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ABSTRACT 

Rodent defense behavior assays have been widely used as preclinical models of anxiety to 

study possibly therapeutic anxiety-reducing interventions. However, some proposed 

anxiety-modulating factors - genes, drugs and stressors - have had discordant effects 

across different studies. To reconcile the effect sizes of purported anxiety factors, we 

conducted systematic review and meta-analyses of the literature on ten anxiety-linked 

interventions, as examined in the elevated plus maze, open field and light-dark box assays. 

Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and 

overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 

were selected for review. Eight interventions had statistically significant effects on rodent 

anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication 

bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a 

and Crhr1 results indicate a disconnect between preclinical science and clinical research. 

Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were 

paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.  
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1. INTRODUCTION 

The anxiety disorders are among the costliest classes of mental disorders, with regard to 

both morbidity and economic cost (Baldwin et al., 2014; DiLuca and Olesen, 2014). 

Development of anxiety-reducing (anxiolytic) drugs has been a major focus of the 

pharmaceutical industry and academic neuropsychiatric research, though no new drug 

types have been adopted since the introduction of selective serotonin uptake inhibitors 

(SSRIs) and other antidepressants for the treatment of anxiety disorders (Griebel and 

Holmes, 2013; Tone, 2009). Anxiety research relies on similarities between human 

emotional behavior and behaviors in animals (Darwin, 1998), specifically rat and mouse 

(Prut and Belzung, 2003). While there are many rodent behavioral paradigms that aim to 

model anxious behavior, three anxiety-related defense behavior (ARDEB) assays that 

specifically aim to measure rodent anxiety have been widely adopted, also referred to as 

‘approach-avoidance conflict tests’: the elevated plus maze (EPM), the light-dark box (LD) 

and the open field (OF), the first, second and fifth most widely used rodent anxiety assays, 

respectively (Griebel and Holmes, 2013). All three assays use an arena that contains a 

sheltered domain (e.g., the closed arms in EPM) and an exposed region. It is believed that 

an animal’s avoidance of the exposed portions of the chamber reports on anxiety-like brain 

states. The ARDEB assays are accepted as preclinical assays of anxiety disorders, by 

reference to classic studies that tested their predictive validity with panels of drugs known 

to have anxiety-modulating effects in humans (Crawley and Goodwin, 1980; Pellow et al., 

1985; Simon et al., 1994). 

 Rodent research has been implicated in the largely frustrated efforts to develop new 

types of anxiolytics (Griebel and Holmes, 2013). The literature regarding defense behaviors 

is contradictory about the size and even the direction of many interventions that are 
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proposed to be anxiolytic or anxiogenic (together ‘anxiotropic’) (Griebel and Holmes, 2013; 

Prut and Belzung, 2003). This is true even for some anxiety-related factors with major 

clinical relevance, such as the serotonin transporter (SERT/Htt), the target of the SSRIs. As 

with the assessment of clinical anxiety interventions (Baldwin et al., 2014), a solid preclinical 

evidence base is necessary to guide decisions about further research and therapeutic 

development (Vesterinen et al., 2014). To better understand the widespread discordance in 

rodent anxiety studies, we conducted a quantitative review of the effect of purported 

anxiety factors on rodent ARDEB. The primary aim of this study was to examine the 

relevance of these factors and to estimate the magnitude of their effects on rodent anxiety. 

A secondary goal of this analysis was to examine patterns in ARDEB factor evidence: gaps 

in the literature, the extent of standardization/heterogeneity and publication bias. 

Synthesizing the data on anxiety-targeted interventions might also assist in understanding 

why these assays have not led to new therapies. Once confirmed by meta-analysis, 

effective anxiotropic interventions can be adopted as benchmarks against which to validate 

new rodent assays and/or more tractable model animal species (e.g. Drosophila and 

zebrafish). 
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2. MATERIALS AND METHODS 

2.1 Literature review 

We identified genes, drugs and environmental interventions that had been proposed to be 

involved in anxiety with a literature search of anxiety review articles. From two histories of 

anxiety research (Griebel and Holmes, 2013; Tone, 2009), a list of ten anxiotropic 

interventions were chosen to be included in the systematic review, either due to their 

clinical relevance (e.g., diazepam, Htt), their role as an example of a class of proposed 

anxiety-related factors (e.g., isolation), or their connection to possible forthcoming 

therapeutics (e.g. Crh). A systematic review was conducted to identify published articles 

addressing experimental outcomes in rodents from the EPM, OF, or LD assays for these 

interventions (Figure 1). The literature for each genetic, pharmacological or environmental 

intervention was identified by a search of PubMed and EMBASE using specific search 

phrases (Table 1). The selective serotonin reuptake inhibitors (SSRIs), which have clinical 

importance (Baldwin et al., 2014), a very large number of studies conducted on them 

(Griebel and Holmes, 2013), and controversial efficacy (Kirsch et al., 2008) are the subject 

of a separate meta-analytic study, currently in preparation. 

2.2 Eligibility criteria and study selection 

The search phrases in Table 1 were used to identify lists of studies. We exported the 

articles’ bibliographic data (including study ID, date of publication, title and abstract) of to a 

spreadsheet. Each article on this list was then reviewed at one or more of four levels of 

detail (title, abstract, full text and a detailed review of experimental design) to determine 

their eligibility for the review. Studies were required to be written in English and to have 

reported ARDEB in adult rats or mice. We required that each included study contain (1) 

primary behavior data from either an OF, EPM, or LD experiment for at least one of the 
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interventions of interest, (2) suitable control data and (3) the relevant statistics (mean, 

standard error or standard deviation, and sample sizes of both control and intervention 

groups). Experiments that used combination treatments were excluded. Only studies in 

which adult rodents were assayed were included. For gene knockout and overexpression 

interventions, we included only experiments that used a lifetime loss of function throughout 

the entire animal. All eligible experiments from all eligible studies were included in the ten 

meta-analyses (Table 1). 

2.3 Data items and extraction 

The following data were collected from each of the included studies: authors, year of 

publication, figure and panel numbers, species, genotype, and mean, standard error of the 

mean and sample size (N) of each intervention and its related control group. Graphically 

presented data were extracted from Portable Document Format (PDF) files with the 

Measuring Tool in Adobe Acrobat Pro. All extracted data were checked by a second 

researcher. For values extracted from tables, the check consisted of ensuring the values 

were identical. For values extracted from graphical data (e.g. bar plots), the check 

consisted of a visual inspection to ensure that the extracted value matched the graphical 

data. Extraction discrepancies were reconciled by conference between the primary 

extractor and the researcher who identified the discrepancy. 

2.4 Summary measures 

The following behavioral metrics were extracted from the articles: in OF studies, percent or 

total time spent at the center; in EPM studies, percent or total time spent on the open arm; 

in LD studies, percent or total time spent in the bright area. To synthesize these time-based 

metrics from the three assays, all estimates were standardized to Hedges’ g, a preferred 

variant of Cohen’s d that uses the pooled standard deviation and is corrected for bias using 
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and full-text study and experiment selections were performed to yield the articles meeting 
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Table 1. Summary of systematic reviews of anxiety-related interventions in mouse and rat. 
The PubMed and EMBASE query phrases below were used to identify articles that might 
contain data relevant to the interventions and assays of interest. Of the hits, title, abstract 
and full-text study and experiment selections were performed to yield the articles meeting 
criteria. 

Table 1. Summary of systematic reviews of anxiety-related interventions in mouse and rat. 
The PubMed and EMBASE query phrases below were used to identify articles that might 
contain data relevant to the interventions and assays of interest. Of the hits, title, abstract 
and full-text study and experiment selections were performed to yield the articles meeting 
criteria. 

Query phrase used in PubMed and Embase for study 
selection

Articles 
identified 

by 
phrase

Articles 
meeting meta-

analysis 
criteria

Diazepam

Ht1a knockout

Ht1a over-expression

Htt knockout

Htt over-expression

Crh knockout

Crhr1 knockout

Pain

Restraint

Isolation

(diazepam OR valium) AND anxiety AND (open field OR 
exploratory) AND (rodent OR rat OR rats OR mouse OR 
mice OR Mus) 

540 172

(serotonin1A receptor OR 5-HT1A receptor) AND 
knockout AND anxiety

85 12

(serotonin1A receptor OR 5-HT1A receptor) AND 
(overexpression OR over-expression OR overexpressing) 
AND anxiety

13 3

(serotonin transporter) AND (knockout OR knockdown 
OR deletion OR antisense) AND anxiety AND (elevated 
plus maze OR open field OR light-dark) AND (rats OR rat 
OR mice OR mouse OR Mus)

37 13

serotonin transporter AND anxiety AND (elevated plus 
maze OR open field OR light-dark) AND (increased OR 
over-expression OR overexpressing  OR transgenic) AND 
(rats OR rat OR mice OR mouse OR Mus)

65 2

((corticotropin-releasing) AND (stress-induced behaviors 
OR stress-related behaviors or Behavioral responses to 
stress OR Behavioral responses to stress)) AND (CRH-
deficient mice OR lacking the CRH gene OR CRFko) 

12 2

(corticotropin releasing factor receptor 1-deficient mice) 
OR CRH1 receptor antisense oligodeoxynucleotide OR 
Crhr1 null mutants OR Corticotropin-releasing hormone 
receptor antisense 

62 6

(inflammatory pain OR neuropathic pain)  AND anxiety 
AND (elevated plus maze OR open field OR light-dark) 
AND (rats OR rat OR mice OR mouse OR Mus)

73 7

acute restraint AND anxiety AND (elevated plus maze OR 
open field OR light-dark) AND (rats OR rat OR mice OR 
mouse OR Mus)

87 15

(social isolation OR single housing)  AND anxiety AND 
(elevated plus maze OR plus-maze OR open field OR 
OFT OR light-dark)  AND (rats OR rat OR mice OR mouse 
OR Mus) 

167 50
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Hedges’ method (Borenstein et al., 2011; Cumming, 2012). The conventional adjectives to 

describe effect size - trivial, small, moderate, large - are used for effect sizes g < 0.2, g < 

0.5, g < 0.8 and g > 0.8 SD respectively (Cumming, 2012). 

2.5 Synthesis of results 

Meta-analyses of experimental outcomes, including the calculation of weighted mean effect 

sizes (Hedges’ g), 95% confidence intervals, I2 heterogeneity values, and P values using the 

random effects model, were performed with the metafor package in R (http://CRAN.R-

project.org/package=metafor) (Viechtbauer, 2010). All error bars in forest plots are 95% 

confidence intervals; forest plots were generated with custom R scripts. 

2.6 Assessment of bias across studies  

Publication bias was assessed with funnel plots and Egger’s linear regression test of funnel 

plot asymmetry (Egger et al., 1997). The standard normal deviate (Hedges’ g / standard 

error) for each study was regressed against the study’s precision (1 / standard error) using 

the “lm” function in R (http://www.R-project.org/). For studies that showed publication bias (P-

value ≤ 0.05), the trim-and-fill method (Duval and Tweedie, 2000) was employed to estimate 

the effects of publication bias on the effect size estimate. Funnel plots and trim-and-fill 

adjustments were performed with the ‘metafor’ package in R (Viechtbauer, 2010). 
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3. RESULTS 

3.1 Review selection criteria identified 306 eligible articles 

The flow-chart in Figure 1 summarizes the study selection process. In total, 1169 articles 

were identified by the initial search in PubMed and EMBASE databases. According to the 

selection criteria described above, 498 studies were excluded based on their titles and a 

further 150 were excluded based on their abstracts. The full text of the remaining 521 

articles were screened for criteria related to experimental paradigm, methods, and relevant 

variables, resulting in the exclusion of a further 215 studies. A total of 306 articles were 

considered eligible for inclusion in the review.  

3.2 Characteristics of included experiments 

The characteristics of all included studies are given in Table 3. In brief, 582 experiments 

from 306 studies comprising 411 EPM experiments, 84 OF experiments and 87 LD 

experiments were identified. Studies were published between 1985 and 2015 and included 

data from 318 experiments conducted on mice and 264 experiments on rats. Studies 

reported 515 experiments conducted on male animals, 29 on female, 35 on mixed and 3 

experiments with no gender information reported. ARDEB studies of diazepam used a 

median dosage of 1 mg/kg, with minimum and maximum dosages of 0.01 mg/kg and 20 

mg/kg respectively, a dose range is similar to or higher than commonly used by patients. 

3.3 Heterogeneity 

Statistically significant heterogeneity was found in (8/10) of the meta-analyses. Only two 

meta-analyses had high heterogeneity, I2 > 75%: Htr1a overexpression, and physical 

restraint (Higgins et al., 2003). Three of the meta-analyses, pain and Htt knockouts and 

diazepam, had moderate heterogeneity (50% < I2 < 75%). Five meta-analyses had low 
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1169 articles identified in PubMed and 
Embase searches for 10 anxiety related 
interventions using the search phrases 
given in Table1

671 articles included 

Title Screen

Abstract Screen

521 articles included 

Full text Screen

498 excluded 

150 excluded 

215 excluded 

306 articles included in meta-analyses

Figure 1. Flow chart of the systematic literature review of 10 anxiotropic interventions. 
The literature was reviewed in a four-stage process, starting with searches of the Pubmed and EMBASE 
databases that yielded 1169 articles, followed by three screens of increasing detail, reviewing the article 
title, abstract, and full text for experimental design. A total of 306 articles were used in the meta-
analysis. Further details are given in Table 1 and the Methods section. 
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heterogeneity (I2 < 50%). As most of these syntheses contained data from more than one 

assay type, it is encouraging that half had low or moderate heterogeneity, and outcome that 

is compatible with the idea that the three ARDEB assays are testing similar aspects of 

rodent anxiety. 

3.4 Substantial publication bias in four anxiety factors 

Censorship of non-statistically significant experimental results and selective publication of 

statistically significant ‘positive’ results can cause a literature (and meta-analysis thereof) to 

overstate effect sizes. This effect, termed ‘publication bias,’ has a profound influence on the 

literature on rodent models of stroke, and may affect other animal models (Sena et al., 

2010). Publication bias in the ARDEB literature was assessed for the six meta-analyses that 

had at least 20 experiments (Table 2) (Sterne et al., 2011). Funnel plots of these data 

showed pronounced asymmetry (Figure 2), which pointed to publication bias in these 

literatures (Sterne et al., 2011). Egger’s asymmetry test indicated that four of these 

literatures showed statistically significant bias (Table 2). For the biased data sets, we 

applied trim-and-fill adjustment to estimate the number of hypothesized missing studies 

and to correct the bias (Duval and Tweedie, 2000) (Figure 2). These data support the idea 

that the literatures of diazepam, Htt knockout, social isolation and restraint effects on 

ARDEB are strongly affected by publication bias.  

3.5 Diazepam reduces anxiety-related defense behaviors 

Diazepam is an important minor tranquilizer that was used for decades as the first line of 

treatment for anxiety disorders (Tone, 2009) and, along with other benzodiazepines, is still 

used extensively to control anxiety (Baldwin et al., 2014). Recent clinical meta-analysis 

studies have found support for the efficacy of benzodiazepines in the short-term treatment 

of anxiety disorders (Baldwin et al., 2014). However, a review of diazepam effects in open 
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Figure 2. Funnel plots of three meta-analyses with evidence for publication bias. Where 
at least ten experiments were available for meta-analysis, the effect sizes (Hedges’ g) of the experiments 
are plotted against their respective standard errors. Points on each plot represent individual experiments. 
The triangle bounded by dotted lines indicates the area where 95% of studies are expected to fall, in the 
absence of both publication bias and study heterogeneity. Shown here are funnel plots for experiments 
on (A) diazepam, (B) social isolation, and (C) Htt knockout. 
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Experiments

386Diazepam

No. of
Studies

 83Isolation

Hedges' g
[95% CI]

 29Htt KO

p-value

 21Restraint

I2

[95% CI]

 21Pain

Egger's Test
p-value

 20Ht1a KO

No. of
Experiments Added
After Trim-and-Fill

  8Ht1a OE

Adjusted Hedges' g
[95% CI]

  8Crhr1 KO

p-value
Adjusted Hedges' g

  4Htt OE

  2Crh KO

172
50
13
16
7

11
3
6
2

2

-1.3 [-1.4;  -1.2]
0.33 [0.21;  0.44]
0.88 [0.65;  1.1]

0.67 [0.0062;  1.3]
0.56 [0.19;  0.92]
0.73 [0.5;  0.96]
-0.6 [-1.3;  0.13]
-1 [-1.3;  -0.7]

-0.94 [-1.7;  -0.2]

0.3 [-0.32;  0.92]

1.36e-144
3.37e-08
5.18e-14
0.0479

0.00283
3.15e-10

0.105
6.64e-11
0.0127

0.34

70.4 [67.2; 73.3]
26.9 [3.5; 44.6]
50.3 [23.7; 67.6]
83.4 [75.8; 88.7]
65.1 [44.6; 78]
28.0 [0; 58.2]

80.2 [61.8; 89.8]
13.1 [0; 55.7]

51.1 [0; 83.8]

0 [NA; NA]

2.35e-56
0.0146

6.72e-06
0.0305
0.763
0.545

NA
NA
NA

NA

102
12
10
0

NA
NA
NA
NA
NA

NA

-0.85 [-0.96;  -0.74]
0.21 [0.069;  0.34]
0.57 [0.29;  0.86]

NA
NA
NA
NA
NA

NA

4.72e-56
0.00316
9.71e-05

NA
NA
NA
NA
NA

NA

0.67 [0.0062;  1.3] 0.0479

No. of

Table 2. Results of Egger’s linear regression test for funnel plot asymmetry across six 
meta-analyses. Where at least twenty experiments were available for meta-analysis, Egger’s linear regres-
sion test for funnel plot asymmetry was performed. For each meta-analysis, the number of included studies, the 
vertical intercept of the linear regression, the corresponding 95% con�dence interval for the intercept, and the 
P-values of Egger’s test are listed. 
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field studies revealed widespread disagreement between with 29 studies supporting an 

anxiolytic effect and 23 supporting either an anxiogenic effect or no effect (Prut and 

Belzung, 2003). We reviewed the available literature on diazepam for the three major rodent 

ARDEB assays: EPM, OF and LD. This review identified 172 articles containing relevant 

data (Assie et al., 1993; Bahi et al., 2014; Barbosa et al., 2008; Baretta et al., 2012; Barnes 

et al., 1990; Bellavite et al., 2011; Belzung and Agmo, 1997; Bhatt et al., 2013; 

Bhattacharya and Mitra, 1991; Birkett et al., 2011; Blainski et al., 2010; Borsini et al., 1993; 

Brioni et al., 1994; Carneiro et al., 2005; Carro-Juarez et al., 2012; Cechin et al., 2003; Cha 

et al., 2005; Chen et al., 2004; 2005; Choleris et al., 2001; Cole and Rodgers, 1995; Colla et 

al., 2015; Consoli et al., 2007; Contreras et al., 2011; Costa et al., 2011; Costall et al., 1990; 

Da Silva et al., 1996; Dalvi and Rodgers, 2001; 1999; de A Vieira et al., 2013; de Almeida et 

al., 2012; de Castro et al., 2007; de Melo et al., 2006; de Sousa et al., 2007; de-Paris et al., 

2000; Drapier et al., 2007; R. W. Dunn et al., 1989; 1998; Ene et al., 2015; Engin et al., 2009; 

Ennaceur et al., 2010; Fajemiroye et al., 2014; Faria et al., 1997; Faturi et al., 2010; F. 

Fernandez et al., 2004; S. P. Fernandez et al., 2008; Flores et al., 2006; Fortes et al., 2013; 

Fraser et al., 2010; Frassetto et al., 2010; Galeotti et al., 2013; Girish et al., 2013; Gomes et 

al., 2010; Ma Eva Gonzalez-Trujano et al., 2006; Maria Eva Gonzalez-Trujano et al., 2015; 

González-Pardo et al., 2006; Griebel et al., 1998; 1997; 1999a; 1999b; 2002; Guilloux et al., 

2013; Gupta et al., 2014; 2015; Han et al., 2009; Harada et al., 2006; Hasenohrl et al., 1996; 

Hazim et al., 2014; Huerta-Reyes et al., 2013; Hui et al., 2002; Ishaq, 2014; N. S. Jain et al., 

2005; Jastrzebska-Wiesek et al., 2014; Jászberényi et al., 2009; 2007; Jessa et al., 1996; 

Jones et al., 1994; Kalouda and Pitsikas, 2015; Karakas et al., 2011; Karim et al., 2011; 

Kebebew and Shibeshi, 2013; Klodzinska et al., 2004a; 2004b; Kong et al., 2006; Kumar 

and Bhat, 2014; Kurhe et al., 2014; Kuribara et al., 2000; la Pena et al., 2013; LaBuda and 

Fuchs, 2001; Langen et al., 2005; Leggio et al., 2011; Lepicard et al., 2000; Jie Liu et al., 
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2015; Lolli et al., 2007; Mahendra and Bisht, 2011; Mansouri et al., 2014; Martinez et al., 

2006; Mechan et al., 2002; Melo et al., 2010; Mesfin et al., 2014; Meyer et al., 2013; Mi et 

al., 2005; Micale et al., 2009; 2008; Molander et al., 2011; Molina-Hernandez et al., 2004; 

Mora et al., 2005; Moreira et al., 2014; Nagaraja et al., 2012; Ochoa-Sanchez et al., 2012; 

Ognibene et al., 2008; Okuyama et al., 1999; Onusic et al., 2002; Pain et al., 1999; Paine et 

al., 2002; Parent et al., 2012; Pellow et al., 1985; Peng et al., 2004; Pires et al., 2013; 

Plaznik et al., 1994; Ponten et al., 2011; Popik et al., 2006; Radulovic et al., 2013; Rago et 

al., 1988; Ramanathan et al., 1998; Raquibul Hasan et al., 2009; Rejon-Orantes et al., 2013; 

Rex et al., 2002; Rochford et al., 1997; Saiyudthong and Marsden, 2011; Sakaue et al., 

2003; Santos Rosa et al., 2012; Satyan et al., 1998; Schmitt et al., 2002; 2001; Sherif et al., 

1994; Silva et al., 2007; Simpson and Kelly, 2012; Sorra et al., 2014; Srinivasan et al., 2003; 

Stankevicius et al., 2008; Stefanski et al., 1992; Steiner et al., 2012; Stemmelin et al., 2008; 

Sugiyama et al., 2012; Swami et al., 2014; Taiwo et al., 2012; Tanaka et al., 2013; 

Tatarczynska et al., 2004; Thippeswamy et al., 2011; Thompson et al., 2015; Thongsaard et 

al., 1996; Tolardo et al., 2010; Varty et al., 2002; Venancio et al., 2011; Volke et al., 1998; 

Wada and Fukuda, 1991; Wanasuntronwong et al., 2012; Wang et al., 2015; Wesolowska 

and Nikiforuk, 2007; Wikinski et al., 2001; Wolfman et al., 1994; Yadav et al., 2008; Yamada 

et al., 2000; Yao et al., 2010; Yasumatsu et al., 1994; Zanoli et al., 2002; L.-M. Zhang et al., 

2014; Zheng et al., 2009). Calculation of an average Hedges’ g (Cumming, 2012) for the 386 

experiments contained therein indicated that diazepam had a very large effect on ARDEB, 

with a -1.26 g [95CI -1.36, -1.17] reduction compared with untreated control animals (Figure 

3, Table 2). However, as Egger’s regression indicated the source literature was affected by 

publication bias, trim-and-fill correction indicated a smaller - though still large - effect of -

0.85 g [95CI -0.74, -0.96]. The meta-analysis had a moderate level of heterogeneity (I2 = 

70.4%). Subgroup analysis of assay types suggest that assays were not major source of 
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Random effects model
Heterogeneity: I−squared=70.4%, tau−squared=0.5975, p<0.0001

Assay = EPM

Assay = LD 

Assay = OF 

Random effects model

Random effects model

Random effects model

Heterogeneity: I−squared=67.8%, tau−squared=0.5613, p<0.0001

Heterogeneity: I−squared=67.9%, tau−squared=0.5407, p<0.0001

Heterogeneity: I−squared=65.2%, tau−squared=0.357, p<0.0001

Gonzalez−Trujano ME   2012   Mice   0.01mg/kg   Male
Gonzalez−Trujano ME   2012   Mice   0.03mg/kg   Male
Gonzalez−Trujano ME   2015   Mice   0.1mg/kg   Male
Leggio   2011   Mice   0.1mg/kg   Male
Gonzalez−Trujano ME   2012   Mice   0.1mg/kg   Male
Harada K   2006   Rats   0.1mg/kg   Male
Griebel G   1999   Rats   0.1mg/kg   Male
Ponten   2011   Mice   0.1mg/kg   Male
Leggio   2011   Mice   0.1mg/kg   Male
Leggio   2011   Mice   0.1mg/kg   Male
Leggio   2011   Mice   0.1mg/kg   Male
Jones GH   1994   Mice   0.2mg/kg   Male
Satyan   1998   Rats   0.25mg/kg   Female and Male
Ene HM   2015   Mice   0.25mg/kg   Male
Ramanathan M   1998   Rats   0.25mg/kg   Female and Male
Griebel G   1998   Rats   0.25mg/kg   Male
Yasumatsu H   1994   Rats   0.25mg/kg   Male
Gonzalez−Trujano ME   2012   Mice   0.3mg/kg   Male
Wolfman C   1994   Mice   0.3mg/kg   Male
Assi.. MB   1993   Mice   0.3mg/kg   Male
Griebel G   1999   Rats   0.3mg/kg   Male
Dunn   1998   Rats   0.3mg/kg   Male
Harada K   2006   Rats   0.32mg/kg   Male
Jones GH   1994   Mice   0.39mg/kg   Male
Brioni   1994   Rats   0.484mg/kg   Male
Mahendra P   2011   Mice   0.5mg/kg   Male
Leggio   2011   Mice   0.5mg/kg   Male
Leggio   2011   Mice   0.5mg/kg   Male
Leggio   2011   Mice   0.5mg/kg   Male
Ramanathan M   1998   Rats   0.5mg/kg   Female and Male
Ognibene E   2008   Mice   0.5mg/kg   Male
Ene HM   2015   Mice   0.5mg/kg   Male
Srinivasan J   2003   Rats   0.5mg/kg   Male
Ponten   2011   Mice   0.5mg/kg   Male
Peng WH   2004   Mice   0.5mg/kg   Male
Yasumatsu H   1994   Rats   0.5mg/kg   Male
Yamada K   2000   Mice   0.5mg/kg   Not specified
Drapier D   2007   Rats   0.5mg/kg   Male
Mesfin M   2014   Mice   0.5mg/kg   Male
Lepicard EM   2000   Mice   0.5mg/kg   Male
Lepicard EM   2000   Mice   0.5mg/kg   Male
Griebel G   1999   Rats   0.5mg/kg   Male
Rochford J   1997   Mice   0.5mg/kg   Male
Fraser LM   2010   Mice   0.5mg/kg   Female and Male
Sakaue M1   2003   Mice   0.5mg/kg   Male
Jain   2005   Rats   0.5mg/kg   Male
Griebel G   1998   Rats   0.5mg/kg   Male
Leggio   2011   Mice   0.5mg/kg   Male
Wolfman C   1994   Mice   0.6mg/kg   Male
Baretta IP   2012   Mice   0.75mg/kg   Male
Tolardo R   2010   Mice   0.75mg/kg   Male
Da Silva NL   1996   Rats   0.75mg/kg   Male
R..go L   1988   Mice   0.75mg/kg   Male
Da Silva NL   1996   Rats   0.75mg/kg   Female
Jones GH   1994   Mice   0.78mg/kg   Male
Brioni   1994   Rats   0.997mg/kg   Male
Brioni   1994   Mice   0.997mg/kg   Male
Ramanathan M   1998   Rats   1mg/kg   Female and Male
Micale   2009   Mice   1mg/kg   Male
Martinez AL   2006   Mice   1mg/kg   Male
Leggio   2011   Mice   1mg/kg   Male
Leggio   2011   Mice   1mg/kg   Male
Sugiyama A   2012   Rats   1mg/kg   Male
Saitoh A   2013   Rats   1mg/kg   Male
Kumar D   2014   Rats   1mg/kg   Female and Male
Gonzalez−Trujano ME   2012   Mice   1mg/kg   Male
Karim N   2011   Mice   1mg/kg   Male
Carro−Juarez M   2012   Rats   1mg/kg   Male
Silva   2007   Mice   1mg/kg   Male
Melo FH   2010   Mice   1mg/kg   Male
Yamada K   2000   Mice   1mg/kg   Not specified
Ven..ncio ET   2011   Rats   1mg/kg   Male
Yadav AV   2008   Mice   1mg/kg   Male
Kumar D   2014   Rats   1mg/kg   Female and Male
Ochoa−Sanchez R   2012   Rats   1mg/kg   Male
Thippeswamy BS   2011   Mice   1mg/kg   Male
Lolli LF   2007   Mice   1mg/kg   Male
Lolli LF   2007   Mice   1mg/kg   Male
Peng WH   2004   Mice   1mg/kg   Male
Fajemiroye JO   2014   Mice   1mg/kg   Male
Girish C   2013   Mice   1mg/kg   Male
Girish C   2013   Mice   1mg/kg   Male
Micale   2008   Mice   1mg/kg   Male
Saiyudthong   2011   Rats   1mg/kg   Male
Consoli D   2007   Mice   1mg/kg   Male
Nagaraja TS   2012   Mice   1mg/kg   Male
Girish C   2013   Mice   1mg/kg   Male
Taiwo AE   2012   Rats   1mg/kg   Female
Micale   2009   Mice   1mg/kg   Male
de Sousa FC   2007   Mice   1mg/kg   Male
Gomes PB   2010   Mice   1mg/kg   Male
Bahi A   2014   Mice   1mg/kg   Male
Harada K   2006   Rats   1mg/kg   Male
Barbosa PR   2008   Rats   1mg/kg   Male
Mansouri MT   2014   Rats   1mg/kg   Male
Blainski A   2010   Mice   1mg/kg   Male
Wang X   2015   Mice   1mg/kg   Male
Mansouri MT   2014   Rats   1mg/kg   Male
de−Paris F   2000   Rats   1mg/kg   Male
Nagaraja TS   2012   Mice   1mg/kg   Male
Rejon−Orantes JC   2013   Mice   1mg/kg   Male
de Sousa FC   2007   Mice   1mg/kg   Male
Kebebew Z   2013   Mice   1mg/kg   Male
Ponten   2011   Mice   1mg/kg   Male
de Melo CT   2006   Mice   1mg/kg   Male
Cechin EM   2003   Rats   1mg/kg   Male
Sorra K   2014   Mice   1mg/kg   Male
Taiwo AE   2012   Rats   1mg/kg   Male
Rochford J   1997   Mice   1mg/kg   Male
Sugiyama A   2012   Rats   1mg/kg   Male
Dunn   1998   Rats   1mg/kg   Male
Lepicard EM   2000   Mice   1mg/kg   Male
Kuribara   2000   Mice   1mg/kg   Male
Huerta−Reyes M   2013   Mice   1mg/kg   Female and Male
Taiwo AE   2012   Rats   1mg/kg   Male
Kalouda T   2015   Rats   1mg/kg   Male
Taiwo   2012   Rats   1mg/kg   Male
Thongsaard W   1996   Rats   1mg/kg   Male
Yasumatsu H   1994   Rats   1mg/kg   Male
Raquibul Hasan SM   2009   Mice   1mg/kg   Male
Hasen..hrl RU   1996   Rats   1mg/kg   Male
Bhattacharya   1991   Mice   1mg/kg   Male
Mechan AO   2002   Rats   1mg/kg   Male
Pellow S   1985   Rats   1mg/kg   Male
Parent AJ   2012   Rats   1mg/kg   Male
Thongsaard W   1996   Rats   1mg/kg   Male
Mora S   2005   Rats   1mg/kg   Female and Male
Griebel G   1999   Rats   1mg/kg   Male
Cole   1995   Mice   1mg/kg   Male
Lepicard EM   2000   Mice   1mg/kg   Male
Paine TA   2002   Rats   1mg/kg   Male
Mechan AO   2002   Rats   1mg/kg   Male
Frassetto   2010   Rats   1mg/kg   Male
Hui   2002   Mice   1mg/kg   Male
Sakaue M1   2003   Mice   1mg/kg   Male
Chen   2004   Mice   1mg/kg   Male
Faria   1997   Rats   1mg/kg   Male
Griebel G   1998   Rats   1mg/kg   Male
Taiwo AE   2012   Rats   1mg/kg   Female
Taiwo   2012   Rats   1mg/kg   Female
Griebel G   2002   Rats   1mg/kg   Male
Jaszberenyi M   2007   Rats   1mg/kg   Male
Griebel G   1999   Rats   1mg/kg   Male
Okuyama S   1999   Rats   1mg/kg   Male
Wanasuntronwong   2012   Mice   1mg/kg   Male
Da Silva NL   1996   Rats   1mg/kg   Male
Fernandez SP   2008   Mice   1mg/kg   Male
Jaszberenyi   2009   Rats   1mg/kg   Male
Steiner MA   2012   Rats   1mg/kg   Male
Leggio   2011   Mice   1mg/kg   Male
Leggio   2011   Mice   1mg/kg   Male
Da Silva NL   1996   Rats   1mg/kg   Female
Meyer L   2013   Rats   1.25mg/kg   Male
Dunn RW   1989   Rats   1.25mg/kg   Male
Meyer L   2013   Rats   1.25mg/kg   Male
Klodzinska   2004   Rats   1.25mg/kg   Male
Klodzinska   2004   Rats   1.25mg/kg   Male
Tatarczynska E   2004   Rats   1.25mg/kg   Male
Wesolowska A   2007   Rats   1.25mg/kg   Male
Jastrzebska−Wi..sek M   2014   Rats   1.25mg/kg   Male
Simpson J   2012   Rats   1.25mg/kg   Male
Molina−Hernendez M   2004   Rats   1.3mg/kg   Male
Zanoli   2002   Rats   1.5mg/kg   Male
Griebel G   1997   Rats   1.5mg/kg   Male
Dalvi A   2001   Mice   1.5mg/kg   Male
Rago L   1988   Mice   1.5mg/kg   Male
Sherif F   1994   Rats   1.5mg/kg   Male
Dalvi A   1999   Mice   1.5mg/kg   Male
Drapier D   2007   Rats   1.5mg/kg   Male
Stankevicius D   2008   Mice   1.5mg/kg   Not specified
LaBuda   2001   Mice   1.5mg/kg   Female and Male
Jones GH   1994   Mice   1.56mg/kg   Male
Brioni   1994   Rats   1.99mg/kg   Male
Gonzalez−Trujano ME   2012   Mice   2mg/kg   Male
Gupta D   2014   Mice   2mg/kg   Male
Gupta D   2015   Mice   2mg/kg   Female and Male
Kurhe YV   2014   Mice   2mg/kg   Male
de Almeida   2012   Mice   2mg/kg   Male
Karim N   2011   Mice   2mg/kg   Male
Carro−Ju..rez M   2012   Rats   2mg/kg   Male
Swami SU   2014   Mice   2mg/kg   Male
Fortes AC   2013   Mice   2mg/kg   Male
Carneiro LM   2005   Rats   2mg/kg   Female and Male
Bhatt S   2013   Mice   2mg/kg   Male
Carro−Juarez M   2012   Rats   2mg/kg   Male
Han H   2009   Mice   2mg/kg   Male
Lepicard EM   2000   Mice   2mg/kg   Male
Yao Y   2010   Mice   2mg/kg   Male
Rochford J   1997   Mice   2mg/kg   Male
Karim N   2011   Mice   2mg/kg   Male
Pellow S   1985   Rats   2mg/kg   Male
Faturi CB   2010   Rats   2mg/kg   Male
Chen SW   2005   Mice   2mg/kg   Male
Contreras CM   2011   Rats   2mg/kg   Female
de la Pena JB   2013   Mice   2mg/kg   Male
Fernandez SP   2008   Mice   2mg/kg   Male
Karim N   2011   Mice   2mg/kg   Male
Schmitt   2002   Rats   2mg/kg   Male
Volke V   1998   Rats   2mg/kg   Male
Chen SW   2005   Mice   2mg/kg   Male
Molander AC   2011   Rats   2mg/kg   Male
Schmitt   2001   Rats   2mg/kg   Male
Mi XJ   2005   Mice   2mg/kg   Male
Contreras CM   2011   Rats   2mg/kg   Male
Santos Rosa D   2012   Rats   2mg/kg   Male
Zhang LM   2014   Mice   2mg/kg   Male
Griebel G   1999   Rats   2mg/kg   Male
Colla AR   2015   Mice   2mg/kg   Male
Molander AC   2011   Rats   2mg/kg   Male
Griebel G   1998   Rats   2mg/kg   Male
Cha HY   2005   Mice   2mg/kg   Male
Cha HY   2005   Mice   2mg/kg   Male
Cha HY   2005   Mice   2mg/kg   Male
Cha HY   2005   Mice   2mg/kg   Male
Fernandez F   2004   Rats   2mg/kg   Male
Cha HY   2005   Mice   2mg/kg   Male
Liu J   2015   Mice   2mg/kg   Male
Engin E   2009   Rats   2mg/kg   Male
Lepicard EM   2000   Mice   2mg/kg   Male
Wanasuntronwong   2012   Mice   2mg/kg   Male
Sakaue M1   2003   Mice   2mg/kg   Male
Fraser LM   2010   Mice   2mg/kg   Female and Male
Liu J   2015   Mice   2mg/kg   Male
Pain L   1999   Rats   2mg/kg   Male
Paine TA   2002   Rats   2mg/kg   Male
Boerngen−Lacerda   2000   Mice   2mg/kg   Male
Karaka.. A   2011   Rats   2mg/kg   Male
Tatarczynska E   2004   Rats   2.5mg/kg   Male
Wesolowska A   2007   Rats   2.5mg/kg   Male
Klodzinska A   2004   Rats   2.5mg/kg   Male
Klodzinska   2004   Rats   2.5mg/kg   Male
Dunn RW   1989   Rats   2.5mg/kg   Male
de Castro PC   2007   Rats   2.5mg/kg   Male
Jastrzebska−Wiesek M   2014   Rats   2.5mg/kg   Male
Drapier D   2007   Rats   2.5mg/kg   Male
Yasumatsu H   1994   Rats   2.5mg/kg   Male
Flores JA   2006   Rats   2.5mg/kg   Male
Simpson J   2012   Rats   2.5mg/kg   Male
Harro J   1990   Mice   2.5mg/kg   Male
Popik P   2006   Rats   2.5mg/kg   Male
Wada T   1991   Rats   2.5mg/kg   Male
Brioni   1994   Rats   2.99mg/kg   Male
Dunn   1998   Rats   3mg/kg   Male
Stemmelin J   2008   Rats   3mg/kg   Male
Griebel G   2002   Rats   3mg/kg   Male
Griebel G   1999   Rats   3mg/kg   Male
Steiner MA   2012   Rats   3mg/kg   Male
Okuyama S   1999   Rats   3mg/kg   Male
Jones GH   1994   Mice   3.13mg/kg   Male
Harada K   2006   Rats   3.2mg/kg   Male
Fraser LM   2010   Mice   4mg/kg   Female and Male
Carro−Juarez M   2012   Rats   4mg/kg   Male
Moreira MR   2014   Rats   5mg/kg   Male
Tatarczynska E   2004   Rats   5mg/kg   Male
Klodzinska A   2004   Rats   5mg/kg   Male
Klodzinska   2004   Rats   5mg/kg   Male
Weso..owska A   2007   Rats   5mg/kg   Male
Larissa FdA   2013   Mice   5mg/kg   Male
Yasumatsu H   1994   Rats   5mg/kg   Male
Jastrzebska−Wiesek M   2014   Rats   5mg/kg   Male
Harro J   1990   Rats   5mg/kg   Male
Wada T   1991   Rats   5mg/kg   Male
Simpson J   2012   Rats   5mg/kg   Male
Popik P   2006   Rats   5mg/kg   Male
Langen B   2005   Rats   6mg/kg   Male
Jones GH   1994   Mice   6.25mg/kg   Male
Tanaka M   2013   Mice   10mg/kg   Male
Hazim AI   2014   Rats   10mg/kg   Male
Hazim AI   2014   Rats   10mg/kg   Male
Okuyama S   1999   Rats   10mg/kg   Male
Griebel G   2002   Rats   10mg/kg   Male
Wada T   1991   Rats   10mg/kg   Male
Wada T   1991   Rats   10mg/kg   Male
Yasumatsu H   1994   Rats   10mg/kg   Male
Steiner MA   2012   Rats   10mg/kg   Male
Harada K   2006   Rats   10mg/kg   Male
Popik P   2006   Rats   10mg/kg   Male
Jones GH   1994   Mice   12.5mg/kg   Male
Rex   2002   Rats   15mg/kg   Male
Popik P   2006   Rats   20mg/kg   Male

Wikinski SI   2001   Rats   0.03mg/kg   Male
Costall   1990   Mice   0.063mg/kg   Male
Barnes NM   1990   Mice   0.063mg/kg   Male
Wikinski SI   2001   Rats   0.1mg/kg   Male
Costall   1990   Mice   0.125mg/kg   Male
Barnes NM   1990   Mice   0.125mg/kg   Male
Costall   1990   Mice   0.25mg/kg   Male
Barnes NM   1990   Mice   0.25mg/kg   Male
Wikinski SI   2001   Rats   0.3mg/kg   Male
Birkett   2011   Mice   0.3mg/kg   Male
Harada K   2006   Mice   0.32mg/kg   Male
Mahendra P   2011   Mice   0.5mg/kg   Male
Costall   1990   Mice   0.5mg/kg   Male
Barnes NM   1990   Mice   0.5mg/kg   Male
Zheng   2009   Mice   0.5mg/kg   Female and Male
Sugiyama A   2012   Rats   1mg/kg   Male
Yadav AV   2008   Mice   1mg/kg   Male
Pires LF   2013   Mice   1mg/kg   Male
Saitoh A   2013   Rats   1mg/kg   Male
Fajemiroye JO   2014   Mice   1mg/kg   Male
Ishaq H   2014   Rats   1mg/kg   Male
Galeotti N   2013   Mice   1mg/kg   Male
Thippeswamy BS   2011   Mice   1mg/kg   Male
Fernandez SP   2008   Mice   1mg/kg   Male
Costall   1990   Mice   1mg/kg   Male
Barnes NM   1990   Mice   1mg/kg   Male
Ven..ncio ET   2011   Rats   1mg/kg   Male
Belzung C   1997   Mice   1mg/kg   Male
Okuyama S   1999   Mice   1mg/kg   Male
Wikinski SI   2001   Rats   1mg/kg   Male
Wanasuntronwong   2012   Mice   1mg/kg   Male
Harada K   2006   Mice   1mg/kg   Male
Belzung C   1997   Mice   1mg/kg   Male
Costa   2011   Mice   1mg/kg   Male
Bellavite P   2011   Mice   1mg/kg   Male
Birkett   2011   Mice   1mg/kg   Male
Kurhe YV   2014   Mice   2mg/kg   Male
Gupta D   2014   Mice   2mg/kg   Male
Swami SU   2014   Mice   2mg/kg   Male
Bhatt S   2013   Mice   2mg/kg   Male
Gupta D   2015   Mice   2mg/kg   Female and Male
Karim N   2011   Mice   2mg/kg   Male
Fortes AC   2013   Mice   2mg/kg   Male
Karim N   2011   Mice   2mg/kg   Male
Mi XJ   2005   Mice   2mg/kg   Male
Wanasuntronwong   2012   Mice   2mg/kg   Male
Liu J   2015   Mice   2mg/kg   Male
Chen SW   2005   Mice   2mg/kg   Male
Radulovi.. NS   2013   Mice   2mg/kg   Male
Fernandez F   2004   Rats   2mg/kg   Male
Liu J   2015   Mice   2mg/kg   Male
Colla AR   2015   Mice   2mg/kg   Male
Fernandez SP   2008   Mice   2mg/kg   Male
Santos Rosa D   2012   Rats   2mg/kg   Male
Flores JA   2006   Rats   2.5mg/kg   Male
Griebel G   2002   Rats   2.5mg/kg   Male
Okuyama S   1999   Mice   3mg/kg   Male
Griebel G   2002   Rats   3mg/kg   Male
Birkett   2011   Mice   3mg/kg   Male
Harada K   2006   Mice   3.2mg/kg   Male
Onusic   2002   Rats   4mg/kg   Male
Moreira MR   2014   Rats   5mg/kg   Male
Borsini F   1993   Mice   5mg/kg   Male
Okuyama S   1999   Mice   10mg/kg   Male
Tanaka M   2013   Mice   10mg/kg   Male
Costall   1990   Mice   10mg/kg   Male
Harada K   2006   Mice   10mg/kg   Male

Stefanski R   1992   Rats   0.05mg/kg   Male
Plaznik A   1994   Rats   0.05mg/kg   Male
Jessa M   1996   Rats   0.05mg/kg   Male
Jessa M   1996   Rats   0.05mg/kg   Male
Stefa..ski R   1992   Rats   0.1mg/kg   Male
Plaznik A   1994   Rats   0.1mg/kg   Male
Ene HM   2015   Mice   0.25mg/kg   Male
Mesfin M   2014   Mice   0.5mg/kg   Male
Ennaceur A   2010   Mice   0.5mg/kg   Male
Stefa..ski R   1992   Rats   0.5mg/kg   Male
Ene HM   2015   Mice   0.5mg/kg   Male
Bahi A   2014   Mice   1mg/kg   Male
Saitoh A   2013   Rats   1mg/kg   Male
Sugiyama A   2012   Rats   1mg/kg   Male
Kebebew Z   2013   Mice   1mg/kg   Male
Ennaceur A   2010   Mice   1mg/kg   Male
Wanasuntronwong   2012   Mice   1mg/kg   Male
Thompson T   2015   Mice   1mg/kg   Male
Birkett   2011   Mice   1mg/kg   Male
Bellavite P   2011   Mice   1mg/kg   Male
Bellavite P   2011   Mice   1mg/kg   Male
Ochoa−Sanchez R   2012   Rats   1mg/kg   Male
Guilloux JP   2013   Mice   1.5mg/kg   Male
Choleris   2001   Mice   1.5mg/kg   Male
Kurhe YV   2014   Mice   2mg/kg   Male
Kong WX   2006   Rats   2mg/kg   Male
Colla AR   2015   Mice   2mg/kg   Male
Karaka.. A   2011   Rats   2mg/kg   Male
Liu J   2015   Mice   2mg/kg   Male
Liu J   2015   Mice   2mg/kg   Male
Fernandez F   2004   Rats   2mg/kg   Male
Wanasuntronwong   2012   Mice   2mg/kg   Male
Thompson T   2015   Mice   2mg/kg   Male
Ennaceur A   2010   Mice   3mg/kg   Male
Birkett   2011   Mice   3mg/kg   Male
Gonz..lez−Pardo   2006   Rats   5mg/kg   Male
Langen B   2005   Rats   6mg/kg   Male
Hazim AI   2014   Rats   10mg/kg   Male
Birkett   2011   Mice   10mg/kg   Male

Nc

4077

2901

 698

 478

   6
   6
   6
   7
   6
  16
  11
   7
   7
   7
   7
   8
  10
   5
   7
  11
  20
   6
  51
  10
  11
   6
  16
   8
   8
   6
   7
   7
   7
   7
   8
   5
   6
   7
  12
  20
   6
  11
   6
  18
  15
  10
   8
  15
  17
   6
  11
   7
  51
  10
   9
  12
  18
  12
   8
   8
   8
   7
   9
   6
   7
   7
   6
   5
   6
   6
   8
   7
  13
  12
   6
   9
   6
   6
  12
   6
  10
  10
  15
   9
   6
   6
  10
  10
  10
   6
   6
  10
  10
  12
  12
   9
  16
  15
  10
   9
  10
  10
  15
   6
   5
  12
   8
   7
  13
  13
   4
  10
   8
   5
   6
  15
  10
   8
  10
  10
  10
  10
  20
   5
   9
  24
   9
   7
  11
  10
  16
  11
  19
  18
   8
   9
  11
  16
  17
  10
   8
  11
  10
  10
  11
   7
  10
  14
   9
  12
  12
  10
  12
   7
   7
  12
  12
   8
  12
   7
   7
   6
   8
   8
   6
   7
  12
  11
  13
  18
  24
  10
  11
  10
  10
   8
   8
   6
   6
   6
   6
   7
   8
   7
   6
  11
  14
   8
   7
  11
  15
  10
   8
   8
   7
  10
  10
   6
   9
  12
   8
  12
   9
  10
   8
  10
  10
  10
   6
  10
  10
   8
   7
  11
  10
  10
  10
  10
  10
  10
  15
  10
  18
   9
  17
  15
  15
   8
   8
  12
   5
   6
   8
   7
   7
   8
  10
   8
  11
  20
   7
   6
   9
  24
  12
   8
   6
  13
  11
  11
  12
  14
   8
  16
  15
   7
   8
   6
   7
   7
   8
   9
  20
   8
  10
  24
   6
  24
  12
   8
   5
   8
   8
  14
  11
  12
  10
  20
  12
  16
  24
   8
  10
  24

  10
   5
  10
  10
   5
  10
   5
  10
  10
  14
  19
   6
   5
  10
  10
   6
   6
  10
   6
   9
   6
   6
   6
  12
   5
  10
   9
  10
  12
  10
   9
  19
  12
   7
  71
  14
   6
   8
   6
   8
   6
   8
  11
   8
  10
   9
  15
  10
   6
   8
  15
   8
  12
   6
   7
  13
  12
  13
  14
  19
   9
   8
   8
  12
   5
   5
  19

   8
   8
   8
   8
   8
   8
   6
   6
   9
   8
   6
   9
   8
   6
   8
   9
   9
   8
  14
  69
  69
  13
  11
  12
   6
   9
   8
   5
  15
  15
   8
   9
   8
   9
  14
  10
  12
   8
  14

Mean

25.05
25.05
15.68
 0.61

25.05
 9.11

15.20
17.29
 1.96
 1.27
 0.61

20.17
 2.76
 2.97
 3.34

14.65
 6.07

25.05
 5.21

22.80
15.20
 8.21
 9.11

20.17
 7.00

15.61
 1.39
 1.72
 0.70
 3.34
 9.80
 2.97
 4.07

17.29
 2.39
 6.07

18.69
29.45
14.72
17.54
16.42
18.18
 3.27

17.19
 9.60

21.55
14.65
 1.39
 5.21
 7.58

48.42
39.61
22.50
44.50
20.17
 7.00

11.60
 3.34
 9.29

14.22
 1.96
 2.29

13.06
27.38
14.41
25.05
16.84
11.49
21.63
23.78
18.69
24.27
10.27
13.96
11.62
14.27
15.46
 7.42
 2.40

22.33
25.66
25.66
12.05
22.48
 7.60

11.50
26.93
 4.41

15.72
33.29
36.90
27.69
 9.11

19.29
12.96
16.43
 8.02

13.46
21.38
 7.90
 4.03

36.29
14.67
17.29
38.44
23.87
31.44
 8.66
 3.27

28.72
 8.21

16.42
 1.07

27.04
10.15
23.22
 9.76
 0.87
 6.07

27.47
16.25
14.27
20.38
18.88
23.68
 0.87

11.11
15.20
12.00
17.54
36.74
19.59
51.28
44.32
 9.60

35.00
11.68
14.65
18.08
17.29
12.40
 4.08

18.18
12.10
 4.94

39.61
13.20
22.63
22.73
 0.98
 1.63

44.50
 8.99

16.40
19.33
10.75
 3.61

10.90
10.90
26.21
52.45
23.20
12.03
15.03
 8.50

22.50
 5.42
 9.85

29.45
20.02
 3.75

20.17
 7.00

25.05
17.19
16.59
 2.33

38.90
16.84
11.49
13.05
24.85
11.83
 2.00

14.94
12.78
16.42
22.35
 3.27

13.68
18.88
 8.55

16.05
24.18
35.82
13.20
15.97
 5.53

12.88
12.97
37.43
 3.62
 0.17

24.18
16.18
12.76
18.18
 5.99

42.08
14.65
 1.99
 2.53
 3.99
 4.94

31.94
 5.07
 0.22

18.30
17.54
 4.94
 9.60

17.19
 0.24
 0.16

36.74
 6.48
 0.17

10.90
10.90
10.75
 3.61

16.40
41.00
26.21
29.45
 6.07

36.60
52.45
17.08
27.81
 6.78
 7.00
 8.21
 1.45

12.40
15.20
22.73
12.10
20.17
 9.11

17.19
11.49
15.93
10.90
10.75
 3.61

10.90
32.37
 6.07

26.21
31.30
 6.78

52.45
27.81
13.09
20.17
12.69
 7.88

14.30
12.10
12.40
 6.78
 3.75
 6.07

22.73
 9.11

27.81
20.17
 8.43

27.81

11.50
47.81
43.51
11.50
47.81
43.51
47.81
43.51
11.50
11.70
 0.90

20.17
47.81
43.51
11.77
16.89
26.67
20.64
24.12
30.17
 9.30

33.61
39.73
26.46
47.81
43.51
32.61
24.74
12.96
11.50
29.29
 0.90
 6.76

21.29
15.98
11.70
 1.56

20.92
36.93
16.56
22.94
24.17
26.21
25.04
30.00
29.29
30.60
34.83
38.30
29.25
28.68
31.71
26.46
 9.39

10.33
 8.38

12.96
 6.92

11.70
 0.90
 4.77

36.66
40.27
12.96
41.28
47.81
 0.90

 1.43
19.32
 1.67
 1.67
 1.43

19.32
17.83
 0.72

18.30
 1.43

17.83
12.11
 8.02
 5.81
 2.71

18.30
 9.04
 9.02
 8.09

69.32
 6.34

16.10
 4.64
 0.33
 1.22
 2.10

13.10
 0.05
 5.28
 5.30
 1.24
 9.04

11.82
18.30
 8.09
 6.16
 0.47
 2.55
 8.09

SD

 9.349
 9.349
 2.402
 0.108
 9.349
 4.224

16.915
 1.608
 0.217
 0.541
 0.108
 6.223
 1.581
 1.056
 2.333

18.511
 3.737
 9.349

11.102
 4.322

16.915
 4.012
 4.224
 6.223
 3.488
 3.731
 0.217
 0.210
 0.109
 2.333
 3.576
 1.056
 1.306
 1.608
 1.409
 3.737
 3.910

11.209
16.485
 9.498

26.013
15.245
 3.081

14.012
13.606
 4.432

18.511
 0.217

11.102
 5.124

11.513
27.444
12.374
10.978
 6.223
 3.488
 6.788
 2.333
 3.182
 6.834
 0.216
 0.324

12.711
14.456
 4.190
 9.349
 5.380
 5.242
 8.312

10.917
 3.910
 8.800
 5.226
 5.155
 6.396
 7.887
 9.781
 5.866
 2.262
 8.693
 6.699
 6.700
 3.536

11.439
 5.481
 3.919
 7.321
 4.912
 3.373

10.049
10.288
14.703
 4.224

14.942
 6.633
 9.998
 7.485
 5.788

13.052
 2.939
 2.907

14.063
18.051
 1.608

11.468
18.148
 7.235
 7.751
 3.081

20.342
 4.012

26.013
 1.370

12.677
 8.027
 6.859
 7.134
 1.095
 3.737

30.320
24.795
15.350
13.506
 4.371

11.378
 1.095

10.230
16.915
12.641
 9.498

12.226
10.321
14.909
 8.056

13.606
17.707
 4.526

18.511
16.062
16.644
 6.633
 2.622

15.245
 5.543
 2.910

27.444
10.446
 4.993
 8.998
 0.108
 0.216

10.978
 5.738
 5.091
 7.420
 4.267
 1.368
 3.429
 3.960

21.847
17.594
14.191
15.949
15.549
 7.572

12.374
 6.532

10.904
11.209
 7.605
 3.953
 6.223
 3.488
 9.349
 2.275
 2.370
 0.416
 3.122
 5.380
 5.242
 5.590
 2.885
 6.623
 1.923

10.444
 3.980

26.013
 6.966
 3.081

16.683
 4.371

10.724
10.973
15.036
10.014
10.446
24.554
 4.704

10.815
 8.749

11.240
 5.010
 0.129

19.411
 8.472
 8.431

15.245
 5.126

18.381
18.511
 1.571
 1.600
 2.894
 3.502

23.231
 3.472
 0.086

15.832
 9.498
 2.910

13.606
14.012
 0.099
 0.129

12.226
 7.918
 0.046
 3.429
 3.960
 4.267
 1.368
 5.091
 8.433

21.847
11.209
 3.737

13.229
17.594
11.250
37.684
 5.939
 3.488
 4.012
 2.653
 6.633

16.915
 8.998
 5.543
 6.223
 4.224

14.012
 5.242
 3.357
 3.429
 4.267
 1.368
 3.960

16.189
 3.737

21.847
27.512
 8.399

17.594
37.684
28.018
 6.223
 3.153
 7.800
 8.932
 5.543
 6.633
 5.939
 5.558
 3.737
 8.998
 4.224

37.684
 6.223
 5.376

37.684

 5.493
10.795
18.244
 5.493

10.795
18.244
10.795
18.244
 5.493
 5.332
 1.744
 3.707

10.795
18.244
13.377
10.343
 6.859
 5.084

13.634
 3.500
 3.466
 6.579

10.476
 9.388

10.795
18.244
10.916
 6.766

10.264
 5.493
 9.520
 1.744

10.246
 4.987

10.870
 5.332
 0.498
 3.444
 6.726
 4.620
 4.164

10.608
 3.471

10.990
 8.854
 9.520
 8.983

10.119
 4.821

16.213
10.294
 5.560
 9.388
 6.604
 8.819

13.821
10.264
15.023
 5.332
 1.744
 4.462
 7.822
 6.094

10.264
 3.887

10.795
 1.744

 0.613
 6.850
 1.886
 1.886
 0.613
 6.850
 4.899
 1.086

13.481
 0.613
 4.899
 6.470
 8.642
 4.522
 0.933

13.481
 4.120
 3.003
 5.277

66.122
 3.406
 7.638
 3.177
 0.222
 0.833
 2.302
 6.285
 0.007
 2.489
 2.631
 2.010
 4.120
 5.009

13.481
 5.277
 4.235
 0.520
 1.380
 5.277

Control
NT

3921

2763

 691

 467

   6
   6
   6
   7
   6
  16
  11
   7
   7
   7
   7
   8
   5
   7
   7
  11
  20
   6
  21
  10
  11
   6
  16
   7
   6
   6
   7
   7
   7
   7
   8
   6
   6
   7
  12
  20
   6
  12
   6
  18
  18
  10
   8
  15
  17
   6
  11
   7
  22
  10
   9
  12
   8
  12
   8
   8
   8
   7
   9
   6
   7
   7
   6
   6
   6
   6
   8
   7
  13
  12
   6
   9
   6
   6
   7
   6
  10
  10
  15
   9
   6
   6
  10
  10
  10
   6
   6
  10
  10
  12
  12
   8
  16
  15
  10
   9
  10
  10
  10
   6
   5
  12
   8
   7
  13
  13
   4
  10
   8
   5
   6
  19
  10
   8
  10
  10
  10
  10
  20
   5
  10
  10
   9
   7
  11
  10
  16
  11
  19
  17
   8
   9
  11
  16
  17
  10
  10
  11
  10
  10
  11
   7
  10
  14
   9
  12
  12
  10
  12
   7
   7
  12
  12
   8
  12
   7
   7
   7
   8
   8
   6
   7
  12
  11
  13
   8
   8
  10
  11
  10
  10
   7
   8
   6
   6
   6
   6
   7
   8
   7
   6
  11
   8
   8
   7
  11
  20
  10
   8
   8
   7
  10
  10
   6
   9
  12
   8
   9
   9
  10
   8
   8
  10
   6
   6
  10
  10
   8
   7
  11
  10
  10
  10
  10
  10
  10
  15
  10
  20
   9
  17
  15
  15
   8
   8
   8
   5
   6
   8
   7
   7
   8
  10
   8
  11
  20
   7
   6
   9
  24
  12
   8
   6
  13
  11
  11
  12
  14
   4
  16
  15
   7
   8
   7
   7
   7
   8
   9
  20
   8
  10
  24
   6
  24
  12
   4
   5
   8
   8
  14
  11
  12
  10
  20
  12
  16
  24
   3
  10
  24

  10
   5
  10
  10
   5
  10
   5
  10
  10
  10
  20
   6
   5
  10
   7
   6
   6
  10
   6
   9
   6
   6
   6
  12
   5
  10
   9
  10
  12
  10
   9
  20
  12
   7
  69
  13
   6
   8
   6
   8
   6
   8
  11
   8
  10
   9
  15
  10
   6
   8
  15
   8
  12
   6
   7
  13
  12
  13
  14
  19
   9
   8
   8
  12
   5
   5
  20

   8
   8
   8
   8
   8
   8
   7
   6
   9
   8
   7
   8
   8
   6
   8
   8
   9
   8
  13
  69
  69
   8
  11
  12
   6
   9
   8
   5
  15
  15
   8
   9
   8
   8
  14
  10
  12
   8
  10

Mean

36.72
31.72
31.84
 0.94
40.89
11.88
20.10
15.46
 1.27
 0.61
 0.28
23.43
14.13
14.83
 5.97
25.81
 8.40
55.89
20.95
31.47
17.90
 7.46
11.75
29.33
13.50
46.17
 3.72
 4.38
 1.06
10.70
20.02
10.03
 5.77
30.36
 5.28
11.92
23.29
43.34
41.22
30.22
36.94
27.13
 5.01
21.26
12.60
21.87
14.30
 1.06
16.45
40.99
68.80
36.84
20.00
37.63
36.53
17.03
24.40
21.50
32.32
66.83
 9.63
13.27
89.29
93.73
40.51
69.94
38.39
29.88
65.85
61.41
32.49
60.75
35.67
38.93
62.85
37.73
50.08
47.01
 8.42
51.99
57.31
57.31
27.05
53.29
18.87
21.70
57.24
25.00
45.27
59.58
59.75
65.79
22.18
58.38
35.37
40.71
20.38
35.17
61.30
15.30
12.63
59.02
46.92
32.31
64.55
61.30
44.67
28.91
11.11
69.02
23.98
50.75
 7.37
80.85
22.11
43.13
21.44
16.62
10.77
66.05
49.04
33.27
38.13
24.14
39.46
16.28
32.07
33.20
23.80
29.85
44.05
33.88
69.87
62.73
16.00
58.33
24.16
23.72
23.38
22.56
16.50
 4.96
23.00
13.70
 8.28
43.71
14.96
24.74
23.05
 0.98
 1.63
42.78
15.86
24.13
25.68
20.70
 6.72
20.60
20.60
43.31
52.77
54.51
65.11
55.45
23.60
39.17
19.58
19.21
47.23
34.23
15.47
43.53
21.67
81.89
55.85
52.12
 8.24
68.95
55.48
46.76
70.98
37.55
74.97
11.17
52.76
36.27
65.30
40.91
10.24
50.07
29.97
47.03
44.96
58.19
57.47
36.81
50.70
43.36
35.02
42.67
56.46
40.46
 0.37
58.19
47.89
32.38
38.02
22.86
62.71
43.26
29.55
29.60
29.53
29.81
56.37
29.65
 0.31
44.16
30.60
10.35
25.60
31.21
 0.31
 0.42
40.75
12.76
 0.18
47.20
47.20
47.31
15.71
33.70
73.00
57.38
57.78
12.62
52.20
69.42
36.67
55.62
 7.73
14.97
24.54
11.95
32.90
47.80
35.06
19.88
59.33
29.83
44.32
19.62
33.15
70.40
70.43
23.46
70.40
72.84
15.48
59.59
74.70
16.23
72.71
64.50
28.38
44.00
45.97
46.61
38.51
40.00
49.10
19.66
21.21
12.27
32.14
28.51
58.88
33.77
18.57
77.22

18.28
49.84
44.47
22.33
67.09
68.75
71.52
72.36
16.13
13.04
 1.40
43.33
70.14
78.85
24.24
75.32
55.83
46.95
78.91
45.50
24.58
50.21
66.07
42.87
68.30
71.15
47.45
36.24
22.41
17.29
39.62
 5.27
11.83
29.77
19.91
17.70
 7.06
57.59
61.64
33.94
58.47
47.39
33.90
50.18
42.93
47.58
40.78
48.57
50.18
46.84
37.39
48.00
35.21
13.34
29.33
34.83
40.00
52.42
17.65
 4.73
20.27
73.33
74.43
47.22
56.04
70.31
16.43

 2.73
24.22
 1.70
 0.83
 2.37
16.55
15.56
 3.11
21.73
 1.48
16.28
44.66
56.22
20.50
 6.00
29.17
14.75
 9.73
 7.83
67.04
 6.21
15.23
 8.78
 0.47
 8.72
 7.37
28.25
 0.07
 8.43
 8.43
 2.98
15.29
 2.80
37.09
 8.78
 3.88
 0.85
11.77
15.08

SD

 6.15
14.18
 9.97
 0.22
10.66
 7.39
23.55
 4.54
 1.73
 0.11
 0.11
 8.58
 9.49
 7.58
 2.33
15.62
 5.11
12.78
15.62
 8.64
25.87
 7.86
 5.81
 9.43
27.48
 4.25
 0.43
 0.54
 0.11
 2.33
 4.47
 4.60
 0.33
15.48
 3.33
 6.88
 5.06
18.43
41.37
20.58
28.90
19.17
 3.70
16.35
10.31
 7.89
11.57
 0.13
27.91
22.28
 8.86
16.92
14.14
 9.15
 8.30
29.60
40.80
 2.33
 3.64
 8.74
 1.73
 2.48
11.72
 8.52
 5.28
 8.18
 5.38
 4.19
14.89
11.11
 3.91
13.20
 9.80
 9.96
27.94
 7.67
13.75
19.50
 2.26
13.81
15.80
15.80
 7.79
13.40
 3.79
 4.41
15.96
11.39
17.69
13.31
10.29
20.21
 7.92
22.91
13.94
13.93
 4.76
14.56
28.93
 4.41
 5.44
10.47
17.27
11.73
18.38
26.92
 7.98
17.01
 6.47
28.84
13.63
23.12
 6.11
51.79
 9.73
20.58
10.60
18.07
 4.33
31.61
30.58
20.58
17.44
 5.48
19.35
21.90
30.30
25.21
17.44
20.58
 7.28
28.59
41.07
46.05
 9.48
60.66
31.48
25.45
12.07
13.08
15.92
 2.44
14.81
 7.85
21.00
 6.86
13.06
59.65
12.37
 0.11
 0.33
10.06
 3.45
 5.75
 5.14
15.65
 4.92
15.19
17.54
28.09
13.87
10.23
34.98
30.03
11.90
15.91
24.49
 9.35
25.80
44.18
42.11
14.61
28.53
 2.26
 7.19
 7.11
 1.24
 6.31
 7.84
 7.86
16.02
 2.89
34.66
 4.16
16.35
13.02
15.90
 9.05
 3.08
16.18
 5.93
25.64
18.29
20.48
13.84
16.29
13.75
33.61
14.94
24.45
12.03
33.95
 0.13
26.44
28.34
17.62
13.50
16.90
12.66
26.03
30.63
30.66
30.52
30.44
20.03
30.71
 0.08
34.77
19.00
 8.36
24.33
22.77
 0.10
 0.78
14.26
32.66
 0.03
11.02
12.73
13.51
 5.20
 7.17
24.24
24.97
29.48
 7.87
18.52
17.23
33.75
49.28
 8.97
24.00
11.29
 8.90
20.89
31.51
14.49
 9.70
44.78
13.73
26.86
 9.44
 4.20
26.70
28.45
10.12
30.83
16.19
 7.28
22.63
50.28
 9.89
23.65
53.63
50.94
47.52
12.41
14.85
 8.93
18.02
23.88
10.49
17.40
 8.06
13.50
34.32
52.18
56.10
16.34
62.32

17.79
11.66
13.68
 8.11
15.29
25.85
16.19
21.28
 9.94
22.48
 2.91
 5.06
15.22
27.37
 6.33
13.51
 7.02
 7.76
14.85
 6.00
 6.83
 6.16
10.32
12.38
16.19
27.37
14.18
13.11
15.40
12.29
24.00
11.04
11.71
27.71
11.71
24.08
 1.16
 8.82
 5.19
 4.79
13.72
 2.97
 1.34
 5.08
 8.12
18.84
 8.10
13.91
14.59
19.29
 8.10
29.90
17.64
 8.93
10.58
22.08
15.40
34.40
28.61
 7.41
28.02
 6.31
27.17
15.40
 7.33
16.12
21.94

 1.56
 5.38
 1.27
 0.80
 0.94
 6.52
 5.58
 4.34
11.52
 1.37
 3.81
12.32
36.04
10.11
 3.00
24.51
13.90
 5.65
32.23
93.30
 3.99
 9.79
 3.51
 2.19
 1.34
 3.77
13.23
 0.02
 3.69
 3.58
 2.43
16.33
 1.84
34.80
37.48
21.43
 0.69
 4.87
47.00

Treated

−10 −5 0 5 10

Standardised 
mean difference SMD

−1.26

−1.33

−1.37

−0.53

−1.36
−0.51
−2.06
−1.79
−1.46
−0.45
−0.23
 0.50
 0.53
 1.57
 2.83

−0.41
−1.97
−1.85
−1.05
−0.63
−0.51
−2.54
−1.24
−1.21
−0.12
 0.11

−0.51
−1.10
−0.34
−7.05
−6.38
−6.06
−3.18
−2.95
−2.39
−1.84
−1.65
−1.11
−1.09
−1.04
−0.94
−0.87
−0.78
−0.77
−0.72
−0.50
−0.48
−0.26
−0.24
−0.05
 0.02
 1.73

−0.62
−1.98
−1.89
 0.12
 0.19
 0.66

−2.11
−0.45
−0.41
−7.28
−6.42
−6.19
−5.83
−5.80
−5.75
−5.25
−5.06
−4.72
−3.79
−3.63
−3.55
−3.30
−3.26
−3.10
−2.98
−2.90
−2.82
−2.78
−2.78
−2.63
−2.58
−2.45
−2.41
−2.41
−2.38
−2.37
−2.29
−2.26
−2.25
−2.25
−2.22
−2.15
−2.14
−2.07
−2.01
−1.97
−1.97
−1.91
−1.89
−1.88
−1.86
−1.82
−1.78
−1.77
−1.73
−1.68
−1.65
−1.58
−1.51
−1.47
−1.46
−1.46
−1.45
−1.37
−1.36
−1.35
−1.28
−1.24
−1.24
−1.18
−1.14
−1.12
−1.12
−1.09
−1.08
−0.99
−0.96
−0.95
−0.90
−0.81
−0.76
−0.76
−0.69
−0.63
−0.58
−0.54
−0.53
−0.50
−0.50
−0.39
−0.36
−0.34
−0.32
−0.32
−0.31
−0.23
−0.21
−0.20
−0.14
−0.05
−0.03
 0.00
 0.00
 0.16

−1.40
−1.35
−0.96
−0.81
−0.80
−0.79
−0.72
−0.64
−0.02
−2.37
−1.88
−1.63
−1.47
−1.20
−1.05
−0.88
−0.86
−0.43
−0.38
−2.01
−0.68
−7.71
−6.69
−6.19
−5.89
−5.65
−5.43
−4.94
−4.46
−4.23
−2.87
−2.68
−2.58
−2.35
−2.30
−2.20
−2.14
−2.09
−1.99
−1.87
−1.84
−1.75
−1.71
−1.67
−1.65
−1.64
−1.62
−1.55
−1.55
−1.54
−1.48
−1.45
−1.40
−1.36
−1.32
−1.28
−1.22
−1.22
−1.22
−1.19
−1.13
−1.10
−1.08
−1.08
−1.05
−0.92
−0.84
−0.82
−0.79
−0.72
−0.69
−0.44
−0.29
−0.28
−0.28
−4.10
−3.64
−3.41
−2.98
−2.63
−1.69
−1.26
−1.22
−1.04
−0.91
−0.90
−0.74
−0.62
−0.12
−0.44
−1.78
−1.55
−1.27
−1.24
−0.99
−0.96
−1.44
−1.99
−1.23
−1.00
−4.28
−2.79
−2.75
−2.57
−2.56
−2.38
−1.59
−1.42
−1.03
−1.01
−0.90
−0.78
−0.36
−0.83
−3.32
−3.09
−2.56
−2.03
−2.01
−1.46
−1.29
−0.97
−0.79
−0.77
−0.67
−0.46
−0.80
−0.94

−0.49
−0.16
−0.06
−1.50
−1.31
−1.08
−1.55
−1.39
−0.55
−0.09
−0.20
−4.82
−1.53
−1.46
−1.07
−4.48
−3.88
−3.84
−3.55
−2.97
−2.60
−2.40
−2.34
−1.44
−1.34
−1.14
−1.12
−1.06
−0.70
−0.58
−0.54
−0.53
−0.44
−0.40
−0.35
−0.34
−5.69
−5.18
−3.79
−3.49
−3.23
−2.82
−2.81
−2.78
−1.46
−1.17
−1.16
−1.08
−1.01
−0.93
−0.91
−0.72
−0.60
−0.46
−1.83
−1.39
−2.00
−1.66
−0.28
−0.70
−0.74
−4.88
−1.64
−2.53
−2.27
−1.48
−0.96

−1.04
−0.75
−0.02
 0.54

−1.11
 0.39
 0.40

−0.70
−0.26
−0.04
 0.33

−3.20
−1.74
−1.73
−1.40
−0.53
−0.53
−0.15
 0.01
 0.03
 0.03
 0.10

−1.19
−0.09
−6.21
−1.60
−1.38
−1.22
−0.97
−0.97
−0.74
−0.50
 2.26

−0.69
−0.03
 0.14

−0.60
−2.44
−0.22

95%−CI

[ −1.36; −1.166]

[ −1.44; −1.219]

[ −1.60; −1.144]

[ −0.77; −0.279]

[ −2.67; −0.053]
[ −1.67;  0.646]

[ −3.56; −0.552]
[ −3.09; −0.484]
[ −2.79; −0.126]
[ −1.15;  0.254]
[ −1.07;  0.609]
[ −0.57;  1.572]
[ −0.54;  1.600]
[  0.32;  2.818]
[  1.22;  4.440]

[ −1.41;  0.581]
[ −3.32; −0.626]
[ −3.31; −0.399]
[ −2.19;  0.090]
[ −1.49;  0.233]
[ −1.14;  0.121]

[ −4.21; −0.874]
[ −1.79; −0.691]
[ −2.19; −0.244]
[ −0.96;  0.718]
[ −1.02;  1.243]
[ −1.21;  0.199]
[ −2.21;  0.014]
[ −1.41;  0.729]

[−10.64; −3.472]
[ −9.33; −3.426]
[ −8.88; −3.236]
[ −4.91; −1.450]
[ −4.60; −1.300]
[ −3.75; −1.026]
[ −3.36; −0.325]
[ −3.03; −0.265]
[ −2.26;  0.041]

[ −1.96; −0.223]
[ −1.70; −0.371]
[ −2.16;  0.280]

[ −1.73; −0.005]
[ −1.97;  0.415]

[ −1.45; −0.094]
[ −1.43; −0.015]
[ −1.39;  0.398]
[ −1.48;  0.514]
[ −0.98;  0.459]
[ −0.92;  0.432]
[ −1.18;  1.084]
[ −0.81;  0.858]
[  0.44;  3.016]

[ −1.14; −0.114]
[ −3.09; −0.870]
[ −3.04; −0.734]
[ −0.68;  0.918]
[ −0.65;  1.022]
[ −0.17;  1.481]

[ −3.40; −0.822]
[ −1.45;  0.546]
[ −1.41;  0.580]

[−10.60; −3.963]
[ −8.95; −3.889]
[ −9.37; −2.998]
[ −8.57; −3.102]
[ −8.52; −3.083]
[ −8.75; −2.759]
[ −8.20; −2.305]
[ −7.74; −2.371]
[ −7.25; −2.177]
[ −5.58; −1.996]
[ −5.51; −1.740]
[ −4.85; −2.255]
[ −4.59; −2.006]
[ −5.19; −1.322]
[ −4.56; −1.632]
[ −4.81; −1.155]
[ −4.70; −1.105]
[ −4.18; −1.450]
[ −4.54; −1.029]
[ −4.07; −1.482]
[ −3.89; −1.373]
[ −3.59; −1.584]
[ −3.74; −1.159]
[ −4.03; −0.787]
[ −4.03; −0.787]
[ −3.57; −1.178]
[ −3.56; −1.172]
[ −3.47; −1.111]
[ −3.83; −0.687]
[ −3.82; −0.685]
[ −3.42; −1.079]
[ −3.39; −1.060]
[ −3.19; −1.114]
[ −3.18; −1.107]
[ −3.30; −0.832]
[ −2.88; −1.139]
[ −2.86; −1.075]
[ −3.07; −0.859]
[ −3.07; −0.748]
[ −2.98; −0.796]
[ −2.96; −0.788]
[ −2.84; −0.883]
[ −3.25; −0.390]
[ −3.36; −0.197]
[ −2.74; −0.802]
[ −2.92; −0.531]
[ −2.95; −0.404]
[ −2.56; −0.741]
[ −2.48; −0.681]
[ −3.22;  0.205]

[ −2.48; −0.456]
[ −2.60; −0.325]
[ −2.94;  0.021]

[ −2.78; −0.119]
[ −2.13; −0.612]
[ −2.36; −0.368]
[ −2.47; −0.233]
[ −2.27; −0.303]
[ −2.22; −0.268]
[ −2.21; −0.264]
[ −2.14; −0.213]
[ −1.81; −0.468]
[ −2.51;  0.262]

[ −2.10; −0.134]
[ −1.88; −0.305]
[ −2.09; −0.077]
[ −2.13;  0.138]

[ −1.85; −0.065]
[ −1.89; −0.016]
[ −1.64; −0.171]
[ −1.68;  0.069]

[ −1.42; −0.098]
[ −1.45; −0.069]
[ −1.70;  0.330]
[ −1.59;  0.319]
[ −1.44;  0.278]
[ −1.25;  0.164]
[ −1.22;  0.153]
[ −1.39;  0.393]
[ −1.45;  0.448]
[ −1.24;  0.453]
[ −1.24;  0.528]
[ −1.22;  0.547]
[ −1.17;  0.519]
[ −1.38;  0.734]
[ −1.19;  0.576]
[ −0.97;  0.514]
[ −1.14;  0.715]
[ −1.00;  0.605]
[ −0.95;  0.657]
[ −0.92;  0.829]
[ −0.83;  0.771]
[ −1.05;  1.048]
[ −1.05;  1.048]
[ −0.64;  0.959]

[ −2.31; −0.492]
[ −2.46; −0.231]
[ −1.81; −0.108]
[ −1.92;  0.293]
[ −1.91;  0.300]
[ −1.94;  0.360]
[ −1.74;  0.299]
[ −1.65;  0.370]
[ −1.15;  1.113]

[ −3.83; −0.904]
[ −2.87; −0.896]
[ −2.61; −0.638]
[ −2.35; −0.585]
[ −2.10; −0.292]
[ −1.90; −0.205]
[ −1.81;  0.045]
[ −1.74;  0.021]
[ −1.32;  0.460]
[ −1.26;  0.511]

[ −3.32; −0.701]
[ −1.70;  0.334]

[−11.60; −3.827]
[−10.11; −3.275]
[ −9.37; −2.997]
[ −8.94; −2.834]
[ −8.31; −2.993]
[ −7.80; −3.070]
[ −7.32; −2.560]
[ −6.88; −2.029]
[ −5.84; −2.626]
[ −4.14; −1.594]
[ −4.12; −1.233]
[ −4.11; −1.050]
[ −3.48; −1.217]
[ −3.18; −1.418]
[ −3.36; −1.044]
[ −3.43; −0.844]
[ −3.38; −0.810]
[ −3.35; −0.636]
[ −2.96; −0.787]
[ −2.92; −0.756]
[ −3.16; −0.337]
[ −2.82; −0.591]
[ −2.62; −0.716]
[ −2.83; −0.472]
[ −2.67; −0.619]
[ −2.72; −0.519]
[ −2.57; −0.523]
[ −2.70; −0.390]
[ −2.63; −0.452]
[ −2.50; −0.470]
[ −2.61; −0.286]
[ −2.72; −0.082]
[ −2.35; −0.367]
[ −2.31; −0.332]
[ −2.38; −0.174]
[ −2.40; −0.050]
[ −2.14; −0.294]
[ −2.19; −0.246]
[ −2.16; −0.226]
[ −2.09; −0.170]
[ −2.05; −0.145]
[ −2.03; −0.127]
[ −2.03; −0.125]
[ −1.82; −0.280]
[ −1.85;  0.015]

[ −1.50; −0.171]
[ −1.80;  0.149]

[ −1.49; −0.091]
[ −1.46;  0.020]
[ −1.43;  0.047]
[ −1.43;  0.557]
[ −1.27;  0.701]
[ −1.18;  0.617]
[ −1.53;  0.971]

[ −6.38; −1.825]
[ −5.38; −1.898]
[ −5.23; −1.604]
[ −4.64; −1.319]
[ −4.06; −1.201]
[ −2.74; −0.637]
[ −2.35; −0.157]
[ −2.15; −0.297]
[ −1.71; −0.378]
[ −2.03;  0.211]
[ −2.11;  0.313]
[ −1.70;  0.222]

[ −1.20; −0.043]
[ −0.92;  0.680]
[ −1.43;  0.556]

[ −3.20; −0.360]
[ −2.44; −0.655]
[ −2.20; −0.340]
[ −2.17; −0.313]
[ −1.84; −0.131]
[ −1.74; −0.168]
[ −2.83; −0.055]
[ −2.85; −1.123]
[ −2.02; −0.443]
[ −2.13;  0.137]

[ −6.24; −2.324]
[ −4.46; −1.114]
[ −4.33; −1.162]
[ −4.10; −1.044]
[ −3.97; −1.150]
[ −3.65; −1.109]
[ −2.31; −0.874]
[ −2.55; −0.289]
[ −1.97; −0.081]
[ −1.62; −0.409]
[ −2.11;  0.315]

[ −1.37; −0.190]
[ −1.17;  0.449]
[ −2.09;  0.436]

[ −5.53; −1.104]
[ −4.65; −1.520]
[ −3.97; −1.152]
[ −2.97; −1.096]
[ −3.08; −0.954]
[ −2.38; −0.541]
[ −2.28; −0.312]
[ −1.63; −0.309]
[ −1.63;  0.044]

[ −1.50; −0.052]
[ −1.25; −0.089]
[ −1.81;  0.888]
[ −1.72;  0.121]

[ −1.54; −0.345]

[ −1.39;  0.399]
[ −1.41;  1.080]
[ −0.93;  0.820]

[ −2.51; −0.482]
[ −2.75;  0.122]

[ −2.03; −0.129]
[ −3.06; −0.046]
[ −2.39; −0.395]
[ −1.45;  0.344]
[ −0.90;  0.726]
[ −0.83;  0.427]

[ −7.40; −2.236]
[ −3.03; −0.028]
[ −2.46; −0.446]
[ −2.11; −0.018]
[ −6.92; −2.043]
[ −6.06; −1.693]
[ −5.43; −2.256]
[ −5.60; −1.498]
[ −4.40; −1.543]
[ −4.29; −0.914]
[ −4.02; −0.784]
[ −3.93; −0.740]
[ −2.36; −0.527]
[ −2.79;  0.102]

[ −2.10; −0.178]
[ −2.13; −0.106]
[ −2.00; −0.107]
[ −1.53;  0.132]
[ −1.48;  0.317]
[ −1.48;  0.406]
[ −1.17;  0.106]
[ −1.26;  0.367]
[ −1.46;  0.663]

[ −0.68; −0.012]
[ −1.10;  0.421]

[ −8.65; −2.723]
[ −7.45; −2.906]
[ −5.95; −1.645]
[ −5.19; −1.799]
[ −5.16; −1.308]
[ −4.30; −1.334]
[ −4.05; −1.574]
[ −4.25; −1.304]
[ −2.47; −0.449]
[ −2.19; −0.149]
[ −1.94; −0.377]
[ −2.03; −0.129]
[ −2.24;  0.222]
[ −1.98;  0.114]

[ −1.67; −0.158]
[ −1.74;  0.304]
[ −1.42;  0.223]
[ −1.62;  0.689]

[ −3.14; −0.514]
[ −2.26; −0.520]
[ −3.00; −0.986]
[ −2.57; −0.750]
[ −1.03;  0.465]

[ −1.35; −0.040]
[ −1.70;  0.227]

[ −7.04; −2.714]
[ −2.82; −0.465]
[ −3.64; −1.412]
[ −4.03; −0.506]
[ −2.97;  0.005]

[ −1.63; −0.298]

[ −2.10;  0.023]
[ −1.78;  0.272]
[ −1.00;  0.960]
[ −0.46;  1.547]

[ −2.18; −0.036]
[ −0.60;  1.384]
[ −0.70;  1.507]
[ −1.88;  0.485]
[ −1.19;  0.668]
[ −1.02;  0.936]
[ −0.77;  1.434]

[ −4.75; −1.654]
[ −2.94; −0.541]
[ −3.14; −0.326]
[ −2.53; −0.276]
[ −1.50;  0.443]
[ −1.47;  0.414]
[ −1.13;  0.834]
[ −0.74;  0.766]
[ −0.31;  0.362]
[ −0.30;  0.369]
[ −0.78;  0.980]

[ −2.11; −0.271]
[ −0.89;  0.712]

[ −9.40; −3.009]
[ −2.70; −0.509]
[ −2.50; −0.260]
[ −2.63;  0.189]

[ −1.74; −0.211]
[ −1.73; −0.208]
[ −1.76;  0.286]
[ −1.44;  0.442]
[  0.93;  3.587]

[ −1.68;  0.295]
[ −0.77;  0.716]
[ −0.74;  1.019]
[ −1.43;  0.217]

[ −3.81; −1.061]
[ −1.04;  0.592]

Weight

100%

72.2%

16.9%

10.9%

 0.2%
 0.3%
 0.2%
 0.2%
 0.2%
 0.3%
 0.3%
 0.3%
 0.3%
 0.2%
 0.2%
 0.3%
 0.2%
 0.2%
 0.3%
 0.3%
 0.3%
 0.2%
 0.4%
 0.3%
 0.3%
 0.3%
 0.3%
 0.3%
 0.3%
 0.1%
 0.1%
 0.1%
 0.2%
 0.2%
 0.2%
 0.2%
 0.2%
 0.3%
 0.3%
 0.3%
 0.2%
 0.3%
 0.3%
 0.3%
 0.3%
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Figure 3. Meta-analysis of diazepam on rodent anxiety related behavior.

Meta-analysis of rodent diazepam e�ect sizes, shown as a forest plot of standardized e�ect sizes 
(Hedges’ g). The meta-analysis is sub-grouped by animal species. Error bars indicate the 95% con�-
dence intervals of standardized mean di�erence. The weighted average mean e�ect size of 
subgroups and all studies is represented by the central vertices of a red diamond; the outer vertices 
indicate the 95% con�dence intervals. Control and treatment samples sizes are given in the columns 
listed as NC and NT respectively.
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heterogeneity (Figure 3). Subgroup analysis of the assay types showed that EPM and LD 

yielded very similar diazepam effect sizes (g = -1.33 and -1.37 respectively, Figure 3). 

However, the diazepam effect size in OF was found to be substantially smaller (g = -0.53, 

Figure 3). Additional subgroup analyses of treatment duration variables, dosages and route 

of treatments revealed that these factors were also only minor sources of heterogeneity 

(data not shown), indicating that laboratory, dosage, strain and other possible sources of 

experimental variation likely play a role. As diazepam is universally accepted to be an 

effective anxiolytic, and it has a robust (bias-corrected) effect in the rodent ARDEB assays, 

this meta-analytic result verifies the validity of the defense behavior tests.  

3.6 5-HT1A receptor function influences ARDEB 

Following negative publicity regarding the adverse effects of benzodiazepines (Tone, 2009), 

pharmaceutical companies focused on the serotonergic system (Griebel and Holmes, 2013). 

Of the fourteen mammalian serotonergic receptors, much investigation has centered on the 

serotonin receptor 5-HT1A and its proposed influence on anxiety disorders and depression 

(Samuels et al., 2014). More than 1200 articles describe experiments connecting 5-HT1A 

agonism with rodent anxiety (Griebel and Holmes, 2013). However, a substantial proportion 

of those articles reported that 5-HT1A agonists or knockout of the Htr1a gene either 

produced no effect on anxiety or an effect that was opposite to the receptor’s proposed 

mode of action (Griebel and Holmes, 2013). We systematically reviewed the literature on 

gene manipulations of Htr1a and identified 11 knockout articles (Ferrés-Coy et al., 2013; 

Freeman-Daniels et al., 2011; Gleason et al., 2010; Groenink et al., 2003; Gross et al., 2002; 

A. Jain et al., 2012; Klemenhagen et al., 2006; Parks et al., 1998; Piszczek et al., 2013; 

Ramboz et al., 1998; Vinkers et al., 2010). Meta-analysis of the knockout data revealed that 

removal of Htr1a produced a moderate increase (Hedges’ g = 0.73 [95CI 0.50, 0.96] , P = 

3.5 x 10-10) in ARDEB phenotypes (Figure 4A). The three studies of Htr1a overexpression 
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Figure 4. Meta-analyses of serotonin receptor 1A interventions on rodent anxiety-
related behaviors. Meta-analysis of effect sizes of serotonin-targeted interventions is shown as a 
forest plot of standardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. 
The weighted average mean effect size of all studies is represented by the central vertices of a red 
diamond; the outer vertices indicate the 95% confidence intervals. Control and treatment samples sizes 
(NC, NT) and the assay types of the studies are given; elevated plus maze (EPM), open field (OF) and 
light-dark box (LD). Effects of: A. Serotonin receptor gene Htr1a knockout models. B. Htr1a overexpres-
sion. 
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found by the review (Audero et al., 2013; Bert et al., 2006; Kusserow et al., 2004) indicated 

that this intervention moderately decreased ARDEB (g = -0.6 [95CI -1.3, 0.13], P = 0.11; 

Figure 4B). The cumulative sample size of Htr1a overexpression is quite substantial (N = 

100, 98), though the moderate effect size observed was not statistically significant and had 

high heterogeneity (I2 = 80%). These results confirm that Htr1a function has a moderate 

effect on rodent anxiety. 

3.7 Anxiotropic effects of the serotonin transporter 

The serotonin transporter (SERT) is the target for the selective serotonin reuptake inhibitors 

(SSRIs), a class of drugs used to treat depression and anxiety (Baldwin et al., 2014). Meta-

analysis of thirteen knockout studies (Carroll et al., 2007; Holmes et al., 2003a; 2003b; 

Kalueff et al., 2007a; 2007b; Li et al., 2004; Line et al., 2011; Lira et al., 2003; Moya et al., 

2011; Olivier et al., 2008; Pang et al., 2011; Schipper et al., 2011; Zhao et al., 2006) 

revealed a large anxiogenic effect (g = 0.88 [95CI 1.26, 0.23] , P = 5.2 x 10-14; Figure 5A) 

produced by knocking out the SERT gene, Htt.  However, a funnel plot and Egger’s 

regression revealed a pronounced bias in reported effect sizes (Egger’s test P = 6.7 X 10-6, 

Table 2). Trim-and-fill adjustment added ten imputed data points to the left segment of the 

funnel plot, lowering the effect size to g = 0.57 [95CI 0.29, 0.86], a moderate effect. Only 

two articles studying the effect of Htt overexpression on ARDEB were found (Jennings et 

al., 2006; Line et al., 2011). Meta-analysis revealed a large anxiolytic effect (g = -0.94 [95CI 

-1.69, -0.20], P = 0.013; Figure 5B) in EPM and OF assays (no LD articles were found). The 

transporter gene knockout and overexpression effects clearly connect Htt function to 

rodent anxiety. However, the direction of effects is the opposite of what would be expected 

from the clinical application of SERT inhibitors, given that SSRI reduction of SERT function 

is believed to have a therapeutic, anxiety-reducing effect. 
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Figure 5. Meta-analyses of serotonin transporter interventions on rodent anxiety-related 
behaviors. Meta-analysis of effect sizes of serotonin-targeted interventions is shown as a forest plot of 
standardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. The 
weighted average mean effect size of all studies is represented by the central vertices of a red diamond; 
the outer vertices indicate the 95% confidence intervals. Control and treatment samples sizes (NC, NT) 
and the assay types of the studies are given; elevated plus maze (EPM), open field (OF) and light-dark 
box (LD). Effects of: A. Serotonin transporter gene (Htt) knockout models B. Htt overexpression models.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2016. ; https://doi.org/10.1101/020701doi: bioRxiv preprint 

https://doi.org/10.1101/020701
http://creativecommons.org/licenses/by/4.0/


 

15 

3.8 The effect of acute pain on rodent anxiety 

Environmental stressors have physiological effects on animals that promote the anxiety-like 

state (van Praag, 2003). To survey a range of stress modalities we selected acute pain, 

bodily restraint and social isolation for review; all three have been found to promote anxiety 

in humans (Sherif and Oreland, 1995). The systematic review identified seven papers 

measuring the effect of acute pain on ARDEB (Benbouzid et al., 2008; Leite-Almeida et al., 

2012; Yan Liu et al., 2015; Matsuzawa-Yanagida et al., 2008; Parent et al., 2012; Schellinck 

et al., 2003; Shang et al., 2014). Meta-analysis of the 21 experiments therein indicated a 

moderate anxiogenic effect (g = 0.56 [95CI 0.19, 0.93], P = 2.9 x 10-3; Figure 6A).  

3.9 The effect of bodily restraint on rodent anxiety 

Review of 16 studies of rodent bodily restraint (Anand et al., 2012; Busnardo et al., 2013; 

Carvajal et al., 2004; Chesworth et al., 2012; Estanislau and Morato, 2005; Granjeiro et al., 

2011; Harris et al., 2001; Joshi et al., 2014; Jing Liu et al., 2011; Locchi et al., 2008; Lunga 

and Herbert, 2004; Nosek et al., 2008; Ouagazzal et al., 2003; D. G. Reis et al., 2011; 

Rylkova et al., 2009; Walf and Frye, 2012) containing 21 experiments indicated that it had 

an overall moderate anxiogenic effect in EPM and OF assays (g = 0.70 [ 95% CI 0.82 - 

1.32], P = 0.027; Figure 6B). The restraint meta-analysis had a high level of heterogeneity, I2 

= 89%; a subgroup analysis by assay type revealed that the different assays were not the 

source of this variability (data not shown). 

3.10 Social isolation has a small effect on rodent defense behaviors 

Systematic review identified 50 articles on social isolation and ARDEB (Abramov et al., 

2004; Blakley and Pohorecky, 2006; Blednov et al., 2001; Bledsoe et al., 2011; Brenes et 

al., 2009; Carrier and Kabbaj, 2012; Chappell et al., 2013; Cheeta et al., 2001; Conrad et al., 

2011; Cuenya et al., 2012; Da Silva et al., 1996; Das et al., 2014; Djordjevic et al., 2012; 
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A

B
Crhr1 Knockout

Random effects model
Heterogeneity: I^2=13.1%, Tau^2=0, p=0.3278

Gammie, 2006   Mouse   Male   EPM
Muller, 2003   Mouse   Male   EPM
Smith, 1998   Mouse   Male   EPM
Trimble, 2007   Mouse   Mix  EPM
Liebsch, 1995   Rats   Male   EPM
Liebsch, 1999   Rats   Male   EPM
Muller, 2003   Mouse   Male   LD
Smith, 1998   Mouse   Male   LD

N

105

 19
 20
  9
 14
 10
  7
 20
  6

Mean

35.98
12.35
16.58
15.64
13.85
14.29
 3.97
 9.88

KO
SD

31.27
22.09
16.93
19.36
 6.13
15.40
 6.31
20.74

N

99

21
20
 8
 6
11
 7
20
 6

Mean

62.91
25.40
71.97
59.03
45.07
42.33
15.88
56.80

WT
SD

40.95
31.56
51.88
34.56
22.52
21.93
13.81
63.08

2 1 0 1 2 3

Anxiolytic Anxiogenic

Standardised mean difference SMD

1.00

0.72
0.47
1.40
1.69
1.78
1.39
1.09
0.92

95% CI

[ 1.30; 0.70]

[ 1.36; 0.08]
[ 1.10;  0.16]
[ 2.49; 0.31]
[ 2.81; 0.57]
[ 2.82; 0.73]
[ 2.59; 0.18]
[ 1.76; 0.42]
[ 2.14;  0.29]

W(random)

100%

21.8%
22.7%
 7.6%
 7.2%
 8.3%
 6.2%
20.1%
 6.1%

Crh Knockout

Random effects model
Heterogeneity: I^2=0%, Tau^2=0, p=0.9292

Dunn, 1999   Mouse   Male   EPM
Weninger, 1999   Mouse   Male   EPM

N

20

 8
12

Mean

45.74
47.86

KO
SD

17.96
30.14

N

21

 9
12

Mean

40.69
39.39

WT
SD

17.99
19.15

1 0 1 2

Anxiolytic Anxiogenic

Standardised mean difference SMD

0.30

0.27
0.32

95% CI

[ 0.32; 0.92]

[ 0.69; 1.22]
[ 0.48; 1.13]

W(random)

100%

41.5%
58.5%

Figure 6. Meta-analyses of the effects of stress signaling genes on anxiety-related 
behaviors. Meta-analysis of effect sizes of stress signaling genes, shown as a forest plot of standard-
ized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. The weighted aver-
age mean effect size of all studies is represented by the central vertices of a red diamond; the outer 
vertices indicate the 95% confidence intervals. Control and treatment samples sizes (NC, NT) and the 
assay types of the studies are given; elevated plus maze (EPM), open field (OF) and light-dark box (LD). 
Effects of: A. Crh gene knockout models. B. Crhr1 gene knockout models. 
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Doremus-Fitzwater et al., 2009; Estelles et al., 2007; Fone et al., 1996; Haller and Halász, 

1999; Haller et al., 2000; Hermes et al., 2011; Hirani et al., 2005; Imanaka et al., 2008; 2006; 

Knuth and Etgen, 2007; Koike et al., 2009; Kokare et al., 2010; Lapiz et al., 2001; Leussis 

and Andersen, 2008; Linge et al., 2013; Xiao Liu et al., 2013; Lukkes et al., 2009; Majercsik 

et al., 2003; McCool and Chappell, 2009; Moragrega et al., 2003; Pisu et al., 2013; 2011; 

Pritchard et al., 2008; Quintino-dos-Santos et al., 2014; F. M. C. V. Reis et al., 2012; 

Rodgers and Cole, 1993; Ryu et al., 2009; Santos et al., 2010; Serra et al., 2000; Thorsell et 

al., 2006; Voikar et al., 2005; Wei et al., 2007; Workman et al., 2011; Wright and Ingenito, 

2001; Yildirim et al., 2012; Yorgason et al., 2013; Y. Zhang et al., 2012). Meta-analysis 

revealed a small anxiogenic effect (g = 0.33 [95CI 0.21, 0.44], P = 3.4 x 10-8; Figure 6C), but 

this included likely publication bias; the trim-and-fill method corrected the anxiogenic effect 

to only 0.21 g [95CI 0.07, 0.34], P = 3.1 x 10-3) a very small anxiotropic effect (Figure 2B). It 

appears that, unlike the physical stressors, social isolation has only a modest influence on 

the ARDEB assays. 

3.11 Crh gene knockout has a modest effect on rodent ARDEB 

Several neuropeptide-related genes involved in stress signaling have been linked to anxiety, 

notably the peptide, corticotropin-releasing hormone (CRH; also known as corticotropin-

releasing factor) (Kormos and Gaszner, 2013) and its receptor, CRHR1. Two studies that 

examined the effects of Crh knockouts on ARDEB were found (Weninger et al., 1999), which 

revealed only a small effect (g = 0.30 [95CI -0.32, 0.92], P = 0.34; Figure 7A). This supports 

the idea that CRH has only a modest effect on the ARDEB. The meta-analytic result may 

suffer from insufficient precision as the cumulative sample size was small (N = 20, 21). As 

publication bias appears to affect the literature, this small effect could be an overestimate. 
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Physical Restraint

Random effects model
Heterogeneity: I^2=83.3%, Tau^2=2.048, p<0.0001

Assay = EPM

Assay = LD 

Assay = OF 

Random effects model

Random effects model

Random effects model

Heterogeneity: I^2=83.3%, Tau^2=1.904, p<0.0001

Heterogeneity: I^2=64.1%, Tau^2=0.2596, p=0.0949

Heterogeneity: I^2=70.5%, Tau^2=0.6481, p=0.0171

Harris, 2001   12 mins   Mice   Male
Lunga, 2004   60 mins   Rats   Female
Carvajal, 2004   60 mins   Rats   Female and Male
Rylkova, 2009   15 mins   Rats   Male
Walf, 2012   20 mins   Rats   Male
Liu, 2013   30 mins   Rats   Male
Locchi, 2007   45 mins   Rats   Male
Anand, 2012   60 mins   Rats   Male
Busnardo, 2013   60 mins   Rats   Male
Estanislau, 2005   60 mins   Rats   Male
Granjeiro, 2011   60 mins   Rats   Male
Joshi JC, 2014   60 mins   Rats   Male
Nosek, 2008   60 mins   Rats   Male
Nosek, 2008   60 mins   Rats   Male
Reis, 2011   60 mins   Rats   Male

Ouagazzal, 2003   5 mins   Mice   Female
Harris, 2001   12 mins   Mice   Male

Chesworth, 2012   15 mins   Mice   Male
Chesworth, 2012   15 mins   Mice   Male
Nosek, 2008   60 mins   Rats   Male
Nosek, 2008   60 mins   Rats   Male

N

214

143

 29

 42

 14
  7
 12
  9
 24
  9
  9
  6
 10
 11
  6
  6
  7
  7
  6

 15
 14

 11
 17
  7
  7

Mean

15.67
28.72
23.92
28.93
 8.47
41.86
15.44
19.30
14.24
29.37
11.43
11.88
 9.66
 6.87
56.56

 4.98
 1.67

25.71
26.70
 3.44
 5.35

Unrestrained
SD

 9.35
 6.29
 3.59
25.40
 9.80
25.40
 5.48
 6.86
 6.99
13.16
 5.65
 4.57
 6.45
 4.16
32.55

 7.68
 0.62

 9.67
10.45
 1.85
 1.86

N

214

143

 29

 42

 14
  7
 12
  9
 24
 10
  9
  6
  7
 12
  7
  6
  7
  7
  6

 15
 14

 11
 17
  7
  7

Mean

25.67
13.78
 8.95
31.87
 4.40
 9.53
 5.01
 4.10
 6.13
13.05
 5.11
 1.54
 6.87
16.37
19.05

 4.47
 2.50

19.34
29.18
29.37
10.70

Restrained
SD

 6.24
 6.71
 3.28
31.75
 7.35
12.64
 2.17
 2.94
 5.03
16.50
 5.74
 2.14
 5.00
 6.83
15.84

 4.65
 1.25

 9.19
11.68
23.26
 5.97

4 2 0 2 4 6

Anxiolytic Anxiogenic

Standardised mean difference SMD

 0.66

 1.14

0.36

0.46

     

     

     

1.22
 2.15
 4.20
0.10

 0.46
 1.57
 2.38
 2.66
 1.22
 1.05
 1.03
 2.67
 0.45
1.57

 1.35

 0.08
0.82

 0.65
0.22
1.47
1.13

95% CI

[ 0.005;  1.32]

[ 0.376;  1.90]

[ 1.239;  0.52]

[ 1.392;  0.47]

[ 2.038; 0.40]
[ 0.749;  3.55]
[ 2.680;  5.72]
[ 1.022;  0.83]
[ 0.112;  1.04]
[ 0.509;  2.63]
[ 1.110;  3.65]
[ 0.949;  4.37]
[ 0.152;  2.30]
[ 0.166;  1.93]
[ 0.155;  2.22]
[ 0.959;  4.39]
[ 0.613;  1.52]
[ 2.821; 0.32]
[ 0.047;  2.66]

[ 0.637;  0.80]
[ 1.596; 0.04]

[ 0.213;  1.51]
[ 0.893;  0.46]
[ 2.696; 0.25]
[ 2.290;  0.02]

W(random)

100%

70.0%

10.3%

19.6%

 5.1%
 4.4%
 4.3%
 5.0%
 5.3%
 4.8%
 4.6%
 4.0%
 4.8%
 5.0%
 4.7%
 4.0%
 4.8%
 4.6%
 4.5%

 5.2%
 5.1%

 5.0%
 5.2%
 4.6%
 4.7%

A

B

Pain

Random effects model
Heterogeneity: I^2=65.7%, Tau^2=0.4967, p<0.0001

Assay = EPM

Assay = LD 

Assay = OF 

Random effects model

Random effects model

Random effects model

Heterogeneity: I^2=64.2%, Tau^2=0.4142, p=0.0012

Heterogeneity: I^2=92.3%, Tau^2=3.849, p=0.0003

Heterogeneity: I^2=25.1%, Tau^2=0.0867, p=0.2372

Shang, 2015   1 days   Mice   Male   EPM
Shang, 2015   3 days   Mice   Male   EPM
Shang, 2015   7 days   Mice   Male   EPM
Shang, 2015   14 days   Mice   Male   EPM
Liu, 2015   12 days   Mice   Male   EPM
Liu, 2015   12 days   Mice   Male   EPM
Parent, 2012   28 days   Rats   Male   EPM
Leite Almeida, 2009   30 days   Rats   Male   EPM
Benbouzid, 2008   30 days   Mice   Male   EPM
Matsuzawa Yanagida, 2008   28 days   Mice   Male   EPM
Leite Almeida, 2009   30 days   Rats   Male   EPM
Schellinck, 2003   0 days   Mice   Female and Male   EPM

Parent, 2012   28 days   Rats   Male   LD
Matsuzawa Yanagida, 2008   28 days   Mice   Male   LD

Shang, 2015   1 days   Mice   Male   OF
Shang, 2015   3 days   Mice   Male   OF
Shang, 2015   7 days   Mice   Male   OF
Shang, 2015   14 days   Mice   Male   OF
Liu, 2015   12 days   Mice   Male   OF
Liu, 2015   12 days   Mice   Male   OF
Parent, 2012   28 days   Rats   Male   OF

N

126

 23

 56

  9
  9
 13
 14
  8
 10
  9
 12
  6
 18
 12
  6

  5
 18

  7
  6
 10
 13
  7
  8
  5

Mean

 8.72
 9.73
15.62
17.98
84.64
75.43
40.81
26.43
33.94
35.91
26.43
48.80

23.10
24.55

 4.51
 4.45
 4.11
 3.60
30.68
12.45
 4.99

SD

 6.30
 5.89
 9.38
11.06
31.52
34.56
21.21
21.91
11.33
 5.47
21.91
 8.64

10.69
 6.30

 3.92
 2.38
 1.71
 2.69
11.46
 4.08
 2.71
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Control
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Anxiolytic Anxiogenic

Standardised mean difference SMD

 0.56

 0.72

 0.58

 0.22

     

     

     

 0.63
 0.07
 0.34
 0.33
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 0.13
 1.05
 1.24
 1.89
 2.22
 0.03
 1.66

0.91
 1.98

0.06
 0.13
 0.61
 0.58
 0.72
1.02

 0.33

95% CI

[ 0.19; 0.93]

[ 0.27; 1.17]

[ 2.24; 3.41]

[ 0.21; 0.66]

[ 0.30; 1.56]
[ 0.92; 1.05]
[ 0.41; 1.08]
[ 0.40; 1.07]
[ 1.14; 0.72]
[ 0.65; 0.92]
[ 0.05; 2.05]
[ 0.36; 2.13]
[ 0.55; 3.23]
[ 1.37; 3.07]
[ 0.77; 0.83]
[ 0.27; 3.05]

[ 2.25; 0.43]
[ 1.16; 2.79]

[ 1.08; 0.95]
[ 0.93; 1.19]
[ 0.29; 1.51]
[ 0.22; 1.38]
[ 0.28; 1.72]
[ 2.08; 0.04]
[ 0.92; 1.58]

W(random)

100%

58.5%

 9.0%

32.5%

 4.9%
 4.7%
 5.5%
 5.6%
 4.9%
 5.4%
 4.7%
 5.0%
 3.7%
 5.2%
 5.3%
 3.6%

 3.7%
 5.3%

 4.6%
 4.5%
 5.0%
 5.3%
 4.7%
 4.5%
 3.9%

223

Treatment
N

139

 23

 61

 10
  7
 15
 15
 10
 17
  9
 12
  8
 18
 12
  6

  5
 18

  8
  8
 10
 12
 10
  8
  5

Mean

 3.84
 8.90
 8.97
11.03
92.57
71.36
20.71
 5.97
17.56
22.41
25.79
28.93

31.65
14.90

 4.96
 3.65
 1.98
 1.69
23.46
21.53
 2.04

SD

 8.23
16.67
24.67
26.00
39.30
26.51
14.85
 4.92
 4.60
 6.40
25.10
13.01

 5.42
 2.43

 8.82
 7.38
 4.40
 3.64
 7.99
11.23
11.14

Figure 7. Part 1. Meta-analyses of experiments on the stress-anxiety relationship in 
rodents.  Meta-analysis of effect sizes of stress-anxiety interventions, shown as a forest plot of stand-
ardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. The weighted 
average mean effect size of all studies is represented by the central vertices of a red diamond; the outer 
vertices indicate the 95% confidence intervals. Control and treatment samples sizes (NC, NT) and the 
assay types of the studies are given; elevated plus maze (EPM), open field (OF) and light-dark box (LD). 
Effects of: A. Acute pain. B. Restraint stress (immobilization). C. Social isolation.
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Social Isolation

Random effects model
Heterogeneity: I^2=26.9%, Tau^2=0.1091, p=0.0151

Assay = EPM

Assay = LD 

Assay = OF 

Random effects model

Random effects model

Random effects model

Heterogeneity: I^2=31%, Tau^2=0.1354, p=0.0103

Heterogeneity: I^2=35.1%, Tau^2=0.0301, p=0.1735

Heterogeneity: I^2=0%, Tau^2=0.0157, p=0.4675

Abramov, 2004   21 days   Mice   Female
Blednov YA, 2001   6 days   Mice   Female and Male
Majercsik, 2003   7 days   Mice   Male
Majercsik, 2003   7 days   Mice   Male
Majercsik, 2003   7 days   Mice   Male
Majercsik, 2003   7 days   Mice   Male
Rodgers, 1993   7 days   Mice   Male
Estelles J, 2007   14 days   Mice   Male
Rodgers, 1993   14 days   Mice   Male
Abramov, 2004   21 days   Mice   Male
Rodgers, 1993   21 days   Mice   Male
Wei XY, 2007   21 days   Mice   Male
Koike H, 2009   28 days   Mice   Male
Koike H, 2009   28 days   Mice   Male
Moragrega , 2003   30 days   Mice   Male
Liu X, 2013   42 days   Mice   Male
Workman JL, 2011   42 days   Mice   Male
Voikar V, 2005   49 days   Mice   Male
Imanaka A, 2006   7 days   Rats   Female
Leussis MP, 2008   7 days   Rats   Female
Da Silva NL, 1997   28 days   Rats   Female
Pisu MG, 2013   28 days   Rats   Female
Imanaka A, 2009   35 days   Rats   Female
Doremus Fitzwater TL, 2009   49 days   Rats   Female
Knuth ED, 2007   7 days   Rats   Female and Male
Reis FM, 2012   0.02 days   Rats   Male
Reis FM, 2012   0.08 days   Rats   Male
Reis FM, 2012   1 days   Rats   Male
Haller J, 1999   4 days   Rats   Male
Cheeta S, 2001   7 days   Rats   Male
Cheeta S, 2001   7 days   Rats   Male
Cheeta S, 2001   7 days   Rats   Male
Haller J, 2000   7 days   Rats   Male
Haller J, 2000   7 days   Rats   Male
Leussis MP, 2008   7 days   Rats   Male
Majercsik, 2003   7 days   Rats   Male
Majercsik, 2003   7 days   Rats   Male
Majercsik, 2003   7 days   Rats   Male
Reis FM, 2012   7 days   Rats   Male
Wright, 2001   7 days   Rats   Male
Das SK, 2015   14 days   Rats   Male
dos Santos L, 2010   14 days   Rats   Male
Lapiz MD, 2001   14 days   Rats   Male
Lapiz MD, 2001   14 days   Rats   Male
Quintino dos Santos JW, 2014   20 days   Rats   Male
Bledsoe AC, 2011   21 days   Rats   Male
Brenes JC, 2009   28 days   Rats   Male
Da Silva NL, 1996   28 days   Rats   Male
Pisu MG, 2011   28 days   Rats   Male
Pisu MG, 2014   28 days   Rats   Male
Serra M, 2000   28 days   Rats   Male
Cuenya L, 2012   30 days   Rats   Male
Fone KC, 1996   35 days   Rats   Male
Fone KC, 1996   35 days   Rats   Male
Imanaka A, 2008   35 days   Rats   Male
Chappell AM, 2013   42 days   Rats   Male
Hirani K, 2005   42 days   Rats   Male
Kokare DM, 2010   42 days   Rats   Male
McCool BA, 2009   42 days   Rats   Male
Pritchard LM, 2008   42 days   Rats   Male
Ryu V, 2009   42 days   Rats   Male
Doremus Fitzwater TL, 2009   49 days   Rats   Male
Yildirim E, 2012   49 days   Rats   Male
Yorgason JT, 2013   49 days   Rats   Male
Zhang Y, 2012   56 days   Rats   Male
Thorsell A, 2006   84 days   Rats   Male

Wei XY, 2007   21 days   Mice   Male
Voikar V, 2005   49 days   Mice   Male
Voikar V, 2005   49 days   Mice   Male
Carrier N, 2012   21 days   Rats   Female
Carrier N, 2012   21 days   Rats   Male
McCool BA, 2009   42 days   Rats   Male

Linge R, 2013   28 days   Mice   Male
Liu X, 2013   42 days   Mice   Male
Conrad KL, 2011   49 days   Mice   Male
Knuth ED, 2007   7 days   Rats   Female
Hermes G, 2011   70 days   Rats   Female
Knuth ED, 2007   7 days   Rats   Male
Blakley G, 2006   14 days   Rats   Male
Das SK, 2015   14 days   Rats   Male
Djordjevic J, 2012   21 days   Rats   Male
Lukkes JL, 2009   21 days   Rats   Male
Thorsell A, 2006   84 days   Rats   Male

N

1114

 889

  85

 140

  10
  32
  10
  10
  10
  10
  14
  97
  14
  10
  14
  10
  10
  10
  32
  10
  10
  15
  15
   8
  10
  27
  12
   8
  18
  14
  14
  14
   9
   7
   7
   7
   9
  12
   8
   9
   9
   9
  14
   5
  12
  12
   6
   6
  18
  12
  12
  10
  18
  20
  13
  10
   5
   5
  12
  16
   8
   7
  28
   6
  36
   8
  10
   7
  10
   9

   9
  15
  15
   9
   9
  28

  10
  10
  10
   8
   8
   9
  33
  12
  18
  12
  10

Mean

 5.40
10.58
14.95
22.12
19.43
15.47
 4.67
15.08
 4.67
 2.71
 4.67
29.25
13.41
41.80
38.10
 8.09
31.46
 2.43
24.37
16.17
43.89
19.24
25.80
 3.94
 0.06
27.94
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Figure 7. Part 2. Meta-analyses of experiments on the stress-anxiety relationship in 
rodents.  Meta-analysis of effect sizes of stress-anxiety interventions, shown as a forest plot of stand-
ardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. The weighted 
average mean effect size of all studies is represented by the central vertices of a red diamond; the outer 
vertices indicate the 95% confidence intervals. Control and treatment samples sizes (NC, NT) and the 
assay types of the studies are given; elevated plus maze (EPM), open field (OF) and light-dark box (LD). 
Effects of: A. Acute pain. B. Restraint stress (immobilization). C. Social isolation.
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3.12 Crhr1 gene knockout has a large effect on rodent anxiety 

CRH exerts its biological action via two receptors known as CRHR1 and CRHR2. The two 

receptors are pharmacologically distinct and only the former has been widely studied in the 

context of anxiety (Owens and Nemeroff, 1991; Paez-Pereda et al., 2011). Meta-analysis 

(Gammie and Stevenson, 2006; Liebsch et al., 1999; 1995; Müller et al., 2003; Smith et al., 

1998; Trimble et al., 2007) found that, in contrast to the Crh knockout, deletion of Crhr1 had 

a large anxiolytic effect on ARDEB (g = -1.0 [95CI -1.30, -0.70], P = 6.64 x 10-11; Figure 7B). 

The discordance between Crh and Crhr1 knockout effects has previously been attributed to 

the action of other peptide ligand(s) of Crhr1, either urocortin or another, unidentified ligand 

(A. J. Dunn and Swiergiel, 1999).  

3.13 Species and sex differences in ARDEB 

Rats and mice have differences in their defensive behavior when exposed to predators or 

predator cues (Blanchard, 2001). We used the synthetic data to examine species 

differences in baseline ARDEB prior to anxiotropic manipulation. The LD box showed the 

most substantial difference between species -6.88 % [-13.3; -0.46], p = 0.04, but  in 

general, inter-species differences in naive ARDEB were minor when compared to the overall 

variance (Figure 8A).  

Where rat data were available, inter-species differences between the effects of 

anxiety-related interventions were investigated. There were only minor inter-species 

differences in the meta-analytic effect sizes of the interventions (Figure 8B). A striking 

exception to this trend was a large rat-mouse difference in the response to restraint: this 

treatment appeared strongly anxiogenic for rats, but modestly anxiolytic for mice.  

We investigated sex differences in ARDEB, but found that the anxiety studies 

contained ~18× fewer experiments on female rodents than males, rendering any meta-

analytic estimates of female ARDEB imprecise. 
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Figure 8. Species differences in ARDEB.
A. Contrasts of mice and rats naive defence behaviors in three different assays. Upper panel shows the 
means of proportion of time spent in the exposed region, categorized by assay type and species. Each 
point is the mean value of an experiment. The lower panel shows the contrast means and confidence 
intervals (mean difference of the percent time spent in exposed region). 
B. The weighted mean effect sizes of six interventions subgrouped into mice and rats. Color indicates 
species (green = mice, orange = rats). Each mean effect size is represented by the central vertices of  
diamond; the outer vertices indicate the 95% confidence interval. The horizontal axis is Hedges’ g, the 
standard deviation change relative to control animals. NC and NT indicate control and treatment animal 
sample sizes respectively.
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3.14 Validity of the ARDEB assays 

Of the interventions analyzed above, only diazepam has extensive clinical evidence 

supporting its ability to alter human anxiety. The large anxiolytic diazepam effect size 

observed with the ARDEB assays verifies their validity (Figure 9A). The stressors - isolation, 

acute pain and restraint - would all be expected to produce increases in human anxiety, 

and all show anxiogenic effects in the ARDEB, thus also verifying the validity of these 

assays (Figure 9A), with the exception of the surprisingly small social isolation effect (0.21 

g). Establishing the validity of animal models relies partly on showing concordance between models 

(Campbell and Fiske, 1959; van der Staay, 2006). To explore the concordance between the 

three assays, we conducted regression analyses on all possible two-way comparisons of ∆ARDEB 

(Figure 9B-D). The LD-EPM and OF-LD comparisons of ARDEB changes both showed 60% 

concordance, supporting the idea that the three assays were measuring similar aspects. However, 

surprisingly, the OF-EPM comparison revealed that the two methods were discordant (R2
adj = -0.01, 

Figure 9D). 
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Figure 9. Summary effect sizes of all meta-analyses and methods comparisons. 
A. The weighted mean effect sizes of all 10 interventions are shown here. Color indicates direction 
(green = anxiolytic, red = anxiogenic) and statistical significance (grey = statistically non-significant). The 
diamonds for the diazepam, social isolation, and Htt KO meta-analyses represent the summary effect 
sizes after trim-and-fill bias correction. Each mean effect size is represented by the central vertices of a 
diamond; the outer vertices indicate the 95% confidence intervals. The horizontal axis is Hedges’ g, the 
standard deviation change relative to control animals.
B. Method comparison of LD and EPM shows that the two methods report ARDEB changes with 59% 
concordance.
C. Method comparison of OF and LD shows that the two methods reports ARDEB changes with 60% 
concordance.
D. Method comparion of OF and EPM shows that there is no concordance between the two methods.
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4. DISCUSSION 

4.1 Summary of evidence 

Inspection of the forest plots reveals that all of the primary publication sets include 

experimental effect sizes that are discordant, either in direction (anxiolytic versus 

anxiogenic) and/or magnitude. The generality of discordance in the literature emphasizes 

the utility of meta-analysis to behavioral neuroscience to give a quantitative overview and to 

synthesize the best evidence available. Of ten analyses of putative anxiotropic 

interventions, eight yielded at least moderate meta-analytic effect sizes and two produced 

small effect sizes (Figure 9). The synthetic data strongly confirm that diazepam, the 

serotonergic system, environmental stressors, and Crhr1 influence an anxiety-like process 

in the mouse brain.  

 

4.2 Limitations 

This study is limited by its exclusive use of English-language published data. Some studies 

had to be excluded from the meta-analysis during the full text scan because they did not 

report measures of variance. Only studies that reported time or percent time spent in 

exposed arena could be selected for meta-analysis. We found no knowledge gaps per se, 

as all ten proposed anxiety-related factors had at least two studies. Nevertheless, Htt 

overexpression, Crh knockouts and the non-anxiety genes had limited cumulative sample 

sizes (Ncumulative < 64, 64). Of the six factors for which publication bias was examined, three 

were affected. The presence of publication bias in the larger data sets suggests that 

inclusion of further data to the smaller meta-analyses would be expected, on average, to 

lower these effect sizes as well. Heterogeneity was at least moderate (I2 > 50%) in five of 
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the meta-analyses, indicating that the random effects model is insufficient to explain the 

variance in these data sets. Thus, laboratory, strain, assay type and other protocol 

variations played variable roles across factors. Heterogeneity could in theory be reduced by 

increased standardization (Crabbe et al., 1999). Multilevel regression models of these data 

may be able to account for the unexplained variance (Yildizoglu et al., 2015). 

4.3 Assay validity 

The validity of each ARDEB assay was originally tested with a panel of anxiotropic agents 

(Crawley and Goodwin, 1980; Pellow et al., 1985; Simon et al., 1994). In the decades since 

the variability of assay results and the disappointing clinical outcome of compounds 

identified with these preclinical assays raise new questions about their validity (Griebel and 

Holmes, 2013). The diazepam, restraint and acute pain synthetic data shown here support 

the ARDEB assays’ validity, though two other results raise doubts: (1) the social isolation 

effect on ARDEB is weaker than expected (Figure 9A); (2) the failure of EPM and OF to 

reproduce each other’s outcomes (Figure 9D). The EPM-OF meta-regression discordance is 

an exploratory observation that could be verified with a formal method comparison with 

animals run through all three assays (Bland and Altman, 1999). 

How might the validity of the ARDEB assays be tested further? First, meta-analyses 

of additional known anxiotropic agents will help assess the assays’ strengths and 

weaknesses. Second, assay validity assessment would be helped by researchers making 

their video or tracking data available (ideally with experimental metadata in a standard file 

format), similar to data sharing efforts currently underway in neurophysiology. Anxiety assay 

validity may also be tested with new instrumentation that allows the estimation of animal 

pose (Nanjappa et al., 2015; Wiltschko et al., 2015) and that will make complex, ethological 

relevant anxiety assays (Blanchard et al., 2001) increasingly accessible for routine analysis 

(Schaefer and Claridge-Chang, 2012). Looking backward (meta-analysis and data sharing) 
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and forward (more refined anxiety assays) are both valuable to rodent anxiety research. It 

has been suggested that research consortia should form to overcome the cost restrictions 

of large rodent sample sizes (Button et al., 2013); perhaps a consortium could form around 

the problem of anxiety assay validation. 

4.4 Disconnect between Htr1a & Crhr1 preclinical results and clinical efforts 

Meta-analysis of Htr1a overexpression revealed it has a moderate anxiotropic effect (-0.6 

g), smaller than the bias-corrected diazepam effect (-0.85 g), suggesting that compounds 

aiming to increase 5-HT1A function may be a poor strategy to reduce anxiety. This view is 

supported by clinical meta-analyses that have concluded that drugs targeting 5-HT1A - the 

azapirones - appear inferior to benzodiazepines for generalized anxiety disorder (Chessick 

et al., 2006) and that there is insufficient evidence to support azapirone use in panic 

disorder (Imai et al., 2014). It appears that clinical adoption of the azapirones was/is not 

informed by the preclinical genetic evidence base. A second type of preclinical-clinical 

disconnect is observed with the Crhr1 knockouts. The synthetic preclinical data indicate 

that Crhr1 knockout produces a very large reduction of rodent anxiety (g = -1.0 [95Ci -0.7, -

1.3], I2 = 13%, Ncumulative = 105, 99). However, at least one clinical trial of a CRHR1 

antagonist for generalized anxiety disorder showed no benefit over placebo (Coric et al., 

2010). The discrepancy between the efficacy of Crhr1 knockouts and inefficacy of CRHR1 

antagonists in patients remains unexplained. 

4.5 A paradox in Htt-SSRI anxiety effects 

Drugs that inhibit SERT, the SSRIs, are recommended as the first line of pharmacological 

treatment for anxiety (Baldwin et al., 2014). Blocking SERT-mediated reuptake of serotonin 

from the synaptic cleft is the proposed mechanism of SSRI anxiety reduction, although 

rodent studies of chronic SSRI effects on ARDEB have been inconclusive (Griebel and 
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Holmes, 2013; Perez-Caballero et al., 2014). Given the inhibitors’ clinical use, it is 

paradoxical that Htt knockouts have elevated anxiety relative to controls (0.57 g) and that 

Htt overexpression dramatically reduces rodent anxiety (-0.94 g). The reason for this 

drug/gene incongruence is not clear. In some cases, the authors of the primary Htt 

knockout studies have not discussed it (Carroll et al., 2007; Kalueff et al., 2007a; Moya et 

al., 2011; Schipper et al., 2011). Other authors have remarked that the underlying reason 

remains unclear (Holmes et al., 2003b; Lira et al., 2003) or have called the validity of ARDEB 

assays into doubt (Pang et al., 2011). As both genetic knockouts and SSRIs are expected to 

produce monotonic, systemic reductions of SERT function, this incongruence is not easily 

explained by models of serotonin conflicting action that invoke distinct 5-HT circuits in the 

brain with opposing effects on defense (Deakin and Graeff, 1991). Others have proposed 

two explanatory hypotheses. The first is that increased anxiety arises from developmental 

alterations present in Htt knockouts not present in chronically drug-treated animals (Holmes 

et al., 2003b; Olivier et al., 2008; Zhao et al., 2006). This hypothesis could be tested with 

conditional knockdown models, i.e. in animals with Htt only deleted at the adult stage. 

While systematic review of PubMed and EMBASE did not identify any published reports of 

post-developmental Htt knockout experiments (e.g., using floxed Htt), researchers have 

analyzed the anxiety-related effects of conditionally ablating the Pet-1 gene. Pet-1 is a 

transcription factor with an expression range that overlaps closely with the expression of 

Htt. In mice with Pet-1 removed in adulthood, mRNA levels of Htt are substantially reduced 

(Chen Liu et al., 2010). Like Htt knockouts, these mice show increased anxiety-like 

behaviors in multiple ARDEB assays (Chen Liu et al., 2010), eroding confidence in the 

developmental alteration hypothesis. A second hypothesis to explain the Htt/SSRI paradox 

is that there is a J-shaped relationship between Htt function and anxiety, i.e., both wild-type 

and knockout animals would have higher anxiety relative to animals with intermediate 
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function (Olivier et al., 2008). The SSRI/knockout paradox is also observed in depression 

assays, though interfering RNA knockdown of Htt in adult mice reduced the forced swim 

test measure of depression (N = 10, 10) (Thakker et al., 2005). 

5. Conclusions 

This study confirms that diazepam, two environmental stressors and three genes influence 

rodent anxiety as measured by defense behavior assays. These anxiety-related 

interventions (diazepam, Htr1a gene knockout, Htt gene knockout, Htt gene 

overexpression, acute pain, restraint and Crhr1 gene knockout) can be used as reference 

manipulations when establishing other anxiety models. The rodent anxiety literature is 

affected by publication bias that amplifies effect sizes. For the panel of ten interventions, 

there is strong EPM-LD and OF-LD ARDEB assay concordance, but EPM and OF did not 

reproduce each other. The meta-analytic results bring several preclinical-clinical 

incongruencies into sharp relief: the weakness of Htr1a overexpression contrasting with the 

clinical use of azapirones, the potently anxiogenic Crhr1 knockout contrasting with the 

clinical failure of CRHR1 antagonists, and the anxiogenic SERT knockout contrasting with 

the clinical use of SSRIs as anxiolytic drugs. Meta-analysis has the ability to aggregate 

information and resolve discordance in the primary literature, something of particularly use 

to behavioral neuroscience where most primary articles describe experiments with poor 

precision (Button et al., 2013). Precise estimation of effect magnitudes (Claridge-Chang and 

Assam, 2016) is important both to better understand animal model strengths/weaknesses 

and to improve the ability of preclinical studies to guide clinical investigation. The formation 

of multi-lab consortia to coordinate the examination of important hypothesized anxiety 

factors would be one promising way to increase the reliability of rodent anxiety data (Button 

et al., 2013). New, automated methods of behavioral imaging will also play a role in better 

preclinical models (Schaefer and Claridge-Chang, 2012). Another possibility would be to 
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use small animal models (worms, flies, and zebrafish) that allow large sample sizes and 

powerful genetic tools to complement rodent experiments (Mohammad et al., 2016, in 

press). 
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FIGURES AND TABLES 

Figure 1. Flow chart of the systematic literature review of 10 anxiotropic interventions.  

The literature was reviewed in a four-stage process, starting with searches of the Pubmed 

and EMBASE databases that yielded 1169 articles, followed by three screens of increasing 

detail, reviewing the article title, abstract, and full text for experimental design. A total of 

306 articles were used in the meta-analysis. Further details are given in Table 1 and the 

Methods section.  

Figure 2. Funnel plots of three meta-analyses with evidence for publication bias.  

Where at least ten experiments were available for meta-analysis, the effect sizes (Hedges’ 

g) of the experiments are plotted against their respective standard errors. Points on each 

plot represent individual experiments. The triangle bounded by dotted lines indicates the 

area where 95% of studies are expected to fall, in the absence of both publication bias and 

study heterogeneity. Shown here are funnel plots for experiments on (A) diazepam, (B) 

social isolation, and (C) Htt knockout.  

Figure 3. Meta-analysis of diazepam on rodent anxiety related behavior. 

Meta-analysis of rodent diazepam effect sizes, shown as a forest plot of standardized effect 

sizes (Hedges’ g). The meta-analysis is sub-grouped by animal species. Error bars indicate 

the 95% confidence intervals of standardized mean difference. The weighted average mean 

effect size of subgroups and all studies is represented by the central vertices of a red 

diamond; the outer vertices indicate the 95% confidence intervals. Control and treatment 

samples sizes are given in the columns listed as NC and NT respectively. 
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Figure 4. Meta-analyses of serotonin receptor 1A interventions on rodent anxiety-

related behaviors. 

Meta-analysis of effect sizes of serotonin-targeted interventions is shown as a forest plot of 

standardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. 

The weighted average mean effect size of all studies is represented by the central vertices 

of a red diamond; the outer vertices indicate the 95% confidence intervals. Control and 

treatment samples sizes (NC, NT) and the assay types of the studies are given; elevated plus 

maze (EPM), open field (OF) and light-dark box (LD). Effects of: A. Serotonin receptor gene 

Htr1a knockout models. B. Htr1a overexpression.  

Figure 5. Meta-analyses of serotonin transporter interventions on rodent anxiety-

related behaviors. 

Meta-analysis of effect sizes of serotonin-targeted interventions is shown as a forest plot of 

standardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. 

The weighted average mean effect size of all studies is represented by the central vertices 

of a red diamond; the outer vertices indicate the 95% confidence intervals. Control and 

treatment samples sizes (NC, NT) and the assay types of the studies are given; elevated plus 

maze (EPM), open field (OF) and light-dark box (LD). Effects of: A. Serotonin transporter 

gene (Htt) knockout models B. Htt overexpression models. 

Figure 6. Meta-analyses of the effects of stress signaling genes on anxiety-related 

behaviors. 

Meta-analysis of effect sizes of stress signaling genes, shown as a forest plot of 

standardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. 

The weighted average mean effect size of all studies is represented by the central vertices 

of a red diamond; the outer vertices indicate the 95% confidence intervals. Control and 
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treatment samples sizes (NC, NT) and the assay types of the studies are given; elevated plus 

maze (EPM), open field (OF) and light-dark box (LD). Effects of: A. Crh gene knockout 

models. B. Crhr1 gene knockout models.  

Figure 7. Meta-analyses of experiments on the stress-anxiety relationship in rodents. 

Meta-analysis of effect sizes of stress-anxiety interventions, shown as a forest plot of 

standardized effect sizes (Hedges’ g). Error bars indicate the 95% confidence intervals of g. 

The weighted average mean effect size of all studies is represented by the central vertices 

of a red diamond; the outer vertices indicate the 95% confidence intervals. Control and 

treatment samples sizes (NC, NT) and the assay types of the studies are given; elevated plus 

maze (EPM), open field (OF) and light-dark box (LD). Effects of: A. Acute pain. B. Restraint 

stress (immobilization). C. Social isolation. 

Figure 8. Species differences in ARDEB. 

A. Contrasts of mice and rats naive defence behaviors in three different assays. Upper 

panel shows the means of proportion of time spent in the exposed region, categorized by 

assay type and species. Each point is the mean value of an experiment. The lower panel 

shows the contrast means and confidence intervals (mean difference of the percent time 

spent in exposed region). B. The weighted mean effect sizes of six interventions 

subgrouped into mice and rats. Color indicates species (green = mice, orange = rats). Each 

mean effect size is represented by the central vertices of  diamond; the outer vertices 

indicate the 95% confidence interval. The horizontal axis is Hedges’ g, the standard 

deviation change relative to control animals. NC and NT indicate control and treatment 

animal sample sizes respectively. 
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Figure 9. Summary effect sizes of all meta-analyses. 

A. The weighted mean effect sizes of all 10 interventions are shown here. Color indicates 

direction (green = anxiolytic, red = anxiogenic) and statistical significance (grey = 

statistically non-significant). The diamonds for the diazepam, social isolation, and Htt KO 

meta-analyses represent the summary effect sizes after trim-and-fill bias correction. Each 

mean effect size is represented by the central vertices of a diamond; the outer vertices 

indicate the 95% confidence intervals. The horizontal axis is Hedges’ g, the standard 

deviation change relative to control animals. 

B. Method comparison of LD and EPM shows that the two methods report ARDEB changes 

with 59% concordance. 

C. Method comparison of OF and LD shows that the two methods reports ARDEB changes 

with 60% concordance. 

D. Method comparion of OF and EPM shows that there is no concordance between the two 

methods. 

Table 1. Summary of systematic reviews of anxiety-related interventions in mouse and 

rat.  

The PubMed and Embase query phrases used to identify articles that might contain data 

relevant to the interventions and assays of interest are detailed. Title, abstract and full-text 

searches were performed to identify articles meeting the selected criteria.  

Table 2. Results of Egger’s linear regression test for funnel plot asymmetry across six 

meta-analyses 

Where at least twenty experiments were available for meta-analysis, Egger’s linear 

regression test for funnel plot asymmetry was performed. For each meta-analysis, the 

number of included studies, the vertical intercept of the linear regression, the 
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corresponding 95% confidence interval for the intercept, and the P-values of Egger’s test 

are listed.  

Table 3. Characteristics of included experiments.  

Characteristics of experiments from included studies are listed with Pubmed ID, year of 

study, and figure panel. The assay type, assay duration, variable used in experiment, route 

of injection, drug dosage, treatment duration, species, strain and gender are also detailed. 

Assay duration and treatment duration are listed in minutes. Dosage is listed in mg per kg 

body weight of animal. Cells containing NS (Not Specified) indicate that the information was 

not available in the study. 

Supplementary Legends 

Supplementary Information 1. Spreadsheet containing extracted data (.xlsx file). Each 

dataset is in a separate sheet in the Excel file. 

Supplementary Information 2. Extracted meta-analytic data in R-compatible format 

(.RData file) 

Supplementary Information 3. R markdown code (.Rmd) used for meta-analysis and plotting  
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