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Abstract

Motivation Identification of biochemical processes that drive the transformation of a totipotent cell into
various cell types is essential to our understanding of living systems. This complex machinery determines how
tissues differ in terms of their anatomy, physiology, morphology, and, more importantly, how various cellular
control mechanisms contribute to the observed similarities/ differences. Tissue-selective genes orchestrate various
aspects of cellular machinery in different tissues, and are known to be implicated in a number of tissue-specific
pathologies.

Results We propose a novel statistical approach that identifies and removes the effect of universally expressed
genes in groups of tissues. This allows us to better characterize tissue similarities, as well as to identify tissue-
selective genes. We use our method to construct a reliable hierarchy of tissue similarities. The groupings of
tissues in this hierarchy are used to specify successively refined priors for identifying tissue-selective functions
and their corresponding genes in the reduced subspace. We show that our refinement process enhances the
signal-to-noise ratio in the identification of markers. Using case studies of immune cells and brain tissues, we
show that our approach significantly outperforms the state-of-the-art methods, both in terms of coverage and
reliability of the predicted tissue-selective genes.

Conclusions Our statistical approach provides a general framework for enhancing the sensitivity of marker
detection methods, which can be used in conjunction with other techniques. Even in cases where the number
of available expression datasets is limited, we show that our marker detection method outperforms existing
techniques. We present detailed validation on immune cells and brain tissues in this paper. Our approach can
be applied to construct similar datasets of other human tissues as well, for identifying tissue-specific genes. We
demonstrate how these tissue-selective genes enhance our understanding of differentiating biochemical features
of brain tissues, shed light on how tissue-selective pathologies progress, and help us identify specific biomarkers
and targets for future interventions.

Background

An embryonic stem cell contains all genetic information needed to develop a new individual; it differentiates into
various cell types, which group together to shape tissues, combine to constitute organs, and assemble into organ
systems. Uncovering these sophisticated processes is integral to our understanding of tissue ontogenesis. Various
differentiated tissues, while inheriting a similar genetic code, exhibit unique anatomical and physiological properties.
These spatio-temporally differentiated characteristics are achieved through systematic control of cellular machinery
at different levels, including transcriptional, translational, and post-translational regulations, in order to orchestrate
tissue-specific functions and dynamic responses to environmental stimuli.

Transcriptional regulation is a well-studied aspect of this control. It is manifested in the observed differences
in expression levels of genes across tissues. Housekeeping genes are universally expressed in human tissues and
undertake core cellular functions[1, 2, 3]. In contrast, certain genes are specifically or preferentially expressed in
one, or a set of biologically relevant tissue types[4, 5, 2, 6]. Tissue-selective genes are highly under/over expressed in
a selected set of tissues, as compared to other tissues. Tissue-specific genes constitute a special case of tissue-selective
genes, in which a target gene is uniquely expressed in a single tissue type, but not in other tissues. Interestingly,
a number of known disease genes are tissue-selective and are under/over expressed in the specific tissue(s) where
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the gene defect causes pathology[7, 8]. To this end, tissue-selective genes play a crucial role in the physiology and
the pathophysiology of human tissues. They are not only critical factors in elucidating the molecular mechanisms
of normal tissues, but are also promising drug targets and candidate biomarkers.

Various methods have been proposed in literature to identify and characterize genes that are preferentially
expressed in different tissues. These methods can be broadly classified into two groups: i) methods that use a
single expression profile of each tissue/ cell-type; and ii) meta-analysis approaches that collect and use multiple
biological instances of each tissue/ cell-type into a comprehensive profile. Schug et al.[32] proposed an information
theoretic approach that is an instance of the former class. They used Shannon’s entropy to measure uniformity
of expression across tissues and rank genes based on their overall tissue-specificity. Kadota et al.[9] proposed a
variation of the entropy-based method, called ROKU, which pre-processes expression profiles using Tukey biweights
to allow identification of both up/ down regulated genes. More recently, Cavalli et al.[5] proposed a new method,
called SpeCond, which models the background expression of each gene using a Gaussian mixture model. It then
assigns a p-value to the unusually high/low expression values in specific tissues, relative to this null distribution.

Meta-analysis approaches, on the other hand, use a comprehensive expression profile aggregated over different
studies. These methods use multiple biological replica of each tissue/ cell-type to distinguish between biological and
technical variation of genes. Wang et al.[4] present among the first methods in this class. They manually annotated
different studies available in the NCBI Gene Expression Omnibus (GEO) database and compiled a comprehensive
dataset of tissue-specific expression profiles. For each group of tissues, they used dChip to normalize the raw
expression profiles and correct for technical variation using a model-based approach. Using this aggregated profile,
they employed an equal weighting strategy among expression profiles to identify tissue-selective genes. Teng et al.[6]
used the same input dataset, but applied a supervised learning scheme, based on support vector machines (SVM)
and random forests (RF), to automatically assign a reliability weight to each expression profile with respect to a
manually curated set of true positives collected from Uniprot database.

These methods have contributed significantly to the understanding of tissue-specific processes. In this paper, we
aim to further build upon these efforts with the goal of enhancing their performance. Our work is premised on the
following observations: First, there is a significantly-expressed set of common housekeeping functions across human
tissues, which potentially masks less-expressed tissue-specific pathways, making it harder to identify preferential
markers. We hypothesize that by deflating known prior signal contributed by housekeeping genes, one can enhance
the signal-to-noise (SNR) ratio of the tissue-specific expression profiles. This improves the sensitivity of prediction
methods for identifying cell-type markers. Second, the rationale behind the concept of tissue restriction is that
genes that are expressed in more tissues are related to generic cellular functions, whereas genes that are expressed
in only a few selected tissued are involved in specific functions and are more informative regarding the biological
processes that uniquely differentiate tissues from each other. While this concept is intuitive, the use of frequency/
tissue-counts is not an appropriate measure of specificity. The underlying similarity of tissues in which the gene is
active also plays a key role in defining its specificity. For example, a gene that is expressed in a large number of
lymphocytes supports specificity much more so than a gene that is expressed in the same number of biologically
unrelated tissues. Finally, in cases where the number of available replicas are limited, biological variation of
expression is hard to estimate, which can affect the reproducibility of the results.

Motivated by these considerations, we propose a novel marker detection method, that significantly enhances the
sensitivity of previous methods in identifying tissue-selective/ specific expression, as well as in approximating the
biological variation of expression, given a limited set of expression profiles. To this end, we first organize a given
set of tissues and cell-types into a hierarchy such that tissues at the same level exhibit similar levels of functional
similarity. We use singular value decomposition (SVD) to estimate the common signature of genes, and couple it
with a statistical approach to adjust the raw transcriptional signatures for the effect of housekeeping genes. We then
identify groups of similar tissues using these adjusted signatures, and contract these similar groups to construct a
reduced space, which enhances the inter group separability. Finally, we present a novel method that utilizes this
refined hierarchical prior, constructed as the reduced subspace over groups of similar tissues, and identifies genes
that are preferentially expressed within each group at each level of the hierarchy.

Using known immune-cell markers, we show that our adjusted transcriptional signatures enhance the mean
expression level of the marker genes in their host cell-type, defined as the signal, while both decreasing their
expression level in unrelated cell-types, and silencing the expression of housekeeping genes, defined as noise in
this context. This supports our hypothesis that eliminating the common signature of housekeeping genes enhances
the signal-to-noise (SNR) ratio for identifying marker genes. Moreover, we show that adjusted transcriptional
similarities, computed as the the normalized dot-product of the adjusted transcriptional similarities, can distinguish
both similar tissues and dissimilar pairs of tissues.

We apply our method to identify novel brain-selective genes, and cross-validate our results with a recently
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published brain-specific proteome[11]. Compared to sets of related genes from prior studies, our method has higher
sensitivity in extracting brain-enriched genes, especially in cases where only a limited number of expression profiles
per tissue/ cell-type are available. Most human pathologies are driven by a combined perturbation of universal,
housekeeping genes coupled with tissue-selective elements that make the target tissue uniquely susceptible to the
disease. These tissue-selective genes provide ideal candidates as disease biomarkers, as well as, drug targets, since
they have the potential to directly affect a selected set of tissues, without disrupting the normal functions of other
tissue types.

Results and discussion

Adjusting raw transcriptional signatures enhances signal-to-noise (SNR) ratio

Housekeeping (HK) genes are ubiquitously expressed across all human tissues/ cell-types, and are responsible
for maintaining core cellular functions, including but not limited to translation, RNA processing, intracellular
transport, and energy metabolism[1, 2]. While computational methods for identifying housekeeping genes differ
in their underlying assumptions[12], they share the same goal – identifying molecular targets, such as genes and
their corresponding proteins, which are needed by all cell types in the body. These universal genes define a shared
functional space across human cells, which is also known to be highly conserved across species. However, while
fundamental for our understanding of cell biology, these genes do not provide insights into the unique characteristics
of different tissues. When comparing different tissues to identify their similarities and differences, these highly
expressed genes may dominate differentiating signal [13].

To address this problem, we propose a method based on a singular value decomposition (SVD) to estimate the
expression profiles of housekeeping genes. Using this housekeeping signature, we adjust raw transcriptional signa-
tures of human tissues/ cell-types by applying our proposed Peeling Common Signature (PCS) method to silence
the shared housekeeping prior (please refer to Materials and Methods section for more details). The adjustment
procedure is shown in Figure 1, and both the raw and adjusted transcriptional signatures are available for download
as Additional file 1 and Additional file 2, respectively. To assess the quality of adjustment procedure, we perform
two independent experiments using housekeeping genes and known marker genes.

First, we evaluate whether our adjustment method indeed deflates the effect of housekeeping genes. To this
end, we investigate two well-studied housekeeping genes – Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
and β-actin for further analysis. These genes are routinely used as control probes, including in the Affymetrix
microarray platforms. For each of these genes, we average all the probesets that are mapped to them, and plot the
mean value across all tissues in this study. Figure 2 (a) and Figure 2 (b) show the effect of this adjustment on the
two genes. For β-actin, we observe a uniformly high expression across all tissues/ cell-types before the adjustment
(median before adjustment is 4.83). After adjustment, we observe a significant deflation in the plot (median after
adjustment is -0.05). On the other hand, GAPDH seems to have additional tissue-specific roles in muscle and brain
tissues. Its gene product encodes one of the 10 key enzymes in the glycolytic pathway, and is previously known to
be expressed in higher-levels in energy-demanding tissues[14]. Nevertheless, this gene is expressed at high levels in
all human tissues (median before adjustment is 4.08), which is reduced after adjustment (median after adjustment is
-0.26). Additionally, to assess if a similar pattern emerges if we use multiple housekeeping genes, we downloaded the
selected set of 11 high quality housekeeping genes, other than GAPDH or β-actin, from a recent study[12]. Figure 3
illustrates the average of these control housekeeping genes across different tissues, before and after adjustment.
Unlike GAPDH, these probes seem to be uniformly high in most tissues, though lower than GAPDH and β actin
on average, but are under-expressed in a small number of tissues. Regardless, we observe a similar deflation pattern
from a median of 1.82 to 0.05 after adjustment. This supports the hypothesis that our adjustment process correctly
deflates the expression level of housekeeping genes in the adjusted signatures.

Next, we investigated the effect of transcriptional adjustment on marker genes. Tissue-selective genes, while
highly informative, are expressed at lower levels compared to housekeeping genes. By suppressing the “noise” level
contributed by housekeeping genes, transcriptional adjustment boosts the SNR and sensitivity, which in turn allows
us to identify more reliable cell markers.

Immune cells are among the most studied cell-types in human body, and a number of high-quality markers
are known for major immune cell classes. To assess our hypothesis, we adopted the gold-standard of immune-cell
specific markers from the Immune Response In Silico (IRIS) dataset[15], which is based on a meta-analysis of
multiple microarray expression profiles for six key immune cell types. We mapped probesets in this dataset to the
probesets in the GNF Gene atlas, and manually matched the studied cell-types in IRIS to the immune cell-types in
our dataset. Among these cell-types, we removed ones that are not matched. Furthermore, we observed that the
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dendritic cell (DC) markers in this dataset are myeloid-derived DC cells, whereas the DC cell profiled in GNF gene
atlas is plasmacytoid DC cell (from lymphoid lineage). These two type of cells are distinct from each other, and
none of the markers were applicable here, so we also filtered DC from further study.

Table 1 summarizes the statistics of all selected cell-types and their corresponding markers. We study each of
these cell-types individually to better understand the effect of adjustment on increasing the signal level. It is notable
here that the average value of markers identifies both the signal, in the related tissues, and the noise, in unrelated
tissues. Figure 4 illustrates the effect of adjustment on three major lymphoid-derived immune cells, namely B-cell,
T-cell, and NK-cell. B-cell and T-cell markers behave similarly, that is, the mean value of marker signal is increased
in the relevant cell-types, and reduced in the rest of tissues/ cell-types. For the adjusted profile of B-cell, the
B-cell itself has the highest expression level for these markers, followed by DC cell, tonsil, and Daudi cell-line.
Plasmacytoid DC cells express CD123, CD303, and CD304 surface markers, but lack CD11c (mDC marker) and
CD14 (monocyte marker). Unlike conventional DC cells, which are monocyte-like, pDC cells are known to exhibit
a high similarity to plasma B-cells [16]. Tonsil is also a rich source of B-cells exhibiting a variety of phenotypes and
activation states, and have been used routinely to isolate highly purified tonsil B lymphocytes[17]. The Daudi cell-
line is a well characterized B-lymphoblast cell-line, isolated from peripheral blood, which has been used extensively
to study Burkitt’s lymphoma. These tissues/ cell-types serve as the “host” for B-cell markers, and the average
expression value of these markers in the host cells signifies the signal level. As clear from Figure 4 (a), the average
value of markers has been increased in the adjusted signatures compared to the raw signatures. Moreover, the
expression of B-cell markers in unrelated tissues on right-side of the plot is considered noise, and reduced by our
method. Similarly, the most significant hosts of T-cell are thymus (in which T-cells mature), MOLT-4 (which is a
T lymphoblast cell-line), and T-cells (both CD8 (killer) and CD4 (helper) cells). Average expression levels of these
T-cell markers have also increased in the relevant hosts, and decreased otherwise. Finally, we notice that for NK
cell markers, there is a significant drop after the first cell-type (NK cell). This signifies the specificity of NK cell
markers, or it can be an artifact of the lower number of available markers to assess for NK cell.

Figure 5 illustrates the effect of adjustment on markers of the fully differentiated monocytes, as well as the
myeloid-progenitor cells isolated using CD33 marker. Both of these plots exhibit similar characteristics to the B-
cell and T-cell plots– in the sense that the signal level has been elavated in the relavant host cells and decreased
in unrelated tisssues/ cell-types. Monocytes are derived from the myeloid-lineage, and as such, share a number of
markers with their progenitor cell. This can be verified by the existence of both monocyte and myeloid cells in
the host cells of both plots. However, myeloid cells also differentiate into a variety of other cell-types, including
platelets, granulocytes, and erythrocytes (red blood cells), all of which are circulating in the blood stream. This
has been illustrated by having whole blood as the top host for myeloid cells, but having lower-rank for monocytes.

Another interesting observation is that pDC cells, while derived from lymphoid lineage, share markers with the
myeloid cells. More interestingly, two involuntary muscles, namely the smooth muscle and cardiac myocyte (heart
muscle), are among the highest-ranked hosts for monocyte markers. In order to verify the monocyte markers that
have higher signal in these muscle tissues than in monocyte itself, we extracted shared markers that show higher
expression level in both of these tissues. This results in 35 probesets corresponding to 30 unique genes, the list of
which is available for download as Additional file 3. We used g:Profiler[18] to assess the functional enrichment of
this ordered list of genes. We focused on GO biological processes, as well as KEGG and Reactome pathways, and
used a p-value cutoff of 1e − 3 after correcting for multiple hypothesis testing using Benjamini-Hochberg method.
We used moderate hierarchical filtering to select best GO terms per parent group. The sorted list of enriched
functional terms is available for download as Additional file 4.

Among these terms, there are two major groups: (i) genes that are involved in inflammatory response, cytokine-
cytokine receptor interaction, and positive regulation of cell migration, and (ii) genes involved in extracellular matrix
(ECM) remodeling, or more specifically Collagen degradation. The former set is enriched in cytokines including
CXCL1/3/5, IL1A/B, and IL6, whereas the later group is enriched in the matrix metalloproteases (MMPs), such
as MMP1/9/14/19. These genes are zinc-dependent endopeptidases that are the major proteases involved in
regulating matrix remodeling component of the MMP cluster. To further investigate if similar pattern emerges in
meta-analysis of enriched genes using a compendium of cell-type specific microarray datasets, we also constructed
the EnrichmentMap of monocyte markers using the Gene Enrichment Profiler[19]. Among these genes, we manually
highlighted shared markers that show high enrichment in smooth muscle and cardiac myocyte to investigate shared
markers.

The final highlighted enrichment map is available for download as Additional file 5. Among shared genes in
this map, PTX3, TFPI2, MMP1, and MMP14 are highly enriched in both smooth muscle and cardiac myocyte,
whereas PLAUR, IL6, IL1A, IL1B, CXCL1, CXCL3, ATP13A3, CXCL5, PID1, IER3, and VCAN are enriched in
smooth muscle. This suggests that the ECM remodeling pathways are utilized by both involuntary muscles, while
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inflammatory response pathway is mostly enriched in smooth muscle. There is support in literature for the role
of inflammation and cell migration in smooth muscle cells [20, 21, 22, 23, 24, 25], as well as extracellular matrix
remodeling [26, 27]. Our results suggest a greater role for shared inter-cellular signaling pathways, which merits
further investigation.

Pairwise transcriptional similarities after adjustment differentiate similar versus dis-
similar tissues

Ubiquitous expression of housekeeping genes in different tissues, in turn, contributes to a significantly high tran-
scriptional correlation between all pairs of human tissues. This baseline similarity makes it hard to distinguish
between similar, unrelated, or dissimilar tissues. To remedy this problem, we propose an alternate statistical frame-
work based on partial Pearson’s correlation, or equivalently the normalized dot-product of adjusted transcriptional
signatures, to estimate the overall similarity of tissues/ cell types while controlling for the effect of housekeeping
genes. A similar approach has been previously applied to the problem of gene regulatory network (GRN) inference
to distinguish direct versus indirect interactions between pairs of related genes [28].

Figure 6 shows the distribution of pairwise transcriptional similarities between every pair of tissues/ cell-types,
before and after adjusting for the effect of housekeeping genes. Raw transcriptional similarities are inflated by
the presence of housekeeping genes, and have a tight peak around its mean of 0.83, which makes discriminating
similar/ dissimilar tissues hard. On the other hand, the mean of adjusted similarity scores is close to zero (−0.01),
which suggests that majority of tissues/ cell-types are unrelated after removing the known prior contributed by
housekeeping genes. The distribution of adjusted similarity scores, however, is not symmetric around the mean
and has longer tail for the positive similarities, which indicates that the maximum similarity among tissues is much
higher than the maximum dissimilarity. This dissimilarity can be interpreted as an orthogonality in the functional
space of the corresponding tissues/ cell-types, that is, they use complementary sets of pathways. Adjusted similarity
scores below the 10th percentile and above the 90th percentile are color-coded by red and green, which mark the
space of dissimilar and similar tissues/ cell-types, respectively. The complete table of adjusted scores is available
for download as Additional file 6.

To better understand how different tissues/ cell-types interact with respect to their similarity/ dissimilarity
scores, we constructed a pruned Tissue-Tissue Similarity Network (TTSN) by setting a stringent threshold and
extracting all pair-wise interactions that are lower than the 1st percentile or greater than the 99th percentile. We
used Cytoscape[29] to import and visualize this network, which is shown in Figure 7. A visual inspection of the
map reveals multiple groupings of similar tissues, including core brain tissues and testis tissues, as well as similar
pairs including cerebellum tissues, pineal gland, and immune cells including myeloid-derived cells and T-cells.

Additionally, there are reoccurring patterns of dissimilarity between immune and neural cells. One such example
is reflected in the enriched negative edges between tissues involved in the maturation and storage of lymphocytes,
namely tonsil, thymus, and lymph node, and tissue samples from different regions of the brain. Another example
is the pons tissue, which acts as a negative hub, showing dissimilarity to a wide range of immune cells, Finally, we
observe that ganglion-related tissues, while acting as part of the peripheral nervous system, do not show significant
similarity with the brain tissue, but in the negative space of dissimilarities, they exhibit similar negative pattern with
immune cells. This suggests that the negative space of dissimilarities contains information, much like the positive
space of similarities regarding the utilization of functional pathways between pairs of human tissues/ cell-types.
This is masked if the effect of housekeeping genes is not suitably deflated.

Tissue-tissue similarities cluster into coherent groups of similar tissues

As observed in the investigation of pair-wise tissue similarities in the previous section, human tissues fall within
dense groups that exhibit high degree of connectivity within the cluster, while having clear separation from the
rest of tissues. To identify such major groups, we cluster adjusted transcriptional signatures using agglomerative
hierarchical clustering. We use 1-adjusted transcriptional similarities (partial Pearson’s correlation between pairs of
tissues after correcting for the common HK signature) as the distance measure between tissues, and the unweighted
average distance (UPGMA) method for computing the distance between clusters. To cut the clustering tree into
distinct clusters, we set a threshold of 0.5 on the average distance between clusters. This results in 39 clusters,
corresponding to 16 non-trivial clusters, which we manually label using the dominant pattern of member tissues in
each cluster. We observe a similar pattern, which is tight grouping among brain tissues and immune cells, respec-
tively, and significant dissimilarity between these clusters. To further analyze this pattern, we use the identified
core brain cluster and the immune cell cluster as centers and sort other clusters based their relative distance to
these two poles. Figure 8 shows the computed heatmap over non-trivial clusters, after sorting and annotating each
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cluster accordingly. Interestingly, three major groupings appear in among clusters: (i) neural cells involved in both
central and peripheral nervous system; (ii) glandular tissues including both tissues residing in the brain as well as
other anatomical locations, and (iii) immune cells and cell-lines. Among glandular tissues, pineal gland shows the
highest similarity with the brain cluster, while adrenal gland does not. Interestingly, involuntary muscles, including
smooth muscle and cardiac myocyte, group closely with immune cells, whereas skeletal muscle shows higher similar-
ity with the nerve cells in PNS. This is also consistent with the observed overlap among the monocyte markers and
involuntary muscles, which we noted in previous sections. Finally, we note that there is a significant dissimilarity
between immune cell clusters and both CNS an PNS, which is also consistent with our previous observation over
the tissue-tissue similarity network. The complete list of non-trivial clusters is available for download as Additional
file 7. We use these groupings as a refined prior to contract the space of adjusted transcriptional signatures before
identifying tissue-selective genes in order to enhance our ability to assess context-restriction of markers.

Reducing the space of adjusted tissue signatures provides a refined prior for identifying
marker genes

Tissue-specific genes, which are expressed in only one specific tissue/ cell-type, represent the most conservative
subset of marker genes. Depending on the structure of input tissues/ cell-types, it can be difficult to find such genes
if there is a high-level of dependence/ correlation among different columns of the signature matrix. Moreover, many
tissue-selective genes have preferential expression pattern in multiple tissues to perform either similar or completely
different roles. GNF gene atlas contains tissues, cell-types, and transformed cell-lines that have a considerable
overlap with each other. Previous studies, including the one conducted by Cavalli et al.[5], manually select tissues
to avoid this problem. However, this has two main drawbacks: (i) the process needs manual intervention and
understanding of the underlying similarity of given tissues/ cell-types, which can be biased, based on the functional
aspect under study; and (ii) there is a significant loss of information regarding genes that are consistently used in
similar tissues. Specially in cases in which there is a lack of biological replicas to estimate biological variation of
genes, such as the case with GNF gene atlas, this will prevent us from having an estimate of the expression variance.
To remedy these problems, we propose to use the same SVD-based method, described earlier for identifying HK
signature, and apply it independently to each identified cluster and represent each cluster using its unique signature.
Using this approach, we reduced the whole matrix of adjusted transcriptional signatures among 84 tissues/ celltypes,
into a projected space of 39 signatures (16 approximated signatures for each non-trivial cluster, plus the adjusted
transcriptional signature of singleton clusters). The reduced matrix of adjusted signatures is available for download
as Additional file 8. We will use this matrix for all our further analysis to find marker genes.

Using the reduced subspace of adjusted signatures enhances the sensitivity of marker
detection methods– case study of brain tissue markers

Identifying brain markers and brain-specific functional pathways

To demonstrate the effectiveness of the reduced subspace of adjusted signatures in identifying makers, we present a
case study of applying our new method to identify novel brain-selective markers. We chose brain tissue for further
investigation because it has the highest number of curated profiles in the meta-analysis methods, covering more
than 20% of all aggregated microarrays. The rest of tissues had significantly lower coverage.

For setting the parameters in our method, we assume equal variance in the active and null populations, and
set a p-value threshold of 1e − 5 to declare that genes exhibit selective expression domain. In terms of tissue-
restriction, we limit markers to the ones that are expressed in at most half of the tissues under study. Finally,
we set a separability gap of 0.25 to ensure that activated population has a uniformly high expression value. The
complete list of all identified markers for different tissue groups, including markers in central nervous system (CNS),
is available for download as Additional file 9.

To identify functional pathways corresponding to the identified brain markers, we use g:Profiler[18] to find
enriched terms in Gene Ontology (GO) biological processes, KEGG and Reactome pathways, and the Human
Phenotype Ontology (HPO). We set a p-value cutoff threshold of 1e − 3, after correcting for multiple hypothesis
testing using Benjamini-Hochberg method, to declare a term as significant. In order to simplify the list of enriched
term using the underlying DAG structure of GO and HPO, we use a moderate hierarchical filtering to select the
best terms per parent group. The complete list of enriched functional terms for brain marker genes is available
for download as Additional file 10. The top 20 enriched terms are presented in Table 2. These terms cover major
brain functions, from low-level cellular functions, such as synaptic transmission, glutamate secretion, and axon
guidance, to high-level behavioral terms, such as learning, memory, and morphine addiction. Interestingly, these
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enriched terms also include brain-specific disorders, such as epileptic encephalopathy. This is consistent with our
prior understanding– that is, while most human pathologies are driven by a combined disregulation of universal,
housekeeping functions coupled with tissue-selective elements, the tissue-selective component plays a major role
in unique susceptibility of host tissue to the tissue-specific disorders[7, 8]. For some brain-specific disorders, such
as neurodegenerative disorders ranging from Parkinson’s, Alzheimer’s, and Huntington’s disease, the housekeeping
element, such as the role of oxidative phosphorylation, is better understood. However, our results suggest that for
many other brain-related disorders, such as epilepsy and schizophrenia, brain-specific markers play a crucial role.
We expand on this claim in the following subsections.

Measuring the extent of overlap in brain-selective genesets from different studies

To evaluate the extent of overlap among the previously reported brain-specific genes, we extracted and consolidated
four different gene-sets from prior studies. Cavalli et al.[5] fits normal mixture model with three components to the
expression profile of each gene in a selected subset of 32/ 79 tissues from GNF Gene Atlas. Then, they identify
the null distribution among these fits and use it to identify outlier conditions/ tissues for each gene. We collected
511 up-regulated genes in the whole brain tissue as candidate brain-specific genes in this study. Then, we mapped
the Ensembl gene identifiers in this dataset to their corresponding Hugo gene symbols using Ensembl BioMart[31],
resulting in 497 unique genes. Next, we extracted marker genes from the study conducted by Schug et al.[32],
which uses an entropy-based method and is the ancestor of ROKU method[9]. This method, unlike ROKU, focuses
on the up-regulated genes in different tissues. We follow the same protocol proposed by the authors and use a
cutoff threshold of less than or equal to 7 on the Q value (categorical selectivity) of RMA normalized probesets
in the ”cortex,” which results in 708 brain-selective probesets corresponding to 628 genes. Finally, we compared
our method to two other studies that are based on meta-analysis of the microarray profiles. These methods use a
compendium of tissue/ cell-type specific microarray datasets, instead of a single study. Wang et al.[4] and Teng et
al.[6] both use the same input dataset for their analysis, namely 616 brain-specific gene expression profiles based on
the Affymetrix HG-U133 Plus 2.0, but follow a different strategy to assign weights to each chip and select tissue-
selective genes. We gathered 222 and 1,408 brain-specific probesets from these studies and used Ensembl BioMart
to convert these probeset ids to their corresponding HUGO gene symbol, resulting in 152 and 848 unique genes,
respectively. The final set of brain-markers in these studies mapped to their gene symbol is available for download
as Additional file 11.

To qualitatively assess the overlap among these sets, we construct the Venn diagram of intersections among
these datasets, which is illustrated in Figure 9. A visual inspection of this diagram suggests that these methods
cover vastly different sets of the brain-selective genes, with only 17 genes being in common among all methods.
Next, to quantify pairwise overlaps among these datasets, we use the Jaccard index. Given a pair of marker sets,
A and B, we calculate the Jaccard index is follows:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

Table 3 summarizes the pairwise overlap among different datasets. Wang et al. dataset shows the least overlap
with other datasets, with the greatest overlap being with the Teng et al. dataset. This is partially expected since
both of these methods use the same aggregated input panel. Our dataset, on the other hand, shows the highest
overall overlap with other methods, except with the Wang et al. dataset. Indeed, this can be observed by noting the
fact that except for the last row (which corresponds to Wang et al. dataset), the maximum value of overlap is always
on the second column (corresponding to our dataset). This suggests that our method combines the characteristics
of both class of methods, which in turn allows us to achieve high sensitivity even when only a limited number of
input datasets are available.

Validating brain-specific genes in different studies using the gold standard from the human brain-
specific proteome

In order to validate our predicted brain markers, and compare our method with previous studies, we use a recently
published map of the human tissue proteome, which is based on combined transcriptomics profiling, using RNASeq,
coupled with an antibody-based proteomics assay, using microarray-based immunohistochemistry[11]. The brain-
specific proteome in this study contains 1134 genes whose expression is elevated in the brain, among which 318 are
uniquely enriched in brain. The concept of brain-elevated versus enriched corresponds to our definition of tissue-
selective and tissue-specific, respectively. We used the Human Protein Atlas[30] portal to download brain-elevated
genes, identified using the RNASeq dataset, which are also supported by the immunohistochemistry experiments.
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This results in 273 total genes that are supported by both experiments, which map to 246 genes that are assayed
in our study. We will use this set of genes as the gold standard to evaluate different brain marker genesets.

We measure various statistics for each dataset. First, we set the 17,220 genes assayed by GNF as the global
sampling population, and map all marker sets to this universal set. Then, we computed the true-positives as the
number of genes in each marker set that overlaps with the gold standard from the human brain-specific proteome.
We approximated true negatives as the number of genes that are neither in the marker geneset nor the brain-specific
proteome. Finally, we compute sensitivity, specificity, accuracy, and the hypergeometric p-value for each dataset.
The final set of computed statistics is presented in Table 4. Please note that the computed specificity and accuracy
are not exact, since the assumption that any gene not identified by the brain-specific proteome is a true negative,
is not valid. This dataset is a high quality gold standard set, which only reports a gene as positive if there is a
strong evidence for it. In other words, it has much higher chance of having false negatives than false positives. The
hypergeometric p-value is the most statistically sound measure to compare these methods. As evident from the
results, our method significantly outperforms prior methods that use a limited number of expression profiles, while
only trailing the Teng et al. dataset, which uses a comprehensive aggregated dataset of brain-specific panel as its
input. This suggests that by leveraging information across different tissues/ cell-types, our method can estimate
the biological variation of selective genes, even in cases where multiple biological replicates are not available.

Power of brain-selective genes in characterizing brain-specific disorders

To evaluate the power of marker genes as biomarkers for tissue-specific disorders in brain, we used the Disease
Ontology Semantic and Enrichment analysis (DOSE)[33] R/ Bioconductor package to assess the enrichment of the
Disease Ontology (DO)[34] terms among brain-specific genes. We limit the terms to the ones that have at least
five member genes, and use a q-value cutoff of 0.05 to filter enriched terms after FDR-correction. The final table
of the terms that are enriched by at least one of the methods is available for download as Additional file 12. This
dataset includes 52 terms, 18 of which are identified by all methods. These shared, enriched terms are summarized
in Table 5. As a general pattern, all genesets are enriched with genes involved in brain-specific disorders, ranging
from cognitive and psychotic disorders to neurodegenerative diseases. Similar to our validation results using Human
Protein Atlas (HPA), the dataset of Wang et al. performs poorly, whereas Teng et al. dataset outperforms other
methods in a majority of cases. While makers from most methods are highly enriched in more generic terms,
each method outperforms in specific subsets of disorders. For example, the dataset of Schug et al. is significantly
enriched for a host of disorders involving cognitive and psychotic disorders. Surprisingly, for cognitive disorders,
dementia, Alzheimer’s disease, and tauopathy, Schug et al. dataset of brain-specific genes outperforms all other
datasets, including the HPA gold standard set.

This suggests that different methods, while having a considerable overlap, identify unique subsets that play key
roles in different pathways involved in brain-specific pathologies. This is consistent with our results in previous
sections showing that these methods provide complementary sets of marker genes, which merits further investigation
on developing integrative methods to combine these results.

Conclusion

A key challenge in identifying tissue-selective genes is to identify the set of tissues in which they are manifested.
This task is further complicated by the underlying similarity of tissues/ cell-types, which imposes a natural grouping
among them. In this paper, we presented a novel statistical framework for constructing a refined hierarchical prior
of tissue similarities to organize them into a well-separated, reduced subspace. This organization is constructed from
the raw expression profiles by first deflating the shared functionality attributed to housekeeping genes. Then, we
identified group of similar tissues in this adjusted space, and contracted each tissue group by iterative application
of our SVD-based method to identify the common signature of each cluster. Finally, we proposed a new method to
utilize this reduced sub-space as a refined prior to identify genes that are preferentially expressed at each level of
the hierarchy.

Using a case study of immune-specific and brain-related genes, we have shown that the set of identified marker
genes in this study significantly overlaps with the most recent gold standard markers. These findings greatly enhance
our understanding of tissue-selective functions beyond the set of “first-order” related tissues in a way that has not
been possible though individual investigation of human tissues.
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Materials and Methods

Datasets

Tissue-specific mRNA expression profiles

We downloaded the pre-processed Genomics Institute of the Novartis Research Foundation (GNF) Gene Atlas[35]
dataset from the BioGPS portal[36, 37]. Using a combination of the Affymetrix HG-U133A and a custom-designed
(GNF1H) array, a total of 84 unique human tissues and cell-types from different donors have been profiled in this
study, which together interrogate 44,775 human transcripts covering both known, as well as predicted and poorly
characterized genes. The raw intensity values have been normalized using GCRMA and averaged across all replicas.
We use the log2-transformed expression value as a proxy for the gene activity throughout our study.

Probeset-to-gene annotations

We downloaded the HG-U133A annotations in *.chip format from the GSEA FTP website. This dataset consists
of annotations for 22,283 probesets in the Human Genome U133A chip. We downloaded Human GNF1H chip
annotation, update May 2007, from the BioGPS portal[36, 37]. This table includes a total of 22,492 unique
probesets for GNF1H, as well as 66 duplicate targets from U133A for the normalization procedure. We extracted
the HUGO gene symbols for each of the unique probesets in this table and created the corresponding *.chip file
for GNF1H. Finally, we merged the annotations for both arrays to create a unified annotation table for the Gene
Atlas, which contains 44,775 unique probesets.

We further filtered this dataset to remove Affymetrix control probes, ambiguous probes (mapped to more than
one gene), and unmapped probes (probes that do not match any gene). This results in a total of 28,649 probesets,
which are mapped to 17,220 unique gene symbols.

Identifying the shared subspace among a group of tissues

A given set of tissues/ cell-types typically share a common set of genes/ pathways, while specializing through
preferential genes that control and regulate this core shared set. Let us represent the raw transcriptional signature
of these tissues using a matrix T , in which rows correspond to genes and columns correspond to different tissues.
We are interested in finding the subspace of common genes, and to use it to adjust these transcriptional signatures.
When the given set includes all, or majority of, human cell-types, the shared signature represents the signature of
housekeeping genes.

There are a number of methods for approximating this common signature in T , the simplest of which would be
to find the mean of its columns. A more elaborate approach involves decomposing T into sum of rank-one matrices,
using methods such as singular value decomposition (SVD) or non-negative matrix under-approximation (NMU).
The general goal of these methods is to represent T as a sum of outer products of vectors. More formally, we write
T as follows:

T = UrΣrVr =
r∑
i=1

σiuivi
T , (2)

where r ≤ min(nA, nB) is the rank of the approximation. In the SVD formulation, ui and vi vectors are called
left and right singular vectors, respectively. These vectors constitute an orthonormal basis, that is both uiu

T
j = δij

and viv
T
j = δij for all i and j. Additionally, for any r, an SVD is the optimal rank-r approximation of T . When

all entries of T are positive, Perron-Frobenius theorem ensures that all entries of the both left and right singular
vectors are positive. However, the first residual matrix, R1 = M − σ1u1v1

T , can, and typically does, contain
negative elements to ensure orthonormality. On the other hand, NMU formulation does not ensure orthonormality,
but, rather enforces an additional constraint on the optimization problem, which is that Rk should consist of all
positive elements. Unfortunately, while SVD has an optimal solution, the additional non-negativity constraint of
NMU makes its computation non-convex, though heuristic exists to approximate the solution.

In this work, we use a rank-one approximation of matrix T , that is r = 1, to identify a unique signature
that closely represents the common signature in T . We use the first singular vector of matrix T , after z -score
normalization, as a proxy for the housekeeping signature throughout our study.
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Adjusting the raw transcriptional signatures to control for the known prior similarity

Let us denote the transcriptional profile of the ith tissue by Ti. In order to compute the raw transcriptional
similarity between each given pair of tissues, we compute the Pearson’s correlation as follows:

rTiTj =

∑n
k=1(tki − t̄i)(tkj − t̄j)√∑n

k=1(tki − t̄i)2
√∑n

k=1(tkj − t̄j)2
(3)

in which n represents the total number of genes, tki and tkj are the expression levels of the kth genes in the ith and
jth tissues, respectively. Similarly, t̄i and t̄j represent the average expression level of genes in the corresponding

tissues. Let Zi denote the Z -score normalized version of Ti, defined as Ti−µ(Ti)
σ(Ti)

. We will refer to Zi as the raw

transcriptional signature of tissue i. Using this formulation, we can simplify the raw transcriptional similarity as
the normalized dot product of raw transcriptional signatures:

rTiTj =
ZiZj
n

(4)

The raw transcriptional similarity of tissues is artificially inflated due to the ubiquitous expression of house-
keeping genes across all tissues. To control for this effect, we first define the housekeeping transcriptional signature,
denoted by vector S, as the left singular vector of matrix Z. Using this notation, we revise our similarity scores by
computing the partial Pearson’s correlation between Ti and Ti, after controlling for the effect of S as follows:

rTiTj•S =
rTiTj − rTiSrTjS√
1− r2TiS

√
1− r2TjS

(5)

As before, we can rewrite this using Z -score formulation. Let us denote the adjusted transcriptional profile of

tissue i as Yi = Zi − rTiSS. We define the adjusted transcriptional signature of tissue i as Ẑi = Yi−µ(Yi)
σ(Yi)

. Finally,

we can rewrite the adjusted transcriptional similarity as:

rTiTj•S =
ẐiẐj
n

(6)

We use this approach, referred to as Peeling the Common Signature (PCS) hereafter, to remove the shared
subspace of a given set of expression profiles and construct the corresponding adjusted transcriptional signatures.
Significantly positive transcriptional similarities in this framework are indicators of shared tissue-specific pathways,
whereas negative scores are indicators of mutually exclusive pathways that are used by one tissue but are absent
in the other. We use these adjusted transcriptional signatures in our study to identify marker genes. However,
when applying methods that rely on the positivity of input expression matrix, such as the entropy-based method
by Schug et al.[32], one can use the sigmoid transform of these scores as follows:

p̂ki =
1

1 + e−ẑki
(7)

Please note that this transformation, when applied to the raw transcriptional signatures, is equivalent to the
previously known softmax normalization:

pki =
1

1 + e−zki

=
1

1 + e
−( tki−µ(Ti)

σ(Ti)
)

(8)

This normalization is known to remove the effect of outliers, while preserving a linear relationship for the mid-
range values. We emphasize here that our proposed PCS approach is universally applicable to different marker
detection methods, and can be used as an independent pre-processing step.

Identifying novel marker genes in the reduced subspace of adjusted signatures

Different methods for identifying marker genes not only differ in their underlying formulation, but also make different
assumptions regarding the nature of tissue-selective genes:
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Restricted expression domain: Marker genes are assumed to be expressed in only a limited number of tissues/
cell-types. Genes that are universally expressed in a large number of tissues are less-informative with respect
to uncovering tissue-specific functions.

Reproducibility: Marker genes should exhibit low variability, both within the cell-type(s) of interest, as well as in
the tissues in which they are not expressed. This is a critical assumption, which ensures the reproducibility of
the results, since genes that are time or microenvironment dependent are not only poor markers for cell-types,
but can change from experiment to experiment.

High relative expression Marker genes are assumed to have much higher expression in the host tissue/ cell-type,
compared to the rest of tissues. This is a common assumption, especially in cases where biological replicas
are either not available, or there are only a few of them. The significant gap between the average expression
of marker genes in the host cell versus unrelated cell-types ensures that even with nominal level of biological
variability, these markers are still distinguishable.

High absolute expression: Marker genes should have a globally high expression level.

The last assumption is of significance, specially for markers that are to be used for cell-sorting or drug delivery to
specific cells, as in the new antibody-conjugated drugs being developed by major vendors. However, this is typically
ignored because of experimental limitations, since the absolute value of expression is not comparable across genes
because of the experimental biases. We propose a novel method for identifying genes, which focuses on the first
three modeling assumptions. Our method is applicable to cases in which no biological replicas are available, or
their number is not enough to estimate biological variation of genes. We use cross tissue variations as a proxy for
estimating this parameter and ensuring reproducibility. Our method uses the adjusted transcriptional signatures as
an input. Then, it constructs groups of similar tissues using these signatures, and reduces the space of tissues and
genes by repeated application of the PCS method, and representing each group using its signature vector, while
keeping ungrouped tissues as they are. Let us denote the sorted expression value of a given gene k by a vector x
of size q. We use a t-test type method to assess the separability of the expression domain for gene k, encoded by
vector x, and ensure reproducibility of the results. For each cut of size i in x, we calculate an enrichment score as
follows:

θi =
nq

2
∗ p− val(

µ(x1:i)− µ(xi+1:q)

si
√

q
i(q−i)

) (9)

where si =
√

(i−1)σ2(x1:i)+(q−i−1)σ2(xi+1:q)
q−2 , the p-value is computed using the Student’s t-distribution with q−2

degrees of freedom, and the nq
2 factor corrects for multiple hypothesis testing using the Bonferroni method. To ensure

restriction of the expression domain, we only look at the first q
2 cuts. That is, a gene is declared as preferentially

expressed if it is significantly over expressed in a group of at max half of tissues. Using this formulation, we identify
the optimal cut as:

Θ = min
i∈{1,..., q2 }

{θi} (10)

If Θ is greater than a user-provided p-value threshold, we will ignore gene k. Otherwise, we use the optimal
cut to partition tissues into an active set and a null set, denoted by α and η, respectively. To ensure high relative
expression, we compute a gap score for gene k, represented by δk, which is defined as the difference between the min
of α and the max of η, normalized by the relative difference of the mean of the two populations, or more formally:

δk =
min(α)−max(η)

µ(α)− µ(η)
(11)

The computed value δk is always between 0 and 1, with values closer to 1 being desired. Stated otherwise, δk
measures the uniformity of gene expression in each group, in a similar fashion to the methods based on entropy. If
the mean of one population is significantly different from the marginal values of the cut, then there is a significant
difference from the mean estimate of the population, used to assess separability, and the marginal values of the
populations. We use a user-provided gap threshold to cut δ values and identify genes with high relative expression.
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Figures

Figure 1: Overall workflow of our method Transcriptional signatures are normalized, before/after deflating
housekeeping signatures, and used for marker detection
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Figure 2: Effect of adjustment on the expression level of housekeeping genes Affymetrix probes corre-
sponding to GAPDH and β-actin are averaged independently for raw and adjusted transcriptional signatures, and
tissues are sorted based on their mean raw values.
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Figure 3: Effect of adjustment on the expression level of control housekeeping genes High quality control
probes from Eisenberg and Levanon[12] were used to assess the performance of adjustment method on reducing the
noise contributed by housekeeping genes
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Figure 4: Effect of adjustment on the expression level of marker genes Each sub-plot corresponds to one
of the major sub-types of lymphoid-derived immune cells. Tissues and cell-types are sorted based on the average
value of markers in the adjusted signature profile.
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Figure 5: Effect of adjustment on the expression level of marker genes Each sub-plot corresponds to one of
the myeloid immune cells. Tissues and cell-types are sorted based on the average value of markers in the adjusted
signature profile.
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Figure 6: Distribution of tissue-tissue similarities before/after adjustment Similarity scores are computed
using Pearson’s correlation and partial Pearson’s correlation, or equivalently, the normalized dot product of raw
versus adjusted transcriptional signatures. Raw transcriptional similarities are artificially inflated due to the present
of housekeeping genes, which makes discriminating similar/dissimilar tissues hard. On the other hand, adjusted
similarities are centered around zero, which suggests that majority of tissues/ cell-types are unrelated after removing
the known prior contributed by housekeeping genes.
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Figure 7: Network of most significant pairwise relationships among human tissues/ cell-type Each
node in this network represents a human tissue or cell-type, and edges represent the most significant pairwise
relationships among them. Red edges correspond to dissimilar pairs, while green edges correspond to similar pairs.
The color gradient of edges is used to represent the strength of the relationship, whereas node sizes correspond to
the degree of each node.
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Figure 8: Heatmap of cluster tissues according to adjusted transcriptional similarities Each cluster
is annotated using the majority of its member tissues and visually separated from the rest of clusters using verti-
cal/horizontal separators. From top to bottom (or left to right) there are three major groups of tissues: (i) brain
tissues, (ii) glandular tissues, and (iii) immune tissues/ cell-types
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Figure 9: Venn diagram of the overlaps among brain-specific genesets Each dataset is represented by a
separate closed curve, named by its first, and the overlap set are color-coded independently and annotated by the
number of genes that reside in each set
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Tables

Table 1: Sumary of the immune cell markers from the IRIS dataset
Cell-type # IRIS probes # matched probes # unique genes
B Cell 121 66 54
Dendritic Cell 86 48 41
Monocyte 103 67 53
Myeloid 449 246 201
NK Cell 24 18 15
T Cell 94 55 46

Table 2: Top 20 enriched terms among identified brain markers in this study
Name Type ID FDR-corrected p-value
synaptic transmission BP GO:0007268 2.76E-37
Transmission across Chemical Synapses re REAC:112315 2.59E-29
Retrograde endocannabinoid signaling ke KEGG:04723 1.12E-12
Glutamatergic synapse ke KEGG:04724 1.16E-12
GABAergic synapse ke KEGG:04727 4E-12
Axon guidance re REAC:422475 8.48E-12
Morphine addiction ke KEGG:05032 1.16E-10
Circadian entrainment ke KEGG:04713 2.54E-10
glutamate secretion BP GO:0014047 6.15E-10
Dopaminergic synapse ke KEGG:04728 1.33E-09
learning or memory BP GO:0007611 1.59E-08
Nicotine addiction ke KEGG:05033 8.09E-08
Epileptic encephalopathy hp HP:0200134 1.06E-07
Adrenergic signaling in cardiomyocytes ke KEGG:04261 1.1E-07
Regulation of insulin secretion re REAC:422356 3.7E-07
Neurotoxicity of clostridium toxins re REAC:168799 7.82E-07
Insulin secretion ke KEGG:04911 1.21E-06
Cholinergic synapse ke KEGG:04725 1.25E-06
Oxytocin signaling pathway ke KEGG:04921 1.46E-06
Synaptic vesicle cycle ke KEGG:04721 1.5E-06

Table 3: Extent of overlap among brain marker genesets from different studies, measured using Jaccard index
Cavalli Mohammadi Schug Teng Wang

Cavalli 1 0.31234 0.22949 0.21388 0.06038
Mohammadi 0.31234 1 0.25316 0.22187 0.07051
Schug 0.22949 0.25316 1 0.16154 0.04943
Teng 0.21388 0.22187 0.16154 1 0.11027
Wang 0.06038 0.07051 0.04943 0.11027 1

Table 4: Evaluation of brain marker genesets from different studies using the brain-specific proteome
# markers # mapped markers True-positives Sensitivity Specificity Accuracy p-value

Cavalli 497 447 88 0.358 0.979 0.970 3E-77
Mohammadi 553 553 105 0.427 0.974 0.966 6E-92
Schug 628 437 80 0.325 0.979 0.970 5E-67
Teng 848 620 120 0.488 0.971 0.964 5E-108
Wang 152 115 30 0.122 0.995 0.983 1E-29
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Table 5: Disease enrichment of brain-specific markers
Disorders Cavalli:qval HPA:qval Mohammadi:qval Schug:qval Teng:qval Wang:qval
disease of mental health 1.01E-23 1.59E-33 1.85E-24 1.90E-32 4.43E-34 2.01E-14
schizophrenia 9.33E-21 8.76E-32 1.34E-23 3.06E-30 3.20E-23 5.52E-15
psychotic disorder 9.33E-21 8.76E-32 1.34E-23 3.30E-30 3.20E-23 5.52E-15
cognitive disorder 1.06E-20 8.70E-28 1.31E-22 1.25E-31 6.36E-23 5.52E-15
brain disease 9.61E-09 1.30E-14 1.45E-14 1.76E-13 3.59E-19 3.22E-07
epilepsy syndrome 1.11E-04 6.65E-10 5.27E-10 4.48E-10 1.02E-18 5.93E-07
pervasive developmental disorder 4.42E-06 1.71E-07 9.06E-09 2.02E-03 6.09E-18 1.55E-04
autism spectrum disorder 1.54E-05 3.27E-07 2.98E-09 1.16E-03 2.42E-17 1.13E-04
autistic disorder 1.54E-05 3.27E-07 2.98E-09 1.16E-03 2.42E-17 1.13E-04
central nervous system disease 4.88E-13 1.05E-12 3.98E-17 4.15E-13 5.84E-17 3.28E-07
developmental disorder of mental
health

5.31E-06 6.88E-12 1.02E-08 3.98E-07 9.20E-17 3.90E-05

neurodegenerative disease 1.49E-08 3.27E-07 2.24E-10 3.29E-06 2.82E-05 5.81E-07
mood disorder 1.14E-03 1.51E-06 1.75E-04 1.25E-05 3.13E-09 3.99E-07
bipolar disorder 1.22E-03 1.87E-05 4.15E-04 3.05E-06 3.13E-09 8.91E-08
nervous system disease 7.50E-06 1.58E-06 3.89E-09 1.07E-08 5.42E-09 2.49E-04
dementia 8.30E-07 7.51E-05 4.76E-07 1.70E-07 1.99E-03 1.07E-04
Alzheimer’s disease 1.40E-05 2.14E-03 1.78E-04 3.45E-06 3.27E-03 4.09E-04
tauopathy 1.54E-05 2.29E-03 2.03E-04 4.02E-06 3.68E-03 4.17E-04
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Additional Files

Additional file 1 — Raw transcriptional signatures

This is a comma-separated file in *.csv format. First column is the HUGO gene symbols, and first row is the column
header. The rest of the table is the computed raw transcriptional signature of the GNF gene atlas dataset.

Additional file 2 — Adjusted transcriptional signatures

This is a comma-separated file in *.csv format. First column is the HUGO gene symbols, and first row is the column
header. The rest of the table is the computed adjusted transcriptional signature of the GNF gene atlas dataset.

Additional file 3 — Shared markers between monocytes and involuntary muscles

This is a comma-separated file in *.csv format. First column is the HUGO gene symbols for markers, and the
second column is the observed difference between involuntary muscles and monocyte (the higher the value, the
more significant the expression is in involuntary muscles). There are duplicate genes in column one, which is due
to multiple probesets corresponding to the same gene.

Additional file 4 — Shared functional pathways between monocytes and involuntary
muscles

This is an Excel table in *.xls format representing the functional enrichment results using g:Profiler for the monocyte
marker genes that are shared with smooth muscle and cardiac myocyte.

Additional file 5 — Enrichment map of shared markers between monocytes and in-
voluntary muscles

This is a *.pdf file representing the enrichment map of shared markers, constructed using the Gene Enrichment
Profiler.

Additional file 6 — Adjusted transcriptional similarities among all pair of tissues/cell-
types

This is a comma-separated file in *.csv format. First and second columns identify the pair of tissues, whereas the
third column represents their computed similarity score.

Additional file 7 — Annotated table of tissue clusters

This is an excel table in *.xls format. Each column represents an identified cluster of similar tissues/ cell-types,
and the column headers are descriptive annotations for each cluster.

Additional file 8 — Adjusted transcriptional signatures reduced over tissue groups

This is a comma-separated file in *.csv format. First column is the HUGO gene symbols, and first row is the column
header (name of tissue groups). The rest of the table is the computed adjusted transcriptional signature projected
over each group.

Additional file 9 — Complete list of identified markers

This is an Excel table in *.xls format. Markers corresponding to each of the identified groups are provided in
different worksheets.

Additional file 10 — Complete list of enriched functional terms for the identified brain
markers in this study

This is an Excel table in *.xls format representing the enriched functional terms in among brain marker genes,
computed using g:Profiler.

26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2015. ; https://doi.org/10.1101/020685doi: bioRxiv preprint 

https://doi.org/10.1101/020685
http://creativecommons.org/licenses/by-nc/4.0/


Additional file 11 — Consolidated list of brain-specific markers from previous studies

This is an Excel table in *.xls format. Brain markers from different studies are converted to HUGO gene symbol
and are provided in different worksheets.

Additional file 12 — Enriched disease terms among brain-selective markers

This is an Excel table in *.xls format. First column is the DO ID of the disorder, and the rest of columns indicate
the statistical significance of the terms in different brain-selective datasets.
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