
Statistical Colocalization of Genetic

Risk Variants for Related Autoimmune

Diseases in the Context of Common

Controls
Mary D Fortune1 Hui Guo1,2 Oliver Burren1 Ellen Schofield1

Neil M Walker1 Maria Ban3 Stephen J Sawcer3 John Bowes4,5

Jane Worthington4,5 Anne Barton4,5 Steve Eyre4,5 John A Todd1

Chris Wallace1,6

June 8, 2015

1. JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Ge-

netics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Re-

search, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical

Campus, Cambridge, CB2 0XY, United Kingdom.

2. Centre for Biostatistics, Institute of Population Health, The University of Manchester, Jean

McFarlane Building, Oxford Road, Manchester, M13 9PL, United Kingdom

3. University Neurology Unit, Level 5, Block A, Addenbrooke’s Hospital, Hills Road, Cambridge,

CB2 2QQ, United Kingdom

4. Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Re-

search, Institute of Inflammation and Repair, University of Manchester, Manchester Aca-

demic Health Science Centre, Manchester, United Kingdom

5. National Institute of Health Research Manchester Musculoskeletal Biomedical Research

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020651doi: bioRxiv preprint 

https://doi.org/10.1101/020651
http://creativecommons.org/licenses/by/4.0/


Unit, Central Manchester Foundation Trust, Manchester Academic Health Science, Manch-

ester, United Kingdom

6. MRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way,

Cambridge Biomedical Campus, Cambridge, CB2 0SR, United Kingdom

Abstract

Identifying whether potential causal variants for related diseases are shared can increase

understanding of the shared etiology between diseases. Colocalization methods are designed

to disentangle shared and distinct causal variants in regions where two diseases show associa-

tion, but existing methods are limited by assuming independent datasets. We extended existing

methods to allow for the shared control design common in GWAS and applied them to four

autoimmune diseases: type 1 diabetes (T1D); rheumatoid arthritis; celiac disease (CEL) and

multiple sclerosis (MS). Ninety regions associated with at least one disease. In 22 regions

(24%), we identify association to precisely one of our four diseases and can find no published

association of any other disease to the same region; some of these may reflect effects medi-

ated by the target of immune attack. Thirty-three regions (37%) were associated with two or

more, but in 14 of these there was evidence that causal variants differed between diseases. By

leveraging information across datasets, we identified novel disease associations to 12 regions

previously associated with one or more of the other three autoimmune disorders. For instance,

we link the CEL-associated FASLG region to T1D and identify a single SNP, rs78037977, as

a likely causal variant. We also highlight several particularly complex association patterns, in-

cluding the CD28-CTLA4-ICOS region, in which it appears that three distinct causal variants

associate with three diseases in three different patterns. Our results underscore the complexity

in genetic variation underlying related but distinct autoimmune diseases and help to approach

its dissection.
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Introduction

Overlaps of genetic association to different diseases have been widely observed, and are

thought to reflect shared etiology between diseases.1 However, showing that a variant is asso-

ciated with two traits does not demonstrate that it is causal for both: this may be due to distinct

variants in linkage disequilibrium.2 Colocalization analyzes are used to study whether potential

causal variants are shared by combining information across multiple single-nucleotide polymor-

phisms (SNPs) in a region. The proportional approach3 tests a null hypothesis of proportionality

under which, if causal variants are shared, we expect to see that the effects of any set of SNPs

on the two diseases are proportional to each other. A weakness of this approach is interpretation.

Failure to reject the null hypothesis does not only imply colocalization, but could also be caused

by neither disease being associated, or by insufficient power owing to too few samples analyses

and/or an incomplete genetic map4 (Supplementary Fig. 1). We have no way of measuring how

likely colocalization is. A strength is that no assumptions are made about the number of causal

variants: the null hypothesis corresponds to complete sharing across all causal variants. An alter-

native is to use a Bayesian framework,5 to generate posterior probabilities for colocalization and

distinct causal variants, as competing hypotheses. However, a weakness of this approach, as

currently developed, is that it assumes only a single causal variant for each trait within any region.

Existing colocalization methods require that genetic association with the two traits of interest

has been tested in distinct samples. However, this requirement restricts the applicability of the

approach to related diseases since each set of case samples must have a corresponding distinct

set of control samples, enabling a logistic binomial model to be used independently upon each

disease. In contrast, many studies use a common set of controls for different diseases to increase

efficiency. Here, we extend both colocalization methods to allow for the use of multinomial logistic

regression, the natural model for shared controls.

Previous studies have identified many regions associated with multiple autoimmune or autoin-

flammatory diseases, including type 1 diabetes (T1D) and celiac disease (CEL).6,1 Such multi-

disease association led to the development of the ImmunoChip,7 a custom genotyping chip with

196,000 SNPs designed to densely cover 186 regions known to associate with at least one im-

mune disease on the basis of GWAS p-value < 10−8. The ImmunoChip consortium used a

common control set. We applied our extended methods to ImmunoChip raw genotyping data for a

total of 36,030 samples, including one set of controls and four disease cohorts, in order to better

understand the extent of shared genetic etiology in these diseases.
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Results

The Bayesian method derives the posterior support for each of five hypotheses describing the

possible association of the region with both diseases. Of greatest interest are:

H3: Both diseases are associated with the region, with different causal variants.

H4: Both diseases are associated with the region, and share a single causal variant.

Association with both traits corresponds to H3 or H4; colocalization corresponds to H4. This

method requires specification of prior probabilities for each hypothesis. We calibrated priors to

match our expectations that about 50% of regions associated with two immune-mediated diseases

correspond to a shared causal variant (Supplementary Fig. 2), which is close to the proportion

found in a manually curated summary of association to six immune-mediated diseases8 (58%).

For rheumatoid arthritis (RA)9 and multiple sclerosis (MS),10 for which only UK subsets of in-

ternational cohorts were analyzed, we modified priors in regions with published associations to

reflect this additional information from the published papers. Where a region was annotated in

ImmunoBase as associated with RA or MS, we shrunk our priors for hypotheses corresponding

to no association for the disease close towards 0, and increased our priors for the remaining

hypotheses (Supplementary Methods).

One hundred and twenty six ImmunoChip regions assigned to at least one of the diseases

(based upon knowledge when the chip was designed or identified in subsequent papers and cu-

rated in ImmunoBase, http://www.immunobase.org, accessed 12/11/13) were analyzed using

both approaches for all six pairwise comparisons of the four diseases. The Bayesian approach

assumes a single causal variant per trait in any region. To allow for multiple causal variants,

we used a stepwise method. In the overwhelming majority of cases (740 of 756 pairwise com-

parisons, or 98%), the data were consistent with at most one causal variant per trait in the 126

regions analyzed. In the remaining 16 pairwise comparisons from 8 regions, we use a stepwise

method to allow for multiple causal variants. Ninety of the 126 regions (71%) showed association

with at least one disease: in 33 regions, the association was shared between at least two dis-

eases (Fig. 1). Complete results are given in Supplementary Table 1, Supplementary Table 2 and

Supplementary Table 3). For fifty-seven regions, the greatest support was for association with

precisely one of the four diseases: in 21 cases, we know of no other immune-mediated diseases

that have reported association to these regions and therefore hypothesize these may be disease

specific among autoimmune diseases (Table 1).
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In the Bayesian approach, when the posterior probability of a hypothesis is close to 0.5, as-

signment cannot be made with confidence to any single hypothesis. However, in the 30 instances

in which both diseases showed very strong evidence of association (P(H3 or H4) > 0.9), the

Bayesian and proportional approaches produced consistent results. For these 30 cases, the pro-

portional null was rejected only in cases in which the Bayesian analysis favored H3, and not

rejected in cases where H4 was favored. Focusing on these, the data strongly supported that the

same causal variants underlie all diseases in ten cases, while seven showed strong evidence for

distinct variants, suggesting that just under half, 42%, of overlapping association signals reflect

distinct causal variants.

For colocalized disease regions, the two diseases generally have consistent directions of ef-

fect (Fig 2) with the exception of the 6q25.3 region containing candidate gene TAGAP, which is

associated in our analysis with CEL and MS only: the risk allele for CEL is protective for MS and

vice versa (Supplementary Fig. 3). This opposing effect of TAGAP alleles has been previously de-

scribed for T1D and CEL,6 although the region did not provide sufficient evidence for association

with T1D in the data available to us. A similar effect for the 2q12.1 region containing candidate

gene IL18RAP has been reported.6 However, later data11 have not offered support for T1D asso-

ciation to 2q12.1, and, in our analysis, the posterior support is concentrated on CEL association

alone.

Patterns of association with multiple diseases can be complex. In the 2q33 region containing

established candidate gene CTLA4, as well as the equally strong functional candidate genes,

CD28 and ICOS, three potential causal variants appear to be partially shared between T1D, RA

and CEL. The strongest association with T1D is at rs3087243 (which has previously been called

CT60), while the strongest association with CEL is with rs231775 (which alters the amino acid

at position 17 of CTLA-4, Ala17Thr, and has previously been called CT42). The two SNPs have

r2 = 0.5, and haplotype analysis has previously suggested CT60 and not CT42 is causal for

Graves’ disease.12 For RA, the strongest single SNP signal is at rs1980422, which is not in

LD with either CT42 or CT60 (r2 < 0.1). We fit each of the 512 possible multinomial models

involving these three SNPs for the three diseases. Assuming each model to be equally likely a

priori, the model with highest posterior probability has rs1980422/rs3087243 (CT60) signals for

CEL and rs231775 (CT42)/rs1980422 for both T1D and RA, although while rs231775 (CT42) is

the strongest effect for T1D, rs1980422 is strongest for RA (Fig. 3). These results emphasize

the potential complexity that can arise in regions of multiple association signals, and motivate the

extension of the colocalisation approach developed here to allow model search strategies which

does not require stepwise assumptions.
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Two regions were associated with all four diseases (Fig. 1). One was the 6q23.3 region con-

taining candidate gene TNFAIP3, known to be associated with RA and CEL. There has been some

published evidence that T1D is associated with this region,13 although not at genome-wide signif-

icant levels. Our results identify a T1D signal, colocalized with that for RA and CEL, suggesting

a single shared causal variant affecting the three diseases. There is also evidence of MS associ-

ation, driven by a distinct causal variant (in the CEL-MS analysis, P(H3) = 0.83, Supplementary

Fig. 4).

The second region was 19p13.2, known to be associated with T1D, RA and MS, containing the

strong functional candidate gene TYK2, although immune adhesion genes ICAM1 and ICAM3 are

also good candidate genes. Our analysis supports these associations, with a posterior probability

of colocalization approaching 1. We also find evidence for a novel CEL association. In each of

the pairwise analyzes involving CEL, the probability of both diseases being associated ' 0.88,

although this could be a distinct signal: we have P(H4|H3 or H4) ' 0.5 (Supplementary Fig. 5).

In total, 11 regions showed strong evidence of novel association with P(H3 or H4) > 0.5 (Table 3).

In regions with colocalising novel associations, effect sizes tended to be smaller in the new

disease (Fig. 2). This could indicate that the stronger effect is in the previously known associ-

ation, or it could be due to Winner’s Curse,14 with the previously known associations displaying

inflated effect size estimates. In general for colocalized signals, the coefficient of proportionality

is centered about 1.

One novel association found was in the chromosome 1q24.3 region, known to be associated

with CEL and containing candidate gene FASLG. Pathway analysis also produced evidence for

a T1D-associated variant here,15 although no SNP has reached the genome-wide significance

threshold. Our results support a shared causal variant for T1D and CEL (posterior probability

0.71). Our Bayesian approach also enables fine-mapping when dense genotyping data are avail-

able, as is the case here. We identified a single likely causal variant lying in a region with strong

evidence of predicted regulatory activity, rs78037977 (Supplementary Fig. 6), with a posterior

probability of being causal amongst all genotyped variants, given the colocalization hypothesis, of

0.99. Note that rs78037977 was removed from the CEL data in the original analysis16 owing to

failing a missingness check (the call rate of 99.942% was just below the 99.95% cut-off).

6

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020651doi: bioRxiv preprint 

https://doi.org/10.1101/020651
http://creativecommons.org/licenses/by/4.0/


Discussion

Colocalization methods so far have allowed for the simultaneous analysis of only two traits:

a potential weakness when considering more than two diseases, as investigated here. The

Bayesian approach could be extended to arbitrarily many traits, at the cost of increased com-

putational complexity and spreading the posterior over an exponentially increasing hypothesis

space, potentially making it difficult to draw firm conclusions. Wen et al, in their description of

an alternative method for partitioning the association of a single SNP amongst multiple related

quantitative traits,17 suggest dealing with this complexity by considering only the extremes - a

SNP is associated to all traits, exactly one, or none. Such reduction is impractical when analyzing

regions, since it does not allow for overlapping but distinct signals. Although we have extended

our software to consider three diseases simultaneously, we have chosen for practical reasons to

focus on pairwise analyzes with manual curation of the 11 cases (9%) for which more than two

diseases showed association.

By analyzing regions known to associate with one disease, we were able to link 12 to addi-

tional disorders: in most cases (8/12) the novel disease association was clearly colocalized with a

previously known signal, whilst in one case the evidence supported a distinct causal variant for the

novel association. In others (3/12) the evidence for colocalization was more equivocal, even with

evidence for pairwise association. We also identified 22 regions which appeared associated to

only one autoimmune disease. Given the establised influence of sample size on power to detect

associations,18 and given that many of these regions contain genes linked to immune function,

we expect the number of disease specific results to reduce as sample sizes for each disease

continue to increase. Indeed, the chromosome 19p13.11, associated with MS in our analysis, has

previously been associated with lymphocyte count,19 with high LD between the peak MS SNP

(rs1870071) and the lymphocyte count SNP (rs11878602, r2 = 0.99), suggesting an immune

mechanism for the association. However, in the case of T1D, two disease-unique regions over-

lap known type 2 diabetes (T2D) regions. Chromosome 9p24.2, containing the candidate gene

GLIS3, has been associated with T2D20 and fasting glucose21 with high LD between the peak

SNP for T1D (rs10814914) and these other traits (rs7041847, r2 > 0.9). GLIS3 and its causal

allele alter disease risk by altering pancreatic beta-cell function, probably by increasing beta-cell

apoptosis.22 Chromosome 16q23.1, containing the candidate gene BCAR1, is associated with

T1D in our analysis and T2D,20 and the T2D alleles in this region have been associated with re-

duced beta cell function,23 again with high LD between the peak SNPs for T1D (rs8056814) and

T2D (rs7202877, r2 = 0.81). Inspecting the distribution of T2D GWAS p values at the peak SNPs
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in our T1D associated regions (Supplementary Fig. 7), we note that the peak SNP in the T1D

associated region 6q22.32, rs17754780, also shows association to T2D (p = 7.9× 10−5) and is in

tight LD with peak T2D SNP in the region (rs9385400, r2 = 0.97). This region has been reported

as associated with T2D at genomewide significance in a larger study.24 Chromosome 6q22.3 is

not uniquely associated to T1D in our analysis because it overlaps an established Crohn’s disease

region,25 but the lead Crohn’s SNP (rs9491697) is not in LD with the T1D SNP (r2 = 0.03). This

is then likely to be a third shared signal between T1D and T2D. The nearest genes are MIR588

about which little appears to be known and CENPW (centromere protein W) which is a has no

obvious functional candidacy. This genetic overlap between T1D and T2D (Supplementary Table

4) emphasizes that T1D results from an interaction between the immune system and beta cells,

and it is probable that some of our other apparent disease unique regions will also prove to be

specific to the target of autoimmune destruction in MS and RA.

In a standard GWAS analysis, a p-value significance threshold of 5× 10−8 is used in absence

of replication data, due to a desire to minimise reporting of false positive results, although a relax-

ation of this threshold has been suggested.26 However, since autoimmune diseases are known to

share etiology, conditioning upon association for one autoimmune disease, we should require a

less stringent threshold to believe it significant for another. Indeed, whilst the question of whether

the ImmunoChip significance threshold should be somewhat relaxed remains,8 examination of

p-values in the regions in which we observe novel associations (Supplementary Fig. 8) suggests

that a threshold between 10−5 and 10−6 for SNPs that are confirmed index SNPs for another dis-

ease might be more appropriate. Given our estimate that 42% of overlapping and genome-wide

significant immune-mediated disease signals relate to distinct causal variants, we suggest that

physical proximity to a known associated variant in a related disease, and not only LD with it,

does appear an appropriate criterion with which to alter interpretation of a small but not genome-

wide significance threshold. Variants meeting such thresholds might be prioritised for genotyping

in replication samples. We note, also, that the four diseases we studied are all characterized by

the presence of autoantibodies. Had we included autoantibody negative diseases we might have

found a higher proportion of discordant associations as reported in a previous manual curation

of ImmunoChip studies,8 given there remains considerable overlap in location of association sig-

nals. Although a careful and detailed manual curation of several studies has been conducted,8 the

ability of colocalization methods to distinguish shared from distinct causal variants allows clearer

interpretation of genetic results.

In summary, we have developed a methodology for examining shared genetic etiology between

diseases in the case of common control datasets, extending previous work.2,3 This enables the
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discovery of new disease associations and the exploration of complex association patterns. Al-

though these methods have been presented in this paper to analyze autoimmune diseases, the

prior is user defined, and could be used to analyze any pair of related diseases.
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Online Methods

Samples

All samples included in this analysis were gathered in the United Kingdom, and have reported

or self declared European ancestry. Detailed summaries of the sample cohorts are given in

the ImmunoChip papers for CEL,16 RA,9 MS10 and T1D (personal communication, Steve Rich).

For the RA and MS cases, we used the subset of cases from the UK. Sample exclusions were

applied as described in each paper, and in total, 6691 T1D, 3870 RA, 7987 CEL, 5112 MS and

12370 control samples were analyzed. SNPs were filtered according to the following criteria: call

rate > 0.99; minor allele frequency > 0.01; HardyWeinberg |Z| < 5. SNPs which passed these

threshold in controls and any specific pair of cases were used for that pairwise analysis.

Selection of Regions for Analysis

We considered all regions annotated in ImmunoBase (http://www.immunobase.org, accessed

on 12/11/13) as associated with at least one of our diseases. Where regions overlapped, we

formed the union. Regions containing fewer than ten SNPs or with a SNP density < 1 SNP/kb

were excluded. The MHC (chr6:29797978-33606563 hg18) was removed from the analysis, since

this region is known to have complex multi-SNP effects. A full list of the 126 regions analyzed,

together with our resulting associations, can be found in Supplementary Table 1.

Colocalization Analysis

Two colocalization methods were applied to each of the 126 regions (see Supplementary Fig.

1).

Bayesian Approach

The first approach is based upon a Bayesian approach proposed by Giambartolomei et al.5

All models in which each trait is caused by at most one variant are considered, and approximate

Bayes factors computed for each. Our extension follows the same framework, but, in order to

extend this method to the case of a common control, a multinomial model was used. Bayes factors

were computed using a Laplace approximation 27 as implemented in the R package mlogitBMA

(http://cran.r-project.org/web/packages/mlogitBMA/index.html). Each of these models

is contained within precisely one of the following sets:

H0: No SNP is associated with either trait.
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H1: There is a SNP associated with trait 1, but no SNP is associated with trait 2.

H2: There is a SNP associated with trait 2, but no SNP is associated with trait 1.

H3: Both the diseases are associated with the region, with different causal variants.

H4: Both the diseases are associated with the region, and share a single causal variants.

By summing the Bayes Factors generated for all models in the set, a posterior possibility

can be computed for each of the hypotheses, and hence for colocalization (H4). Similarly, the

posterior probability of any given model, given a specific hypothesis and equal prior probability of

each model, is proportional to the BF for that model. Since a Bayes factor is assigned to each

model independently, it is straightforward to calculate the conditional probability of each SNP

being causal, given association, as proportional to the Bayes factor for the relevant model.

This approach assumes a single causal variant at any region. We tested this assumption

in regions with strong evidence of association (P(H0) < 0.1) by performing conditional analysis.

Firstly, all plausibly important SNPs were discovered by iteratively conditioning on the most likely

set of SNPs to cause the associations seen, until there was no longer strong evidence of additional

association. In those cases where multiple SNPs were considered relevant, all but a pair (one

potentially causal for the first trait, and one for the second) were conditioned upon, in order to

discover the colocalization (or not) of the effects at this pair alone.

Proportional Approach

A second method based upon the proportional approach2,3 was also used. Phenotypes are

modeled using multinomial logistic regression, producing maximum likelihood estimates b1 and

b2 of regression coefficients β1 and β2. Since the samples sizes can be large, the asymptotic

normality of maximum likelihood estimators is used to approximate:

 b1

b2

 ∼ N

 β1

β2

 ,

 V11 V12

V21 V 22




for some variance-covariance matrix V.

The method in 3 assumes that b1, b2 are independent (i.e. V12 = V21 = O). However in the

extension to a common control dataset, we cannot assume this, and proceed with a fully unknown

V.

The null hypothesis corresponds to the existence of a constant η such that β1 = 1
ηβ2. Under
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this hypothesis, and given η,

(
b1 −

1

η
b2

)T (
V11 −

1

η
V12 −

1

η
V21 +

1

η2
V22

)−1(
b1 −

1

η
b2

)
∼ χ2

p

This is used as our test statistic. However, since the value of η was unknown, a posterior predictive

p-value is generated instead, by integrating the p-values associated with the test statistic over the

posterior distribution of η. To avoid bias in regression coefficients due to selection of SNPs on the

basis of their strength of association, Bayesian model averaging was used to average inference

over all plausible two SNP models.

Further details of the colocalization methods can be found in the Supplementary Methods sec-

tion, and an R package for their implementation is available from https://github.com/mdfortune/

colocCommonControl.

Identification of disease specific regions

To examine evidence for GWAS association with other traits, we took the index SNP with

smallest p values in a region, and then identified proxy SNPs based on LD (r2 ≥ 0.9) using 1000

genomes EUR data. We used this as a query SNP set to examine associations annotated in the

NIHR GWAS catalog (http://www.genome.gov/admin/gwascatalog.txtaccessed07/10/2014)

We identified disease specific regions for which: the posterior probability for single SNP as-

sociation was >0.5; posterior probability of association with any other disease was <0.2; the

region was not annotated as associated with any other autoimmune disease in ImmunoBase; and

no proxies for the index SNP were associated with any other autoimmune disease in the NIHR

GWAS catalog.

Type 2 diabetes data

Summary from a T2D GWAS meta analysis20 was downloaded from the DIAGRAM website

(http://diagram-consortium.org/, accessed 20/10/14).
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Figure 1: A Venn diagram showing summary of disease assignments to 90 regions which showed
association to at least one disease, based upon the results of the Bayesian analysis. In cases
where assignment was uncertain, the assignment most supported by the posterior probabilities
was used. The numbers in brackets correspond to how many of these regions show evidence
of distinct causal variants. Thirty six regions analyzed did not demonstrate association to any
disease within our available data, and so are not included in this figure.
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Figure 2: The distribution of η̂, the estimated proportionality coefficient together with its 95%
confidence interval. In the case of colocalization, η is the ratio of the effects the region exerts
upon the two traits. |η| > 1 corresponds to a stronger effect in Trait 2 than Trait 1. We estimate η
by η̂. Labels on the x-axis give the traits and regions analyzed; D for T1D, R for RA, C for CEL and
M for MS. Note that in some regions, the conditional analysis supports the existance of multiple
associated variants: if none of these overlap, then we consider the region to have separate SNP
effects. (a) Regions with strong evidence of colocalization (P(H4) > 0.9). As we would expect, η̂
is distributed about 1, which corresponds to the regions having equal effects on each trait. Note
that 6q25.3, containing the candidate causal gene TAGAP, has η̂ < 0, indicating opposite effects
on the two diseases. Trait 1 is listed first, and trait 2 second. (b) Regions with novel evidence
of disease association, in which we believe there to be colocalisation present between the novel
association and at least one of the existing associations. Regions have been ordered such that
η̂ estimates the effect size for the novel trait divided by the effect size for the known association.
Labels give the novel association being given first. It can be seen that the effect size tends to be
smaller in the new disease.
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Figure 3: (a) A Manhattan plot of the 2q33.1 region containing the candidate gene CTLA4. Three
potential causal variants are partially shared between T1D, RA and CEL; the blue signal corre-
sponds to the tag rs231775, the green to rs1980422 and the red to rs3087243. All other SNPs
are colored according to their linkage disequilibrium with these three SNPs. SNPs rs231775 and
rs3087243 have r2 = 0.50; all other pairwise r2 < 1. (b) Each possible model involving these
three SNPs was tested; the four models with highest posterior probabilities, which together en-
compass over 90% of the total posterior probability, are shown. (c) Effect size estimates (including
95% confidence intervals) of each SNP for each disease for the most likely model. (d) Effect size
estimates (including 95% confidence intervals) of each SNP for each disease for the second most
likely model.
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analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.

Nat Genet 44: 981–90.

21Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, et al. (2010) New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet

42: 105–16.

22Nogueira TC, Paula FM, Villate O, Colli ML, Moura RF, et al. (2013) GLIS3, a susceptibility gene

for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a

splice variant of the BH3-only protein Bim. PLoS Genet 9: e1003532.

23Harder MN, Ribel-Madsen R, Justesen JM, SparsøT, Andersson EA, et al. (2013) Type 2 dia-

betes risk alleles near BCAR1 and in ANK1 associate with decreased β-cell function whereas

22

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020651doi: bioRxiv preprint 

https://doi.org/10.1101/020651
http://creativecommons.org/licenses/by/4.0/


risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the

Danish Inter99 cohort. The Journal of clinical endocrinology and metabolism 98: E801–6.

24Scott RA, Magi R, Morris AP, Marullo L, Gaulton K, et al. (2014). Genome-wide association

study imputed to 1000 genomes reveals 18 novel associations with type 2 diabetes. American

Society of Human Genetics.

25Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, et al. (2012) Host-microbe inter-

actions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:

119–24.

26Panagiotou OA, Ioannidis JPA (2012) What should the genome-wide significance threshold be?

Empirical replication of borderline genetic associations. Int J Epidemiol 41: 273–86.

27Raftery AE (1996) Approximate Bayes factors and accounting for model uncertainty in gener-

alised linear models. Biometrika 83: 251 –266.

28Swafford ADE, Howson JMM, Davison LJ, Wallace C, Smyth DJ, et al. (2011) An allele of IKZF1

(Ikaros) conferring susceptibility to childhood acute lymphoblastic leukemia protects against

type 1 diabetes. Diabetes 60: 1041–4.

23

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020651doi: bioRxiv preprint 

https://doi.org/10.1101/020651
http://creativecommons.org/licenses/by/4.0/

