 1"

13"

0"

10"
16"

21"

0"

7"
17"

6801"

1"

4"

16"

64"

256"

1024"

4096"

GraphMap" LAST" BWA8MEM" BLASR"

Inser?ons" Dele?ons" SNPs" Uncalled"Bases"

0	

0X#

1000X#

2000X#

3000X#

4000X#

0X# 20X# 40X# 60X# 80X#

La
m
bd

a&
ph

ag
e#
Co

ve
ra
ge
!!

E.&coli#Coverage!!

GraphMap# LAST# BWA;MEM# BLASR#

LA
ST
	

a

G
ra
ph

M
ap

	

b

c Lambda	
 phage	
 d E.	
 coli	
 K12	
 (R7.3)	

9" 5"

220" 103"25"
1063"

1435"
45"0"

7250"
37254"

4208879"

1"

8"

64"

512"

4096"

32768"

262144"

2097152"

GraphMap" LAST" BWA8MEM" BLASR"

Inser?ons" Dele?ons" SNPs" Uncalled"Bases"

0	
 2	

E.	
 coli	
 K-­‐12	
 	
 S.	
 enterica	
 Typhi	
 	
 E.	
 coli	
 UTI89	
 	

a b

c d e

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

GraphMap	
 BWA-­‐MEM	
 LAST	
 BLASR	

0	

500	

1000	

1500	

2000	

2500	

3000	

GraphMap	
 	
 BWA-­‐MEM	
 LAST	
 BLASR	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

GraphMap	
 BWA-­‐MEM	
 LAST	
 BLASR	

200bp	
 dele4on	
 4kbp	
 dele4on	
 detected	
 by	
 GraphMap	

