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Abstract 

Exploiting the power of nanopore sequencing requires the development of new 
bioinformatics approaches to deal with its specific error characteristics. We present 
the first nanopore read mapper (GraphMap) that uses a read-funneling paradigm to 
robustly handle variable error rates and fast graph traversal to align long reads with 
speed and very high precision (>95%). Evaluation on MinION sequencing datasets 
against short and long-read mappers indicates that GraphMap increases mapping 
sensitivity by at least 15-80%. GraphMap alignments are the first to demonstrate 
consensus calling with <1 error in 100,000 bases, variant calling on the human 
genome with 76% improvement in sensitivity over the next best mapper (BWA-
MEM), precise detection of structural variants from 100bp to 4kbp in length and 
species and strain-specific identification of pathogens using MinION reads. 
GraphMap is available open source under the MIT license at 
https://github.com/isovic/graphmap.   
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Introduction 

With the release of Oxford Nanopore Technologies (ONT) MinION sequencers in 2014, a new 
era of cheap and portable nanopore sequencers, producing ultra-long reads has become reality. 
Potential applications for the new technology are varied and, in addition to its use in research, its 
compact form factor and affordability have drawn interest for its use in point-of-care diagnostics. 
While some initial nanopore sequencing based applications have been reported (e.g. scaffolding 
and resolution of repeats in genomes1 and variant detection in clonal haploid samples2), many 
others remain to be explored. In particular, diploid and rare-variant calling3, de novo genome 
assembly4, metagenome assembly and pathogen identification are all promising applications that 
will likely see the development of new in silico techniques to realize them. 

Read mapping and alignment tools are critical building blocks for many such applications as they 
help solve the difficult problem of efficiently aligning a large number of error-prone read 
sequences (to each other or to a reference genome) without sacrificing sensitivity or specificity. 
Reads from nanopore sequencing can be particularly challenging as, in addition to the volume of 
long reads that they generate, they also have a propensity for higher and non-uniform error 
profiles5. For example, 1D reads from the MinION sequencer have been reported to have 
accuracy less than 65% while a smaller fraction of high-quality (<25%; 2D) reads had accuracy 
greater than 70%1. Thus, despite the length of the reads, a sizable fraction of reads can remain 
unmapped (10-70%) and thus unusable for downstream applications. This is particularly the case 
for 1D reads which often form the bulk of the data1,2. While error rates continue to improve on 
the MinION system2, their variability across chemistries, sequencing runs and even within a read 
can be a challenge for bioinformatics pipelines. Furthermore, as new nanopore sequencing 
technologies become available, having a robust mapping and alignment tool that can 
accommodate different error profiles (i.e. ratio of insertions, deletions and substitutions) and 
error rates in a consistent fashion would be essential for downstream applications. 

While alignment algorithms have been widely studied, gold-standard solutions such as dynamic 
programming (or even fast approximations such as BLAST) are too slow or infeasible in practice 
for aligning high-throughput sequencing reads. To address this need, a range of read mapping 
tools have been developed that exploit the characteristics of second-generation sequencing reads 
(relatively short and accurate) by trading-off a bit of sensitivity for dramatic gains in speed6,7. 
The design decisions employed in these mappers are often tuned for specific error characteristics 
of a sequencing technology, potentially limiting their utility across technologies and error 
profiles. The less than ideal results reported in recent studies using MinION data8 could therefore 
be in part due to the use of mappers (e.g. BWA-MEM6 and BLASR9) or genome aligners (e.g. 
LAST10) that are not suited to its error characteristics. 

In this work, we present the first nanopore mapper (GraphMap) that is adept at mapping long and 
error-prone nanopore sequencing data with high sensitivity and precision. GraphMap was 
designed for ease-of-use, aligning reads with a wide range of lengths and error profiles without 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2015. ; https://doi.org/10.1101/020719doi: bioRxiv preprint 

https://doi.org/10.1101/020719
http://creativecommons.org/licenses/by-nc-nd/4.0/


having to tune parameters. This is an important feature for a technology where error rates and 
profiles can vary widely across sequencing runs. Correspondingly, GraphMap also allows users 
to uniformly map read datasets from disparate technologies (e.g. Illumina, PacBio or ONT) with 
BLAST-like sensitivity and runtime comparable to state-of-the-art mappers. Experiments with 
several real and synthetic datasets demonstrate that GraphMap is a more sensitive mapper (than 
BWA-MEM, BLASR and LAST) while reporting alignments that provide highly accurate 
consensus sequences (Q50) with nanopore sequencing data. This in turn translates into notable 
advantages in real-world applications such as the use of nanopore data for single-nucleotide and 
structural variant calling as well as the use of MinION reads for real-time pathogen 
identification. 

Results 

Overview of the GraphMap algorithm 

The GraphMap algorithm is structured to achieve high-sensitivity and speed using a five-stage 
read-funneling approach as depicted in Figure 1a. The underlying design principle is to have 
efficiently computable stages that conservatively reduce the set of candidate locations based on 
progressively defined forms of the read-to-reference alignment. For example, in stage I, 
GraphMap uses a novel adaptation of gapped spaced seeds11 to efficiently reduce the search 
space (Figure 1b) and get seed hits as a form of coarse alignment. These are then refined in 
stage II using graph-based vertex-centric processing of seeds to efficiently (allowing seed-level 
parallelism) construct alignment anchors (Figure 1c). GraphMap then chains anchors using a k-
mer version of longest common subsequence (LCS) construction (stage III; Figure 1d), refines 
alignments with a form of L1 linear regression (stage IV; Figure 1e) and finally evaluates the 
remaining candidates to select the best location to reconstruct a final alignment (stage V). 
GraphMap computes a BLAST-like E-value as well as a mapping quality for its alignments. 
Further details about each of these stages can be found in the Methods section. 

GraphMap maps reads accurately independent of error rates and profiles 

GraphMap was designed to be efficient while being largely agnostic of error profiles and rates. 
To evaluate this feature, we generated a wide range of synthetic datasets that mimic the output of 
various sequencing technologies (Illumina, PacBio, ONT 2D, ONT 1D) and over a range of 
different genome sizes (Figure 2). We then measured GraphMaps’s precision and recall in terms 
of identifying the correct read location and in reconstructing the correct alignment to the 
reference (Methods). We distinguish between the two as, in principle, a mapper can identify the 
correct location but compute an incorrect alignment of the read to the reference. To provide for a 
gold-standard to compare against, we used BLAST12 as a representative of a highly sensitive but 
slow aligner that likely defines the achievable limits of sensitivity. On synthetic Illumina and 
PacBio sequencing datasets we noted that GraphMap and BLAST have high precision and recall 
(~98%) for both location and alignment measures and are almost indistinguishable in these 
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metrics. Intriguingly, the slight variations in performance that were observed were not defined by 
the size of the genomes that were studied. In addition, despite the marked difference in error 
profiles for Illumina and PacBio sequencing, the observed performance metrics were 
comparable, highlighting the robustness of GraphMap and its similarity to the gold-standard 
BLAST.   

On synthetic ONT data, we noted that slight differences between BLAST and GraphMap were 
observable but this was less than 3% in the worst case (Figure 2). Notably, GraphMap improved 
over BLAST by similar margins in finding the right mapping location in some cases (e.g. for N. 
meningitidis on ONT 1D data). These slight differences are likely a reflection of the design 
choices in a sensitive homology detection tool (BLAST) versus a fast and sensitive read mapper 
(GraphMap), and the impact they have on aligning reads with high error rates. Even with the 
error rates of ONT 1D data, GraphMap's precision and recall in selecting the correct mapping 
location was consistently greater than 95% and 94% respectively. Constructing the correct 
alignment is more challenging for ONT data as the number of correct bases in the input data is 
around 70%, but despite this GraphMap correctly aligned ~70% of the bases. This is likely at the 
limits of base-level alignment precision and recall as the use of alternate alignment algorithms 
and parameters did not alter results significantly (Supplementary Table 1). Alignments using 
raw nanopore signal information could be an alternative avenue to boost performance further. 
These results highlight GraphMap's ability to identify the precise genomic location based on 
robust alignments without the need for customizing and tuning alignment parameters to the often 
unknown error characteristics of the data. 

While having BLAST-like sensitivity, GraphMap was designed to work with large genomes and 
sequencing datasets and correspondingly is usually several orders of magnitude faster than 
BLAST and comparable to other state-of-the-art mappers (Supplementary Table 2). For read to 
reference alignment, BLAST can be feasible for small genomes but can quickly become 
infeasible for larger genomes (e.g. C. elegans or the human genome; Supplementary Table 2). 
GraphMap retains BLAST’s sensitivity while scaling well with genome size. It is possible to 
tune GraphMap’s settings to make it even faster for short reads with lower error rates, but its 
sensitivity and speed over a wide range of read characteristics showcases its versatility as a read 
mapper. Read mappers such as BWA-MEM also exhibit the ability to map varying qualities of 
reads but need careful tuning of parameters to elicit high sensitivity (Supplementary Figure 
1a). In addition, for synthetic ONT 1D datasets, we observed a significant drop in precision and 
recall for read mappers such as BWA-MEM and BLASR in comparison to GraphMap suggesting 
that they may not be appropriate for such data (Supplementary Figure 1b, c). While genome 
aligners such as LAST can perform better in these settings, they exhibit lower recall for large 
genomes (a 30% reduction for LAST compared to GraphMap; Supplementary Figure 1c) and 
require significant computational resources for analyzing them (e.g. building the index for a 4 
Gbp bacterial genome database with LAST can take more than a week). 
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Sensitivity and mapping accuracy on nanopore sequencing data 

Encouraged by GraphMap’s performance on synthetic ONT data, we evaluated and compared its 
results on several published datasets against mappers and aligners that have previously been used 
(LAST, BWA-MEM and BLASR; see Methods). While our synthetic datasets provided a 
convenient starting point to evaluate performance, they may not capture all features of ONT 
reads. On the other hand, in the absence of ground truth, evaluating performance using real data 
can be challenging. To address this, we compared various mappers on their ability to provide 
accurate (to measure precision of alignments) and complete consensus sequences (as a measure 
of recall). Overall, the closest competitor to GraphMap was LAST, though it appeared a distant 
second in terms of these metrics (Figure 3). The differences between GraphMap and LAST were 
apparent even when comparing their results visually, with LAST alignments having low 
consensus quality even in a high coverage setting (Figure 3a). We noted that across datasets, 
GraphMap mapped the most reads and aligned the most bases, improving sensitivity by 15-80% 
over LAST and even more compared to other tools (Figure 3b; Supplementary Figure 2). This 
led to fewer uncalled bases compared to LAST, BWA-MEM and BLASR, even in an otherwise 
high-coverage dataset (Figure 3c, d). In addition, GraphMap analysis resulted in >10-fold 
reduction in errors on the lambda phage genome (Figure 3c) and reported less than 40 errors on 
the E. coli genome compared to more than a 1000 errors for LAST and BWA-MEM (Figure 3d). 
With ~80X coverage of the E. coli genome, GraphMap mapped ~90% of the reads and called 
consensus bases for the whole genome with <1 error in 100,000 bases (Q50 quality). The next 
best aligner i.e. LAST did not have sufficient coverage (20X) on >7000 bases and reported 
consensus with a quality of ~Q36. BWA-MEM aligned less than 60% of the reads and resulted 
in the calling of >200 deletion errors in the consensus genome. Similar results were replicated in 
other genomes and datasets as well (Supplementary Figure 2). In terms of runtime 
requirements, GraphMap was typically more frugal than BWA-MEM and slightly slower than 
LAST (Supplementary Table 3). 

Encouraged by GraphMap’s ability to provide accurate alignments and high quality consensus 
calls, we used them as a starting point to reanalyze the error profiles of 1D and 2D ONT reads. 
We reconfirmed substantial variability in the shape and modes of error rate distributions 
computed by different mappers2, but noted that GraphMap’s alignments resulted in lower 
mismatch rate estimates (Supplementary Figure 3). In particular, GraphMap’s distributions 
were very similar to a maximum-likelihood based realigner (marginAlign2), without the need for 
an expensive realignment step. Overall, deletion and mismatch rates were observed to be higher 
than insertion rates and significantly reduced from 1D reads (~15%) to 2D reads (~7%).  

Application 1: Single-nucleotide variant calling in the human genome with high precision  

Variant calling using ONT data has multiple potential hurdles including the lack of a dedicated 
read mapper or variant caller for it. Not surprisingly, a recent report for calling single nucleotide 
variants (SNVs) from high-coverage targeted sequencing of the diploid human genome reported 
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that existing variant callers were unable to call any variants and a naive approach requiring 1/3 of 
the reads to support an allele could lead to many false positive variants13. To evaluate if 
improved read mappings from GraphMap could increase sensitivity and precision, we reanalyzed 
data reported in Ammar et al13, adopting a variant caller (LoFreq) that directly utilizes 
information about base qualities for being robust to high error rates3. We used a set of confident 
calls for this sample (NA12878) as our gold standard14. Our results provide the first 
demonstration that nanopore data can be used to call heterozygous variants in challenging 
regions of the human genome (in the genes CYP2D6, HLA-A and HLA-B) with high precision 
(>96% with GraphMap; Table 1). These can then be the foundation for reconstructing 
haplotypes, in these complex but clinically important regions of the human genome, by 
exploiting the advantages of long spanning reads. Significantly, we noted that alignments from 
GraphMap provided many more true positives than the next best mappers (BWA-MEM, LAST) 
providing a 76% improvement in recall overall (Table 1). Confirming the report in Ammar et 
al13, our results suggest that targeted nanopore sequencing reads can be mapped to the correct 
location on the human genome despite the presence of very similar decoy locations (94% identity 
between CYP2D6 and CYP2D7), with GraphMap providing the most on-target reads 
(Supplementary Figure 4). 

Application 2: GraphMap enables sensitive and accurate structural variant calling 

Long reads from the MinION sequencer are, in principle, ideal for the identification of large 
structural variants (SVs) in the genome15, but this has not been explored before with the 
limitations of existing tools1. Using real E. coli data mapped to a mutated reference we 
systematically evaluated this application and observed that GraphMap’s alignments could readily 
detect SVs, both insertions and deletions, over a range of event sizes (100bp-4kbp; Table 2). 
Furthermore, GraphMap produced alignments that accurately demarcated the alignment event 
and did this without reporting any false positives (Figure 4a,b and Table 2). These alignments 
provided perfect recall over the entire range of indel sizes (100bp-4kbp) and a 35% improvement 
in recall over the next best mapper (which was BLASR for this application). Highlighting the 
non-trivial nature of this problem, BWA-MEM alignments resulted in low precision and recall 
(� 10%), with many false positives, while LAST alignments were unable to detect any of the 
events under a range of parameter settings (Table 2). These results emphasize GraphMap’s 
advantage for the purpose of systematically cataloging point mutations as well as structural 
variations using nanopore sequencing data. 

Application 3: Sensitive and specific pathogen identification with ONT reads 

Due to its form factor and real time nature, an application of MinION sequencing that has 
garnered interest in the community is in the identification of pathogens in clinical samples. 
Sequencing errors (particularly in 1D data) and the choice of read mapper could significantly 
influence results in such an application and lead to misdiagnosis. GraphMap’s high specificity in 
read mapping as seen in the results for Ammar et al (Supplementary Figure 4) suggested that it 
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could be useful in this setting. Using clonal sequencing data on the MinION and a database of 
microbial genomes we created several synthetic benchmarks to evaluate the performance of 
various mappers for this application (see Methods). For species level identification, we noted 
that all mappers reported high precision (typically >95%) but recall varied over a wide range 
from 20% to 90% (Table 3). GraphMap had the highest recall and F1 score in all datasets 
providing an improvement of up to 10% over other mappers. For this application, BWA-MEM 
was the next best mapper while LAST and BLASR exhibited 20% reduced recall compared to 
GraphMap (Table 3). Not surprisingly, strain level identification using MinION data appears to 
be much more difficult and in some cases a closely related strain can attract more reads than the 
correct strain (Figure 4c). However, in the datasets that we tested we noted that GraphMap 
assigned most reads to a handful of strains that were very similar to the correct strain (Figure 4c-
e; 99.99% identity for E. coli K-12 and BW2952). Moreover, the use of strain specific sequences 
was able to unambiguously identify the correct strain from this subset (e.g. there were no reads 
mapping to NC_012759.1:4.13Mbp-4.17Mbp, a region unique to BW2952), suggesting that this 
approach could be used to systematically identify pathogens at the strain level. 

Discussion 

The development of GraphMap provides a new opportunity in the tradeoff between mapping 
speed and sensitivity. It demonstrates BLAST-like sensitivity while being comparable in speed 
to other state-of-the-art short and long-read mappers. On recently available nanopore sequencing 
data, GraphMap is unmatched in terms of sensitivity, mapping more than 90% of reads and bases 
on average. Our comparisons with BLAST suggest that reads that cannot be mapped by 
GraphMap may essentially be unmappable. High sensitivity is a key requirement for mapping 
tools as typically reads that cannot be mapped are lost from downstream analysis. 

GraphMap’s speed and sensitivity do not come at the expense of location and alignment 
precision, as demonstrated by our experiments with synthetic and real datasets. For determining 
the correct genomic location, GraphMap’s precision is typically greater than 98% and it is able to 
distinguish between candidate locations that are more than 94% identical on the human genome. 
For alignment precision, GraphMap’s performance scales according to sequencing error rate, is 
comparable to BLAST and was observed to be robust to choice of alignment algorithms and 
parameters. It should thus provide a better starting point for downstream analysis tools including 
realigners and consensus calling algorithms such as marginAlign2 and Nanopolish 
(https://github.com/jts/nanopolish). 

Applications such as variant calling and species identification can be challenging with PacBio 
and nanopore sequencing data, due to ambiguities in mapping and alignment. We show that 
despite the lack of custom variant callers, read mappings from GraphMap can lead to sensitive 
and precise variant calls. Particularly exciting is the ability to call structural variations over a 
range of event sizes without having to assemble the reads. No doubt, the development of new 
nanopore-specific tools is likely to improve the quality and precision of structural variant calls 
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even further, but GraphMap alignments can provide a useful starting point for such applications. 
We also observed that GraphMap alignments could be used to identify the species-level origin of 
reads with high precision and recall. The sensitivity of mapping with GraphMap can be a key 
advantage in applications where MinION sequencing reads are used in real-time to identify 
pathogens16. With further downstream processing, these read mappings could be used for strain-
level typing and characterization of antibiotic resistance profiles16, meeting a critical clinical 
need. 

In principle, the approach used in GraphMap could be adapted for the problem of computing 
overlaps and alignments between reads. As was recently shown, nanopore sequencing reads can 
be used to construct high-quality assemblies de novo17. GraphMap’s sensitivity and specificity as 
a mapper could thus serve as the basis for fast computation of overlap alignments and de novo 
assemblies in the future.  
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Methods 

Description of the GraphMap Algorithm 

Stage I: Region selection 

GraphMap starts by roughly determining regions on the reference genome where a read could 
potentially be aligned. This step is performed in order to reduce the search space for the next step 
of the algorithm, while still providing very high sensitivity. As a first step, region selection relies 
on finding seeds between the query sequence and the reference, before clustering them into 
candidate regions. For seed finding, we found that commonly used approaches such as maximal 
exact matches (MEMs) (as used in BWA-MEM6) or Hamming distance based spaced seeds (as 
used in LAST10) are either not sensitive enough or not specific enough in the presence of error 
rates as high as is feasible in nanopore data. Instead, we employed a form of gapped spaced 
seeds similar to gapped q-gram filters for Levenshtein distance11. Specifically, we extended the 
approach proposed in Burkhardt and Kärkkäinen11 to use both one- and two-gapped q-grams 
(Figure 1b) as detailed below. This allows us to accommodate an arbitrary number of gaps in the 
q-gram.  

Gapped q-grams are a seeding strategy that allow for fast and very sensitive lookup of inexact 
matches, with variations allowed in predefined “don’t care” (DC) positions of the seed. 
Concordant with existing terminology, we call the concrete layout of the inclusive and DC bases 
a shape and the number of used positions its weight. Gapped q-grams allow for DC positions 
within a shape to also contain insertions and deletions (indels). Our approach for implementing 
Levenshtein gapped q-grams is based on constructing a hash index of the reference sequence, 
where the q-gram positions are hashed by the keys constructed from the shape’s layout – only 
inclusive bases are taken for constructing the key, while the DC bases are simply skipped 
(Figure 1b). During the lookup step, multiple keys are constructed for each shape and used for 
retrieval. For each DC base, three lookup keys are constructed: 

(I) A key constructed in the same manner as during the indexing process, which captures 
all seeds with a DC base being a match or a mismatch (e.g. “1110111”), 

(II) A key where the DC base is not skipped. This key captures up to one deletion at the 
specified position (e.g. “111111”), and 

(III) A key where the DC base as well as the following base is skipped. This key allows for 
at most one insertion and one match/mismatch (e.g. “11100111”). 

In total, for each shape �^3 keys are constructed, where � is the number of DC bases. GraphMap 
uses two shapes for the region selection process: “1111110111111” (or the 6-1-6 shape) and 
“11110111101111” (or the 4-1-4-1-4 shape), where 1 marks the inclusive bases and 0 the DC 
positions. This shape combination was selected based on empirical evaluation of a range of 
combinations, due to the computational intractability of computing the optimal shape for the 
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Levenshtein distance. For each shape, a separate index is used. At every seed position, both 
shapes are looked up, and all hits are used in the next step for binning. 

To derive a general approach for binning seed hits, we draw on the concept of a Hough 
Transform (HT), a method commonly used in image processing for detection of shapes such as 
lines, circles and ellipses. The HT defines a mapping from image points into an accumulator 
space, called the Hough space. In the case of line detection, if a given set of points in Cartesian 
space are collinear, then their relation can be expressed with a line equation with common slope 
� and intercept 	: 


 � �� 
 	, (1) 

where ��, 
� are the coordinates of a point in 2D space. HT attempts to determine parameters � 
and 	 of a line that describes the given set of points. One must note that the system is generally 
overdetermined (whenever there are more than two points given), and thus the problem can be 
solved using linear regression techniques. However, the HT uses an evidence-gathering 
approach, which can be used to detect an arbitrary number of lines in the image instead of only 
one best. Equation (1) can be converted into its dual in parameter space: 

	 � ��� 
 
. (2) 

The intuition is as follows: given a point ��, 
� in Cartesian space, its parameter space 
representation defines a line. If multiple Cartesian space points are given, each transforms into a 
different line in the parameter space. Their intersections specify potential lines in the original, 
Cartesian space. HT defines an accumulator space, in which � and 	 are rasterized so as to take 
only a finite range of values. HT then simply counts all the potential solutions in the accumulator 
space by tracing all the dual lines for each point in the Cartesian space, and increasing the vote 
count for each ��, 	� coordinate. All HT space coordinates with count above a defined threshold 
can then be considered as candidate lines in the original Cartesian space. 

A single seed hit can be represented with a k-point ��, �� in 2D space, where � is the seed’s 
position on the read, and � is the position of the seed hit on the reference. In the case a read is 
completely error-free and extracted from the exact reference, its set of k-points would be 
perfectly collinear in such defined space. Moreover, under these ideal conditions, they would all 
lie on a line tilted at a 45° angle (slope � � 1). This collinearity also corresponds to the main 
diagonal in the dynamic programming alignment matrix. Since � is known, only the intercept 
parameter 	 needs to be determined to find the accurate mapping position. For this, the HT 
voting mechanism can be used. Again, since � is known, the 2D accumulator space is not 
required – only an array for the 	 value is sufficient. As 	 corresponds to the (already discrete) 
coordinates on the reference sequence, a simple integer array of the length of the reference can 
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be used for counting votes. For each k-point, its 	 parameter value is determined with a simple 
expression: 

	 � � � �. (3) 

The index of the accumulator array with the highest count is the exact mapping position of the 
read on the reference. In this simple form, this approach mirrors the techniques used in other 
aligners (e.g. FASTA). However, the concept of the Hough Transform (HT) allows us to extend 
and generalize this notion.  

We account for substitution and indel errors in this framework as follows: substitution errors 
cause only the reduction in the maximum vote count for the correct 	 value and induce noise 
votes in other locations on the reference. Such type of errors can be addressed using appropriate 
thresholding on the hit count (see below). On the other hand, indels are of special interest 
because they shift the alignment diagonal and cause more substantial reduction of votes for the 
correct location. Additionally, using an accumulator array that is of size equal to the size of the 
reference sequence can cause high memory consumption, especially in the case of processing 
large sequences in multithreaded environments. 

To address both the error-rate and memory consumption issues, we rasterize the reference 
sequence into partitions of length �/3, where � is the read length. For each seed hit, we increase 
the value of the bin corresponding to its 	 parameter value determined using equation (3). If a bin 
has multiple hits from the same seed, only one hit is counted. Bins are then sorted in descending 
order of the number of hits. Only bins which have a count � 0.75 · ���� are selected for further 
processing, where ���� is the count of the highest scoring bin. We then define a region as a 
portion of the reference that expands the corresponding bin’s start and end location by an 
additional read length, to compensate for potential indel errors and ensure that the entire 
alignment area enters the next step of mapping. In case the reference genome has been specified 
as being circular by the user and a selected region should span beyond any end of the reference, 
then the region is constructed by concatenating the beginning and the end of the reference 
sequence. Regions are then processed separately until the last step of the method, when the 
highest scoring region is selected for alignment. 

Stage II: Graph-based vertex-centric construction of anchors 

In this stage, we attempt to refine candidate regions from stage I by constructing alignment 
chains or anchors from short seeds matches. To do this, we introduce the notion of a kmer 
mapping graph. Given a pair of sequences (target and query), the method starts by constructing a 
kmer mapping graph from the target sequence. Target and query sequences in this case are the 
read sequence and a single region of the reference sequence. Whether the read or the region is 
chosen to be the target sequence is not essential for the approach to work, but in our 
implementation, we chose the read to be the target sequence in order to reduce memory 
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consumption (the region determined is always larger than the read). The vertices of the kmer 
mapping graph are the kmers of the target sequence of length �. Unlike the de Bruijn graph, 
identical kmers are not truncated into the same vertex of the graph but are kept as separate 
individual vertices. For every vertex ��  �!" # �0 … � � %��, & directed outbound edges are added 
which connect ��  to vertices ����, ����, … , ����. Note that, since directed edges are added in this 
consecutive manner, the last �& � 1� vertices of the graph cannot have & outbound edges since 
there are no vertices to connect them to in the graph. In summary, a kmer mapping graph is a 

directed acyclic graph, consisting of �� � % 
 1� vertices and & · �� � % 
 1� � & ·
���

�
 directed 

edges. 

The rationale for such a design is as follows. In case & � 1 and if the query is a subset of the 
target with no differences or errors, the target’s mapping graph would contain the same kmers in 
the exact same order as can be found in the query sequence the read originated from. Thus, an 
exact walk exists in both sequences. However, in realistic conditions, variations and sequencing 
errors exist in reads. Although the majority of kmers might still be in the same order, a simple 
exact linear walk through the reference’s and read’s mapping graphs cannot be found due to the 
differing kmers present. Instead, the walk is fragmented into several smaller ones. The 
fragmentation is especially large in data with high error rates, such as those obtained with 
nanopore sequencing. In these cases, it is sometimes difficult to find even two consecutive 
correct kmers. To address this issue, the additional �& � 1� edges act as a bridge between vertices 
in the mapping graph. Thus, we allow a linear walk to be found not only by following 
consecutive kmers in the graph, but to jump-over those that produce poorer solutions. Figure 1d 
depicts such an example. 

In order to find an appropriate mapping position, we conduct a simultaneous walk both in the 
target sequence and in the query. The mapping graph is constructed from only the target 
sequence, while the walk in the query is conducted by iterating through all its consecutive kmers. 
In the mapping graph, all walks that correspond to potential mapping sites are simultaneously 
monitored and extended. Although this approach may appear to be time-consuming, GraphMap 
handles it in an elegant and efficient vertex-centric manner as detailed below. 

Note that at this stage of the algorithm, GraphMap does not use the same index as in the region 
selection process. Instead, a new index is constructed from the target on the fly, using a much 
smaller seed size (default is % � 6). In principle, an arbitrary indexing method such as suffix 
arrays, FM index or hashing can be used at this stage. In our implementation, perfect kmer 
hashing is used for indexing when % ( 10 and otherwise suffix arrays are used. Following graph 
construction, the next step is to do graph traversal. For each consecutive kmer in the query, a list 
of hits on the target sequence is obtained from the index. For every hit, its position on the target 
directly points to the vertex in the graph that the kmer belongs to. The vertex-centric walk can 
then elegantly be described as follows: for a chosen vertex, collect information from its input 
edges, choose the “best” edge and update the information it contains, and transmit this 
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information to all outbound edges simultaneously. We define the “best” edge to be the one 
belonging to the longest walk. The information that is transmitted through the edges contains the 
walk length, the position of the starting kmer in both the target and the read, and the number of 
covered bases and kmers in both sequences. Consistently transmitting this information only 
requires updating the current walk length, number of kmers and the number of covered bases. 
Since the only operations we perform on a vertex include simple collect, extend and transmit 
steps, the runtime complexity of the vertex-update operation is O(1). Initially, the information 
stored in the graph is set so that there are no valid walks (all walk lengths are set to zero). The 
walk through the graph can then be viewed as propagating the information through the directed 
acyclic graph from the initial candidate location of the mapping to the furthest reachable vertex. 

After all kmers from the query have been processed, a list of walks in the graph is collected. 
Walks which contain less than a user defined amount of covered bases in both sequences (default 
of 12 bases) are not processed further. Each walk represents one valid candidate location for 
mapping of the query. Intuitively, one would simply choose the longest walk for the most 
probable mapping position. Our empirical tests suggest that it is possible to achieve relatively 
high accuracy even with this simple heuristic. Indeed, in the presence of low substitution error 
rates (as is the case for Illumina as well as PacBio reads), a single walk can cover most of, if not 
the entire read. However, accuracy can greatly be impaired in the presence of higher substitution 
error rates as seen in nanopore sequencing data. In this case, clusters of errors in reads tend to 
cause fragmentation of walks in the mapping graph, resulting in a list of shorter walks (typically 
several kmers long), none of which span more than a small percentage of the read length. 
Although these small walk fragments do not seem to carry much information, they actually 
represent an exact ordering of kmers in both sequences and thus form the basis of a longer 
alignment. We refer to these short walks as anchors for simplicity, although they differ from the 
traditional definition of an anchor in that walks allow for mismatches and indels to be present 
within them. 

Stage III: Extending anchors into alignments using LCS 

Each anchor reported by GraphMap in stage II represents a shared segment (or subsequence) 
between the target and the query sequence with known start and end positions in both sequences. 
Due to the presence of repeats, the set of anchors obtained is not necessarily monotonically 
increasing in both the target and query coordinates. For this reason, a subset of anchors that 
satisfy the monotonicity condition needs to be selected. The problem of identifying such a subset 
can be expressed as finding the Longest Common Subsequence in k Length Substrings18 (LCSk). 
Recently, an efficient and simple algorithm for solving a variant of the LCSk problem has been 
proposed19. In our implementation we follow this paradigm and instead of using substrings of 
fixed size k, we allow for variable length substrings. Concretely, the size of each substring is 
equal to the length of the corresponding anchor in both sequences. As a result, the reconstruction 
of LCSk is obtained in the form of a list of consecutive anchors in the target and the query 
sequence. 
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Stage IV: Refinining alignments using L1 linear regression  

The alignments obtained using LCSk tend to be largely accurate but since its definition lacks 
constraints on the distance between substrings, the alignments obtained may include outlier 
matches and mis-estimation of overall alignment length (Figure 1e). These outliers are caused 
by repeats or sequencing errors, but they still satisfy the monotony condition. Similar to the 
observation we presented in the region selection step, the LCSk list of anchors should ideally be 
collinear in the 2D query-target coordinate space, with a slope of 45°. All deviations from this 
line are caused by indel errors, and can be viewed as noise. We start the filtering of the LCSk 
outlier anchors by fitting a 2D line with a 45° slope in the query-target space under the least 
absolute deviation criteria (LAD, L1). Next, a subset of anchors which are located within 

�	� � ) · �√2/2 from either side of the L1 line is selected, where ) is the expected error rate (by 

default, conservatively set to 45%), � is the target (read) length, and the factor √2/2 is used to 
convert the distance from target coordinate space to a distance perpendicular to the L1 line. A 
confidence interval 	 � 3 · ∑ ��/-


���  is calculated, where �� is the distance from a selected 
anchor " to the L1 line. LCSk is then repeated once again but only on the anchors which are 
located within the distance .	 from the L1 line in order to compensate for possible gaps caused 
by anchor filtering.  

After filtering, five scores that describe the quality of the region are calculated. They include: the 
number of exact kmers covered by the anchors /��
��, the standard deviation 0 of anchors 
around the L1 line, the length of the query sequence which matched the target (distance from the 
first to the last anchor) ��
�, the number of bases covered by anchors (includes only exact 
matching bases) /�� and the read length. The last four scores are normalized to the range 10,12 
with the following equations (4)-(7): 

�� � max �0, 1 �
�
��

√�

), (4) 

�����
�

����

�
, (5) 

��� � min �
���

����·�	
��
, 1�, (6) 

�
 � min �
��


���
, 1�, (7) 

where 3 is the length of the reference sequence (query in our previous definition). The overall 
quality of the alignment in a region is then calculated as: 

� � �� · �����
· ��� · �
 . (8) 

 

Stage V: Construction of final alignment 

After all selected regions have been processed, they are sorted by the 4 parameter. The region 
with the highest value 4��� is selected for the final alignment. Unlike many other methods which 
use the seed-and-extend approach, GraphMap aligns the entire read using the semi-global 
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alignment algorithm. The default parameters of GraphMap use an implementation of Myers’ bit-
vector approach for alignment20 with alignment parameters fixed to �5�	6 � 1, �"7�5�	6 �
�1, 859��
� � 0 and 859
��
�� � �1. GraphMap also allows users a choice of aligners and 

custom scoring parameters. Current alternative alignment options include an implementation of 
Gotoh’s semi-global alignment algorithm21 as well as an option to construct anchored 
alignments. Specifically, in the anchored approach, anchors from the LCSk step are clustered and 
alignments within and between cluster endpoints computed using Myers’ bit-vector alignment 
(extensions to read ends are done without gap penalty). Clustering is done by collecting 
neighboring anchors where the ratio of distances in the read and reference coordinates is less 
than )/2 (as before, ) is the expected error rate in the data). Clusters with very few bases (<30 or 
2% of read length) were discarded for this purpose. 

GraphMap allows users to output all equally or similarly good secondary alignments by 
specifying an ambiguity factor : in the range 10,12 and using that to select regions which have 
/��
�� � �1 � :� · /��
��,�
��, where /��
��,�
�� is the number of kmers of the region with the 
maximum 4 value. We denote the count of regions with /��
�� above the ambiguity threshold as 
-� . 

Mapping quality 

Since the region filtering process in GraphMap maintains a large collection of possible mapping 
positions on the given reference, it enables meaningful calculation of the mapping quality 
directly from its definition: 

� � �10 · log �, (9) 

where 9 is the probability of the read being mapped to the wrong position. We calculate 9 simply 

as 9 � min �10��, 1 �
�



�

� and report quality values according to the SAM format specification. 

E-value 

For each reported alignment, GraphMap calculates the E-value which is given as a custom “ZE” 
parameter in the output SAM file. Following the approach used in BLAST, we rescore 
alignments and use pre-calculated Gumbel parameters to compute E-values in the same way as in 
BLAST (default scoring parameters: �5�	6 � 5, �"7�5�	6 � �4, 859��
� � �8 and 

859
��
�� � �6).  

Datasets 

For evaluating GraphMap and other tools, we used five publicly available MinION sequencing 
datasets, 20 synthetic datasets and MinION sequencing reads for an E. coli UTI89 sample as 
detailed below.  
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MinION library preparation 

Genomic DNA was extracted from Escherichia coli UTI89 using the QIAamp® DNA mini kit 
(Qiagen). 1µg of the extracted DNA was then sheared in a total volume of 80µl using a Covaris 
g-TUBE according to the manufacturer’s instructions with centrifugation for 1min at 6000rpm. 
Sheared DNA was end repaired and A-tailed using the GeneRead™ DNA Library Prep I Kit 
from Qiagen according to the manufacturer’s protocol. The reaction was purified using 1X 
volume of Agencourt Ampure XP beads and eluted in 30µl nuclease-free water. Subsequent 
steps of DNA sequencing library preparation were carried out using Oxford Nanopore’s MinION 
Genomic DNA Sequencing Kit (SQK-MAP003) according to the manufacturer’s recommended 
protocol, including the addition of purified BSA (NEB) to Agencourt Ampure XP beads and 
Elution buffer.  

MinION sequencing of E. coli UTI89 

Immediately prior to sequencing, 12µl of the DNA library was combined with 134µl EP buffer 
and 4µl Fuel Mix and mixed by inversion 10 times. The flow cell was primed by washing with 
two aliquots of 150µl of EP buffer, with ten minutes in between washes. 150µl of the prepared 
DNA Library was then loaded onto the flow cell and the Genomic DNA 48 hour sequencing run 
program was selected. Fresh sample was loaded onto the flow cell at 12 hour intervals 
throughout the run. 

Publicly available sequencing datasets 

Five publicly available MinION sequencing datasets were used for evaluation. These included a 
lambda phage dataset, two E. coli datasets (each produced with a different version of MinION 
chemistry), a S. enterica Typhi dataset and a dataset consisting of three amplicons from the 
human genome: 

(I) Lambda phage burn-in dataset8. The dataset consists of 40,552 reads in total (211 Mbp of 
data), generated using an early R6 chemistry. The reference genome (NC_001416) is 49 kbp 
long giving an expected coverage of >4300X. 

(II) E. coli K-12 MG1655 R7 dataset22. The dataset has 111,128 reads (668 Mbp) providing 
144X coverage of a 4.6 Mbp genome (U00096.2). 

(III) E. coli K-12 MG1655 R7.3 dataset22. The dataset has 70,531 reads (311 Mbp) providing 
67X coverage of the genome (U00096.2).  

(IV) S. enterica Typhi dataset1. The dataset is composed of two runs of strain H125160566 
(16,401 reads and 6,178 reads respectively) and one run of strain 08-04776 (10,235 reads). 

(V) Amplicon sequencing of human HLA-A, HLA-B and CYP2D6 genes13. The dataset 
contains 36,779 reads in total. 
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Synthetic datasets 

Synthetic Illumina reads were generated using the ART simulator23 (150 bp single-end) and 
PacBio CLR reads using the PBSIM simulator24 (with default settings). For synthetic MinION 
data we adopted PBSIM (as no custom ONT simulators exist currently) and used parameters 
learnt from LAST alignments (to avoid bias towards GraphMap) with E. coli K-12 R7.3 data 
(Supplementary Table 4). Reads were simulated for five reference sequences: N. meningitidis 
serogroup A strain Z2491 (1 chromosome, 2.2 Mbp, NC_003116.1), E. coli K-12 MG1655 (1 
chromosome, 4.6 Mbp, U00096.2), S. cerevisiae S288C (16 chromosomes, 12 Mbp), C. elegans 
(6 chromosomes, 100 Mbp) and H. sapiens Chr3 (198 Mbp, hg19 v38, CM000665.2).  

Evaluation methods 

Performance on synthetic data 

Mappers were evaluated for precision and recall in meeting two goals: 

(1) Finding the correct mapping location – a read was considered correctly mapped if its 
mapping position was within 50bp of the correct location. 

(2) Reporting the correct alignment at a per-base-pair level – a base was considered correctly 
aligned if it was placed in exactly the same position as it was simulated from. 

Parameter settings for mappers. 

We evaluated BWA-MEM using the nanopore setting (-x ont2d; version: 0.7.10-r1027-dirty) and 
for detecting structural variations we increased the alignment bandwidth using “-w 5000 -d 
5000”. BLASR was evaluated with the options “-sam -bestn 1” (version: 1.3.1) and in addition 
for the database search we set more stringent parameters (“-minMatch 7 -nCandidates 1”). LAST 
was run with a commonly used set of nanopore settings22 (“-q 1 -r 1 -a 1 -b 1”) and with 
additional overlap mode setting (“-T 1”; to force end-to-end alignment) for structural variant 
detection (version: 475). BLAST (version: ncbi-blast-2.2.30+-x64-linux) was run with default 
settings for Illumina data and a more suitable nanopore setting25 “-reward 5 -penalty -4 -gapopen 
8 -gapextend 6 -dust no” for ONT and PacBio data. GraphMap (version: v0.21) was run with 
default settings. In addition, for circular genomes we used the -C option, anchored alignments for 
calling structural variations (“-a anchor”) and E-value filtering (“-z 1e0”) for database search and 
variant calling. We used marginAlign with the parameter “--em” for variant calling (version: (Git 
commit) dfdb05d6d291aab186b6f3668fa3d7c1de28787d). 

Consensus calling using MinION data 

Consensus was called using a simple majority vote of aligned bases, insertion and deletion 
events (insertion sequences were taken into account while counting events) and positions with 
<20X coverage were not called. All reads were mapped and analyzed to determine consensus 
sequences.  
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Benchmarking mappers for pathogen identification 

Bacterial genomes similar to a list of water-borne pathogens were selected from NCBI’s 
bacterial database to construct a database of 268 genomes (550 Mbp; Supplementary Table 5). 
MinION sequencing datasets from cultured isolates were used as proxy for sequencing of 
pathogen-enriched clinical samples (using data for E. coli K-12 R7.3, S. enterica Typhi and E. 
coli UTI89, as specified earlier). This is a simple test case as real samples are likely to have 
contaminations from other sources as well (e.g. human DNA). We mapped these three read 
datasets to the database of bacterial genomes using each of the mappers to find unique 
alignments and test if these could help identify the correct species and strain. For BWA-MEM 
and LAST, we chose the best alignment based on alignment score (as long as alignment score 
and mapping quality were greater than 0) and for GraphMap and BLASR we used the unique 
reported alignment (mapping quality > 0). 

Single nucleotide variant calling 

All 2D reads from Ammar et al13 were mapped to the human genome (GRCh37.p13; chr 6 and 
22) and for each read only the alignment with the highest alignment score (AS) was kept. To 
avoid chimeric reads as reported in the original study we used only reads that fully spanned the 
amplicon regions for this analysis. Variants were called using LoFreq3 with the parameters “-a 
0.01 -q 0 -Q 0 --no-default-filter”. We then compared the detected SNVs with known variants 
from dbSNP and a high-confidence set for NA1287814 (the HapMap sample used for sequencing; 
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b141_GRCh37p13/VCF/All.vcf.gz; ftp-
trace.ncbi.nih.gov/giab/ftp/data/NA12878/variant_calls/NIST/NISTIntegratedCalls_14datasets_1
31103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.18_all.primitives.vcf.gz) to identify 
true positives and false positives.  

Structural variation detection 

We modified the E. coli K-12 MG1655 reference by inducing 20 SV events (10 insertions and 10 
deletions) of different sizes: 100bp, 300bp, 500bp, 1000bp, 1500bp, 2000bp, 2500bp, 3000bp, 
3500bp, 4000bp. All 2D reads from both E. coli K-12 datasets (R7 and R7.3) were combined and 
mapped. SVs were detected by simple consensus vote of indel events reported in the alignments 
(� 20 bases to avoid sequencing errors). Note that a realigner such as marginAlign is not 
designed for this application and hence we did not evaluate its use here. In the absence of a 
sophisticated SV caller for nanopore data we used a simple rule that identifies windows where 
>15% of the reads at each position report an insertion (or deletion) event (at least 5 reads). To 
avoid fragmented events due to a local drop in allele frequency, we merged windows which were 
less than window-length apart (max of the two windows). We considered a detected event a true 
positive if its size was within a 25% margin of the true size and its start and end locations were 
less than 25% of event size away from the true locations.  
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Figure Legends 

Figure 1. A schematic representation of stages in GraphMap. (a) Order of stages in the read-
funneling approach used in GraphMap to refine alignments and reduce the number of candidate 
locations to one. (b) Structure of spaced seeds used for index construction and index lookup. (c) 
Region selection by clustering of candidate seeds on the reference. (d) Generation of alignment 
anchors through a fast graph based ordering of seeds (Graph Mapping). (e) Filtering of seed 
matches using LCSk search and L1 regression.  

Figure 2. Evaluating GraphMap’s precision and recall against a gold-standard. Results for 
GraphMap mapping (shaded bars) were determined for a range of genomes (ordered horizontally 
by genome size from smallest to largest) and sequencing profiles (ordered vertically from low to 
high error rates) and compared to BLAST (solid bars). For each dataset, the graph on the left 
shows performance for determining the correct mapping location (within 50 bp; y-axis on the 
left) and the one on the right shows performance for the correct alignment of bases (y-axis on the 
right; see Methods). 

Figure 3. Sensitivity and mapping accuracy on nanopore sequencing data. (a) Visualization 
of GraphMap and LAST alignments for a lambda phage sequencing dataset on the MinION8 
(using IGV26). Grey columns represent confident consensus calls while colored columns indicate 
lower quality calls. (b) Mapped coverage of the lambda phage8 and the E. coli K-12 genome22 
(R7.3 data) using MinION sequencing data and different mappers. (c) Consensus calling errors 
and uncalled bases using a MinION lambda phage dataset8 and different mappers. (d) Consensus 
calling errors and uncalled bases using a MinION E. coli K-12 dataset (R7.3) and different 
mappers. 

Figure 4. Variant calling and species identification using nanopore sequencing data and 
GraphMap. (a) An IGV view of GraphMap alignments that enable the detection of a 200bp 
deletion (delineated by red lines). (b) GraphMap alignments spanning a ~4 kbp deletion 
(delineated by red lines). Number of reads mapping various genomes in a database (sorted by 
GraphMap counts and showing top 10 genomes) using different mappers (GraphMap, BWA-
MEM, LAST and BLASR) and three MinION sequencing datasets for (c) E. coli K-1222 (R7.3) 
(d) S. eneterica Typhi and (e) E. coli UTI89. Note that GraphMap typically maps the most reads 
to the right reference genome (at the strain level) and the S. eneterica Typhi dataset is a mixture 
of sequencing data for two different strains for which we do not have reference genomes in the 
database. 
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Tables 

Table 1. Comparison of various mappers for single nucleotide variant calling. 
Results are based on amplicon sequencing data for a human cell line (NA12878) 
for the genes CYP2D6, HLA-A and HLA-B. Precision values are likely to be an 
underestimate of what can be expected genome-wide due to the repetitive nature of 
the regions studied and the incompleteness of the gold-standard set. 

 LAST marginAlign BWA-
MEM 

BLASR GraphMap 

Precision 
(%) 

94 100 96 100 96 

True 
Positives 

49 1 47 43 86 

Table 2. Comparison of various mappers for structural variant calling. Results 
are based on mapping a MinION dataset for E. coli K-1222 (R7.3) on a mutated 
reference containing insertion and deletions in a range of sizes ([100bp, 300bp, 
500bp, 1kbp, 1.5kbp, 2kbp, 2.5kbp, 3kbp, 3.5kbp, 4kbp]; 20 events in total). Bold 
values indicate the best results for each metric. The F1 score is given by a weighted 
average of precision and recall. 

 LAST BWA-MEM BLASR GraphMap 

Precision (%) 0 5 94 100 
Recall (%) 0 10 75 100 

F1 Score (%) 0 6 83 100 

Table 3. Precision and Recall for species identification using MinION reads. 
Bold values indicate the best results for each dataset and metric. 

 E. coli K-12 (R7.3) S. enterica Typhi E. coli UTI89  

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 
BLASR 93 22 36 99 28 44 98 55 70 

LAST 94 37 53 97 34 51 95 65 78 

BWA-MEM 94 47 63 98 45 61 98 85 91 

GraphMap 95 51 67 97 56 72 99 88 93 
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