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ABSTRACT

Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes
chronic infections, so genetic diversity within a single infection can be very high. High-
throughput “deep” sequencing can now measure this diversity in unprecedented detail,
particularly since it can be performed at different timepoints during an infection, and
this offers a potentially powerful way to infer the evolutionary dynamics of the intra-
host viral population. However, population genomic inference from HIV sequence
data is challenging because of high rates of mutation and recombination, rapid de-
mographic changes, and ongoing selective pressures. In this paper we develop a new
method for inference using HIV deep sequencing data using an approach based on im-
portance sampling of ancestral recombination graphs under a multi-locus coalescent
model. The approach further extends recent progress in the approximation of so-called
conditional sampling distributions, a quantity of key interest when approximating co-
alescent likelihoods. The chief novelties of our method are that it is able to infer rates
of recombination and mutation, as well as the effective population size, while handling
sampling over different timepoints and missing data without extra computational diffi-
culty. We apply our method to a dataset of HIV-1, in which several hundred sequences
were obtained from an infected individual at seven timepoints over two years. We
find mutation rate and effective population size estimates to be comparable to those
produced by the software BEAST. Additionally, our method is able to produce local
recombination rate estimates. The software underlying our method, Coalescenator, is
freely available.

INTRODUCTION

Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes a chronic
infection for an individual’s lifetime. As a consequence, the genetic diversity within a single
infection can be very high. Important clinical variables, such as the rate of progression to
AIDS and the set point viral load, are related to the diversity and evolution of the within-
patient viral population (Shankarappa et al., 1999; Ross and Rodrigo, 2002; Williamson,
2003; Edwards et al., 2006; Lemey et al., 2007; Pybus and Rambaut, 2009), and so genetic
data from these populations are of medical relevance in addition to providing insight into
molecular evolutionary processes. However, population genomic inference from HIV sequence
data can be challenging as result of high rates of mutation and recombination within a
small RNA genome of approximately 10 kb. Furthermore, natural selection is expected to
play an important role in shaping within-host HIV genetic diversity (Rouzine and Coffin,
1999; Neher and Leitner, 2010; Batorsky et al., 2011; Pennings et al., 2014). For example,
phylogenies constructed from serially-sampled intrahost population sequences are typically
characterized by a ladder-like topology (Shankarappa et al., 1999), indicating a rapid and
continual turnover of genetic lineages as result of continual host immune selection. Although
the relationship between census viral population size (i.e. viral loads) over the course of
infection and virus kinetics is well understood for HIV (Nowak and May, 2000), relatively
little is known about the effective population size during a single infection.

High coverage “deep” sequencing is now being used to address these problems and to
investigate the genomic diversity of HIV, with several data sets already under study (Henn
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et al., 2012; Poon et al., 2012; Gall et al., 2013). For the study of within-host evolution of
HIV patients, deep sequencing serves as a potentially powerful way to infer the evolution-
ary and ecological dynamics of the viral population at an unprecedented detail, particularly
since sequencing can be performed at different timepoints during infection (Drummond et al.,
2003). This is especially important for studying fast-evolving RNA viruses, where the sub-
stitution rates and effective population size may change through time. By utilizing the
temporal structure of the sampled sequences, statistical power can greatly improve the pre-
cision of population demographic and evolutionary estimates (Pybus et al., 2000; Drummond
et al., 2003). However, from the perspective of population genomic inference, deep sequenc-
ing data is unusual: high-throughput sequencing generates large numbers of short sequence
reads, with each read representing 400–700 nt of a viral genome. Typically no virus particle
is sampled twice, so that only a small fraction of the viral genome is sequenced for any given
virion in the population. Genealogies can be estimated, for example, for each ∼500 nt sub-
genomic partition, but each genealogy represents a different random sample of individuals
from the same population. This presents peculiar challenges in genomic inference.

To infer parameters of an underlying evolutionary model from deep sequencing data,
such as effective population size, mutation rate, and recombination rate, new theoretical
and statistical approaches are therefore needed. In this article we work within a coalescent
framework, and in particular its extensions to allow for serially-sampled, or heterochronous,
sequences (Rodrigo and Felsenstein, 1999). (This is in contrast to the usual situation of
isochronous sampling at a single fixed time.) The coalescent is a powerful and flexible
framework for modelling the genealogy of a large, panmictic population, with many further
extensions that incorporate changing population size, recombination, and recurrent muta-
tions (see Hein et al., 2005, for a textbook introduction). It is a crucial component in the
inference of the evolutionary dynamics of fast-evolving RNA viruses, which can be combined
with epidemiological data in an approach known as phylodynamics (Grenfell et al., 2004). A
potentially powerful method of inference under complicated coalescent evolutionary models
is to proceed by computationally-intensive Monte Carlo simulation. The quantity of inter-
est, such as the likelihood for the data, is estimated by averaging over a large number of the
possible unobserved gene genealogies that could have given rise to the observed sequences.
Genealogies of high posterior probability can be targeted by Markov Chain Monte Carlo
(MCMC) or importance sampling (IS). There is now a sizeable literature on these and re-
lated approaches, focusing on various complications of the basic coalescent depending on the
species under study. For example, there are methods to account for recombination [MCMC:
Kuhner et al. (2000), Wang and Rannala (2008), Rasmussen et al. (2014); IS: Griffiths and
Marjoram (1996), Fearnhead and Donnelly (2001), McVean et al. (2002), Griffiths et al.
(2008), Jenkins and Griffiths (2011)], changing population size [MCMC: Beaumont (1999),
Drummond et al. (2002, 2005), Wilson et al. (2003), Minin et al. (2008); IS: Griffiths and
Tavaré (1994a), Beaumont (2003), Leblois et al. (2014)], and heterochronous sequence data
[MCMC: Drummond et al. (2002, 2005), Minin et al. (2008); IS: Beaumont (2003), Anderson
(2005), Fearnhead (2008)].

However, for accurate inference using deep sequencing data from within-host virus popu-
lations we need to account for several of these complications simultaneously, and no existing
methods are available for this task. In particular, current inference methods in this context
have tended to omit the process of recombination (Pybus and Rambaut, 2009), limiting our
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understanding of the extent of the association between recombination and viral adaptation.
However, the effective recombination rate is of an order of magnitude comparable to the
mutation rate [for example, Shriner et al. (2004) found the recombination rate to be 5.5-fold
greater than the mutation rate in HIV]; furthermore, recombination may play an important
role in the evolution of drug resistance (Kellam and Larder, 1995; Neher and Leitner, 2010).
There is also growing evidence that recombination rates are not constant along the genome
(Fan et al., 2007; Archer et al., 2008). Thus, our goal in this paper is to develop a coalescent
method of inference that can handle all of the following:

(i) Recombination,

(ii) High mutation rates,

(iii) Heterochronous sequences,

(iv) Missing data,

(v) Changing effective population size.

Here we take a novel importance sampling approach to tackle this problem. It is based on
recent developments in the efficient computation of conditional sampling distributions [CSDs;
Paul and Song (2010); Paul et al. (2011); see also Sheehan et al. (2013)]: the probability
distribution of an additionally sampled haplotype, conditioned on the sampled haplotypes
we have seen already. These are crucial in the design of efficient IS algorithms: Stephens
and Donnelly (2000) noted an equivalence between designing an IS proposal distribution
and approximating the (unknown) CSD. This work was later formalized by De Iorio and
Griffiths (2004a), which subsequently allowed Griffiths et al. (2008) and Paul and Song
(2010) to derive an accurate approximate CSD in the presence of crossover recombination.
Finally, work by Paul et al. (2011) resulted in an efficient approximation of the CSD for
multiple loci via a hidden Markov model (HMM).

Our work is most closely related to that of Griffiths et al. (2008), whose focus was a model
able to account for recombination, but which was not designed with heterochronous deep
sequencing data in mind, and thus exhibited only properties (i) and (ii) above. Extending
this method to include (iii, iv, v) raises numerous methodological challenges that we address
in further detail below. Briefly, we replace the CSD of Griffiths et al. (2008) with that of the
sequentially Markov model of Paul et al. (2011). The latter is more efficient to compute and
easily extended to blocks of completely linked sites. To allow for samples taken at different
times we introduce an explicit time variable, which in turn determines when samples are
inserted into the reconstruction of a genealogy backwards in time. Further, and in contrast
to the imputation approaches of Fearnhead and Donnelly (2001) and Griffiths et al. (2008),
our model allows for haplotypes to be only partially specified, assigning allelic states only at
a subset of loci where possible. This dramatically reduces the state space of the model, and
it also provides a convenient way of handling missing data.

Despite all of these contributions, application to large high-throughput datasets remains
challenging, particularly for full-likelihood methods. In order to retain tractability, recent
research has turned to approximations of the model, or of the likelihood, or both. The
approach we take here is a principled method to find an accurate full -likelihood solution first
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by restricting attention to a two-locus model. Our two-locus model is then extended to multi-
locus data by analysing selected pairs of loci separately and then aggregating these pairwise
inferences, either by taking the median of the inferred estimates or by combining their
likelihood surfaces via a pseudolikelihood [in particular, via a pairwise composite likelihood
(McVean et al., 2002; Larribe and Fearnhead, 2011)]. As we describe below, we performed a
simulation study in order to to demonstrate that our method can recover model parameters
accurately.

The inferential process involves simulating ancestral trees backwards in time, and, in
agreement with Griffiths and Tavaré (1994b), Nielsen (1997), and Jasra et al. (2011), as
we get closer to the MRCA, coalescence times increase greatly. This adds undesirably high
variance to the inference, and extensive CPU time. To circumvent this, we further employ
the Time Machine strategy developed by Jasra et al. (2011): stopping the simulation before
the MRCA is reached whilst controlling for the bias; acquiring sizable computational saving
and reduced variance.

To investigate the performance of our method on empirical data, we analysed HIV-1
RNA samples that had been extracted and sequenced at seven timepoints over a period
of two years, from a patient enrolled in the control arm of the Short Pulse Antiretroviral
Therapy at Seroconversion (SPARTAC) study. This patient received no anti-viral drugs.
Nine regions from the whole HIV-1 genome alignments of these heterochronous data were
then analysed using our model, and for comparison by the Bayesian MCMC coalescence
approach implemented in BEAST (Drummond and Rambaut, 2007; Drummond et al., 2012).
Both analyses provide strong agreement in the mutation rate, effective population size, and
time to the most common recent ancestor. However, in addition, our approach also estimates
recombination rates.

A C++ implementation of the algorithm is available from https://github.com/OSSCB2013

under the name Coalescenator. The program can process serially sampled, deep sequenc-
ing data from viral populations, to infer mutation rates, recombination rates, the effective
population size, and times to recent ancestors.

MATERIALS AND METHODS

Model and notation. In this section we describe our notation and genealogical model.
We begin by formulating a two-locus model; that is, given a pair of loci, call them A and
B, recombination may occur at any position along the sequence separating them. We re-
gard a locus as a fixed stretch of nucleotides, which may contain several polymorphic sites.
Recombination within a locus is ignored.

Demographic model. Suppose we have data D = (D−K ,D−K+1, . . . ,D0) collected at time-
points t−K > t−K+1 > . . . > t0 = 0, with t0 being the most recent collection time and
t−1, t−2, . . . extending into the past. We assume the effective population size (Ne) to be con-
stant between collection times, but it may change at these times. This piecewise-constant
model is similar to that of Pybus et al. (2000). Except through their effects on Ne, we
otherwise ignore the effects of natural selection and population substructure.

To reduce the parameter space, viral load estimates at the sampling times can be used
as a guide for constraining the relative magnitudes of the effective population sizes. In the
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simplest scenario (e.g. when viral load estimates are unavailable, unreliable, or we decide not
to use them), a single, constant effective population size can be fitted, and in this paper we
focus on the inference of a single effective population size parameter. In the results section,
we investigate the robustness of our inference to this assumption.

Mutation model. Let lA and lB denote the lengths (in nt) of locus A andB respectively, and
set l = lA + lB to be their total length. We assume that all nucleotides conform to a diallelic
model, with alleles labelled arbitrarily as {0, 1}. Each nucleotide mutates independently at
the same rate and with symmetric transitions such that the mutation transition matrix for
each nucleotide is P = ( 0 1

1 0 ). (In other words, Pij denotes the probability that, if the ith
allele undergoes a mutation event, it changes to the jth allele.) Let µ be the mutation rate
per generation time per site, which we assume to be constant across sites, and let θ = 4Neµ
be the population-scaled mutation rate per generation per site when the effective population
size is Ne. Then θ = lθ is the population-scaled mutation rate per generation time across
both loci, with individual locus mutation rates given by θA = lAθ and θB = lBθ. The overall
mutation transition matrix for locus ` is

Q =

l∑̀
k=1

1

l`
I ⊗ I ⊗ . . .⊗ P ⊗ . . .⊗ I, (1)

where I is the identity matrix and for each kth summand, P appears in the kth position in
the direct product (Griffiths and Tavaré, 1994b). In other words, when a mutation occurs at
locus `, the resulting haplotype is chosen uniformly from amongst those differing from the
parental haplotype at precisely one of the l` sites. Because of the possibility of a high rate
of mutation, this model allows for a site to have undergone more than one mutation event in
its genealogical history. In practice we simulate mutation events only at polymorphic sites.

Recombination model. Suppose locus A and B are separated by a region of length d
nucleotides, and assume a uniform recombination rate across this region. Let r be the
recombination rate per generation time per site, which we assume to be constant across
sites. Therefore, if ρ = 4Ner denotes the population-scaled recombination rate per generation
time per site, then ρ = dρ is the population-scaled recombination rate per generation time
between locus A and B. We assume only crossover-type recombination, which implies an
approximately linear relationship between short physical distance and recombination rate.

Sample notation. We sample n haplotypes at a given collection time; by haplotype we
mean a sequence of nucleotides which we will later subdivide into a sequence of contigu-
ous blocks of loci. Due to missing data, we observe a haplotypes specified only at locus
A, b haplotypes specified only at locus B, and c haplotypes specified at both loci, so that
a + b + c = n. Reads only partially overlapping with a locus are treated as missing at this
locus. A haplotype (i, j) ∈ {0, 1}lA×{0, 1}lB is seen with multiplicity cij, so that

∑
i,j cij = c.

Haplotypes with data missing at locus A or B are respectively denoted (i, ∗) and (∗, j), with
respective multiplicities ai and bj, and

∑
i ai = a,

∑
j bj = b. Let c = (cij), a = (ai), and

b = (bj); the complete dataset is thus written compactly as n = (a, b, c). As we reconstruct
a genealogy for the sample backwards in time, recombination events create lineages each
ancestral only at one of the two loci. The notation we have introduced to allow for missing
data also allows us to leave unspecified the allelic types of these nonancestral recombinant
loci: backwards in time, a recombination event replaces a type (i, j) with (i, ∗) and (∗, j).
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Importance sampling. Parameter estimation in population genetic models requires
computation of the likelihood of the observed data D as a function of the model parameters
Φ. We start by describing a method for estimating the likelihood L(Φ) for heterochronous
data at two loci, with Φ = (Ne, µ, r). Our method also provides a weighted approximation
to the posterior distribution of genealogical histories given this data, so it is straightforward
to address questions of ancestral inference, such as the time to the most recent common an-
cestor (TMRCA) of the data. Note that under the standard (isochronous) coalescent model,
it is not possible to identify mutation and recombination rates separately, as only their re-
spective products with the effective population size can be identified. Serial sampling from a
rapidly evolving population (relative to the spacing between samples) allows for the separate
estimation of these three parameters, because a separate estimate of Ne is then available.
(To understand this, observe that with heterochronous data the times between sample collec-
tions appear in the likelihood expression, L(Φ). The timescale of the coalescent is governed
by Ne, which therefore now appears in L(Φ)—and so can be estimated—separately from its
appearance inside the composite parameters θ and ρ. Further details are given by Rodrigo
and Felsenstein, 1999, p259–262).

As it is not possible to write down L(Φ) = P(D; Φ) analytically, a latent genealogy
variable, G, is introduced. The likelihood is then calculated by marginalising over G:

L(Φ) =

∫
G
P(D | G)P(G; Φ) dG. (2)

A näıve Monte Carlo estimator for the integral in (2) is given by

L̃(Φ) =
1

M

M∑
i=1

P(D | G(i)), (3)

where G(i) represent independent samples from P(G; Φ), the coalescent prior. This estimator

has poor properties because P(D | G(i)) is 0 with high probability, resulting in L̃(Φ) having
very high variance (Stephens and Donnelly, 2000). Estimation of the integral (2) is therefore
generally conducted using either MCMC or IS. The latter approach, which we follow here,
was pioneered by Griffiths and Tavaré (1994b). An IS estimator is obtained by introducing
an artificial proposal distribution Q and reweighting the samples; the estimator

L̂(Φ) =
1

M

M∑
i=1

P(D | G(i))
P(G(i); Φ)

Q(G(i); Φ)
, (4)

where G(i) represent independent samples from Q(G; Φ), has lower variance than (3) provided
Q(G; Φ) is chosen carefully. It can be shown that the optimal proposal distribution is the

posterior P(G | D; Φ), in which case L̂(Φ) has variance 0 (Stephens and Donnelly, 2000).
This distribution is unknown in general, but it can guide our intuition on how to choose
Q(G; Φ).

Griffiths and Tavaré (1994b) noted that we can focus solely on genealogies compatible with
the observed data by simulating them sequentially and by a reversal of time. To illustrate
the idea we introduce some further notation similar to that of Stephens and Donnelly (2000):
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First, regard the coalescent model as a Markov process forwards in time on unordered sets of
haplotypes. The process starts at the most recent common ancestor (MRCA) of the sample,
H−m ∈ {0, 1}l, and ends at an unordered set of n observed haplotypes, H0 ∈ ({0, 1}l)n,
corresponding to the most recently observed data. The process visits a sequence of states
H = (H−m, H−m+1, . . . , H0) as the genealogy is constructed forwards in time by mutations,
coalescences, and recombinations; the known rates of these transitions are prescribed by the
coalescent model. We refer to H as the history of the sample. The importance sampling
estimator can then be decomposed as

L̂(Φ) =
1

M

M∑
i=1

P(D | H(i))
m∏
k=1

P(H
(i)
−k+1 | H

(i)
−k; Φ)

Q(H
(i)
−k | H

(i)
−k+1; Φ)

.

The numerators P(H−k+1 | H−k; Φ) are known from the coalescent model, and the denomina-

tors Q(H
(i)
−k | H

(i)
−k+1; Φ) are specified by the proposal distribution. The key point is that this

reformulation of the importance sampling procedure can be viewed as exploring the state
space of latent histories backwards from the sample H0 to the MRCA H−m. One advantage
of this is immediate: when the only data collection time is t0 = 0 then D = H0, and by
choosing H

(i)
0 = H0 for each i = 1, . . . ,M we can ensure that P(D | H(i)) = 1 for each i, so

that no simulation is wasted. Moreover, the Markov specification of the proposal distribution
helps to simplify our task of actually designing it.

A key observation of Stephens and Donnelly (2000) was that the posterior, conditional
distribution of genealogies can be expressed in terms of the conditional sampling distribution
(CSD), which is defined as the probability π[(i, j) | n; Φ] that a haplotype sampled from the
population is of type (i, j) ∈ {0, 1}l given that we have already sampled the haplotypes with
configuration n. Although this distribution is as intractable as P(G | D; Φ), it provides a
sensible starting point in the design of an efficient proposal distribution, since we have re-
duced the problem to one of finding a good approximation of π[(i, j) | n; Φ]. We emphasize
that even if we use a proposal distribution based on an approximation to π[(i, j) | n; Φ], the
reweighting in (4) still provides us with an unbiased and consistent estimator.

New proposal distribution. Our aim then is to design a sequential proposal distribu-
tion Q(H−k | H−k+1, ; Φ), defining a Markov chain backwards in time which approximates
P(H | D; Φ). Following the discussion of the previous section, to achieve this we use two
steps: first, express the true backwards transition rates P(H−k | H−(k−1); Φ) in terms of the
CSDs π[· | ·; Φ]; second, substitute the CSD for a well motivated approximation π̂[· | ·; Φ].
We address each of these steps in turn.

Backwards transition rates. For now, fix Ne and assume a single sample collection time
t0 = 0. Griffiths et al. (2008) obtained the backwards transition rates for a two-locus,
finite-alleles model with isochronous samples taken from a population at equilibrium. Their
formulation is efficient because it corresponds to ancestral recombination graphs (ARGs) in
which only lineages carrying genetic material ancestral to the sample are simulated; entirely
nonancestral lineages are integrated out. This dramatically reduces the state space and
improves efficiency. However, the simulation continues to assign allelic types to the remaining
nonancestral loci. For example, if a lineage in an ARG is ancestral to a member of the sample
at locus A but not at locus B, then it is still necessary to assign an allelic status at locus
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B. In our application these loci represent tens or hundreds of nucleotides, and assigning
a haplotypic status to such loci throughout the simulation is cumbersome. We therefore
marginalize over these nonancestral loci too. The resulting backwards transition rates are
given in Table A1, and the entries in this table are derived in Appendix A.

Thus far we have ignored changes in population size and heterochronous sampling. To ac-
count for these factors we introduce an explicit time variable T = (T−m, T−m+1, . . . , T0 = 0),
which contains the times between events in the history H (we now also include the collection
of additional samples at times t−1, t−2, . . . as valid events). To calculate the likelihood, we
now need to marginalise over both histories H and inter-event times T :

L(Φ) =

∫
H,T

P(D | H, T )P(H, T ; Φ) dH dT ,

with IS estimator

L̂(Φ) =
1

M

M∑
i=1

P(D | H(i), T (i))
P(H(i), T (i); Φ)

Q(H(i), T (i) | D; Φ)
, (5)

where the parameters of interest are Φ = (Ne, µ, r), and (H(i), T (i)) are independent samples
from Q(H, T | D; Φ).

Our sequential proposal Q(H−k−1, T−k−1 | H−k, T−k; Φ) is described below. Suppose our
genealogical reconstruction has proceeded backward a time T sum−k = T0 + T1 + . . . + T−k,
past the sample collection time t−j. We first sample an event time backwards according to
an exponential distribution with rate depending on the current sample size (a, b, c) and the
current effective population size N−j. In apprehension of the appearance of new samples at
given times in the past, we measure time in chronological units rather than generation units
(Rodrigo and Felsenstein, 1999). Then the waiting time T (in days) for the next event, is
exponentially distributed with density

fevent(t) =
D

2N−jτ
exp

[
− D

2N−jτ
t

]
, t > 0, (6)

where D = n(n− 1) + (a+ c)θA + (b+ c)θB + ρc is (twice) the total prior rate of events and
τ is the generation time in days. (The parameters θA, θB, and ρ are redefined each time the
effective population size changes; e.g. ρ = 4dN−jr.) We sample a time T from (6): if the
corresponding event time is more recent than the next (pastward) sample collection time i.e.
T sum−k + T < t−j−1, then we accept this time and define our proposal by

Q(H−k−1, T−k−1 | H−k, Tk; Φ) = fevent(T−k−1)Q(H−k−1 | H−k; Φ),

with Q(H−k−1 | H−k; Φ) defined as in Table A1—only we replace each instance of π[· | ·; Φ]
with an approximation π̂[· | ·; Φ] developed below. Otherwise, with probability

P(no event in [T sum−k , t−j−1]) = exp

[
− D

2Nτ
(t−j−1 − T sum−k )

]
the next event is the insertion of additional samples at the next collection time, and we
set the next waiting time to be T−k−1 = t−j−1 − T sum−k . At collection time t−j−1, we insert
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Figure 1: Illustration of our two-locus recombination model: a sampled historyH and inter-
event times T . The two loci of each haplotype are each represented by a circle. White circles
represent an unspecified locus and colored circles indicate the allelic type at that locus. For
example H0 consists of types (blue, red) and (green, ∗). There are two sampling times and the
collected samples are represented by the leaves of the tree (marked by rectangles). Time is
measured in chronological units and run backwards from the most recent collection time, t0 =
0, to the most recent common ancestor tMRCA. Ancestral lineages are represented by black
lines. At a coalescence event, two lineages are joined together; the model allows coalescence
between fully-specified haplotypes (H−4), between a fully-specified and partially-specified
haplotype (H−6), and between two partially-specified haplotypes (H−2). At a recombination
event, two lineages are created and their haplotypes are partially specified: one of the two
loci becomes non-ancestral and its allele type is left unspecified (H−1). At the next collection
time t−1, a new sample D−1 is added to the existing lineages H−2: H−3 = H−2 ∪ D−1; and
the effective population size is allowed to change.

the samples D−j−1 collected at time t−j−1 to our current configuration H−k. That is, if
D−j−1 = m and H−k = n then we set H−k−1 = m + n. We then update the effective
population size parameter to N−j−1, and continue this iterative procedure until we have
both passed the oldest collection time and reached a MRCA for each locus. The overall
procedure is illustrated in Figure 1.

Conditional sampling distribution. Our proposal distribution is obtained by substituting
an approximate CSD π̂ for π in Table A1. We use the the HMM approach devised by Paul
et al. (2011), yielding an algorithm linear in both the number of loci and the number of
haplotypes (i.e. linear in sequence length and sample size, respectively). It is a relatively
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accurate approximation of the true CSD and practical to compute. Briefly, the new haplotype
(i, j) is sampled given an existing configuration n by assuming that the genealogy for the
latter is a simple, improper “trunk” ancestry: one extending infinitely far back into the past
with no mutations, recombinations, or coalescences (see Figure 2 and Paul and Song, 2010).
The alleles of the new haplotype are determined by allowing its ancestral lineage to undergo
mutation and recombination, and to coalesce into this trunk ancestry at appropriate rates.
This framework can be cast as an HMM across loci, whose emissions are the observed alleles
at the newly sampled haplotype, and whose hidden state is the pair s` = (τ`, i), where τ` is
the absorption time of this locus into the trunk, i ∈ {0, 1}l` is the type of the lineage into
which absorption occurs (Figure 2), and l` is the length of this locus (in nt).

Although this framework is obviously a strong simplification of the true underlying ge-
nealogical process, the resulting CSD π̂[(i, j) | n; Φ] has many sensible properties (Paul et al.,
2011). However, this approach does not lend itself immediately to handling unspecified al-
leles. We therefore make several further modifications to the CSD of Paul et al. (2011) in
order to construct a practicable IS algorithm, as we now describe.

Emission probabilities. For our model, where all nucleotides are diallelic and mutate
independently, we can simplify the emission probabilities used in the HMM calculation—
increasing the computational efficiency greatly. Given a hidden state s` = (τ`, i) of the
Markov chain at locus `, the emission probability mass function for observed state j ∈ {0, 1}l`
is given by:

ξθ(j | s`) = e−
θ
2
τ`

∞∑
m=0

1

m!

(
θ

2
τ`

)m
[Qm]ij, (7)

where Q is the mutation transition matrix (1). Because sites within a locus mutate inde-
pendently in our model, we can reformulate this as

ξθ(j | s`) =

l∏̀
k=1

e−
θ
2
τ`

∞∑
m=0

1

m!

(
θ

2
τ`

)m
[Pm]ikjk ,

where we recall that P = ( 0 1
1 0 ). We can simplify this even further:

ξθ(j | s`) =

[
e−

θ
2
τ`

∞∑
s=0

(θτ`/2)(2s+1)

(2s+ 1)!

]Sij [
e−

θ
2
τ`

∞∑
s=0

(θτ`/2)(2s)

(2s)!

]l`−Sij
= e−

θ
2
τ`
[
sinh(θτ`/2)

]Sij [
cosh(θτ`/2)

]l`−Sij
, (8)

where Sij denotes the number of nucleotide differences between i and j. Thus, we have
successfully eliminated the infinite sum in the emission distribution (7). Because the hidden
state τ` is continuous, we follow Paul et al. (2011) and employ Gaussian quadrature to
construct a discrete HMM. We chose Laguerre-Gauss quadrature (Abramowitz and Stegun,
1972, Table 25.9) with 16 points. Applying the forward algorithm to this HMM yields the
required CSD. The expression for the emission distribution in this discretized model can also
be reduced to a closed-form formula (Appendix B).

Emission probability when the absorbing hidden state is unspecified. The method of Paul
et al. (2011) does not deal with the case where the locus of interest at the absorbing hidden
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Figure 2: Illustration of the sequential interpretation for a realization of π̂[e = (i, j) | n; Φ]
for two loci. The dotted and full lines, respectively represent the marginal genealogies (S1, S2)
at locus A and B. The hidden state at locus A is s1 = (τ1, h1). Haplotype h1 would carry a
green allele at its first locus, but a mutation results in the observed blue allele. The hidden
state at locus B is s2 = (τ2, h2). h2 carries a yellow allele at its second locus, and no mutation
occurs on the marginal genealogy at this locus. If there is no recombination, s2 = s1, but
here a recombination occurs before τ2 and the absorption time for the second locus is τ2 6= τ1.
As in Figure 1, white circles represent loci with unspecified alleles.

state is unspecified, i.e. calculating emissions of the form ξθ(j | (τ`, ∗)). In a two-locus model
this occurs, for example, when the absorbing state is the haplotype (i, ∗) for some i and we
are interested in the emission distribution at locus B. In this case, we condition on choosing
an absorbing haplotype with the allele at this locus specified (Figure 3(B)). When there are
no haplotypes in the trunk ancestry for which the locus of interest has a specified allele, we
sample the allele from the stationary distribution of Q [eq. (1)]; that is, we pick uniformly
from all possible 2l` haplotypes at this locus:

ξθ(j | (τ`, ∗)) =



∑
k: ak+ck·>0

ak + ck·
a+ c

ξθ(j | (τ`, k)) if ` = A and a+ c > 0,∑
l: bl+c·l>0

bl + c·l
b+ c

ξθ(j | (τ`, l)) if ` = B and b+ c > 0,

2−l` otherwise,

(9)

where the trunk ancestry has configuration n = (a, b, c) and we have used the notation
ck· =

∑
l ckl, c·l =

∑
k ckl.

Emission probability for partially observed haplotypes. If the observed haplotype has an
unspecified locus (i.e. we seek to calculate π̂[(i, ∗) | n; Φ] or π̂[(∗, j) | n; Φ]), then we transform
this to a one-locus problem with a degenerate HMM summing over hidden states at a single
locus (Figure 3(A)). If the absorbing hidden state is unspecified (Figure 3(B)) then we
choose uniformly from the informative trunk lineages as described above.

CSD for recombination event. To model recombination, we require π[{(i, ∗), (∗, j)} | n; Φ],
the CSD for two partially observed haplotypes (see Table A1). This quantity satisfies the
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(A) (B)

Figure 3: Sampling π̂[(∗, j) | n; Φ], with the observed allele j represented by a yellow circle.
(A): Absorption at the second lineage of the trunk ancestry for which the second locus is
specified (red allele). Mutation event is still allowed in this one-locus model, as illustrated
here by a mutation from a red to yellow allele. (B): Absorption at the first lineage of the
trunk ancestry for which the second lineage is unspecified. In such cases we choose uniformly
from the other informative lineages as the absorbing state.

following decompositions and symmetries:

π[{(i, ∗), (∗, j)} | n; Φ] =
∑
i′,j′

π[(i, j′) | n; Φ]π[(i′, j) | n + eCij′ ; Φ] (10a)

=
∑
i′,j′

π[(i′, j) | n; Φ]π[(i, j′) | n + eCi′j; Φ], (10b)

and

π[{(i, ∗), (∗, j)} | n; Φ] = π[(i, ∗) | n; Φ]π[(∗, j) | n + eAi ; Φ] (11a)

= π[(∗, j) | n; Φ]π[(i, ∗) | n + eBj ; Φ] (11b)

To estimate π̂[{(i, ∗), (∗, j)} | n], Griffiths et al. (2008) use relationship (10) by substitut-
ing approximate CSDs π̂ for each fully-observed haplotype. In addition, they noted that π̂
may not satisfy symmetries (10a,b)—and so they take the average of the two expressions.
However, this strategy in averaging over all the alleles at the unspecified loci is very compu-
tationally intensive. Here, we instead use relationship (11), and substitute the approximate
CSDs π̂[(i, ∗) | n; Φ] and π̂[(∗, j) | n; Φ] from the previous section (Emission probability for
partially observed haplotypes). We still take the average of the two expressions (11a,b) to
account for asymmetries.

Forward Transitions. To summarize, solving the forward equation associated with the
HMM described above allows us to compute an approximate CSD, π̂[(i, j) | n; Φ], for each
(i, j) ∈ {0, 1}l as well as for the special cases (i, ∗) and (∗, j). Plugging this into Table A1
defines an IS proposal distribution for sampling genealogical histories associated with the
two loci. Equation (5) then provides an unbiased estimator of the likelihood. We have
not yet specified how to compute the numerator in (5); to do this we also need the prior
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probabilities P(H, T ; Φ). These can be computed easily and sequentially using the rightmost
column of Table A1 (with minor modifications to account for the simulation of T ). Table A1
covers events involving coalescence, mutation, and recombination. In addition, we also
need to calculate the probability of subsampling the observed haplotypes D−j from among
the lineages in the reconstructed genealogy, for each collection time t−j. Thus, there is a
contribution to the numerator of (5) given by the hypergeometric distribution (Beaumont,
2003): if H−k = n∗ is the configuration at the collection time (including the additional
samples) and H−k+1 = n is the configuration just before (more recently than) the addition
of these samples, then

P(H−k+1 | H−k) =

∏
i

(
a∗i
ai

)∏
j

(b∗j
bj

)∏
i,j

(
c∗ij
cij

)(
a∗

a

)(
b∗

b

)(
c∗

c

) . (12)

After decomposing P(H, T ; Φ) in this manner it remains to compute the final term P(H−m)
for the probability of the type of the MRCA. Under our uniform mutation model, the sta-
tionary distribution of the mutation process and thus the type of the MRCA is uniformly
distributed such that P(H−m) = 2−l. Finally, the probability of the data given a history,
P(D | H, T ), is simple an indicator for whether the configurations at the leaves of the sim-
ulated history coincide with the observed data. By construction this is identically equal to 1.

Further algorithmic improvements. In this section, we present two modifications to
our model for reducing the computational overhead, as well as two strategies for extending
the two-locus model to process multi-locus data.

Proposal distribution. The work of Stephens and Donnelly (2000), De Iorio and Griffiths
(2004a), Griffiths et al. (2008), Paul and Song (2010), and Paul et al. (2011) suggests that
our approach to IS will have attractive statistical efficiency. However, generating proposals
according to Table A1 requires the evaluation of all possible events for all haplotypes in the
current configuration H−k, which may be too costly for complex samples. Instead we there-
fore make a simple modification, similar to the one suggested by Fearnhead and Donnelly
(2001), which is a further approximation to the proposal suggested by Table A1: Consider
the waiting time to the next event as the minimum of independent competing exponential
times for the events involving each of the (i, j), (i, ∗), and (∗, j) haplotypes. Now sample
a haplotype to be involved in the next event according to the prior probability of its in-
volvement. In this calculation we exclude the possibility of a coalescence between dissimilar
haplotypes, resulting in the probabilities given in Table A2. Next, given the chosen haplo-
type we choose the event it is involved in with probabilities proportional to the relevant rows
in Table A1; now only those rows need to be computed.

Time machine. As reported by Griffiths and Tavaré (1994b), Nielsen (1997), and Jasra
et al. (2011), as we simulate the tree backwards and closer to the MRCA, the simulation
times increase greatly. This long simulation run results in undesirably high variance of the
likelihood estimate, and extensive CPU time—a particular drawback of an IS approach. To
circumvent this, Jasra et al. (2011) considered stopping the simulation before the MRCA
is reached, in an approach termed the Time Machine. The bias from this action is then
characterized. First, it depends on the underlying mixing of the evolutionary process: the
closer to the root node of the tree, the process is able to ‘forget’ its initial condition. Secondly,
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it depends on the specific distribution of the process at the stopping (exit) time. Using the
IS algorithm of Stephens and Donnelly (2000), they investigated the bias-variance effect of
stopping simulations at the first time back that the number of lineages had decreased to 1%,
2%, 5%, 10%, 25%, and 50% of the original sample size n. They concluded that stopping at
5% strikes the right balance between computational efficiency and numerical accuracy.

We conservatively adopt their approach: stopping at TMRCA−5, the first time the back-
wards simulation reaches five ancestors. At this exit time, the alleles of the remaining lineages
are drawn from a uniform distribution. Indeed, we experience sizable computational saving
and reduced variance, without noticeable effect on the quality of the estimates.

Estimation of local and global parameters. The method described above estimates the
likelihood L(Φ) for heterochronous deep sequencing data at a pair of loci. Recall that each
locus is a stretch of nucleotides within which recombination is ignored, but between which
recombination is explicitly modelled. By searching for Φ that maximizes L(Φ), we obtain the
pairwise maximum likelihood estimate (pairwise MLE ) for the mean mutation rate µ and
effective population size across the pair, and the mean recombination rate r between the
pair.

This two-locus IS algorithm can be used to analyse multi-locus data. Given a region of
length κ (typically ∼ 400–500 nt), we partition it into loci of length δ (typically ∼ 50 nt),
defining a collection of ω = κ/δ loci. We run the IS algorithm on pairs of non-adjacent loci
{(i, j) : |j − i| > 1; i, j ∈ {1, 2, . . . , ω}}. Adjacent pairs are excluded because recombination
between loci separated by a single nucleotide is expected to be negligible. The resulting
pairwise MLEs are then indicative of how the local population parameters are distributed
within the region.

In practice, the size for the partitioned loci, δ, would be chosen based on the read length
distribution of the data, so that a large proportion of the sample at any particular locus will
be fully specified and thus can be included in our analysis. (Recall that if a sequence contains
even a few missing nucleotides at a given locus the rest of the information at this locus is
discarded and we consider it as a block of missing data.) A balance should be struck: smaller
locus length allows inference of finer recombination and mutation rate variation across the
region, at the expense of higher computational complexity.

It is also of interest to have a single, global estimate for the population parameters that is
representative of the whole region. An ideal situation is a short region (typically ∼ 500 nt)
where the evolutionary behavior is relatively homogeneous. In such cases, one can take the
median or mean of pairwise MLEs as a simple global estimator; we found the median to be
more robust. An alternative, more sophisticated global estimator is via a pairwise composite
likelihood (reviewed in Larribe and Fearnhead, 2011), which we include for comparison with
the median of pairwise MLEs. In this strategy, the two-locus IS algorithm is run on each
pair i, j ∈ {1, 2, . . . , ω} of loci such that 1 < |i− j| ≤ ∆, for some threshold distance ∆. The
global parameters are inferred by maximizing pairwise composite likelihood:

L(Φ) =
∏

1<|i−j|≤∆

P(Dij; Φ), (13)

where Dij denotes the marginal data restricted to the pair of loci i and j. Equation (13) is
similar to the composite likelihood of McVean et al. (2002), using pairs of multi-nucleotide
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Figure 4: Estimation of the local and global parameter estimates using the two-locus IS
algorithm. A region of interest, typically ∼ 4–500 nt, is shown as a blue segment. This region
is partitioned into smaller loci, e.g. 50 nt. Sequence reads are shown as thinner horizontal
bars. For non-adjacent pairs of loci, the two-locus engine computes pairwise MLEs as local
estimates of the population parameters. Here, a pairwise comparison between locus 2 and
4 is illustrated (yellow shading). Reads that fully cover at least one of the two loci are
highlighted in red and are used for the inference: three complete haplotypes (reads 1, 4, and
6) and two partial haplotypes (reads 2 and 3). These pairwise inferences can be combined to
reach the global parameter for the whole region. Two approaches are described in the text:
by taking the median of the pairwise MLEs or via a pairwise composite likelihood.

loci rather than pairs of single-nucleotide polymorphisms (SNPs), as suggested by Jenkins
and Griffiths (2011).

Introducing a threshold ∆ is attractive for both statistical and computational reasons
(Larribe and Fearnhead, 2011), and there are several additional reasons why ∆ ought to be
small in our application. First, the short-read nature of the data means that if |i − j| >
∆, then many samples will be missing at one or both of the two loci. Second, since our
loci represent blocks of nucleotides rather than single SNPs, parameter variation along the
sequence implies we should concentrate on proximate pairs of loci. Third, our modelling of
complete blocks of nucleotides instead of isolated SNPs prohibits the pre-computation of an
exhaustive list of pairwise likelihoods, as is possible in McVean et al. (2004) for example.
For these reasons we focus on the composite likelihood (13) in which ∆ = 2.

These procedures are illustrated in Figure 4.
Simulated data. Simulated heterochronous datasets were generated using the software

package NetRecodon (Arenas and Posada, 2010), using a Jukes-Cantor substitution model
(Jukes and Cantor, 1969) and with each nucleotide frequency value equal to 0.25. Population
parameters were chosen to be comprable to those previously described for HIV: µ = 2.5×10−5

per site per generation, r = 10−6 per site per generation, Ne = 103, τ = 1.8 days (e.g. Shriner
et al., 2004; Batorsky et al., 2011; Neher and Leitner, 2010). Each simulation was set to
produce nc sequences of length κ = 500 nt, at four collection times separated by 252 days,
totaling n = 4nc sequences.

Under the above conditions, four datasets were generated under slightly different scenarios.
The first pair of datasets, called Const-120 and Const-600, were generated under a constant
population size. Const-120 had nc = 30 reads sampled at each collection time, totaling
n = 120 reads. Const-600 had a 5-fold increased sample size to nc = 120 reads at each
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collection time, totaling n = 600 reads. The second pair of datasets, Dynamic-120, and
Dynamic-600, had the same population parameters and samples sizes as Const-120 and
600-const respectively. However, they were generated under a fluctuating viral population
such that Ne corresponded to 1,000, 2,000, 4,000, and 500 at the four collection times (from
the most recent to the earliest). This models a population undergoing both an expansion
and a bottleneck through time.

Real data. The subject studied here was enrolled in the control (no therapy) arm
of the Short Pulse Antiretroviral Therapy at Seroconversion (SPARTAC) study. EDTA
plasma samples were obtained at the start of the study (at an estimated 12 days from HIV-1
seroconversion) and at 28, 120, 176, 373, 429 and 695 days after the start of the study.
Viral RNA was extracted, whole HIV-1 genomes were sequenced in a pool of 21 samples on
1
2

PicoTiterPlate using a Genome Sequencer FLX Titanium XL instrument (Roche/454 Life
Sciences), and a consensus sequence for each time point was derived as previously described
(Gall et al., 2012). The seven consensus sequences were aligned using MAFFT v6.857 (Katoh
et al., 2002), and a consensus sequence of this alignment was used as a reference sequence
for mapping of all reads, with suffixes representing the time points, using Burrows-Wheeler
Aligner v0.5.9 (Li and Durbin, 2010). The resulting SAM file was converted into a FASTA
file using a custom Java script. The distribution of read lengths and positions across the
genome are given in Table S1 and Table S2 respectively.

Accession numbers for sequencing data. The Roche/454 Life Sciences sequencing data
obtained in this study is available from the EMBL/NCBI/DDBJ Sequence Read Archive
sample accession numbers ERS661087–ERS661093.

HIV genome analysis. Nine regions were selected from the whole HIV genome alignment
of mapped reads, each region approximately 600 nt in length and comprising samples from all
time points. Furthermore, we ensured that these regions were in-frame and non-overlapping,
spanning the four main open-reading frames (i.e. gag, pol, env, and nef). Reads covering at
least 95% of a region were retained in our analysis. The average number of sequences per
time point was 34 (range 20–65). Further details about the sequence dataset for each region
can be found in Table S3.

BEAST analysis. To evaluate the performance of Coalescenator in estimating popula-
tion parameters of interest, primarily the effective population size, Ne, and mutation rate,
µ, we re-analysed the sequence alignments for the nine regions described above using the
Bayesian MCMC coalescent approach implemented in BEAST (v1.8.0 Drummond and Ram-
baut, 2007; Drummond et al., 2012). Specifically, a codon-structured nucleotide substitution
model (Shapiro et al., 2006), a constant size population demographic model, and a strict
molecular clock prior were employed. Two independent MCMC chains of 50 million steps
were run to assess convergence and adequate mixing.

RESULTS

Simulated data. To evaluate the validity of our model implementation, Coalescenator,
we simulated heterochronous datasets under known population parameters. Employing this
set, we assessed Coalescenator’s performance with respect to the number of Monte Carlo
iterations, the sample sizes of the data, and the data’s underlying population size dynamics.
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For each study, we searched through a three-dimensional parameter space of 11 µ’s, 11 r’s,
and 6 Ne’s that best explain the observed diallelic sites in the data (see Table S4 for the
summary of the sites classification and the numbers of sites used). We assessed whether
parameter combinations with the highest likelihoods corresponded to the true parameters
that generated the data. 11 × 11 × 6 = 726 parameter combinations of the following were
used:

• µ: 1× 10−7, 1× 10−6, (1, 2.5, 5, 7.5)× 10−5, (1, 2.5, 5, 7.5)× 10−4, 1× 10−3.

• r: 1× 10−8, (1, 2.5, 5, 7.5)× 10−7, (1, 2.5, 5, 7.5)× 10−6, 1× 10−5, 1× 10−4.

• Ne: 250, 750, 1000, 1250, 1750, 3000.

Performance for data from constant population size. The behavior of Coalescenator

when analysing data generated under constant population size was assessed using datasets
Const-120 and Const-600 (see Materials and Methods). Coalescenator was run with
a constant population size model.

First, the performance of local inference using pairwise MLEs was assessed by analysing
a single pair of loci of lengths lA = lB = 50 nt at positions (1, 50) and (101, 150). Fig-
ure 5 shows the likelihood surfaces for Const-120, with 100 and 500 Monte Carlo iterations
respectively; a further increase to 1000 and 5000 iterations is shown in Figure S1. Here,
across various choices of Ne, there is a clear clustering of higher likelihoods near the true
parameter values. With only 100 iterations, the pairwise MLE recovers the correct mutation
rate (among the 11 parameter values considered), and estimates the recombination rate at

r̂ = 10−7. The MLE for the effective population size is further off-target, at N̂e = 3000. By
increasing the number of iterations to 500 [Figure 5(B)], there was a marked improvement
in the likelihood surface; it is now much more peaked, and the recombination rate estimate
improves to within a factor of two of its true value (although for this experiment the ef-
fective population size is still overestimated). Overall, parameter estimates are accurate for
500 iterations, and certainly to within an order of magnitude. For this dataset, we also
investigated a more ambitious increase to 1000 and 5000 Monte Carlo iterations (Figure S1);
the recombination rate estimate sees modest further improvement, but at a cost of infeasible
computing requirements should we hope to scale this to real datasets. Indeed, it is worth
emphasising that these experiments use relatively few Monte Carlo iterations; typical IS ap-
proaches to coalescent inference might use several orders of magnitude more. Our aim here
is to stretch our algorithm when only a few iterations are available, so that it can feasibly
be scaled up to complex multi-locus datasets. The results presented here suggest that the
sophistication of our algorithm adequately compensates for the dearth of CPU time, and
comparisons with longer runs show that even as few as 100 iterations give decent estimates.
The nature of the data, with its high mutation rates and heterochronicity, may also assist
in this exploration of tree space.

Figure 6 shows the corresponding likelihood surfaces for Const-600. The likelihood hy-
persurface concentrates in a similar manner with respect to the true parameter values, but
this time there is a shift towards the correct effective population size. This suggests that
Coalescenator performs favorably with increasing sample size.

It is also worth commenting on the general shape of the likelihood hypersurfaces in Fig-
ures 5 and 6. One might expect to see a ridge corresponding to a negative correlation in
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the estimation of mutation and recombination rates, as alternative ways of resolving any
incompatibilities in the data. In fact the main ridge, evident from several panels in the fig-
ures, is parallel to the recombination axis. This reflects the simple fact that recombination
is inherently more difficult than mutation to estimate to a given accuracy. A second, weaker
ridge is evident in the contours along lines of constant Neµ, as might be expected. That no
other ‘ridges’ seem to be discernible from these likelihood hypersurfaces is encouraging, as
it is consistent with the fact that the data contains sufficient information for mutation and
recombination parameters to be estimated separately (and that our method can reconstruct
the likelihood surface to sufficient accuracy).

The above analysis shows that by using the information from a single pair of loci of 50 nt
each, Coalescenator is able to arrive at a sensible indication of the population parameters
for the whole 500 nt region. This raises two questions:

1. For effective inference, how far apart should the two loci be?

2. A pairwise MLE provides only partial information since it utilises a subset of the whole
region. How then, should one come up with the global estimate for the whole region?

To answer the first question, inference quality was assessed with respect to the separation
d of a pair of loci. The 500 nt sequence region was divided into 10 neighboring loci of
50 nt, and for each of the 36 pairs of non-adjacent loci, pairwise MLEs for the population
parameters were calculated. Figure S2 shows how the MLEs vary with d. We observed that
the mutation rate estimate is stable across separation distance. However, this is not the case
with the recombination estimates. Specifically, (i) Variance in MLEs for fixed d is greater
than for mutation; and (ii) With increasing d, recombination rate estimates (per site) seem
to be lower.

These two observations could have been anticipated to some extent; the signal for re-
combination in genetic data is generally weaker than that of mutation. Furthermore, with
increasing separation between two loci the signal for recombination can become ‘saturated’,
so that recombination events are undetected and recombination rates are underestimated.
More precisely, the curvature of the likelihood curve for ρ is flatter when ρ is greater (Chan
et al., 2012). Ultimately, this provides the basis in deciding the appropriate constraint on
locus pair separation for reliable inference. This is about 50–100 nt, and hereonwards we
proceeded by computing pairwise MLEs for pairs of loci separated by 50 nt.

To address the second challenge of obtaining global parameter estimates, we assessed both
of the two approaches discussed in the section Estimation of local and global parameters. The
first approach is to take the median of the pairwise MLEs. Figure 7 shows pairwise MLEs
and the corresponding median across the datasets. We see that the median can effectively
capture the true estimates, albeit with a slight overestimation of Ne. There is also greater
variance in estimates for the recombination rates, which in turn reflect the confidence we
should have in these estimates.

The second approach is via a pairwise composite likelihood (13), in which likelihood
surfaces for pairs of loci separated by 50 nt are multiplicatively combined. Figure S3 shows
the composite likelihood surfaces for dataset Const-120. The MLEs using 100 and 500 Monte
Carlo iterations are both of high accuracy, and differ only slightly in the recombination
rate estimates; this further illustrates the fast convergence of Coalescenator. With 500
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Figure 5: Likelihood surfaces on a pair of loci at positions (1,50), (101,150), for dataset
Const-120, using 100 and 500 Monte Carlo iterations. Cells correspond to the searched pa-
rameters, colored by log-likelihoods, with the top 10 estimates numbered. The true mutation,
recombination, and population parameters, are: µ = 2.5× 10−5, r = 10−6, Ne = 103.
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Figure 6: As in Figure 5 but for dataset Const-600.
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Figure 7: Population parameter estimates for simulated datasets generated under a con-
stant population size model. The effect of using different combinations of sample size and
number of Monte Carlo iterations is compared. Circles correspond to the pairwise MLEs be-
tween neighbouring pairs of loci (those separated by 50 nt). The horizontal lines correspond
to the median of the pairwise MLEs. Crosses indicate the pairwise composite likelihood
estimates.

iterations, the true mutation and recombination rates are captured, although the effective
population size is off-target at N̂e = 3000. Figure S4 shows the result for Const-600, where
the larger sample size also provides accurate estimates of the effective population size. For
example, with 500 iterations the joint MLE is (̂̄µ, ̂̄r, N̂e) = (5 × 10−5, 10−6, 1250), only two
cells away from the true values (on this grid). These estimates are also included in Figure 7
for direct visual comparison with the first approach.

Performance for data from dynamic population sizes. The behavior of Coalescenator

for analysing data generated under dynamic population sizes was assessed using datasets
Dynamic-120 and Dynamic-600. Figure 8 shows the pairwise MLEs and the global estimates
based on the median and pairwise composite likelihoods, for both datasets. Each estimate
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was based on 100 Monte Carlo iterations.
With the incorrect assumption of a constant population size, Coalescenator slightly

overestimates the mutation rates. The pairwise MLEs for recombination rates increase in
accuracy for the larger sample size, but there is greater variability compared to the analysis
in the previous section on Const-120 and Const-600. Effective population size estimates
are still of very reasonable accuracy and stability. This suggests that Coalescenator is
reasonably robust to unmodelled changes in population size, and can be reliably used in
this way. Of course, it is straightforward to extend our algorithm to impose population size
changes between sample collection times, perhaps guided by viral load information, and even
to infer changes in effective population size. However, in the latter case we found that our
chosen ranges of sample size and Monte Carlo iterations were insufficient to compensate for
the significant increase in model complexity.

As all the cases here and the previous section illustrate (Figures 7 and 8), the two meth-
ods for providing global parameter estimates—taking the median of pairwise MLEs and
constructing a composite likelihood estimate—have generally shown good agreement, which
corroborate each other’s accuracy. The former seems to give similar or better global measures
than the latter, which seems slightly more susceptible to outlier estimates, so we focus on the
median of pairwise MLEs to provide our global summaries hereonwards. Clearly, strategies
more sophisticated than a simple median might be able to aggregate pairwise estimates more
efficiently, and we leave this for future work.

Variance of the importance Weights. For each of the four simulated datasets, we assessed
the stability of Coalescenator’s likelihood estimates by computing a coefficient of variation

CV
(

=
√
V ariance
Mean

)
of the importance weights [i.e. the summands in (5)]. We used 100 Monte

Carlo iterations for each particular parameter combination, analysing each pair of loci sep-
arated by 50 nt. There are 11 × 11 × 6 = 726 parameter combinations and 8 pairs of loci,
resulting in 5, 808 CV s being computed for each dataset.

Table 1 summarises the distribution of the coefficient of variation for the four simulated
datasets. The variance appears to be well constrained, with the majority of CV s under
0.001. The larger CV s originate from parameter combinations that deviate furthest from
the ground truth parameters. While a small CV (equivalently, a large effective sample size)
is not a guarantee of good performance, it is consistent with the idea that the proposal
distribution is not too skewed in its exploration of the space of ARGs.

Running Time. Coalescenator scales approximately linearly with respect to the sample
size and the number of Monte Carlo iterations. For dataset Const-120, a likelihood calcu-
lation for a single parameter combination using 100 iterations takes on average 10 seconds
when run in parallel on a 16-core computer with a 2.0 GHz processor. For dataset Const-600,
the corresponding calculation increases 5-fold to about 50 seconds.

Real data analysis. Coalescenator was run on nine HIV regions from HIV genome
alignments collected at seven time points from an HIV infected patient over a period of two
years (see Materials and Methods). The sequence data is summarised in Table S3.

Each gene region is 600 nt long, but some reads had missing data, chiefly up to the first
30 nt and the last 30 nt of the region. Although Coalescenator can handle missing data,
for the purpose of this analysis we concentrate on the central positions (51, 550) of each gene
region. Sites containing ambiguous nucleotides, indels, and non-diallelic sites were filtered
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Figure 8: Population parameter estimates for simulated datasets generated under a dy-
namic population size model. Coalescenator was run under a constant population model,
and this analysis shows its robustness to unmodelled changes in population size. Circles cor-
respond to the pairwise MLEs between neighboring pairs of loci (those separated by 50 nt).
The horizontal lines correspond to the median of the pairwise MLEs. Crosses indicate the
pairwise composite likelihood estimates.
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CV Threshold: < 0.15 < 0.1 < 0.05 < 0.01 < 0.001

Const-120 1 1 0.92 0.83 0.83

Const-600 1 0.86 0.86 0.86 0.86

Dynamic-120 1 1 0.99 0.95 0.95

Dynamic-600 1 0.91 0.9 0.88 0.88

TABLE 1: Assessment of the variation of the importance weights, under different simulated
datasets. For each dataset, a CV of the importance weights was calculated for each run of 100
Monte Carlo iterations on a particular parameter combination and a pair of loci separated
by 50 nt. This results in 5, 808 CV s being computed in total for each dataset. Each cell in
the table shows the proportion of these CV s that are below the indicated thresholds.

out. Table S5 summarises the sites classification, as well as the total and breakdown of the
number of sites used for each gene region.

The parameter combinations extended those used in the simulation study. Additional
gridpoints (2.5, 5, 7.5) × 10−5 for the recombination rate were considered, to account for
observation in a preliminary run, that several MLEs for recombination rates across the
regions seem to be between 1×10−5 and 1×10−4. Following the simulation study, each gene
region is partitioned into ten 50 nt loci, and likelihood surfaces were generated for pairs of
loci separated by 50 nt nt using 100 iterations.

Figure 9 shows the evolutionary parameter estimates across each region. The median of
the pairwise MLEs and the pairwise composite-likelihood estimates agree quite closely for the
mutation and effective population size estimates, and all lie in the range [2.5×10−5, 1×10−4]
for mutation rate estimates in each region. There was greater variability across the genome
for effective population size estimates: for example, all median-based estimates were in the
range 875–1000 in regions encompassing env, while the median-based estimate for the region
pol 2836–3436 had N̂e = 1500. There was some disagreement between the two estimates of
recombination rate. The pairwise composite likelihood estimates seem to be less stable; its
estimate in the region env 6415–7015 is 2–10 times lower than any other region, and one
tenth of the estimate obtained using the median of pairwise MLEs. (As discussed above, this
behavior was also evident in the simulation study.) We prefer therefore to use the median
of the pairwise MLEs as our regional summaries, with the uncertainty expressed by the
variability in individual MLEs.

It is worth noting that some pairwise MLEs are suggestive of a higher mutation rate in
parts of the env region (as described previously by Alizon and Fraser, 2013). There is also
some variability in the median-based recombination rate estimates across regions, but this
is consistent with Monte Carlo sampling error. A single pairwise likelihood surface between
loci (1, 50) and (101, 151) and a pairwise composite likelihood surface is shown in Figure 10
for the env 6415–7015 region. This serves as a sanity check that we indeed have convergence
to a plausible likelihood surface, since each gridpoint is simulated independently.

Finally, we compared our estimates against the output of the corresponding analysis us-
ing BEAST (Drummond and Rambaut, 2007; Drummond et al., 2012) (we do not compare
recombination rates—recall that BEAST is unable to infer these. Our recombination rate
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Figure 9: Population parameter estimates for nine HIV gene regions. Data is from HIV
genome alignments collected at seven time points over the period of two years. Circles
correspond to the pairwise MLEs between neighbouring pairs of loci separated by 50 nt.
The horizontal lines correspond to the median of the pairwise MLEs. Crosses indicate the
pairwise composite likelihood estimates.
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(B) Pairwise composite likelihood surface for env 6415-7015 region

Figure 10: Likelihood surfaces for the env 6415–7015 region, using 100 Monte Carlo itera-
tions. Cells correspond to the searched parameters, colored by log-likelihoods, with the top
10 estimates numbered. (A) Likelihood surface for a single pair of loci within the region.
(B) Pairwise composite likelihood aggregating all valid pairs of loci within the region.
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Region ρ

gag 311–940 3.04× 10−3

gag 960–1560 5.07× 10−3

pol 2005–2605 1.27× 10−2

pol 2836–3436 5.07× 10−3

pol 3796–4396 5.07× 10−3

env 5812–6412 2.03× 10−3

env 6415–7015 5.07× 10−3

env 7357–7957 5.07× 10−3

nef 8376–9011 3.55× 10−3

TABLE 2: Coalescenator’s recombination rate ρ estimates, given in the number of recom-
binations per site per year.

estimates are summarised separately in Table 2.) The comparison is illustrated in Figure 11.
The raw values for all the estimates are reported in detail in Table S6. The mutation µ
and recombination ρ rates estimates from Coalescenator were converted into the number
of substitutions and recombinations per site per year, respectively. Ne denotes effective pop-
ulation size, and the time to the most recent common ancestor TMRCA, or the time until we
reach 5 ancestors TMRCA−5, is given in years. Estimates of mutation rates and TMRCAs show
very good agreement, though our method seems to be more cautious in estimating variation
in Ne across regions. Across the mutation rate estimates, the only notable differences are
our higher estimates for the second gag region and the first pol region (each greater by a
factor of ≈ 4). This discrepancy could reflect that Coalescenator can be prone to slight
overestimation of mutation rates, as suggested by the simulation results on Dynamic-120
and Dynamic-600.

DISCUSSION

We have presented a method capable of handling many of the challenges associated with
modelling evolution of rapidly evolving viral populations measured using high-throughput
sequencing. It is based on recent developments in the approximation of conditional sampling
distributions (CSDs) (Stephens and Donnelly, 2000; De Iorio and Griffiths, 2004a; Griffiths
et al., 2008; Paul and Song, 2010; Paul et al., 2011), and the adoption of this work into a
practical IS algorithm should be a useful contribution in itself. The model we derive handles
recombination by allowing for partially specified haplotypes and thus avoids the inflation
of the model state-space caused by alternative imputation procedures. It also provides a
natural way of dealing with missing data. One limitation is that data is lost when we simply
consider an entire locus as unobserved if any nucleotides are missing; another possibility for
future research would be to impute short stretches of missing nucleotides within a locus.

High-throughput sequence data from viral genomes presents many challenges. We have
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Figure 11: Comparison of BEAST’s parameter estimates against Coalescenator’s. An
identity line y = x is plotted in each case, to visually assess the agreement of the estimates
by the two programs. The following abbreviations are used for the nine HIV gene regions:
gag-1 = gag 311–940, gag-2 = gag 960–1560, pol-1 = pol 2005–2605, pol-2 = pol 2836–3436,
pol-3 = pol 3796–4396, env-1 = env 5812–6412, env-2 = env 6415–7015, env-3 = env 7357–
7957, nef = nef 8376–9011. (A) Comparison of mutation rate µ estimates, converted to the
number of substitutions per site per year. (B) Comparison of effective population size Ne

estimates. (C) Comparison of BEAST’s time to the most recent common ancestor TMRCA

estimates, against Coalescenator’s time until 5 ancestors is reached TMRCA−5 estimates,
given in years.
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focused in particular on handling high mutation rates, recombination, heterochronous sam-
pling, and missing data. Each of these presents its own hurdles; dealing with them si-
multaneously raises numerous further complications. In this paper we have therefore also
explored several statistical and algorithmic techniques for reducing the large computational
overhead. In particular, employing the Time Machine strategy developed by Jasra et al.
(2011) proves to be effective in saving computational time, whilst controlling the bias and
variance. Nevertheless, the overhead remains large, and it is likely that further implemen-
tation strategies will have to be explored in future as sample sizes continue to grow. For
example, one advantage of an IS approach is that it is especially suited for parallisation using
the rapidly growing GPU processing (Lee et al., 2010). Lee et al. focused on MCMC and
IS as case studies, and concluded that significant performance boost can be achieved for IS
using GPU, whereas BEAST’s MCMC is inherently less suitable for exploitation using GPU’s
massive parallelisation.

In spite of these challenges, it is encouraging that our new method performs compara-
bly to BEAST in the analysis of a deep sequencing dataset generated from a serially sam-
pled acute HIV infection. Like previous studies based on coalescent inference, BEAST and
Coalescenator also indicate that the effective population size is of the order ∼ 103 (Brown,
1997). While there has been great interest in measuring the effective population size of
within-host HIV infections, especially in regards to addressing whether evolution is largely
stochastic or deterministic (Rouzine et al., 2014), it is important to note that estimates of
effective population size from methods based on the coalescent framework do not typically
consider natural selection or other factors that may lead to variation in offspring distribu-
tion. Consequently, in populations where variation in reproductive success is likely to be
present, such as in within-host HIV infections, interpretation of the effective population size
is confounded. Instead, a more accurate interpretation of effective population size is that it
represents a measure of population turnover or relative genetic diversity. We further note
that in this paper we have focused our analyses on inference of a single effective population
size parameter, while a priority for future work will be also to make inference of temporal
changes in this parameter computationally tractable.

The estimates of recombination rate from Coalescenator strongly agree with non-coalescent
based estimates obtained by Neher and Leitner (2010) and Batorsky et al. (2011). This is
encouraging as the sequence data analysed in this study has been sampled from an early
phase of infection, in contrast to previous studies that utilised data from patients with a
much longer follow-up (Neher and Leitner, 2010; Batorsky et al., 2011). Consequently, this
demonstrates the applicability of our method even in spite of limited accumulation of diver-
sity in the viral population.

Despite the complicated evolutionary model considered in this paper, we have omitted
other mechanisms that are likely to be important to within-host HIV evolution. Our sim-
plified model of population size changes provides a restrictive model for the phases of expo-
nential expansion and contraction HIV and other viral populations are known to go through
(Nowak and May, 2000). A natural solution to this problem would be to fit exponential
functions between consecutive time-points. More importantly however, selective responses
to the host immune system are known to be an important evolutionary factor (Edwards
et al., 2006; Lemey et al., 2006), having an effect on intrahost genealogies that is not fully
captured merely by adjusting the effective population size. Other commonly used methods
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such as BEAST (Drummond et al., 2002, 2005; Minin et al., 2008; Drummond and Rambaut,
2007; Drummond et al., 2012) also ignore the effects of selection on genealogies (as well
as ignoring recombination); thus, developing methods that can robustly account for both
selection and recombination (and indeed other factors) remains a challenging task. Another
important consideration is population substructure: HIV is known to undergo compartmen-
talization, forming distinct subpopulations at different anatomical sites and in different cell
types (Ewing et al., 2004). Incorporating substructure and migration into IS algorithms is in
principle straightforward and has been achieved in other applications (Bahlo and Griffiths,
2000; De Iorio and Griffiths, 2004b; Griffiths et al., 2008), though it obviously introduces yet
more computational burden.

Exploring more complicated mutation models would also be interesting, though the dial-
lelic model we consider here allows for a simple analytical solution, which in turn allows for
more efficient computation. However, it should be straightforward to allow for time-varying
mutation rates as a proxy for the effects of selection. Inclusion of indels into the mutation
model would also be desirable; inspection of the HIV data (cf. Table S5) shows that these are
highly prevalent. The model also considers only cross-over recombination; however, McVean
et al. (2002) suggested that a gene-conversion model may be appropriate for bacteria and
viruses. Incorporating this type of recombination would also be a worthwhile extension.

Finally, we remark that in our analysis we tuned our algorithm to analyse data generated
under the 454 platform. However, it should be straightforward to adapt our work for other
platforms such as Illumina paired-end sequencing, in which a haplotype would now comprise
a pair of reads. Since the number of reads generated by this method is typically several-fold
larger, this raises further computational and statistical challenges which form the basis of
ongoing work.
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APPENDIX

A BACKWARDS TRANSITION RATES IN THE ARG

The distribution on the most recent event back in time in a two-locus ARG, conditioned
on observing the sample configuration H−k = n, is given in Table A1. This distribution is
expressed in terms of the (unknown) CSD π[(i, j) | n; Φ] and transitions are marginalized
over nonancestral genetic material; thus for example a recombination event changes a (i, j)
haplotype to a (i, ∗) and a (∗, j), with ‘∗’ denoting unspecified alleles. [Such a marginaliza-
tion approach was proposed by Jenkins and Griffiths (2011), but was based instead on an
infinite sites model]. The corresponding forwards transition probabilities are also given in
the rightmost column of Table A1. Here, ei denotes a unit vector with ith entry 1 and the
rest 0, with eij denoting a unit matrix whose only nonzero entry is a 1 at position (i, j).
The notation n−eCij is shorthand for (a, b, c−eij), and so on, and we write ci· =

∑
j cij and

c·j =
∑

i cij for the marginal counts of fully specified haplotypes.
To derive the entries in this table we use sampling exchangeability and Bayes’ theorem

(see Stephens and Donnelly, 2000; De Iorio and Griffiths, 2004a). For example, to obtain
the first row of Table A1, with H−k−1 = n− eCij, note that sampling exchangeability implies

P(n− eCij)π[(i, j) | n− eCij] = P(n)
cij
c
, (A1)

since both sides are equal to the probability that we sample the configuration n and then
subsample a type (i, j); on the left by selecting the fully specified haplotype we sampled most
recently, and on the right by subsampling from c. [Our convention for ‘unordered’ is that
P(n) = σ(a, b, c) · P(An), where σ(a, b, c) = a!b!c!/(

∏
i ai!

∏
j bj!

∏
i,j cij!) and An denotes

any particular ordering of the sample configuration n. In this convention, whether or not
a haplotype is fully specified is not considered to be ‘random’; that is, the missingness or
otherwise of either allele need not be assigned a probability. Instead, we can think of this as
having conditioned on the missingness status of each locus.]

Now, by Bayes’ theorem,

P(H−k−1 | H−k) = P(H−k | H−k−1)
P(H−k−1)

P(H−k)
, (A2)

with

P(H−k | H−k−1) =
c(cij − 1)

n(n− 1) + (a+ c)θA + (b+ c)θB + ρc
(A3)

known from the coalescent prior. Probabilities such as (A3) can be obtained, for example,
from the recursive system of equations studied by Ethier and Griffiths (1990) and Jenkins
and Song (2009) (for example, multiply eq. (5) of Jenkins and Song (2009) by σ(a, b, c),
rearrange to express the system in terms of P(n), and then read off the coefficients of the
resulting system).

The entry for P(H−k−1 | H−k) in the first row of Table A1 follows by combining (A1),
(A2), and (A3). The remaining entries follow similarly. At the bottom row, π[{(i, ∗), (∗, j)} |
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n− eCij; Φ] denotes

π[{(i, ∗), (∗, j)} | n− eCij; Φ] = π[(i, ∗) | n− eCij; Φ]π[(∗, j) | n− eCij + eAi ; Φ]

= π[(∗, j) | n− eCij; Φ]π[(i, ∗) | n− eCij + eBj ; Φ].
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Haplotype Probabilities up to a normalizing constant

(i, j) cij(cij − 1 + θ + ρ+ ai + bj)

(i, ∗) ai(ai − 1 + b+ ci· + θA)

(∗, j) bj(bj − 1 + a+ c·j + θB)

TABLE A2: Proposal probability of choosing a particular (i, j), (i, ∗), or (∗, j), to be involved
in the next event back in time, for each i, j. These probabilities are given up to a normalizing
constant found by summing all these events over i and j.

B EMISSION PROBABILITIES FOR GAUSSIAN QUADRATURE

After applying Gaussian quadrature it is necessary to compute discretized emission proba-
bilities of the form

ξθ(j | ([x, y), i)) =
1

w(x,y)

∫ y

x

e−τξθ(j | s`) dτ, (A4)

where w(x,y) =
∫ y
x
e−τ dτ (Paul et al., 2011, eq. 17). In light of (8), we are also able to reduce

this to a closed-form formula as follows. Substituting (8) into (A4), we find

ξθ(j | ([x, y), i)) =
1

w(x,y)

∫ y

x

e−τ
[
e−θτ/2 sinh

(
θ

2
τ

)]Sij [
e−θτ/2 cosh

(
θ

2
τ

)]l`−Sij
dτ

=
1

w(x,y)

∫ y

x

e−τ

2l`

[
1− e−θτ

]Sij [
1 + e−θτ

]l`−Sij
dτ

=
1

w(x,y)

∫ y

x

e−τ

2l`

Sij∑
k=0

(
Sij
k

)
e−θτk(−1)k

l`−Sij∑
m=0

(
l` − Sij
m

)
e−θτm dτ

=
2−l`

w(x,y)

Sij∑
k=0

(
Sij
k

)
(−1)k

l`−Sij∑
m=0

(
l` − Sij
m

)∫ y

x

e−[(θ(k+m)+1]τ dτ

=
2−l`

w(x,y)

Sij∑
k=0

(
Sij
k

)
(−1)k

l`−Sij∑
m=0

(
l` − Sij
m

)
e−[θ(k+m)+1]x − e−[θ(k+m)+1]y

θ(k +m) + 1
.
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