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ABSTRACT 

Critics of significance testing claim that this statistical framework promotes discrepancies by using 

arbitrary thresholds (α) to impose reject/accept dichotomies on continuous data, which is not reflective 

of the biological reality of quantitative phenotypes. Here we explore this idea and evaluate an alternative 

approach, demonstrating the potential for meta-analysis and related estimation methods to resolve 

discordance generated by the use of traditional significance tests. We selected a set of behavioral studies 

proposing differing models of the physiological basis of Drosophila olfactory memory and used 

systematic review and meta-analysis approaches to define the true role of lobular specialization within 

the brain. The mainstream view is that each of the three lobes of the Drosophila mushroom body play 

specialized roles in short-term aversive olfactory memory [1-5], but a number of studies have made 

divergent conclusions based on their discordant experimental findings [6-8]. Multivariate meta-

regression models revealed that short-term memory lobular specialization is not in fact supported by the 

data, and identified the cellular extent of a transgenic driver as the major predictor of its effect on short-

term memory. Our findings demonstrate that meta-analysis, meta-regression, hierarchical models and 

estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize 

divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms. 
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LAY SUMMARY 

Significance testing is a statistical method widely used to assess the effect of gene variation, particularly 

in genetic models e.g., mice and flies. While many traits vary continuously, significance testing is 

designed to produce a simple yes/no outcome that is unsuitable for smoothly varying effects. For 

decades, statistical texts have proposed that significance testing has a distorting effect. We examined the 

influence of significance testing in vinegar fly research on short-term olfactory memory, an extensively-

studied quantitative phenotype in a major model genetic system. Significance tests have been previously 

used to show that a particular brain sub-region - the gamma lobe - is highly specialized for short-term 

memory. We re-analyzed published data using estimation methods that place emphasis on 

quantification: meta-analysis and hierarchical models. We show that the gamma lobe shares memory 

processing roles with two other brain lobes. Using neuronal cell count data, we also show an absence of 

even relative specialization, revealing that memory processing is distributed across neurons in all three 

lobes. We propose that significance testing distorts other areas of genetic analysis in similar ways; our 

data indicate that this can be ameliorated with the adoption of estimation statistics instead. 
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INTRODUCTION 

Contradictory results from research are commonplace. Discordance stems from sampling error and 

methodological differences, both sources of variability that are largely unavoidable. One concern is the 

widespread acceptance of weak significance testing power; a recent report revealed that many 

neuroscience studies have a test power below 40% [9], and the same pattern is likely to be seen across 

other disciplines. However, critics of significance testing itself claim that this statistical framework 

needlessly accentuates differences. The numerous conceptual and practical limitations of significance 

tests [10] include the inherent volatility of p-values, even when there is moderate statistical power [11]. 

Simulation demonstrates that test results from different studies can easily be discordant due to sampling 

error alone, even assuming flawless methodological standardization [11]. Moreover, significance testing 

may exacerbate discordance by using an arbitrary threshold to force a binary outcome (reject/accept) 

from continuous data [12]. To illustrate, a pair of alpha 0.05 tests on two replicated experiments with 

identical effect sizes could produce p-values of 0.049 and 0.051: in the significance testing framework 

these results are starkly discordant, when in reality the biological outcome is all-but the same [12]. The 

arbitrary reject/accept dichotomy might also lead to the false impression that a substantial (but non-

statistically significant) effect is irrelevant. Conversely, a highly powered sample size could give the 

misleading impression that a minuscule (but statistically significant) effect is of great importance [11]. 

Thus, some consider that fields relying solely on significance testing to draw their conclusions are 

particularly susceptible to discrepancies and may be incapable of resolving apparent irreproducibility. 

In medical research, the complementary methods of systematic review and meta-analysis are 

routinely used to synthesize evidence from multiple studies and to reconcile divergent findings [13]. 

However, such approaches are rarely applied to basic research fields like neuroscience. Taking a 

mainstream sub-field of neuroscience as an example, a PubMed search in late 2014 with the phrase 

“meta-analysis AND (learning OR memory) AND mouse” identified fewer than ten studies in a field of 

>35,000 articles. We therefore decided to ask whether meta-analytic methods could be used to evaluate 

the possible influence of significance testing dichotomization. In seeking a suitable research field we 

required an unresolved hypothesis for which the published studies included adequate sample sizes for 

meaningful analysis, and used a standardized protocol so that the data would not be dominated by 

sampling error (weak statistical power) and methodological heterogeneity. We selected the investigation 

of the neuronal mechanisms of olfactory memory in Drosophila melanogaster. Olfactory memory in 

Drosophila is measured using the classical T-maze olfactory conditioning assay, where groups of flies 

are conditioned by pairing an odor with an electric shock and subsequently assessed for their ability to 

avoid the conditioned odor when given a choice of two different odors presented at the end of the maze 

arms. A particular strength of the T-maze is its use of hundreds or thousands of animals in a single 
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experiment [14], which helps to minimize the sampling error that is often inherent in rodent assays and 

assays using smaller numbers of insects [15,16]. In addition, both the T-maze apparatus and the training 

regime is largely standardized between labs [14]. 

Thirty years of T-maze experiments have elucidated many of the genetic, molecular and neural 

mechanisms of olfactory learning [1-5,17]. A landmark study showed that restoring the adenylyl cyclase 

gene rutabaga (rut) to a brain structure called the mushroom body is sufficient for short-term olfactory 

memory [6], connecting memory formation to cyclic adenosine monophosphate-mediated plasticity 

[18]. Experiments using inhibition of synaptic transmission by temperature-sensitive shibire (shi) [19-

21] showed that neurotransmission from the mushroom body is essential [20,22]. Targeted expression of 

genes in specific neuronal circuits is possible with the use of transgenic ‘driver’ lines [23]. 

Manipulations based on rut restoration and shi inactivation form the foundation of a large number of 

studies aiming to further define the role of the mushroom body in olfactory learning. The mushroom 

body itself exists as three anatomically distinct lobes, αβ, α′β′, and γ [24]; studies on middle- and long-

term memory (MTM and LTM) have revealed distinct lobe requirements in the different memory phases 

[21,25-28]. However, the three lobes’ specializations remain unclear when it comes to short-term 

memory (STM). While the mainstream view is that rut activity in the γ lobes is sufficient to rescue STM 

[8], some studies have alternately concluded that rut restoration can only partially rescue [7], or is 

merely of importance to STM [6]. There is similar controversy on the role of rut activity in the αβ lobes, 

with rut restoration said to have either no effect [8], or to partially rescue STM for certain odors [7]. 

In the present study, we aimed to evaluate the mainstream view that there is strong lobular 

specialization of STM function in the mushroom body, and to assess the extent to which the varying 

perspectives on this subject resulted from significance testing’s forced dichotomization. Using meta-

analytic methods, we examined the proposals that restoration of rut function to the γ lobes alone is 

sufficient to rescue wild type STM and that only shi function in the γ lobes is necessary for STM. In 

both cases, meta-analysis of published studies spanning more than a decade found no evidence for 

strong lobular specialization. A subsequent analysis with multi-level meta-regression, an advanced 

estimation technique, revealed that numbers of mushroom body cells explained nearly all transgenic 

effects. These results confirm claims made by statistical texts that systematic review, meta-analysis and 

related estimation methods can be applied to resolve currently conflicting data and give new quantitative 

perspectives. In addition to its role in review, we conclude that routine use of both basic and advanced 

estimation methods would aid the planning, analysis and interpretation of research. 
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RESULTS 

Systematic literature review of rutabaga and shibire interventions in short-term aversive olfactory 

memory 

The review yielded ten studies that fulfilled the criteria (Figure 1A). Seven studies contained 81 experiments 

related to rutabaga restoration [6-8,22,29-31], with a total of 748 experimental iterations and 745 control 

iterations (see Table 1). Each iteration is the mean of two half-PI scores, which typically each use 50-100 

flies, thus representing an estimated total of 150,000-300,000 assayed flies. Table 1 also lists the 5 studies 

that contained 37 experiments related to shibire-mediated inactivation [7,20,21,25,29], 263 experimental 

iterations and 265 control iterations, giving a total of 50,000-100,000 flies. 

 

Experimental variability 

Despite standardization of aspects of the T-maze, some methodological variation between studies was 

observed, including different control genotypes, varying odor pairs, temperatures, shock voltages, humidity 

and post-training delay times prior to testing (Table 1). These differences, along with other uncontrolled 

variables common to behavioral experiments, would explain the variability seen in data from control 

experiments (Figure 1B). We found considerable heterogeneity in several of the meta-analyses. In the six rut 

analyses, overall heterogeneity was low in three (I2 < 50%), and high in three (I2 > 75%); subgroup 

heterogeneity (i.e. variance due to genotype differences) was low in four, and high in two (Figures 6-11). In 

the shi analyses, overall heterogeneity was high in two and moderate in one, while their subgroup 

heterogeneity values were 34%, 64% and 80%. 

 

Rutabaga function is required for 60% of wild type learning 

We aimed to estimate the learning contribution made by restoring rutabaga function to each of the three 

lobes. The meta-analyses on rutabaga experiments produced 6 meta-analytical estimates of the effects of 

manipulating rut in the mushroom body lobes (Figure 2B). Data pooled from rut1 and rut2080 reveal that the 

strong rut hypomorphic alleles reduce learning to 40% of wild type (-60% [95CI -56, -64]) (Figure 2B, 6). 

The forest plot in Figure 2A illustrates the individual effect sizes from 36 experiments and pooled effect 

sizes of the rut alleles (complete forest plot is shown in Figure 6). The data exhibit substantial overall 

heterogeneity (I2= 76%) and genotype subgroup heterogeneity (I2=88%). This heterogeneity may derive from 

the methodological variation noted above, but in the case of the strong rut alleles we note that the weakest 

effect is seen in the rut2080; UAS-rut subgroup (-45% [95CI -38, -52]), suggesting leaky expression from the 

transgene as one possible source (i.e. expression from the UAS-rut transgene independent of GAL4 

transcriptional activation).  
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Rutabaga restoration to the γ lobes rescues 26% of wild type STM 

Some studies have reported that complete rescue requires rut restoration in both αβ and γ lobes [7], while 

others report that restoring rut activity in the γ lobe is sufficient to rescue STM, and that the αβ lobes’ rut 

activity has little or no STM role [8]. We used the meta-analytic data to specifically examine the lobular 

specialization hypothesis (Figures 5-10). The overall rutabaga loss-of-function effect was used as a 

reference point to which we compared the lobe restorations, shown in Figure 2B. Restoring rut function to 

each of the lobes revealed partial rescue: α′β′ rescues by 6% [95CI -1.5, 13.5], αβ rescues by 12% [95CI 2, 

22] and γ rescues by 26% [95CI 17, 35]. When rutabaga was restored to both the αβ and the γ lobes, 

memory was rescued by 52% [95CI 50, 55]. Restoring rutabaga to all three lobes gave only 1% additional 

improvement (53% [95CI 47, 59]) compared to the rescue in the αβ + γ lobes, therefore rut in the α′β′ cells 

appears to have a minor effect on STM. Of the enhancer trap drivers included in the γ meta-analysis, 201Y 

contains a minority of αβ cells [32]. A variant analysis that removed 201Y from the γ group and reassigned it 

to the αβ + γ group resulted in weaker effects for both: only 20% [95CI 10, 31] γ rescue, while αβ + γ rescue 

was reduced to 49% [95CI 46, 52]. Taken together, these results are incompatible with the hypothesis that 

restoring rut activity to the γ lobe alone is sufficient to rescue the rut- phenotype. From the lobe perspective, 

we conclude that normal STM requires rut function in both αβ + γ lobes. 

 

Heating flies above 30°C impairs short-term memory 

Using the temperature-sensitive alleles of shibire to block neurotransmission requires heating flies to over 

30°C, which can lead to additional heat-related effects [28]. Researchers accommodate this possibility with 

separate ‘heat control’ flies that do not express shits. We estimated the magnitude of this effect by meta-

analysis, shown in Figure 3A (complete forest plot in Figure 11). Data pooled from 23 such experiments 

with three types of genotype (wild type, Driver-GAL4/+ and UAS-shits/+) revealed that the overall effect of 

heating flies from the permissive temperature (20-26°C) to 30-35°C is a 17% [95CI 12, 22] reduction in 

memory. This decrement can be expected to affect the UAS-shits inactivation data from the same studies, so 

we used 83% of wild type memory in Figure 3B as the zero reference point to estimate the specific effects of 

lobe inactivation. 

 

Neurotransmission from the αβ + γ lobes accounts for 61% of STM 

Drivers that express in both the αβ and γ lobes reduced performance by 61% [95CI 50, 72] relative to heated 

control flies. Inactivating the αβ lobes produced a 25% [95CI 14, 37] reduction in STM. The best estimate 

for γ lobe inactivation is a 6% reduction [95CI 35% reduction, 24% increase] relative to heated controls. 

This γ lobe estimate appears to be negligible, but has very wide confidence intervals and is drawn from only 

a single experiment with three iterations. Surprisingly, the literature review found no <5 min STM data on 

the impact of shibirets inactivation of either the entire mushroom body (All lobes) or the α′β′ lobes (empty 

columns in Figure 3B); at the time of the review the only studies reporting results for these interventions 
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examined later memory, at 15 min or beyond [28]. The substantial decrement in the αβ lobe inactivation 

experiments (25% reduction) is incompatible with the idea that this lobe plays only a negligible role in STM. 

The paucity of data for γ, α′β′ and All lobes in STM highlights an area that would benefit from future 

experimental attention. 

 

Cell number accounts for the majority of driver variation 

Observing high heterogeneity (I2) in some of the meta-analyses, we attempted to identify the source of 

variability, and examine the original hypothesis from a different perspective. Electrophysiological evidence 

[33] and anatomical connectivity analysis [34] indicate that the Kenyon cells, the intrinsic neurons of the 

mushroom body, are randomly connected to their olfactory input neurons. The lack of structured 

connectivity suggests that, for some or all odor-related functions, individual Kenyon cells are 

interchangeable; thus raising the possibility that a cell’s lobular identity might be less important than its 

participation in a stochastically nominated odor-responsive ensemble. As three of the seven relevant meta-

analyses showed driver heterogeneity as accounting for more than half of their variance, we asked whether 

the number of cells captured by a driver could explain some of the unaccounted variance. We extracted cell 

count data from an anatomical study that counted Kenyon cells for many of the drivers [32]. The driver-

specific meta-analytic STM estimates were subjected to an initial simple linear regression against the 

drivers’ available cell counts in both rut restoration and shits inactivation. These indicated that cell numbers 

accounted for about 80% of the driver memory variance (rut R2 = 0.79 [95CI 0.39, 0.94], p=2.5 x 10-4; shits 

R2 = 0.77 [95CI 0.14, 0.96], p=8.4 x 10-3). As simple linear regression is unable to account for the full 

complexity of such hierarchical data, we constructed hierarchical, multivariate, weighted meta-regression 

models accommodating other variables that might explain some of the variance induced by differences in 

experimental design. These models were also able to account for the clustering of experiments within studies 

and for the shared control design in rut experiments, and included weighted estimates for each driver by the 

number of contributing experiments (described fully in Methods). The hierarchical meta-regression model of 

rut showed a strong relationship with driver cell count, generalized-R2 = 0.84 [95CI 0.79, 0.89] (Figure 4A). 

The meta-regression model of shi data similarly revealed a large effect size for the cell count relationship, 

generalized-R2 = 0.88 [95CI 0.84, 0.92] (Figure 4B). Compared with simple linear regression, the 

hierarchical models revealed stronger trends with substantially improved precision. These results are 

incompatible with the strong lobular specialization hypothesis of rut and shi function. Rather, drawing on 

data from thousands of T-maze iterations (N = 1008, 1006) while accounting for experimental heterogeneity, 

they constitute compelling evidence that each driver’s extent of neuronal expression can account for the 

majority of that driver’s short-term memory effect. 
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Kenyon cells in different lobes make equivalent contributions to STM 

Different Kenyon cell drivers’ varying impact on learning is primarily a result of how many cells they are 

expressed in: cell count as the overwhelmingly dominant factor therefore excludes highly specialized roles 

for rut and shi in different lobes’ Kenyon cells. However, it is possible that minor quantitative differences 

explain the remaining unaccounted for 12-16 % of STM variance in the meta-regression models. Within the 

overall memory-cell count trend in Figure 4A, several drivers’ estimates do not fall on the regression line. To 

account for such deviations from the overall cell number trend, we aimed to factor out cell number and focus 

specifically on the potency of each neuron captured by a driver. We built new models in which the learning 

effect size of each driver line was first divided by the number of expressing cells, and weighted hierarchical 

meta-regression models were then used to perform synthesis by lobular category. These models produced 

estimates of a typical Kenyon cell’s effectiveness within each lobe category (Figure 4C & D). The rut 

rescue-per-cell data and the shi loss-per-cell data both show that there are no substantial differences between 

any lobe categories. In summary, when cell numbers are taken into account, the evidence does not support 

the strong lobular specialization hypothesis. Instead, it shows that lobular rut function is non-specialized and 

that STM makes use of all available functioning Kenyon cells.  
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DISCUSSION 

Previous studies using significance testing concluded that differences between mushroom body lobes exist 

that reflect functional specializations in the various memory phases (STM, MTM and LTM). These 

conclusions about lobular specialization included the idea that γ lobe rut function is sufficient for STM 

formation. The aim of the present study was to specifically examine the strong lobular specialization STM 

hypothesis. Surprisingly, the synthetic evidence is incompatible with lobular specialization, and supports the 

alternative idea that STM function is generalized across lobes. 

 Meta-analysis of strong rut hypomorphic alleles confirmed that they cause a 60% reduction in STM. 

As previously reported in the literature, the other 40% must be mediated by other molecular factors either in 

the Kenyon cells or elsewhere. Restoring rut activity with lobe-targeting drivers revealed that partial rescue 

occurs in both the γ and αβ lobes (mean 26% and 12%), with a partial rescue even in the α′β′ lobes (mean 

6%). To rescue the majority of lost function, rut had to be expressed in both αβ and γ lobes (Figure 2B). 

These data are incompatible with the hypothesis that the lobes’ rut activity in the γ lobe is absolutely or 

strongly specialized for STM. With the synthesized evidence failing to support strong lobular specialization 

of rut in STM (Figure 2B), we considered an alternative hypothesis: that cell extent is the main predictor of a 

transgenic driver’s STM impact. Indeed, multivariate meta-regression models incorporating cell count show 

that the dominant factor influencing STM is the number of Kenyon cells targeted by a specific driver line, 

for both rut and shi effects (Figure 4A, B). This result refutes the hypothesis that the mushroom lobes are 

specialized for aversive STM function. Rather, the linear relationships lead us to conclude that the different 

lobes’ cells have similar potency for STM with regard to rut and shi-dependent memory processes.   

 Despite the paucity of experiments for shi in the γ, α′β′ and All lobes categories, the available data 

were sufficient to allow construction of a precise model of the relationship between driver cell count and 

memory. If STM relied on neurotransmission from a highly inter-dependent Kenyon cell ensemble, we 

would anticipate that shits inhibition of small subsets of these cells would have a large effect. Instead, the 

observed linear trend between driver cell count and STM impact (Figure 4B) supports a model in which shi-

dependent memory function in the αβ and γ cells occurs autonomously in individual cells or small groups of 

cells. It appears that strong qualitative specialization of lobular neurotransmission emerges over the 

subsequent minutes and hours as later memory forms [26,28]. 

 This investigation serves as a case study in how meta-analysis and related estimation methods can 

help animal behavior research specifically, and biological analysis in general. Recent commentary has 

focused attention on reproducibility [9,35,36] and replication [37]; both of these issues are in part connected 

to significance testing. An encouraging aspect that was revealed as a part of this study is that the existing 

published data could support precise estimation with hierarchical modeling, suggesting firm data integrity. 

Significance testing remains the dominant statistical methodology in neuroscience and many other life 

sciences [38], despite its tendency to amplify interpretive variation with arbitrary thresholds. For this and 

other reasons, significance testing has been controversial in the behavioral sciences for half a century [39], 
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but alternatives have yet to be implemented and adopted by the field. Estimation is an alternative data 

analysis framework that places the emphasis on effect sizes and the meta-analytic perspective. Exhortations 

in editorials and textbooks for researchers to favor estimation statistics for data analysis [10,11,40,41] have 

so far had little effect: neuroscience, biology, psychology and economics remain predominantly significance 

testing fields. This study shows how systematic review in conjunction with several meta-analytic techniques 

enable the synthesis of relevant available evidence so as to address inconsistencies in a field and reveal 

unexpected patterns in published data. Estimation as a fundamental statistical framework is also suitable for 

use in primary research; modern statistical texts advise that reporting effect sizes with their confidence 

intervals, along with the use of graphical methods, are the rightful priorities of primary data analysis 

[11,12,40]. Hierarchical models can similarly be applied routinely to analyze primary data with complex 

experimental designs, such as behavior experiments conducted in different labs [42] or by differing protocols 

within a lab [43,44], replacing basic methods such as ANOVA. The methods demonstrated above represent a 

superior statistical framework for all phases of biological research: planning, analysis, interpretation and 

review. 
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MATERIALS AND METHODS 

Eligibility criteria and information sources  

All information was sourced with searches of PubMed. To be eligible for consideration for inclusion in the 

systematic review each study was required to meet the following criteria: containing olfactory STM 

experiments on Drosophila melanogaster using the classic T-maze apparatus and a single training cycle [14]; 

reporting of the relevant control and experimental data as a Performance Index (PI); detailing the relevant 

genotypes and the number of experimental iterations (N or sample size). In addition, as STM is thought to 

begin to transition to MTM shortly after training [17], we defined STM as using a post-training delay of 5 

minutes or less. All studies selected contained transgenic manipulations of the Kenyon cells targeted to one 

or more of the 3 lobes (αβ, α′β′, and γ). For the systematic review of rut function in the Kenyon cells, studies 

included use of a hypomorphic allele of the rut gene, transgenic drivers and UAS-rut expression constructs. 

Experiments using temporally controlled expression of rut were excluded to eliminate the possibility of 

heterogeneity associated with incomplete restoration due to variations in expression longevity or strength. 

For the systematic review of endocytosis-dependent neurotransmission in the Kenyon cells, studies included 

a UAS-shits transgene in combination with transgenic drivers and heat treatment. Experiments that shifted 

shits flies to different temperatures between training and testing were excluded to eliminate the possibility of 

heterogeneity due to these manipulations; only experiments using the conventional permissive-restrictive 

(cool-warm) comparison were included. Following the lead of the great majority of the STM literature, we 

did not attempt to analyze the acquisition, storage and retrieval phases of STM. 

 

Database search 

The systematic literature search was conducted as follows and is shown as a diagram in Figure 1A. On the 

11th July 2013, the search phrase ((((Drosophila) AND (learning OR memory)) AND (mushroom OR 

Kenyon)) AND ("2000"[Date - Publication] : "3000"[Date - Publication]) NOT review[Publication Type] 

was used to query PubMed, and the resulting 279 records were downloaded as two .nbib files. These files 

were imported into Papers2 software, and then exported as EndNote .xml. This file was loaded into EndNote 

X4, copied into Excel, and then imported into Apple Numbers with all bibliographic information including 

Title and Abstract stored in one row per record. This was then used to screen the records’ titles, abstracts and 

was also used to record the results of the full text screen and the detailed experimental design screen. 

 

Study selection  

We designed the literature selection process to identify experiments that examined aversive olfactory STM 

(testing five minutes or less after training) in Drosophila as observed in the classic T-maze apparatus. We 

further aimed to focus the analysis on the two kinds of experiments most commonly used to understand the 

role of the three mushroom body lobes and the mushroom body intrinsic neurons (Kenyon cells). The first 

type of experiments was the usage of transgenic rutabaga (rut) to restore adenylyl cyclase function to one or 
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more lobes in rut mutant flies; the second type included experiments targeting transgenic temperature-

sensitive SHIBIRE (SHITS) protein to the lobes to disable dynamin-dependent neurotransmission. The SHITS 

proteins form part of the dynamin endocytosis complex and poison its function when flies are transferred to 

the restrictive temperature [45]. The exact odor pairs under investigation were explicitly disregarded in this 

analysis; rather, experiments containing the full variety odor pairs were included to enable us to arrive at the 

most general conclusion about mushroom body function. 

Two investigators (TY and JMW) performed the literature review independently and discrepancies 

were resolved collaboratively with a third investigator (ACC). The 279 records yielded from the PubMed 

search were screened in four stages to systematically exclude studies: title review, abstract reading, full text 

scan and a detailed review of experimental design. This process is described in Figure 1A; we used title and 

abstract information to discover a set of Drosophila behavioral studies that were likely to include aversive 

olfactory conditioning in adult fly (n = 65 studies) and then scanned these full text articles to find rutabaga 

restoration or shibirets experiments in the MB lobes. The final stage in the selection (“Experimental Design” 

in Figure 1) excluded three studies that did not meet the eligibility criteria listed above: one did not use or 

report an isogenic permissive control [46]; a second did not report sample sizes and used a post-training 

interval of 15 minutes [28], i.e. 10 minutes later than the original criterion and 12 minutes later than other 

studies included; a third used pharmacogenetic temporal control of rut restoration [47].  

 

Data item extraction 

Two investigators (TY and JMW) extracted data independently using the measuring tool in Adobe Acrobat 

Pro; any discrepancies between the two extractions were resolved collaboratively. The following data were 

collected from each of the included experiments: author, year of publication, figure and panel numbers, 

genotype, mean Performance Index (PI) [48] with corresponding SEMs and the number of experimental 

iterations (N) for each mean PI value for each intervention and its related control group. To calculate STM 

percentages we identified a non-intervention control for each experiment, using the control that was the most 

similar to the experimental animals. For the rut restorations the closest available controls ranged from 

otherwise isogenic rut+ siblings to generic wild type (e.g. Canton-S). For the shits experiments, including the 

heat-effect experiments, we used the permissive temperature controls. We also extracted experimental 

conditions: time delay between training and testing, odor pair, temperature, voltage, current type and relative 

humidity. One study’s rut restoration data were plotted with superimposed error bars, precluding their 

extraction and inclusion in the review [25]. 

 

Driver line classification 

Driver lines were classified by lobe expression pattern according to the original studies themselves, except 

for the MB247 line which was thought to drive expression in all lobes [21], but is now characterized as 

primarily driving expression in the αβ and γ lobes [26,32]. In addition, while several studies used 201Y as a 
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γ driver, there is more recent evidence that 201Y also drives in a minority of αβ cells [32]; we 

accommodated this by doing primary analysis counting 201Y as γ, but also doing a variation in which it was 

counted as αβ + γ. 

 

Summary measures  

For each experiment we calculated the intervention’s effect as a percentage change relative to the control PI. 

All the meta-analyses were carried out for the percentage change metric as well as the raw change in PI; the 

results were equivalent. We chose to report data as percentage changes for easier interpretation. The 

histogram in Figure 1B shows that control PI scores vary considerably across experiments; using a 

percentage change re-scales the phenotypes to each experiment’s wild type memory. A percentage not only 

reports how far a phenotype is from wild type memory but also sets a lower bound (0% memory). The 

standard error of each percentage change was calculated using the delta method approximation [49,50]. 

 

 

Synthesis of results  

Review Manager software {ReviewManagerRevM:wk} was used to perform nine meta-analyses: six on the 

rutabaga data, three on the shibire data. One random effects model meta-analysis was carried out for each 

mushroom body lobe and any available combinations; within each meta-analysis a subgroup analysis was 

performed for each driver line, except for the rut mutant and heat effect controls analyses, where genotype 

subgroups were used. Table 1 gives full details, Review Manager file is provided as Supporting Dataset 1. 

Complete forest plots of the six rut and four shi meta-analyses are shown in Figures 5-13. No meta-analysis 

was possible for rut restoration to the γ lobes as only one published experiment was found. Subgroup 

analysis of the driver lines was pre-specified. The I2 statistic was used as a measure of the percentage 

contribution of heterogeneity to the total variance in each meta-analysis, including subgroup heterogeneity 

[51]. For ease of interpretation, summary plots showed learning as a percentage of wild type learning; these 

were calculated by addition of the impairment effect size to 100%. We report p-values from a two-sample t-

test with unequal group variances in the rut and shi summary plots, and from a t-distribution transformation 

for the cell count regression. Otherwise, percentage effect sizes and their 95% confidence intervals were 

used to interpret all results [11]. All 95% confidence intervals are given in the form: [95CI lower, upper].  

 

Meta-regression approach 

Driver cell count data were extracted from a single anatomical study [32]. Initial examination of the 

relationship was done with MATLAB’s simple linear regression function (LinearModel.fit.m) on the mean 

!
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values. However, this method does not account for many important aspects of the data. To accommodate the 

complex nature of the data, we performed multivariate hierarchical weighted meta-regression analyses of the 

driver effects using generalized linear mixed models (GLMM) in SAS version 9.3 software (SAS Institute, 

Cary, North Carolina; PROC GLIMMIX). For experiment k with appropriate control group j in study i, the 

outcome 
ijkPI (raw change or relative percentage change) was modeled using GLMM taking into account the 

following: 

• The meta-analytic nature of the data: each 
ijkPI  was estimated with a certain level of precision in the 

primary study/experiment. 
ijkPI  were weighted in the GLMM by their corresponding precision or 

inverse variance ( ))(/1 ijkPVar  with more weight assigned to more precise
ijkPI , as in the meta-analyses. 

• Relevant experimental design factors ( )ikX were corrected for in the GLMM to reduce the variance 

induced by differences in design factors between individual experiments and studies. Univariate and 

multivariate GLMM models were developed by including one and more-than-one design factors as 

independent variables in the GLMM respectively. 

• Clustering: multiple experiments are clustered (nested) within each study and this clustering may 

introduce extra variability or dependence due to laboratory and personnel preferences (practice) in 

conducting experiments. Studies were modeled as clusters ( )ib  through a random effect with variance 

τ . 

• Shared Controls: rut restorations within experiments were calculated based on a shared control, which 

created dependencies (correlation) between rut restoration effects that shared control groups. 

Therefore residuals ( )ijkε  based on the same (shared) controls were correlated and residuals based on 

different controls were independent. Due to convergence issues arising from a paucity of data we 

assumed a constant correlation ( ρ ) between residuals based on the same shared controls and modeled 

the residual variance-covariance matrix ( )Σ  with a block compound symmetry structure – blocked by 

shared controls, leading to conditionally independent residuals. A simple constant-variance diagonal 

variance-covariance matrix was used for the shi experiments, as matched controls were available, 

leading to independent residuals. 

Coupling all these aspects together yielded the following univariate and multivariate weighted GLMM: 

.0),(and,0),(,),(where),,0(~
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Construction of models 

Model construction started with inspection of all the available independent variables based on univariate 

GLMM. From Table 1, these variables included which pair of odors was used (‘ODOR PAIR’), experimental 

temperature (‘TEMPERATURE), delay time between testing and training (‘TIME’), shock voltage 

(‘VOLTAGE’), voltage type (‘AC/DC’) and relative humidity (‘RH’). The data are provided in Supporting 

Dataset 2. It was noted that the ODOR PAIR variable consisted of numerous categories, which would 

dramatically increase the degrees of freedom, so we considered replacing this with an approximation of the 

variable instead. Since benzaldehyde is known to stimulate gustatory receptors as well as olfactory receptors 

(and thus might have a different dependency on mushroom body function from other odorants), we used the 

presence or absence of benzaldehyde (‘BENZALDEHYDE’) as a proxy for ODOR PAIR. Of these 

variables, RH, AC/DC and VOLTAGE were both censored in a large proportion of experiments, and (for 

non-censored experiments) had mainly trivial and non-statistical effects on learning; these variables were 

excluded from subsequent models. TIME and BENZALDEHYDE data were available for all experiments. 

For rut experiments, both variables showed substantial and statistical influences on learning (TIME 

generalized-R2 = 0.26 [95CI 0.15, 0.36]; BENZALDEHYDE generalized-R2 = 0.28 [95CI 0.17, 0.39]), so 

these were incorporated into further multivariate meta-regression models. For the shi experiments, only 

TIME had a substantial influence on learning outcome (TIME generalized-R2 = 0.12 [95CI 0.04, 0.21]). 

Multivariate GLMM were used to account for and extract the effect of the relevant independent variables by 

obtaining residuals from the respective multivariate GLMM. We calculated a residual learning effect by 

summarizing the residuals by drivers and rescaling them by subtracting the wild type memory reference 

value (shi = 83%; rut = 40%). The residual learning effect was regressed against cell counts in a linear meta-

regression that was weighted by sample size (the number of experiments contributing to each driver). The 

learning-per-cell model was built by first dividing each driver’s effect (and standard error) by its cell counts, 

and then fitting a multivariate GLMM with lobe categories as the main independent variable, while adjusting 

for other relevant experimental design factors.  

 

ACKNOWLEDGMENTS 

We thank Jonathan Flint, Leslie Griffith, Ajay Mathuru, Joanne Yew, Gero Miesenböck, Scott Waddell, 

Daniel Stettler and members of the Claridge-Chang Lab for their helpful comments on earlier versions. We 

also wish to thank Lucy Robinson of Insight Editing London for assistance in manuscript preparation. TY, 

JMW and ACC were supported by a Biomedical Research Council block grant to the Neuroscience Research 

Partnership and the Institute of Molecular and Cell Biology. ACC received additional support from Duke-

NUS Graduate Medical School, a Nuffield Department of Medicine Fellowship, a Wellcome Trust block 

grant to the University of Oxford and A*STAR Joint Council Office grant 1131A008. TY was supported in 

part by a Singapore Pre-Graduate Award from the A*STAR Graduate Academy. PNA and ESYC are 

supported by a National Medical Research Council block grant to the Singapore Clinical Research Institute. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


Yildizoglu et al. 

17 

JMW, TY and ACC did the systematic review; JMR and TY performed the data extraction, TY performed 

the meta-analyses; FM performed the linear regression analysis; PNA built the meta-regression models; 

ACC, PNA and ESYC guided the project; ACC wrote the manuscript with contributions from the other 

authors.  

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


Yildizoglu et al. 

18 

REFERENCES 

1. Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. 
Nat Rev Neurosci 8: 341–354. doi:10.1038/nrn2098. 

2. Busto GU, Cervantes-Sandoval I, Davis RL (2010) Olfactory learning in Drosophila. Physiology 
(Bethesda, Md) 25: 338–346. doi:10.1152/physiol.00026.2010. 

3. Kahsai L, Zars T (2011) Learning and memory in Drosophila: behavior, genetics, and neural systems. 
Int Rev Neurobiol 99: 139–167. doi:10.1016/B978-0-12-387003-2.00006-9. 

4. Davis RL (2011) Traces of Drosophila memory. Neuron 70: 8–19. doi:10.1016/j.neuron.2011.03.012. 

5. Perisse E, Burke C, Huetteroth W, Waddell S (2013) Shocking revelations and saccharin sweetness in 
the study of Drosophila olfactory memory. Curr Biol 23: R752–R763. doi:10.1016/j.cub.2013.07.060. 

6. Zars T, Fischer M, Schulz R, Heisenberg M (2000) Localization of a short-term memory in 
Drosophila. Science 288: 672–675. 

7. Akalal D-BG, Wilson CF, Zong L, Tanaka NK, Ito K, et al. (2006) Roles for Drosophila mushroom 
body neurons in olfactory learning and memory. Learning & Memory 13: 659–668. 
doi:10.1101/lm.221206. 

8. Blum AL, Li W, Cressy M, Dubnau J (2009) Short- and long-term memory in Drosophila require 
cAMP signaling in distinct neuron types. Curr Biol 19: 1341–1350. doi:10.1016/j.cub.2009.07.016. 

9. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, et al. (2013) Power failure: why small 
sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14: 365–376. 
doi:10.1038/nrn3475. 

10. Cohen J (1994) The earth is round (p < .05). American Psychologist 49: 997–1004. 

11. Cumming G (2012) Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-
Analysis. 1 pp. 

12. Ellis PD (2010) The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the 
Interpretation of Research Results. Cambridge University Press. 1 pp. 

13. Borenstein M, Hedges LV, Higgins J, Rothstein HR (2011) Introduction to meta-analysis. John Wiley 
& Sons, Ltd. 

14. Tully T, Quinn W (1985) Classical conditioning and retention in normal and mutant Drosophila 
melanogaster. J Comp Physiol [A] 157: 263–277. 

15. Heisenberg M, Wolf R (1979) On the fine structure of yaw torque in visual flight orientation of 
Drosophila melanogaster. Journal of Comparative Physiology A 130: 113–130. 

16. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, et al. (2009) Writing Memories with 
Light-Addressable Reinforcement Circuitry. Cell 139: 405–415. doi:10.1016/j.cell.2009.08.034. 

17. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4: 266–275. 
doi:10.1038/nrn1074. 

18. Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, et al. (1992) The Drosophila learning and 
memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell 68: 479–489. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


Yildizoglu et al. 

19 

19. Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a 
temperature-sensitive shibire allele in defined neurons. J Neurobiol 47: 81–92. 

20. Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila 
mushroom body blocks retrieval but not acquisition of memory. Nature 411: 476–480. 
doi:10.1038/35078077. 

21. McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory 
memory. Science 293: 1330–1333. doi:10.1126/science.1062622. 

22. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory 
dysfunction in Drosophila. Science 302: 1765–1768. doi:10.1126/science.1089035. 

23. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and 
generating dominant phenotypes. Development 118: 401–415. 

24. Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL (1998) Tripartite mushroom body 
architecture revealed by antigenic markers. Learn Mem 5: 38–51. 

25. Schwaerzel M, Heisenberg M, Zars T (2002) Extinction antagonizes olfactory memory at the 
subcellular level. Neuron 35: 951–960. 

26. Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S (2007) Sequential use of mushroom 
body neuron subsets during drosophila odor memory processing. Neuron 53: 103–115. 
doi:10.1016/j.neuron.2006.11.021. 

27. Weislogel J-M, Bengtson CP, Muller MK, Hortzsch JN, Bujard M, et al. (2013) Requirement for 
nuclear calcium signaling in Drosophila long-term memory. Sci Signal 6: ra33. 
doi:10.1126/scisignal.2003598. 

28. Cervantes-Sandoval I, Martin-Pena A, Berry JA, Davis RL (2013) System-like consolidation of 
olfactory memories in Drosophila. J Neurosci 33: 9846–9854. doi:10.1523/JNEUROSCI.0451-
13.2013. 

29. Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, et al. (2003) Dopamine and 
octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J 
Neurosci 23: 10495–10502. 

30. Thum AS, Jenett A, Ito K, Heisenberg M, Tanimoto H (2007) Multiple memory traces for olfactory 
reward learning in Drosophila. J Neurosci 27: 11132–11138. doi:10.1523/JNEUROSCI.2712-
07.2007. 

31. Scheunemann L, Jost E, Richlitzki A, Day JP, Sebastian S, et al. (2012) Consolidated and labile odor 
memory are separately encoded within the Drosophila brain. J Neurosci 32: 17163–17171. 
doi:10.1523/JNEUROSCI.3286-12.2012. 

32. Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, et al. (2009) The mushroom body of adult 
Drosophila characterized by GAL4 drivers. J Neurogenet 23: 156–172. 
doi:10.1080/01677060802471718. 

33. Murthy M, Fiete I, Laurent G (2008) Testing odor response stereotypy in the Drosophila mushroom 
body. Neuron 59: 1009–1023. doi:10.1016/j.neuron.2008.07.040. 

34. Caron SJC, Ruta V, Abbott LF, Axel R (2013) Random convergence of olfactory inputs in the 
Drosophila mushroom body. Nature 497: 113–117. doi:10.1038/nature12063. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


Yildizoglu et al. 

20 

35. Reducing our irreproducibility (2013) Reducing our irreproducibility. Nature 496. 

36. Ioannidis JPA (2005) Why Most Published Research Findings Are False. PLoS Med 2: e124. 
doi:10.1371/journal.pmed.0020124. 

37. Ioannidis JPA (2012) Why science is not necessarily self-correcting. Perspectives on Psychological 
Science 7: 645–654. Available: http://pps.sagepub.com/content/7/6/645.full. 

38. Hentschke H, Stüttgen MC (2011) Computation of measures of effect size for neuroscience data sets. 
Eur J Neurosci 34: 1887–1894. doi:10.1111/j.1460-9568.2011.07902.x. 

39. Morrison DE, Henkel RE, editors (1970) The Significance Test Controversy. Chicago: Transaction 
Publishers. 1 pp. 

40. Altman DG, Machin D, Bryant TN, Gardner MJ, editors (2000) Statistics with confidence: 
confidence intervals and statistical guidelines. 2nd ed. BMJ Books. 

41. Ziliak ST, McCloskey DN (2008) The Cult of Statistical Significance: How the Standard Error Costs 
Us Jobs, Justice, and Lives. Ann Arbor: University of Michigan Press. 1 pp. 

42. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory 
environment. Science 284: 1670–1672. 

43. Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, et al. (2014) Olfactory exposure to males, 
including men, causes stress and related analgesia in rodents. Nat Methods 11: 629–632. 
doi:10.1038/nmeth.2935. 

44. Richter SH, Garner JP, Würbel H (2009) Environmental standardization: cure or cause of poor 
reproducibility in animal experiments? Nat Methods 6: 257–261. doi:10.1038/nmeth.1312. 

45. Narayanan R, Ramaswami M (2001) Endocytosis in Drosophila: progress, possibilities, 
prognostications. Exp Cell Res 271: 28–35. doi:10.1006/excr.2001.5370. 

46. Thum AS, Knapek S, Rister J, Dierichs-Schmitt E, Heisenberg M, et al. (2006) Differential potencies 
of effector genes in adult Drosophila. J Comp Neurol 498: 194–203. doi:10.1002/cne.21022. 

47. Mao Z, Roman G, Zong L, Davis RL (2004) Pharmacogenetic rescue in time and space of the 
rutabaga memory impairment by using Gene-Switch. Proc Natl Acad Sci USA 101: 198–203. 
doi:10.1073/pnas.0306128101. 

48. Quinn W, Harris W, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl 
Acad Sci U S A 71: 708–712. 

49. Oehlert GW (1992) A Note on the Delta Method. The American Statistician 46: 27–29. 

50. Cramer H (1946) Mathematical Models of Statistics. Princeton NJ: Princeton University Press. 

51. Higgins J, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. 
BMJ: British Medical Journal 327: 557–560. 

 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


Yildizoglu et al. 

21 

FIGURE AND TABLE LEGENDS 

Figure 1. Review overview.  

A. Flow chart of systematic literature review procedure. The literature was reviewed in a five stage process, 

starting with a PubMed search that yielded 279 articles, followed by four screens of increasing detail, 

reviewing the article title, abstract full text and experimental design. A total of ten articles, two of which 

included relevant data for both rutabaga and shibirets experiments, were used in the meta-analyses. B. 

Histogram of performance indices for all control experiments identified by the review. 

 

Figure 2. Meta-analyses of rutabaga mutant lines and targeted transgenic restoration. 

Short-term memory data are expressed as percentages. A. A summary forest plot of learning changes 

observed in 340 experiments with rut mutant lines, with subgroups showing the differences between the 

various rut alleles and strains. Learning is expressed as a percentage change relative to wild type. The red 

diamond on the bottom line indicates that the overall impairment in learning in the rut hypomorphs relative 

to wild type controls is -60% [95CI -56%, -64%]. The complete forest plot is given in Figure 5. B. Summary 

estimates from the rut mutant meta-analysis and five meta-analyses of lobular restoration experiments. 

Learning is displayed as a percentage of wild type learning. The markers indicate the proportion of learning 

relative to wild type expressed as a percentage; error bars are 95% confidence intervals. To the right of the 

markers are numbers for the amount of rescue (R =) relative to the rut hypomorphs. N(E) and N(C) are the 

experimental and control iterations respectively. Except for the α′β′ lobes (p=0.17), all lobe categories 

showed a statistically significant partial rescue of learning (αβ p=0.029, γ p<1 x 10-45, αβ+γ p=1.1 x 10-16, 

all lobes p<1 x 10-45) when compared with rut learning. 

 

Figure 3. Meta-analyses of shibirets inhibition of neurotransmission in the mushroom body lobes. 

Learning data are expressed as percentages. A. A summary forest plot of learning changes in heat treatment 

controls, with subgroups showing the differences between 3 types of controls. Learning is expressed as a 

percentage change relative to wild type. The red diamond on the bottom line indicates that the overall 

impairment in learning in flies exposed to elevated temperature is -17% [95CI -12%, -22%]. A complete 

forest plot is shown in Figure 11. B. Summary estimates from the heat exposure controls and three meta-

analyses of lobular inactivation experiments. Colored markers correspond to diamonds in panel A. Learning 

at the restrictive temperature is shown as a percentage of learning at the permissive temperature; error bars 

are 95% confidence intervals. To the right of the markers are numbers learning impairment (∆* =) relative to 

the synthetic heat effect control. N(R) and N(P) are the restrictive and permissive iterations respectively. The 

αβ lobes (p=0.0001) and the αβ+γ combination (p<1 x 10-45) show statistically significant impairment while 

the γ lobes do not (p=0.7071). The γ lobe bar is in grey as it derives from only a single experiment with few 

replicates. There were no data in the literature on the α′β′ lobes or drivers that encompass all mushroom body 

lobes. 
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Figure 4. The extent of drivers’ Kenyon cell expression accounts for the majority of short-term 

olfactory memory effects.  

The estimated Kenyon cell counts for drivers were taken from Aso et al. 2009. The memory effect sizes are 

derived from nested, weighted, multivariate meta-regression models that adjusted for confounding variables 

that contributed to heterogeneity. A. Bubble plot of rut restoration; the cell count of driver lines accounts for 

84% of the variance of the learning effects of rut restoration (p < 0.0001). Each bubble’s area indicates that 

estimate’s weight in the regression model; the blue fit line has a slope of 0.023% per cell [95CI 0.016, 

0.030]. The grey line indicates the level of no rescue, i.e. the learning level of rut mutants. B. For shits 

inactivation, 88% of the learning variance is attributable to the number of cells encompassed by the driver (p 

< 0.0001). The blue fit line has a slope of -0.034 % per cell [95CI -0.046, -0.0216]; the grey line indicates 

the level of no effect, i.e. the learning expected from the effect of heat alone. C. Learning effect per cell in 

mushroom body sub-regions from rut restoration in different lobes and combinations, adjusted for 

heterogeneity effects. Error bars are confidence intervals; there are no statistical differences between rut lobe 

categories. D. The shits learning effect per cell in two lobes and their combination. There are no statistical 

differences between shits lobe categories. 

 

Figure 5.  Forest plot of rut mutant learning changes.  

Each data set is identified by the source article and figure panel. This figure is a detailed version of the same 

plot in the main article, but uses proportional reductions instead of percentage changes. The subgroups are 

different driver lines, the red diamond indicates the overall estimated value range for the percentage change 

relative to control. 

 

Figure 6.  Forest plot of rut restoration in the αβ lobes.  

Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control. 

 

Figure 7.  Forest plot of rut restoration in the α′β′ lobes.  

Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control.    

 

Figure 8.  Forest plot of rut restoration in the γ lobes.  

Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control. 

 

Figure 9.  Forest plot of rut restoration in the αβ and γ lobes.  
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Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control. 

 

Figure 10.  Forest plot of rut restoration in all lobes of the mushroom body.  

Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control. 

 

Figure 11.  Forest plot of the effect on STM of elevating flies from permissive to restrictive 

temperatures. 

This figure is a detailed version of the same plot in the main article, but uses proportional reductions instead 

of percentage changes. Each data set is identified by the source article and figure panel. The subgroups are 

different driver lines, the red diamond indicates the overall estimated value range for the proportional change 

relative to control. 

 

Figure 12.  Forest plot of experiments using shits to inactivate neurotransmission from the αβ lobes.  

Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control. 

 

Figure 13.  Forest plot of experiments using shits to inactivate neurotransmission from the αβ + γ lobes.  

Each data set is identified by the source article and figure panel. The subgroups are different driver lines, the 

red diamond indicates the overall estimated value range for the proportional change relative to control. 

 

Table 1. Characteristics of included experiments.  

All experiments are listed and identified by their study, figure panel and genotype/s. We name the most 

precise genotype possible based on the information given in the original article. Odor pair, range 

experimental temperature or temperature range, the nature of the conditioning shock and the relative 

humidity (RH) are also listed. The time delay between training and testing is listed in minutes; those labelled 

‘0*’ were reported as following training ‘immediately.’ Shock is listed in volts; current type is omitted if not 

reported in the original study. Cells containing a dash indicate that the information was not found in the 

original article. 

 

Supporting Dataset 1. Meta-analyses of rut and shi STM experiments Review Manager file. 

The file used to calculate and plot the meta-analyses shown in Figures 2, 3, 5-13. 

 

Supporting Dataset 2. Spreadsheet used for meta-regression of rut and shi STM experiments. 

The Excel file used as input to SAS for model construction. 
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PubMed search n=279 articles n = 60 articles excluded

Not in English = 4

Not Drosophila = 14

Focus on development, physiology or 

anatomy = 35

Focus on larva = 7

n=152 articles excluded

Focus on a novel gene = 27

Focus on development, physiology or 

anatomy = 29

Human disease model = 17

Focus on larva = 3

Review or modeling paper = 19

Not associative aversive olfactory 

learning or memory =57

n = 219 articles

n = 67 articles

n=10 articles in meta-analysis

  • n=7 used in rutabaga analysis

  • n=5 used in shibirets analysis 

n=54 articles excluded

No data on rutabaga or shibire in the MB 

lobes = 47

No STM T-maze data = 7

Title Screen

Abstract Screen

Full Text Screen

n = 13 articles

Experimental
Design

n=3 articles excluded

No shits permissive control = 1

Post-training wait >5 min  = 1

Not lifelong transgenic rut expression = 1

Figure 1. Review overview. A. Flow chart of systematic literature review procedure. The litera-

ture was reviewed in a five stage process, starting with a PubMed search that yielded 279 

articles, followed by four screens of increasing detail, reviewing the article title, abstract full text 

and experimental design. A total of ten articles, two of which included relevant data for both 

rutabaga and shibirets experiments were used in the meta-analyses. B. Histogram of perfor-

mance indices for all control experiments identified by the review.
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Figure 2. Meta-analyses of rutabaga mutant lines and targeted transgenic restoration; short-term memory data are 
expressed as percentages. A. A summary forest plot of learning changes observed in 340 experiments with rut mutant 
lines, with subgroups showing the differences between the different rut alleles and strains. Learning is expressed as a 
percentage change relative to wild type. The red diamond on the bottom line indicates the overall impairment in learn-
ing in the rut hypomorphs relative to wild type controls is -60% [95CI -56%, -64%]. The complete forest plot is given 
in Figure 5. B. Summary estimates from the rut mutant meta-analysis and five meta-analyses of lobular restoration 
experiments. Learning is displayed as a percentage of wild type learning. The markers indicate the proportion of learn-
ing relative to wild type expressed as a percentage; error bars are 95% confidence intervals. To the right of the markers 
are numbers for the amount of rescue (R =) relative to the rut hypomorphs. N(E) and N(C) are the experimental and 
control iterations respectively. ,_JeW[ MVY [Oe ʸ̩ʹ̩ SVIes �W=���7�� HSS SVIe JH[eNVYies sOV^ed H s[H[is[iJHSS` siNniMiJHn[ 
WHY[iHS YesJue VM SeHYninN �ʸʹ W=���� � ʺ W#� _ ��-45� ʸʹ�ʺ W=��� _ ������ HSS SVIes W#� _ ��-45) when compared with rut 
learning. 
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Figure 3. Meta-analyses of shibirets inhibition of neurotransmission in the mushroom body lobes. Learning data are 

expressed as percentages. A. A summary forest plot of learning changes in heat treatment controls, with subgroups 

showing the differences between 3 types of controls. Learning is expressed as a percentage change relative to wild 

type. The red diamond on the bottom line indicates that the overall impairment in learning in flies exposed to elevated 

temperature is -17% [95CI -12%, -22%]. A complete forest plot in shown in Figure 11. B. Summary estimates from 

the heat exposure controls and three meta-analyses of lobular inactivation experiments. Colored markers correspond 

to diamonds in panel A. Learning at the restrictive temperature is shown as a percentage of learning at the permissive 

temperature; error bars are 95% confidence intervals. To the right of the markers are numbers learning impairment (¬� 
=) relative to the synthetic heat effect control. N(R) and N(P) are the restrictive and permissive iterations respectively. 
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Figure 4. The extent of drivers’ Kenyon cell expression accounts for the majority of short-term olfactory memory effects. The 
estimated Kenyon cell counts for drivers were taken from Aso et al. 2009. The memory effect sizes are derived from nested, 
weighted, multi-variate meta-regression models that adjusted for confounding variables that contributed to heterogeneity. A. 
Bubble plot of rut restoration; the cell count of driver lines accounts for 84% of the variance of the learning effects of rut restoration 
(p < 0.0001). Each bubble’s area indicates that estimate’s weight in the regression model; the blue fit line has a slope of 0.023% 
per cell [95CI 0.016, 0.030]. The grey line indicates the level of no rescue, i.e. the learning level of rut mutants. B. For shits inactiva-
tion, 88% of the learning variance is attributable to the number of cells encompassed by the driver (p < 0.0001). The blue fit line 
has a slope of -0.034 % per cell [95CI -0.046, -0.0216]; the grey line indicates the level of no effect, i.e. the learning expected from 
the effect of heat alone. C. Learning effect per cell in mushroom body sub-regions from rut restoration in different lobes and combi-
nations, adjusted for heterogeneity effects. Error bars are confidence intervals; there are no statistical differences between rut 
lobe categories. D. The shits learning effect per cell in two lobes and their combination. There are no statistical differences 
between shits lobe categories.
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Figure 5.  Forest plot of rut mutant learning changes. Each data set is identified by the source article and figure panel. This 
figure is a detailed version of the same plot in the main article, but uses proportional reductions instead of percentage 
changes. The subgroups are different driver lines, the red diamond indicates the overall estimated value range for the 
percentage change relative to control.
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Figure 6.  Forest plot of rut restoration in the ʸʹ lobes. Each data set is identified by the source 
article and figure panel. The subgroups are different driver lines, the red diamond indicates the over-
all estimated value range for the proportional change relative to control.
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Figure 7.  Forest plot of rut restoration in the ʸ̩ʹ̩ lobes. Each data set is identified by the source article and 
figure panel. The subgroups are different driver lines, the red diamond indicates the overall estimated value 
range for the proportional change relative to control.   
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Figure 8.  Forest plot of rut restoration in the ʺ lobes. Each data set is identified by the source article 
and figure panel. The subgroups are different driver lines, the red diamond indicates the overall esti-
mated value range for the proportional change relative to control.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


1 

    3A 
2A 

5A 
1C 
1D 

2A 

1 

3A 

6A 

5A 
5C 
5B 

SFig4 

0.2-0.2 -0.1 0.1
Impaired Learning Improved Learning 

Figure 9.  Forest plot of rut restoration in the ʸʹ Hnd ʺ SVIes� ,HJO dH[H se[ is iden[iMied I` [Oe sVuYJe 
HY[iJSe Hnd MiNuYe WHneS� ;Oe suINYVuWs HYe diMMeYen[ dYi]eY Sines� [Oe Yed diHTVnd indiJH[es [Oe V]eYHSS 
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Figure 10.  Forest plot of rut restoration in all lobes of the mushroom body. Each data set is identified 
by the source article and figure panel. The subgroups are different driver lines, the red diamond indi-
cates the overall estimated value range for the proportional change relative to control.
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Figure 11.  Forest plot of the effect on STM from elevating flies from permissive to restrictive tempera-
tures. This figure is a detailed version of the same plot in the main article, but uses proportional reduc-
tions instead of percentage changes. Each data set is identified by the source article and figure panel. 
The subgroups are different driver lines, the red diamond indicates the overall estimated value range 
for the proportional change relative to control.
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Figure 12.  Forest plot of experiments using shits to inactivate neurotransmission from the ʸʹ lobes. 
Each data set is identified by the source article and figure panel. The subgroups are different driver 
lines, the red diamond indicates the overall estimated value range for the proportional change relative 
to control.
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Figure 13.  Forest plot of experiments using shits to inactivate neurotransmission from the ʸʹ � ʺ lobes. 
Each data set is identified by the source article and figure panel. The subgroups are different driver 
lines, the red diamond indicates the overall estimated value range for the proportional change relative 
to control. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2015. ; https://doi.org/10.1101/020586doi: bioRxiv preprint 

https://doi.org/10.1101/020586
http://creativecommons.org/licenses/by/4.0/


Table 1. Characteristics of included experiments. All experiments are listed and identified by their study, figure panel 
and genotype/s. We name the most precise genotype possible based on the information given in the original article. 
Odor pair,  range experimental temperature or temperature range, the nature of the conditioning  shock and the relative 
humidity (RH)  are also listed. The time delay between training  and testing is listed in minutes; those labelled ‘0*’  were 
reported as following training ‘immediately.’  Shock is listed in volts, current type is omitted if not reported in the original 
study. Cells containing a dash indicate that the information was not found in the original article.
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Odor pair,  range experimental temperature or temperature range, the nature of the conditioning  shock and the relative 
humidity (RH)  are also listed. The time delay between training  and testing is listed in minutes; those labelled ‘0*’  were 
reported as following training ‘immediately.’  Shock is listed in volts, current type is omitted if not reported in the original 
study. Cells containing a dash indicate that the information was not found in the original article.

Study Fig. Genotype, Experimental Genotype, Control N(E) N(C) Odor Pair
Experimental 

Temp. °C
Experimental 

Temp. °C
Shock 

(V)
Time 
(min)

RH 
(%)

rutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobesrutabaga rescue in the αβ (alphabeta) lobes
Zars 2000 1 rut2080/Y; 17d; UAS-rut 17d/+ 6 6 MCH-BEN 2525 120 AC 2 -
Zars 2000 1 rut2080/Y; 189Y; UAS-rut 189Y/+ 6 6 MCH-BEN 2525 120 AC 2 -
McGuire 2003 S4 rut2080; c739; UAS-rut c739/+ 7 7 OCT-BEN 2525 90 3 -
Akalal 2006 3A rut2080; c739; UAS-rut c739/+ 12 12 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 3B rut2080; c739; UAS-rut c739/+ 10 10 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 3C rut2080; c739; UAS-rut c739/+ 12 12 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 3D rut2080; 17d; UAS-rut 17d/+ 24 24 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 3E rut2080; 17d; UAS-rut 17d/+ 12 12 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 3F rut2080; 17d; UAS-rut 17d/+ 12 12 OCT-BEN 21–2521–25 90 DC 3 60–68
Blum 2009 4B rut2080/Y; c739; UAS-rut +/rut2080;+;UAS-rut 12 12 MCH-OCT 2222 60 2 50
Blum 2009 6A rut2080/Y; c739; UAS-rut +/rut2080;+;UAS-rut 6 6 MCH-OCT 2222 60 2 50
Scheunemann 2012 5A rut1; 17d; UAS-rut wild type 8 8 EA-IA 2424 120 AC 3 70
rutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobesrutabaga rescue in the α’β’ (prime) lobes
Blum 2009 4A rut2080/Y; c305a; UAS-rut +/rut2080;+;UAS-rut 8 8 MCH-OCT 2222 60 2 50
Scheunemann 2012 5A rut1; c305a; UAS-rut wild type 8 8 EA-IA 2424 120 AC 3 70
Scheunemann 2012 5A rut1; c320; UAS-rut wild type 8 8 EA-IA 2424 120 AC 3 70
rutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobesrutabaga rescue in the γ (gamma) lobes
Zars 2000 1 rut2080/Y; +; H24/UAS-rut Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
Zars 2000 1 rut2080/Y; 201Y; UAS-rut Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
McGuire 2003 S4 rut2080/Y; +; H24/UAS-rut +; H24 7 7 OCT-BEN 2525 90 3 -
Akalal 2006 2A rut2080/Y; +; H24/UAS-rut +; H24 18 18 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2B rut2080/Y; +; H24/UAS-rut +; H24 18 18 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 2C rut2080/Y; +; H24/UAS-rut +; H24 12 12 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2D rut2080; NP1131; UAS-rut +; NP1131 17 17 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2E rut2080; NP1131; UAS-rut +; NP1131 17 17 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 2F rut2080; NP1131; UAS-rut +; NP1131 18 18 OCT-BEN 21–2521–25 90 DC 3 60–68
Blum 2009 4A rut2080/Y; 201Y; UAS-rut +/rut2080; +; UAS-rut 8 8 MCH-OCT 2222 60 2 50
Blum 2009 6A rut2080/Y; 201Y; UAS-rut +/rut2080; +; UAS-rut 6 6 MCH-OCT 2222 60 2 50
Scheunemann 2012 5A rut1; NP1131; UAS-rut wild type 8 8 EA-IA 2424 120 AC 3 70
rutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobesrutabaga rescue in all lobes
Zars 2000 1 rut2080/Y; 30Y/UAS-rut Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
Zars 2000 1 rut2080/Y; 238Y; UAS-rut Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
Blum 2009 3A rut2080; +; UAS-rut; OK107 +/rut2080;+;UAS-rut 7 6 MCH-OCT 2222 60 2 50
Scheunemann 2012 5A rut1; +; UAS-rut; OK107 wild type 8 8 EA-IA 2424 120 AC 3 70
rutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobesrutabaga rescue in the αβγ lobes
Zars 2000 1 rut2080/Y; +; MB247/UAS-rut Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
Zars 2000 1 rut2080/Y; c772; UAS-rut Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
McGuire 2003 2A rut2080; +; MB247/UAS-rut Canton-S 5 5 OCT-BEN 2525 90 3 -
McGuire 2003 2A rut2080; c772; UAS-rut Canton-S 5 5 OCT-BEN 2525 90 3 -
McGuire 2003 S4 rut2080; c739; H24/UAS-rut +; c739; H24 7 7 OCT-BEN 2525 90 3 -
Schwaerzel 2003 1C rut2080; UAS-rut; MB247 Canton-S 6 6 EA-IA 2626 130 3 80
Akalal 2006 5A rut2080; c739; H24/UAS-rut +; c739; H24 6 6 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 5B rut2080; c739; H24/UAS-rut +; c739; H24 6 6 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 5C rut2080; c739; H24/UAS-rut +; c739; H24 6 6 OCT-BEN 21–2521–25 90 DC 3 60–68
Thum 2007 1D rut2080; +; MB247/UAS-rut MB247/+ 8 8 MCH-OCT 2525 90 DC 0* -
Blum 2009 3A rut2080/Y; +; MB247/UAS-rut +/rut2080; +; UAS-rut 7 6 MCH-OCT 2222 60 2 50
Blum 2009 3A rut2080/Y; c309; UAS-rut +/rut2080; +; UAS-rut 7 6 MCH-OCT 2222 60 2 50
Blum 2009 6A rut2080/Y; c739/201Y; UAS-rut +/rut2080; +; UAS-rut 6 6 MCH-OCT 2222 60 2 50
Scheunemann 2012 5A rut1; MB247/UAS-rut wild type 8 8 EA-IA 2424 120 AC 3 70
rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080rutabaga2080

Zars 2000 1 rut2080 Canton-S 6 6 MCH-BEN 2525 120 AC 2 -
McGuire 2003 2A rut2080 Canton-S 5 5 OCT-BEN 2525 90 3 -
Schwaerzel 2003 1C rut2080 Canton-S 6 6 EA-IA 2626 130 3 80
Blum 2009 1A rut2080 rut2080/ + 6 6 MCH-OCT 2222 60 2 50
rutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/srutabaga2080 with Driver/s
Akalal 2006 3C rut2080; c739 c739/+ 12 12 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2C rut2080; H24 +; H24 18 18 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 3F rut2080; 17d 17d/+ 12 12 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 5C rut2080; c739; H24 +; c739; H24 6 6 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2A rut2080; H24 +; H24 12 12 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2E rut2080; NP1131 +; NP1131 18 18 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 3A rut2080; c739 c739/+ 12 12 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 5A rut2080; c739; H24 +; c739; H24 6 6 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 3B rut2080; c739 c739/+ 10 10 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 2D rut2080; NP1131 +; NP1131 17 17 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 3E rut2080; 17d 17d/+ 12 12 MCH-OCT 21–2521–25 90 DC 3 60–68
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Akalal 2006 3D rut2080; 17d 17d/+ 24 24 MCH-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 2F rut2080; NP1131 +; NP1131 18 18 OCT-BEN 21–2521–25 90 DC 3 60–68
Akalal 2006 5B rut2080; c739; H24 +; c739; H24 6 6 MCH-OCT 21–2521–25 90 DC 3 60–68
Akalal 2006 2B rut2080; H24 +; H24 18 18 MCH-OCT 21–2521–25 90 DC 3 60–68
McGuire 2003 2A rut2080; c772 Canton-S 5 5 OCT-BEN 2525 90 3 -
McGuire 2003 2A rut2080; MB247 Canton-S 5 5 OCT-BEN 2525 90 3 -
McGuire 2003 S4 rut2080; c379 c739/+ 7 7 OCT-BEN 2525 90 3 -
McGuire 2003 S4 rut2080; H24 +; H24 7 7 OCT-BEN 2525 90 3 -
McGuire 2003 S4 rut2080; c379; H24 +; c739; H24 7 7 OCT-BEN 2525 90 3 -
Schwaerzel 2003 1C rut2080; MB247 Canton-S 6 6 EA-IA 2626 130 3 80
rutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rutrutabaga2080; UAS-rut
Blum 2009 3A rut2080; +; UAS-rut +/rut2080; +; UAS-rut 6 6 MCH-OCT 2222 60 2 50
Blum 2009 4A rut2080; +; UAS-rut +/rut2080; +; UAS-rut 8 8 MCH-OCT 2222 60 2 50
Blum 2009 4B rut2080; +; UAS-rut +/rut2080; +; UAS-rut 12 12 MCH-OCT 2222 60 2 50
Blum 2009 6A rut2080; +; UAS-rut +/rut2080; +; UAS-rut 6 6 MCH-OCT 2222 60 2 50
McGuire 2003 2A rut2080; +; UAS-rut Canton-S 5 5 OCT-BEN 2525 90 3 -
Schwaerzel 2003 1C rut2080; +; UAS-rut Canton-S 6 6 EA-IA 2626 130 3 80
Thum 2007 1D rut2080; +; UAS-rut MB247/+ 6 6 MCH-OCT 2525 90 DC 0* -
Zars 2000 1 rut2080; +; UAS-rut Canton-S 8 8 MCH-BEN 2525 120 AC 2 -
rutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rutrutabaga1; UAS-rut
Scheunemann 2012 5A rut1; +; UAS-rut wild type 8 8 EA-IA 2424 120 AC 3 70
rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1rutabaga1

Blum 2009 1A rut1 rut1/+ 6 6 MCH-OCT 2222 60 2 50
Scheunemann 2012 5A rut1 wild type 8 8 EA-IA 2424 120 AC 3 70

UAS-shibirets inactivation of the αβ (alphabeta) lobesUAS-shibirets inactivation of the αβ (alphabeta) lobesUAS-shibirets inactivation of the αβ (alphabeta) lobesUAS-shibirets inactivation of the αβ (alphabeta) lobesUAS-shibirets inactivation of the αβ (alphabeta) lobesUAS-shibirets inactivation of the αβ (alphabeta) lobesUAS-shibirets inactivation of the αβ (alphabeta) lobes Rest. Perm.
McGuire 2001 2AB c739; UAS-shits1c739; UAS-shits1 6 6 OCT-BEN 32 25 90 3 -
Akalal 2006 4A c739; UAS-shits1c739; UAS-shits1 6 6 MCH-BEN 32–35 21-25 90 DC 3 60–68
Akalal 2006 4B c739; UAS-shits1c739; UAS-shits1 10 6 MCH-OCT 32–35 21-25 90 DC 3 60–68
Akalal 2006 4C c739; UAS-shits1c739; UAS-shits1 6 9 OCT-BEN 32–35 21-25 90DC 3 60–68
Akalal 2006 4D 17d; UAS-shits117d; UAS-shits1 6 10 MCH-BEN 32–35 21-25 90 DC 3 60–68
Akalal 2006 4E 17d; UAS-shits117d; UAS-shits1 10 10 MCH-OCT 32–35 21-25 90 DC 3 60–68
Akalal 2006 4F 17d; UAS-shits117d; UAS-shits1 13 10 OCT-BEN 32–35 21-25 90 DC 3 60–68
UAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobesUAS-shibirets inactivation of the αβγ lobes
Dubnau 2001 3A UAS-shits1/c309UAS-shits1/c309 6 6 MCH-OCT 30 20 - 0* -
Dubnau 2001 3A UAS-shits1/c747UAS-shits1/c747 6 6 MCH-OCT 30 20 - 0* -
McGuire 2001 2AB MB247; UAS-shits1MB247; UAS-shits1 6 6 OCT-BEN 32 25 90 3 -
Schwaerzel 2002 3C MB247/UAS-shits1MB247/UAS-shits1 6 6 OCT-BEN 34 26 - 3 85
Schwaerzel 2002 3C c772/UAS-shits2c772/UAS-shits2 6 6 OCT-BEN 34 26 - 3 85
Schwaerzel 2003 1E MB247/UAS-shits1MB247/UAS-shits1 6 6 EA-IA 34 26 130 3 80
UAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobesUAS-shibirets inactivation of the γ (gamma) lobes
McGuire 2001 2AB 201Y; UAS-shits1201Y; UAS-shits1 3 4 OCT-BEN 32 25 90 3 -
Wild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controlsWild type heat effect controls
McGuire 2001 2AB wCS10wCS10 6 6 OCT-BEN 32 25 90 3 -
Schwaerzel 2002 3C Canton-SCanton-S 6 6 OCT-BEN 34 26 - 3 85
Driver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controlsDriver heat effect controls
Akalal 2006 4A 17d/+17d/+ 6 6 MCH-BEN 32–35 21-25 90 DC 3 60–68
Akalal 2006 4D 17d/+17d/+ 10 6 MCH-OCT 32–35 21-25 90 DC 3 60–68
Akalal 2006 4B c739/+c739/+ 6 10 OCT-BEN 32–35 21-25 90DC 3 60–68
Akalal 2006 4E 17d/+17d/+ 10 10 MCH-BEN 32–35 21-25 90 DC 3 60–68
Akalal 2006 4F c739/+c739/+ 10 13 MCH-OCT 32–35 21-25 90 DC 3 60–68
Akalal 2006 4C c739/+c739/+ 9 6 OCT-BEN 32–35 21-25 90 DC 3 60–68
McGuire 2001 2AB 201Y201Y 5 6 OCT-BEN 32 25 90 3 -
McGuire 2001 2AB c739 c739 6 6 OCT-BEN 32 25 90 3 -
McGuire 2001 2AB 247247 6 6 OCT-BEN 32 25 90 3 -
Schwaerzel 2003 1E 247/+247/+ 6 6 EA-IA 34 26 130 3 80
UAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controlsUAS-shits heat effect controls
Akalal 2006 4E w; UAS-shits1w; UAS-shits1 10 10 MCH-BEN 32–35 21-25 90 DC 3 60–68
Akalal 2006 4A w; UAS-shits1w; UAS-shits1 6 6 MCH-OCT 32–35 21-25 90 DC 3 60–68
Akalal 2006 4F w; UAS-shits1w; UAS-shits1 10 13 OCT-BEN 32–35 21-25 90DC 3 60–68
Akalal 2006 4D w; UAS-shits1w; UAS-shits1 10 6 MCH-BEN 32–35 21-25 90 DC 3 60–68
Akalal 2006 4C w; UAS-shits1w; UAS-shits1 9 6 MCH-OCT 32–35 21-25 90 DC 3 60–68
Akalal 2006 4B w; UAS-shits1w; UAS-shits1 6 10 OCT-BEN 32–35 21-25 90 DC 3 60–68
Dubnau 2001 3A shits1/+shits1/+ 6 6 MCH-OCT 30 20 - 0* -
McGuire 2001 2AB UAS-shits1UAS-shits1 6 6 OCT-BEN 32 25 90 3 -
Schwaerzel 2002 3C UAS-shits2/+UAS-shits2/+ 6 6 OCT-BEN 34 26 - 3 85
Schwaerzel 2002 3C UAS-shits1/+UAS-shits1/+ 6 6 OCT-BEN 34 26 - 3 85
Schwaerzel 2003 1E UAS-shits1/+UAS-shits1/+ 6 6 EA-IA 34 26 130 3 80
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