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Abstract

Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes chronic
infections, so genetic diversity within a single infection can be very high. High-throughput
“deep” sequencing can now measure this diversity in unprecedented detail, particularly since
it can be performed at different timepoints during an infection, and this offers a potentially
powerful way to infer the evolutionary dynamics of the intra-host viral population. However,
population genomic inference from HIV sequence data is challenging because of high rates of
mutation and recombination, rapid demographic changes, and ongoing selective pressures. In
this paper we develop a new method for inference using HIV deep sequencing data using an
approach based on importance sampling of ancestral recombination graphs under a multi-locus
coalescent model. The approach further extends recent progress in the approximation of so-called
conditional sampling distributions, a quantity of key interest when approximating coalescent
likelihoods. The chief novelties of our method are that it is able to infer rates of recombination
and mutation, as well as the effective population size, while handling sampling over different
timepoints and missing data without extra computational difficulty. We apply our method
to a dataset of HIV-1, in which several hundred sequences were obtained from an infected
individual at seven timepoints over two years. We find mutation rate and effective population
size estimates to be comparable to those produced by the software BEAST. Additionally, our
method is able to produce local recombination rate estimates. The software underlying our
method, Coalescenator, is freely available.

INTRODUCTION

Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes a chronic infec-
tion for an individual’s lifetime. As a consequence, the genetic diversity within a single infection
can be very high. Important clinical variables, such as the rate of progression to AIDS and the
set point viral load, are related to the diversity and evolution of the within-patient viral popula-
tion (Shankarappa et al., 1999; Ross and Rodrigo, 2002; Williamson, 2003; Edwards et al., 2006;
Lemey et al., 2007; Pybus and Rambaut, 2009), and so genetic data from these populations are of
medical relevance in addition to providing insight into molecular evolutionary processes. However,
population genomic inference from HIV sequence data can be challenging as result of high rates of
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mutation and recombination within a small RNA genome of approximately 10 kb. Furthermore,
natural selection is expected to play an important role in shaping within-host HIV genetic diver-
sity (Rouzine and Coffin, 1999; Neher and Leitner, 2010; Batorsky et al., 2011; Pennings et al.,
2014). For example, phylogenies constructed from serially-sampled intrahost population sequences
are typically characterized by a ladder-like topology (Shankarappa et al., 1999), indicating a rapid
and continual turnover of genetic lineages as result of continual host immune selection. Although
the relationship between census viral population size (i.e. viral loads) over the course of infection
and virus kinetics is well understood for HIV (Nowak and May, 2000), relatively little is known
about the effective population size during a single infection.

High coverage “deep” sequencing is now being used to address these problems and to investigate
the genomic diversity of HIV, with several data sets already under study (Henn et al., 2012; Poon
et al., 2012; Gall et al., 2013). For the study of within-host evolution of HIV patients, deep
sequencing serves as a potentially powerful way to infer the evolutionary and ecological dynamics
of the viral population at an unprecedented detail, particularly since sequencing can be performed
at different timepoints during infection (Drummond et al., 2003). This is especially important for
studying fast-evolving RNA viruses, where the substitution rates and effective population size may
change through time. By utilizing the temporal structure of the sampled sequences, statistical
power can greatly improve the precision of population demographic and evolutionary estimates
(Pybus et al., 2000; Drummond et al., 2003). However, from the perspective of population genomic
inference, deep sequencing data is unusual: high-throughput sequencing generates large numbers
of short sequence reads, with each read representing 400–700 nt of a viral genome. Typically no
virus particle is sampled twice, so that only a small fraction of the viral genome is sequenced for
any given virion in the population. Genealogies can be estimated, for example, for each ∼500 nt
sub-genomic partition, but each genealogy represents a different random sample of individuals from
the same population. This presents peculiar challenges in genomic inference.

To infer parameters of an underlying evolutionary model from deep sequencing data, such as
effective population size, mutation rate, and recombination rate, new theoretical and statistical
approaches are therefore needed. In this article we work within a coalescent framework, and in
particular its extensions to allow for serially-sampled, or heterochronous, sequences (Rodrigo and
Felsenstein, 1999). (This is in contrast to the usual situation of isochronous sampling at a single
fixed time.) The coalescent is a powerful and flexible framework for modelling the genealogy of a
large, panmictic population, with many further extensions that incorporate changing population
size, recombination, and recurrent mutations (see Hein et al., 2005, for a textbook introduction). It
is a crucial component in the inference of the evolutionary dynamics of fast-evolving RNA viruses,
which can be combined with epidemiological data in an approach known as phylodynamics (Grenfell
et al., 2004). A potentially powerful method of inference under complicated coalescent evolutionary
models is to proceed by computationally-intensive Monte Carlo simulation. The quantity of interest,
such as the likelihood for the data, is estimated by averaging over a large number of the possible
unobserved gene genealogies that could have given rise to the observed sequences. Genealogies of
high posterior probability can be targeted by Markov Chain Monte Carlo (MCMC) or importance
sampling (IS). There is now a sizeable literature on these and related approaches, focusing on
various complications of the basic coalescent depending on the species under study. For example,
there are methods to account for recombination [MCMC: Kuhner et al. (2000), Wang and Rannala
(2008), Rasmussen et al. (2014); IS: Griffiths and Marjoram (1996), Fearnhead and Donnelly (2001),
McVean et al. (2002), Griffiths et al. (2008), Jenkins and Griffiths (2011)], changing population size
[MCMC: Beaumont (1999), Drummond et al. (2002, 2005), Wilson et al. (2003), Minin et al. (2008);
IS: Griffiths and Tavaré (1994a), Beaumont (2003), Leblois et al. (2014)], and heterochronous
sequence data [MCMC: Drummond et al. (2002, 2005), Minin et al. (2008); IS: Beaumont (2003),
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Anderson (2005), Fearnhead (2008)].
However, for accurate inference using deep sequencing data from within-host virus populations

we need to account for several of these complications simultaneously, and no existing methods are
available for this task. In particular, current inference methods in this context have tended to
omit the process of recombination (Pybus and Rambaut, 2009), limiting our understanding of the
extent of the association between recombination and viral adaptation. However, the effective re-
combination rate is of an order of magnitude comparable to the mutation rate [for example, Shriner
et al. (2004) found the recombination rate to be 5.5-fold greater than the mutation rate in HIV];
furthermore, recombination may play an important role in the evolution of drug resistance (Kellam
and Larder, 1995; Neher and Leitner, 2010). There is also growing evidence that recombination
rates are not constant along the genome (Fan et al., 2007; Archer et al., 2008). Thus, our goal in
this paper is to develop a coalescent method of inference that can handle all of the following:

(i) Recombination,

(ii) High mutation rates,

(iii) Heterochronous sequences,

(iv) Missing data,

(v) Changing effective population size.

Here we take a novel importance sampling approach to tackle this problem. It is based on recent
developments in the efficient computation of conditional sampling distributions [CSDs; Paul and
Song (2010); Paul et al. (2011); see also Sheehan et al. (2013)]: the probability distribution of
an additionally sampled haplotype, conditioned on the sampled haplotypes we have seen already.
These are crucial in the design of efficient IS algorithms: Stephens and Donnelly (2000) noted
an equivalence between designing an IS proposal distribution and approximating the (unknown)
CSD. This work was later formalized by De Iorio and Griffiths (2004a), which subsequently allowed
Griffiths et al. (2008) and Paul and Song (2010) to derive an accurate approximate CSD in the
presence of crossover recombination. Finally, work by Paul et al. (2011) resulted in an efficient
approximation of the CSD for multiple loci via a hidden Markov model (HMM).

Our work is most closely related to that of Griffiths et al. (2008), whose focus was a model able
to account for recombination, but which was not designed with heterochronous deep sequencing
data in mind, and thus exhibited only properties (i) and (ii) above. Extending this method to
include (iii, iv, v) raises numerous methodological challenges that we address in further detail
below. Briefly, we replace the CSD of Griffiths et al. (2008) with that of the sequentially Markov
model of Paul et al. (2011). The latter is more efficient to compute and easily extended to blocks
of completely linked sites. To allow for samples taken at different times we introduce an explicit
time variable, which in turn determines when samples are inserted into the reconstruction of a
genealogy backwards in time. Further, and in contrast to the imputation approaches of Fearnhead
and Donnelly (2001) and Griffiths et al. (2008), our model allows for haplotypes to be only partially
specified, assigning allelic states only at a subset of loci where possible. This dramatically reduces
the state space of the model, and it also provides a convenient way of handling missing data.

Despite all of these contributions, application to large high-throughput datasets remains chal-
lenging, particularly for full-likelihood methods. In order to retain tractability, recent research has
turned to approximations of the model, or of the likelihood, or both. The approach we take here
is a principled method to find an accurate full -likelihood solution first by restricting attention to a
two-locus model. Our two-locus model is then extended to multi-locus data by analysing selected
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pairs of loci separately and then aggregating these pairwise inferences, either by taking the median
of the inferred estimates or by combining their likelihood surfaces via a pseudolikelihood [in partic-
ular, via a pairwise composite likelihood (McVean et al., 2002; Larribe and Fearnhead, 2011)]. As
we describe below, we performed a simulation study in order to to demonstrate that our method
can recover model parameters accurately.

The inferential process involves simulating ancestral trees backwards in time, and, in agreement
with Griffiths and Tavaré (1994b), Nielsen (1997), and Jasra et al. (2011), as we get closer to the
MRCA, coalescence times increase greatly. This adds undesirably high variance to the inference, and
extensive CPU time. To circumvent this, we further employ the Time Machine strategy developed
by Jasra et al. (2011): stopping the simulation before the MRCA is reached whilst controlling for
the bias; acquiring sizable computational saving and reduced variance.

To investigate the performance of our method on empirical data, we analysed HIV-1 RNA
samples that had been extracted and sequenced at seven timepoints over a period of two years, from
a patient enrolled in the control arm of the Short Pulse Antiretroviral Therapy at Seroconversion
(SPARTAC) study. This patient received no anti-viral drugs. Nine regions from the whole HIV-
1 genome alignments of these heterochronous data were then analysed using our model, and for
comparison by the Bayesian MCMC coalescence approach implemented in BEAST (Drummond and
Rambaut, 2007; Drummond et al., 2012). Both analyses provide strong agreement in the mutation
rate, effective population size, and time to the most common recent ancestor. However, in addition,
our approach also estimates recombination rates.

A C++ implementation of the algorithm is available from https://github.com/OSSCB2013 under
the name Coalescenator. The program can process serially sampled, deep sequencing data from
viral populations, to infer mutation rates, recombination rates, the effective population size, and
times to recent ancestors.

MATERIALS AND METHODS

Model and notation. In this section we describe our notation and genealogical model. We begin
by formulating a two-locus model; that is, given a pair of loci, call them A and B, recombination
may occur at any position along the sequence separating them. The loci are each composed of a
stretch of nucleotides, which may contain several polymorphic sites. Recombination within a locus
is ignored.

Demographic model. Suppose we have data D = (D−K ,D−K+1, . . . ,D0) collected at timepoints
t−K > t−K+1 > . . . > t0 = 0, with t0 being the most recent collection time and t−1, t−2, . . .
extending into the past. We assume the effective population size (Ne) to be constant between
collection times, but it may change at these times. This piecewise-constant model is similar to
that of Pybus et al. (2000). Except through their effects on Ne, we otherwise ignore the effects of
natural selection and population substructure.

To reduce the parameter space, viral loads estimates at the sampling times can be used as a
guide for constraining the relative magnitudes of the effective population sizes. In the simplest
scenario (e.g. when viral load estimates are unavailable, unreliable, or we decide not to use them),
a single, constant effective population size can be fitted, and in this paper we focus on the inference
of a single effective population size parameter. In the results section, we investigate the robustness
of our inference to this assumption.

Mutation model. Let lA and lB denote the lengths (in nt) of locus A and B respectively, and set
l = lA + lB to be their total length. We assume that all nucleotides conform to a diallelic model,
with alleles labelled arbitrarily as {0, 1}. Each nucleotide mutates independently at the same rate
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and with symmetric transitions such that the mutation transition matrix for each nucleotide is
P = ( 0 1

1 0 ). Let µ be the mutation rate per generation time per site, which we assume to be
constant across sites, and let θ = 4Neµ be the population-scaled mutation rate per generation per
site when the effective population size is Ne. Then θ = lθ is the population-scaled mutation rate
per generation time across both loci, with individual locus mutation rates given by θA = lAθ and
θB = lBθ. The overall mutation transition matrix for locus ` is

P ` =

l∑̀
k=1

1

l`
I ⊗ I ⊗ . . .⊗ P ⊗ . . .⊗ I, (1)

where I is the identity matrix and for each kth summand, P appears in the kth position in the
direct product (Griffiths and Tavaré, 1994b). In other words, when a mutation occurs at locus `, the
resulting haplotype is chosen uniformly from amongst those differing from the parental haplotype
at precisely one of the l` sites. Because of the possibility of a high rate of mutation, this model
allows for a site to have undergone more than one mutation event in its genealogical history. In
practice we simulate mutation events only at polymorphic sites.

Recombination model. Suppose locus A and B are separated by a region of length d nucleotides,
and assume a uniform recombination rate across this region. Let r be the recombination rate per
generation time per site, which we assume to be constant across sites. Therefore, if ρ = 4Ner
denotes the population-scaled recombination rate per generation time per site, then ρ = dρ is the
population-scaled recombination rate per generation time between locus A and B. We assume only
crossover-type recombination, which implies an approximately linear relationship between short
physical distance and recombination rate.

Sample notation. We sample n haplotypes at a given collection time. Due to missing data,
we observe a haplotypes specified only at locus A, b haplotypes specified only at locus B, and c
haplotypes specified at both loci, so that a + b + c = n. Reads only partially overlapping with
a locus are treated as missing at this locus. A haplotype (i, j) ∈ {0, 1}lA × {0, 1}lB is seen with
multiplicity cij , so that

∑
i,j cij = c. Haplotypes with data missing at locus A or B are respectively

denoted (i, ∗) and (∗, j), with respective multiplicities ai and bj , and
∑

i ai = a,
∑

j bj = b. Let
c = (cij), a = (ai), and b = (bj); the complete dataset is thus written compactly as n = (a, b, c).
As we reconstruct a genealogy for the sample backwards in time, recombination events create lin-
eages ancestral only at one of the two loci. The notation we have introduced to allow for missing
data also allows us to leave unspecified the allelic types of these nonancestral recombinant loci:
backwards in time, a recombination event replaces a type (i, j) with (i, ∗) and (∗, j).

Importance sampling. Parameter estimation in population genetic models requires compu-
tation of the likelihood of the observed data D as a function of the model parameters Θ. We
start by describing a method for estimating the likelihood L(Θ) for heterochronous data at two
loci, with Θ = (Ne, µ, r). Our method also provides a weighted approximation to the posterior
distribution of genealogical histories given this data, so it is straightforward to address questions of
ancestral inference, such as the time to the most recent common ancestor (TMRCA) of the data.
Note that under the standard (isochronous) coalescent model, it is not possible to identify mutation
and recombination rates separately, as only their respective products with the effective population
size can be identified. Serial sampling from a rapidly evolving population (relative to the spacing
between samples) allows for the separate estimation of these three parameters.

As it is not possible to write down L(Θ) = P(D; Θ) analytically, a latent genealogy variable, G,
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is introduced. The likelihood is then calculated by marginalising over G:

L(Θ) =

∫
G
P(D | G)P(G; Θ) dG. (2)

A näıve Monte carlo estimator for the integral in (2) is given by

L̃(Θ) =
1

M

M∑
i=1

P(D | G(i)), (3)

where G(i) represent independent samples from P(G; Θ). This estimator has poor properties because
P(D | G(i)) is 0 with high probability, resulting in L̃(Θ) having very high variance (Stephens and
Donnelly, 2000). Estimation of the integral (2) is therefore generally conducted using either MCMC
or IS. The latter approach, which we follow here, was pioneered by Griffiths and Tavaré (1994b).
An IS estimator is obtained by introducing an artificial proposal distribution Q and reweighting the
samples; the estimator

L̂(Θ) =
1

M

M∑
i=1

P(D | G(i))
P(G(i); Θ)

Q(G(i); Θ)
, (4)

where G(i) represent independent samples from Q(G; Θ), has lower variance than (3) provided
Q(G; Θ) is chosen carefully. It can be shown that the optimal proposal distribution is the posterior
P(G | D; Θ), in which case L̂(Θ) has variance 0 (Stephens and Donnelly, 2000). This distribution
is unknown in general, but it can guide our intuition on how to choose Q(G; Θ).

Griffiths and Tavaré (1994b) noted that we can focus solely on genealogies compatible with
the observed data by simulating them sequentially and backwards in time. To illustrate the idea
we introduce some further notation similar to that of Stephens and Donnelly (2000): Regard the
coalescent model as a Markov process on unordered sets of haplotypes. The process starts at the
most recent common ancestor (MRCA) of the sample, H−m ∈ {0, 1}l, and ends at an unordered
set of n observed haplotypes, H0 ∈ ({0, 1}l)n, corresponding to the most recently observed data.
The process visits a sequence of states H = (H−m, H−m+1, . . . ,H0) as the genealogy is constructed
forwards in time by mutations, coalescences, and recombinations; the known rates of these tran-
sitions are prescribed by the coalescent model. We refer to H as the history of the sample. The
importance sampling estimator can then be decomposed as

L̂(Θ) =
1

M

M∑
i=1

P(D | H(i))

m∏
k=1

P(H
(i)
−k+1 | H

(i)
−k; Θ)

Q(H
(i)
−k | H

(i)
−k+1; Θ)

.

The numerators P(H−k+1 | H−k; Θ) are known from the coalescent model, and the denominators

Q(H
(i)
−k | H

(i)
−k+1; Θ) are specified by the proposal distribution. This reformulation of the importance

sampling procedure can be viewed as exploring the state space of latent histories backwards from
the sample H0 to the MRCA H−m. One advantage of this is immediate: when the only data

collection time is t0 = 0 then D = H0, and by choosing H
(i)
0 = H0 for each i = 1, . . . ,M we can

ensure that P(D | H(i)) = 1 for each i, so that no simulation is wasted. Moreover, the Markov
specification of the proposal distribution helps to simplify our task of actually designing it.

A key observation of Stephens and Donnelly (2000) was that the posterior, conditional distribu-
tion of genealogies can be expressed in terms of the conditional sampling distribution (CSD), which
is defined as the probability π[(i, j) | n; Θ] that a haplotype sampled from the population is of type
(i, j) ∈ {0, 1}l given that we have already sampled the haplotypes with configuration n. Although
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this distribution is as intractable as P(G | D; Θ), it provides a sensible starting point in the design
of an efficient proposal distribution, since we have reduced the problem to one of finding a good
approximation of π[(i, j) | n; Θ]. We emphasize that even if we use a proposal distribution based
on an approximation to π[(i, j) | n; Θ], the reweighting in (4) still provides us with an unbiased and
consistent estimator.

New proposal distribution. Our aim then is to design a sequential proposal distribution
Q(H−k | H−k+1, ; Θ), defining a Markov chain backwards in time which approximates P(H | D; Θ).
Following the discussion of the previous section, to achieve this we use two steps: first, express
the true backwards transition rates P(H−k | H−(k−1); Θ) in terms of the CSDs π[· | ·; Θ]; second,
substitute the CSD for a well motivated approximation π̂[· | ·; Θ]. We address each of these steps
in turn.

Backwards transition rates. For now, fix Ne and assume a single sample collection time t0 = 0.
Griffiths et al. (2008) obtained the backwards transition rates for a two-locus, finite-alleles model
with isochronous samples taken from a population at equilibrium. Their formulation is efficient
because it corresponds to ancestral recombination graphs (ARGs) in which only lineages carrying
genetic material ancestral to the sample are simulated; entirely nonancestral lineages are integrated
out. This dramatically reduces the state space and improves efficiency. However, the simulation
continues to assign allelic types to the remaining nonancestral loci. For example, if a lineage in
an ARG is ancestral to a member of the sample at locus A but not at locus B, then it is still
necessary to assign an allelic status at locus B. In our application these loci represent tens or
hundreds of nucleotides, and assigning a haplotypic status to such loci throughout the simulation is
cumbersome. We therefore marginalize over these nonancestral loci too. The resulting backwards
transition rates are given in Table A1, and the entries in this table are derived in Appendix A.

Thus far we have ignored changes in population size and heterochronous sampling. To account for
these factors we introduce an explicit time variable T = (T−m, T−m+1, . . . , T0 = 0), which contains
the times between events in the history H (we now also include the collection of additional samples
at times t−1, t−2, . . . as valid events). To calculate the likelihood, we now need to marginalise over
both histories H and inter-event times T :

L(Θ) =

∫
H,T

P(D | H, T )P(H, T ; Θ) dH dT ,

with IS estimator

L̂(Θ) =
1

M

M∑
i=1

P(D | H(i), T (i))
P(H(i), T (i); Θ)

Q(H(i), T (i) | D; Θ)
, (5)

where the parameters of interest are Θ = (Ne, µ, r), and (H(i), T (i)) are independent samples from
Q(H, T | D; Θ).

Our sequential proposal Q(H−k−1, T−k−1 | H−k, T−k; Θ) is described below. Suppose our ge-
nealogical reconstruction has proceeded backward a time T sum−k = T0 + T1 + . . . + T−k, past the
sample collection time t−j . We first sample an event time backwards according to an exponential
distribution with rate depending on the current sample size (a, b, c) and the current effective pop-
ulation size N−j . In apprehension of the appearance of new samples at given times in the past, we
measure time in chronological units rather than generation units (Rodrigo and Felsenstein, 1999).
Then the waiting time T (in days) for the next event, is exponentially distributed with density

fevent(t) =
D

2N−jτ
exp

[
− D

2N−jτ
t

]
, t > 0, (6)
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where D = n(n − 1) + (a + c)θA + (b + c)θB + ρc is (twice) the total prior rate of events and τ is
the generation time in days. The parameters θA, θB, and ρ are redefined each time the effective
population size changes (e.g. ρ = 4dN−jr). We sample a time T from (6): if the corresponding
event time is more recent than the next (pastward) sample collection time i.e. T sum−k + T < t−j−1,
then we accept this time and define our proposal by

Q(H−k−1, T−k−1 | H−k, Tk; Θ) = fevent(T−k−1)Q(H−k−1 | H−k; Θ),

with Q(H−k−1 | H−k; Θ) defined as in Table A1—only we replace each instance of π[· | ·; Θ] with
an approximation π̂[· | ·; Θ] developed below. Otherwise, with probability

P(no event in [T sum−k , t−j−1]) = exp

[
− D

2Nτ
(t−j−1 − T sum−k )

]
the next event is the insertion of additional samples at the next collection time, and we set the next
waiting time to be T−k−1 = t−j−1 − T sum−k . At collection time t−j−1, we insert the samples D−j−1

collected at time t−j−1 to our current configuration H−k. That is, if D−j−1 = m and H−k = n then
we set H−k−1 = m + n. We then update the effective population size parameter to N−j−1, and
continue this iterative procedure until we have both passed the oldest collection time and reached
a MRCA for each locus. The overall procedure is illustrated in Figure 1.

Conditional sampling distribution. Our proposal distribution is obtained by substituting an
approximate CSD π̂ for π in Table A1. We use the the HMM approach devised by Paul et al.
(2011), yielding an algorithm linear in both the number of loci and the number of haplotypes.
It is a relatively accurate approximation of the true CSD and practical to compute. Briefly, the
new haplotype (i, j) is sampled given an existing configuration n by assuming that the genealogy
for the latter is a simple, improper “trunk” ancestry extending infinitely far back into the past
with no mutations, recombinations, or coalescences (Figure 2). The alleles of the new haplotype
are determined by allowing its ancestral lineage to undergo mutation and recombination, and to
coalesce into this trunk ancestry at appropriate rates. This framework can be cast as an HMM
across loci, whose emissions are the observed alleles at the newly sampled haplotype, and whose
hidden state is the pair s` = (τ`, i), where τ` is the absorption time of this locus into the trunk,
i ∈ {0, 1}l` is the type of the lineage into which absorption occurs (Figure 2), and l` is the length
of this locus (in nt).

Although this framework is obviously a strong simplification of the true underlying genealogical
process, the resulting CSD π̂[(i, j) | n; Θ] has many sensible properties (Paul et al., 2011). However,
this approach does not lend itself immediately to handling unspecified alleles. We therefore make
several further modifications to the CSD of Paul et al. (2011) in order to construct a practicable
IS algorithm, as we now describe.

Emission probabilities. For our model, where all nucleotides are diallelic and mutate indepen-
dently, we can simplify the emission probabilities used in the HMM calculation—increasing the
computational efficiency greatly. Given a hidden state s` = (τ`, i) of the Markov chain at locus `,
the emission probability mass function for observed state j ∈ {0, 1}l` is given by:

ξθ(j | s`) = e−
θ
2
τ`

∞∑
m=0

1

m!

(
θ

2
τ`

)m
[(P`)m]ij , (7)

where P` is the mutation transition matrix (1). Because sites within a locus mutate independently
in our model, we can reformulate this as

ξθ(j | s`) =

l∏̀
k=1

e−
θ
2
τ`

∞∑
m=0

1

m!

(
θ

2
τ`

)m
[Pm]ikjk ,
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Figure 1: Illustration of our two-locus recombination model: a sampled history H and inter-event
times T . The two loci of each haplotype are each represented by a circle. White circles repre-
sent an unspecified locus and colored circles indicate the allelic type at that locus. For example
H0 consists of types (blue, red) and (green, ∗). There are two sampling times and the collected
samples are represented by the leaves of tree (marked by rectangles). Time is measured in chrono-
logical units and run backwards from the most recent collection time, t0 = 0, to the most recent
common ancestor tMRCA. Ancestral lineages are represented by black lines. At a coalescence
event, two lineages are joined together; the model allows coalescence between fully-specified haplo-
types (H−4), between a fully-specified and partially-specified haplotypes (H−6), and between two
partially-specified haplotypes (H−2). At a recombination event, two lineages are created and their
haplotypes are partially specified: one of the two loci becomes non-ancestral and its allele type is
left unspecified (H−1). At the next collection time t−1, a new sample D−1 is added to the existing
lineages H−2: H−3 = H−2 ∪ D−1; and the effective population size is allowed to change.
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Figure 2: Illustration of the sequential interpretation for a realization of π̂[e = (i, j) | n; Θ] for
two loci. The dotted and full lines, respectively represent the marginal genealogies (S1, S2) at locus
A and B. The hidden state at locus A is s1 = (τ1, h1). Haplotype h1 would carry a green allele at
its first locus, but a mutation results in the observed blue allele. The hidden state at locus B is
s2 = (τ2, h2). h2 carries a yellow allele at its second locus, and no mutation occurs on the marginal
genealogy at this locus. If there is no recombination, s2 = s1, but here a recombination occurs
before τ2 and the absorption time for the second locus is τ2 6= τ1. As in Figure 1, white circles
represent loci with unspecified alleles.

where we recall that P = ( 0 1
1 0 ). We can simplify this even further:

ξθ(j | s`) =

[
e−

θ
2
τ`

∞∑
s=0

(θτ`/2)(2s+1)

(2s+ 1)!

]Sij [
e−

θ
2
τ`

∞∑
s=0

(θτ`/2)(2s)

(2s)!

]l`−Sij
= e−

θ
2
τ`
[
sinh(θτ`/2)

]Sij [cosh(θτ`/2)
]l`−Sij , (8)

where Sij denotes the number of nucleotide differences between i and j. Thus, we have success-
fully eliminated the infinite sum in the emission distribution (7). Because the hidden state τ` is
continuous, we follow Paul et al. (2011) and employ Gaussian quadrature to construct a discrete
HMM. We chose Laguerre-Gauss quadrature (Abramowitz and Stegun, 1972, Table 25.9) with 16
points. Applying the forward algorithm to this HMM yields the required CSD. The expression for
the emission distribution in this discretized model can also be reduced to a closed-form formula
(Appendix B).

Emission probability when the absorbing hidden state is unspecified. The method of Paul et al.
(2011) does not deal with the case where the locus of interest at the absorbing hidden state is
unspecified, i.e. calculating emissions of the form ξθ(j | (τ`, ∗)). In a two-locus model this occurs
when the absorbing state at the second locus is (i, ∗) for some i, or the absorbing state at the first
locus is (∗, j) for some j. In this case, we condition on choosing an absorbing haplotype with the
allele at this locus specified (Figure 3B). When there are no haplotypes in the trunk ancestry for
which the locus of interest has a specified allele, we sample the allele from the stationary distribution
of P ` [eq. (1)]; that is, we pick uniformly from all possible 2l` haplotypes at this locus:

ξθ(j | (τ`, ∗)) =



∑
k,l: ckl>0

ckl
c
ξθ(j | (τ`, k)) if ` = A and c > 0,∑

k,l: ckl>0

ckl
c
ξθ(j | (τ`, l)) if ` = B and c > 0,

2−l` otherwise,

(9)
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(a) (b)

Figure 3: Sampling π̂[(∗, j) | n; Θ], with the observed allele j represented by a yellow circle. (a):
Absorption at the second lineage of the trunk ancestry for which the second locus is specified (red
allele). Mutation event is still allowed in this one-locus model, as illustrated here by a mutation
from a red to yellow allele. (b): Absorption at the first lineage of the trunk ancestry for which
the second lineage is unspecified. In such cases we choose uniformly from the other informative
lineages as the absorbing state.

where the trunk ancestry has configuration n = (a, b, c).
Emission probability for partially observed haplotypes. If the observed haplotype has an unspec-

ified locus (i.e. we seek to calculate π̂[(i, ∗) | n; Θ] or π̂[(∗, j) | n; Θ]), then we transform this to
a one-locus problem with a degenerate HMM summing over hidden states at a single locus (Fig-
ure 3A). If the absorbing hidden state is unspecified (Figure 3B) then we choose uniformly from
the informative trunk lineages as described above.

CSD for recombination event. To model recombination, we require π[{(i, ∗), (∗, j)} | n; Θ], the
CSD for two partially observed haplotypes (see Table A1). This quantity satisfies the following
decompositions and symmetries:

π[{(i, ∗), (∗, j)} | n; Θ] =
∑
i′,j′

π[(i, j′) | n; Θ]π[(i′, j) | n + eCij′ ; Θ] (10a)

=
∑
i′,j′

π[(i′, j) | n; Θ]π[(i, j′) | n + eCi′j ; Θ], (10b)

and

π[{(i, ∗), (∗, j)} | n; Θ] = π[(i, ∗) | n; Θ]π[(∗, j) | n + eAi ; Θ] (11a)

= π[(∗, j) | n; Θ]π[(i, ∗) | n + eBj ; Θ] (11b)

To estimate π̂[{(i, ∗), (∗, j)} | n], Griffiths et al. (2008) use relationship (10) by substituting approx-
imate CSDs π̂ for each fully-observed haplotype. In addition, they noted that π̂ may not satisfy
symmetries (10a,b)—and so they take the average of the two expressions. However, this strategy
in averaging over all the alleles at the unspecified loci is very computationally intensive. Here, we
instead use relationship (11), and substitute the approximate CSDs π̂[(i, ∗) | n] and π̂[(∗, j) | n]
from the previous section (Emission probability for partially observed haplotypes). We still take the
average of the two expressions (11a,b) to account for asymmetries.

Forward Transitions. To summarize, solving the forward equation associated with the HMM
described above allows us to compute an approximate CSD, π̂[(i, j) | n; Θ], for each (i, j) ∈ {0, 1}l

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2015. ; https://doi.org/10.1101/020552doi: bioRxiv preprint 

https://doi.org/10.1101/020552
http://creativecommons.org/licenses/by/4.0/


as well as for the special cases (i, ∗) and (∗, j). Plugging this into Table A1 defines an IS proposal
distribution for sampling genealogical histories associated with the two loci. Equation (5) then
provides an unbiased estimator of the likelihood. We have not yet specified how to compute
the numerator in (5); to do this we also need the prior probabilities P(H, T ; Θ). These can be
computed easily and sequentially using the rightmost column of Table A1 (with minor modifications
to account for the simulation of T ). Table A1 covers events involving coalescence, mutation, and
recombination. In addition, we also need to calculate the probability of subsampling the observed
haplotypes D−j from among the lineages in the reconstructed genealogy, for each collection time
t−j . Thus, there is a contribution to the numerator of (5) given by the hypergeometric distribution
(Beaumont, 2003): if H−k = n∗ is the configuration at the collection time (including the additional
samples) and H−k+1 = n is the configuration just before (more recently than) the addition of these
samples, then

P(H−k+1 | H−k) =

∏
i

(
a∗i
ai

)∏
j

(b∗j
bj

)∏
i,j

(
c∗ij
cij

)
(
a∗

a

)(
b∗

b

)(
c∗

c

) . (12)

After decomposing P(H, T ; Θ) in this manner it remains to compute the final term P(H−m) for
the probability of the type of the MRCA. Under our uniform mutation model, the stationary dis-
tribution of the mutation process and thus the type of the MRCA is uniformly distributed such
that P(H−m) = 2−l. Finally, the probability of the data given a history, P(D | H, T ), is simple
an indicator for whether the configurations at the leaves of the simulated history coincide with the
observed data. By construction this is identically equal to 1.

Further algorithmic improvements. In this section, we present two modifications to our
model for reducing the computational overhead, as well as two strategies for extending the two-locus
model to process multi-locus data.

Proposal distribution. The work of Stephens and Donnelly (2000), De Iorio and Griffiths (2004a),
Griffiths et al. (2008), Paul and Song (2010), and Paul et al. (2011) suggests that our approach to
IS will have attractive statistical efficiency. However, generating proposals according to Table A1
requires the evaluation of all possible events for all haplotypes in the current configuration H−k,
which may be too costly for complex samples. Instead we therefore make a simple modification,
similar to the one suggested by Fearnhead and Donnelly (2001): Consider the waiting time to the
next event as the minimum of independent competing exponential times for the events involving
each of the (i, j), (i, ∗), and (∗, j) haplotypes. Now sample a haplotype to be involved in the next
event according to the prior probability of its involvement. In this calculation we exclude the
possibility of a coalescence between dissimilar haplotypes, resulting in the probabilities given in
Table A2. Next, given the chosen haplotype we choose the event it is involved in with probabilities
proportional to the relevant rows in Table A1; now only those rows need to be computed.

Time machine. As reported by Griffiths and Tavaré (1994b), Nielsen (1997), and Jasra et al.
(2011), as we simulate the tree backwards and closer to the MRCA, the simulation times increase
greatly. This long simulation run results in undesirably high variance of the likelihood estimate,
and extensive CPU time—a particular drawback of an IS approach. To circumvent this, Jasra et al.
(2011) considered stopping the simulation before the MRCA is reached, in an approach termed the
Time Machine. The bias from this action is then characterized. First, it depends on the underlying
mixing of the evolutionary process: the closer to the root node of the tree, the process is able to
‘forget’ its initial condition. Secondly, it depends on the specific distribution of the process at the
stopping (exit) time. Using the IS algorithm of Stephens and Donnelly (2000), they investigated the
bias-variance effect of stopping simulations at the first time back that the number of lineages had
decreased to 1%, 2%, 5%, 10%, 25%, and 50% of the original sample size n. They concluded that
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stopping at 5% strikes the right balance between computational efficiency and numerical accuracy.
We conservatively adopt their approach: stopping at TMRCA−5, the first time the backwards

simulation reaches five ancestors. At this exit time, the alleles of the remaining lineages are drawn
from a uniform distribution. Indeed, we experience sizable computational saving and reduced
variance, without noticeable effect on the quality of the estimates.

Estimation of local and global parameters. The method described above estimates the likelihood
L(Θ) for heterochronous deep sequencing data at a pair of loci. Recall that each locus is a stretch
of nucleotides within which recombination is ignored, but between which recombination is explicitly
modelled. By searching for Θ that maximizes L(Θ), we obtain the pairwise maximum likelihood
estimate (pairwise MLE ) for the mean mutation rate µ and effective population size across the
pair, and the mean recombination rate r between the pair.

This two-locus IS algorithm can be used to analyse multi-locus data. Given a region of length
κ (typically ∼ 400–500 nt), we partition it into loci of length δ (typically ∼ 50 nt), defining a
collection of ω = κ/δ loci. We run the IS algorithm on pairs of non-adjacent loci {(i, j) : |j − i| >
1; i, j ∈ {1, 2, . . . , ω}}. Adjacent pairs are excluded because recombination between loci separated
by a single nucleotide is expected to be negligible. The resulting pairwise MLEs are then indicative
of how the local population parameters are distributed within the region.

In practice, the size for the partitioned loci, δ, would be chosen based on the read length
distribution of the data, so that a large proportion of the sample at any particular locus will be
fully specified and thus can be included in our analysis. (Recall that if a sequence contains even a
few missing nucleotides at a given locus the rest of the information at this locus is discarded and
we consider it as a block of missing data.) A balance should be struck: smaller locus length allows
inference of finer recombination and mutation rate variation across the region, at the expense of
higher computational complexity.

It is also of interest to have a single, global estimate for the population parameters that is
representative of the whole region. An ideal situation is a short region (typically ∼ 500 nt) where
the evolutionary behavior is relatively homogeneous. In such cases, one can take the median or
mean of pairwise MLEs as a simple global estimator; we found the median to be more robust. An
alternative, more sophisticated global estimator is via a pairwise composite likelihood (reviewed in
Larribe and Fearnhead, 2011), which we include for comparison with the median of pairwise MLEs.
In this strategy, the two-locus IS algorithm is run on each pair i, j ∈ {1, 2, . . . , ω} of loci such that
1 < |i− j| ≤ ∆, for some threshold distance ∆. The global parameters are inferred by maximizing
pairwise composite likelihood:

L(Θ) =
∏

1<|i−j|≤∆

P(Dij ; Θ), (13)

where Dij denotes the marginal data restricted to the pair of loci i and j. Equation (13) is similar
to the composite likelihood of McVean et al. (2002), using pairs of multi-nucleotide loci rather than
pairs of single-nucleotide polymorphisms (SNPs), as suggested by Jenkins and Griffiths (2011).

Introducing a threshold ∆ is attractive for both statistical and computational reasons (Larribe
and Fearnhead, 2011), and there are several additional reasons why ∆ ought to be small in our
application. First, the short-read nature of the data means that if |i− j| > ∆, then many samples
will be missing at one or both of the two loci. Second, since our loci represent blocks of nucleotides
rather than single SNPs, parameter variation along the sequence implies we should concentrate on
proximate pairs of loci. Third, our modelling of complete blocks of nucleotides instead of isolated
SNPs prohibits the pre-computation of an exhaustive list of pairwise likelihoods, as is possible in
McVean et al. (2004) for example. For these reasons we focus on the composite likelihood (13) in
which ∆ = 2.
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Figure 4: Estimation of the local and global parameter estimates using the two-locus IS algorithm.
A region of interest, typically ∼ 4–500 nt, is shown as a blue segment. This region is partitioned
into smaller loci, e.g. 50 nt. Sequence reads are shown as thinner horizontal bars. For non-adjacent
pairs of loci, the two-locus engine computes pairwise MLEs as local estimates of the population
parameters. Here, a pairwise comparison between locus 2 and 4 is illustrated (yellow shading).
Reads that fully cover at least one of the two loci are highlighted in red and are used for the
inference: three complete haplotypes (reads 1, 4, and 6) and two partial haplotypes (reads 2, 3,
and 5). These pairwise inferences can be combined to reach the global parameter for the whole
region. Two approaches are described in the text: by taking the median of the pairwise MLEs or
via a pairwise composite likelihood.

These procedures are illustrated in Figure 4.
Simulated data. Simulated heterochronous datasets were generated using the software pack-

age NetRecodon (Arenas and Posada, 2010), using a Jukes-Cantor substitution model (Jukes and
Cantor, 1969) and with each nucleotide frequency value equal to 0.25. Population parameters were
chosen to match those previously described for HIV: µ = 2.5× 10−5, r = 10−6, Ne = 103, τ = 1.8
days (Shankarappa et al., 1999; Shriner et al., 2004). Each simulation was set to produce nc se-
quences of length κ = 500 nt, at four collection times separated by 252 days, totaling n = 4nc
sequences.

Under the above conditions, four datasets were generated under slightly different scenarios. The
first pair of datasets, called Const-120 and Const-600, were generated under a constant population
size. Const-120 had nc = 30 reads sampled at each collection time, totaling n = 120 reads.
Const-600 had a 5-fold increased sample size to nc = 120 reads at each collection time, totaling
n = 600 reads. The second pair of datasets, Dynamic-120, and Dynamic-600, had the same
population parameters and samples sizes as Const-120 and 600-const respectively. However, they
were generated under a fluctuating viral population such that Ne corresponded to 1,000, 2,000,
4,000, and 500 at the four collection times (from the most recent to the earliest). This models a
population undergoing both an expansion and a bottleneck through time.

Real data. The subject studied here was enrolled in the control (no therapy) arm of the Short
Pulse Antiretroviral Therapy at Seroconversion (SPARTAC) study. EDTA plasma samples were
obtained at the start of the study (at an estimated 12 days from HIV-1 seroconversion) and at 28,
120, 176, 373, 429 and 695 days after the start of the study. Viral RNA was extracted, whole HIV-1
genomes were sequenced in a pool of 21 samples on 1

2 PicoTiterPlate using a Genome Sequencer
FLX Titanium XL instrument (Roche/454 Life Sciences), and a consensus sequence for each time
point was derived as previously described (Gall et al., 2012). The seven consensus sequences were
aligned using MAFFT v6.857 (Katoh et al., 2002), and a consensus sequence of this alignment was
used as a reference sequence for mapping of all reads, with suffixes representing the time points,
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using Burrows-Wheeler Aligner v0.5.9 (Li and Durbin, 2010). The resulting SAM file was converted
into a FASTA file using a custom Java script. The distribution of read lengths and positions across
the genome are given in Table S1 and Table S2 respectively.

Accession numbers for sequencing data. The Roche/454 Life Sciences sequencing data obtained
in this study is available from the EMBL/NCBI/DDBJ Sequence Read Archive sample accession
numbers ERS661087–ERS661093.

HIV genome analysis. Nine regions were selected from the whole HIV genome alignment of
mapped reads, each region approximately 600 nt in length and comprising samples from all time
points. Furthermore, we ensured that these regions were in-frame and non-overlapping, spanning
the four main open-reading frames (i.e. gag, pol, env, and nef). Reads covering at least 95% of
a region were retained in our analysis. The average number of sequences per time point was 34
(range 20–65). Further details about the sequence dataset for each region can be found in Table S3.

BEAST analysis. To evaluate the performance of Coalescenator in estimating population
parameters of interest, primarily the effective population size, Ne, and mutation rate, µ, we re-
analysed the sequence alignments for the nine regions described above using the Bayesian MCMC
coalescent approach implemented in BEAST (v1.8.0 Drummond and Rambaut, 2007; Drummond
et al., 2012). Specifically, a codon-structured nucleotide substitution model (Shapiro et al., 2006),
a constant size population demographic model, and a strict molecular clock prior were employed.
Two independent MCMC chains of 50 million steps were run to assess convergence and adequate
mixing.

RESULTS

Simulated data. To evaluate the validity of our model implementation, Coalescenator, we
simulated heterochronous datasets under known population parameters. Employing this set, we
assessed Coalescenator’s performance with respect to the number of Monte Carlo iterations, the
sample sizes of the data, and the data’s underlying population size dynamics. For each study, we
searched through a three-dimensional parameter space of 11 µ’s, 11 r’s, and 6 Ne’s, and assessed
whether parameter combinations with the highest likelihoods corresponded to the true parameters
that generated the data. 11× 11× 6 = 729 parameter combinations of the following were used:

• µ: 1× 10−7, 1× 10−6, (1, 2.5, 5, 7.5)× 10−5, (1, 2.5, 5, 7.5)× 10−4, 1× 10−3.

• r: 1× 10−8, (1, 2.5, 5, 7.5)× 10−7, (1, 2.5, 5, 7.5)× 10−6, 1× 10−5, 1× 10−4.

• Ne: 250, 750, 1000, 1250, 1750, 3000.

Performance for a constant population size model. The behavior of Coalescenator when
analysing data generated under constant population size was assessed using datasets Const-120
and Const-600 (see Materials and Methods). Coalescenator was run with a constant popu-
lation size model.

First, the performance of local inference using pairwise MLEs was assessed by analysing a single
pair of loci of lengths lA = lB = 50 nt at positions (1, 50) and (101, 150). Figure 5 shows the
likelihood surfaces for Const-120, with 100 and 500 Monte Carlo iterations respectively. Here,
across various choices of Ne, there is a clear clustering of higher likelihoods near the true parameter
values. With only 100 iterations, the pairwise MLE recovers the correct mutation rate (among
the 11 parameter values considered), and estimates the recombination rate at r̂ = 7.5 × 10−7,
an underestimate by 25% of the true value. However, the MLE for the effective population size
is further off-target, at N̂e = 3000. By increasing the number of iterations to 500 [Figure 5(b)],
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there was a marked improvement to N̂e = 1250 (although for this experiment the mutation and
recombination estimates underestimate their true values by 50%). Overall, parameter estimates are
accurate for 500 iterations, and certainly to within an order of magnitude. It is worth emphasising
that these experiments use relatively few Monte Carlo iterations; typical IS approaches to coalescent
inference might use several orders of magnitude more. Our aim here is to stretch our algorithm
when only a few iterations are available, so that it can feasibly be scaled up to complex multi-locus
datasets. The results presented here suggest that the sophistication of our algorithm adequately
compensates for the dearth of CPU time, and even as few as 100 iterations give decent estimates.
The nature of the data, with its high mutation rates and heterochronicity, may also assist in this
exploration of tree space.

Figure 6 shows the corresponding likelihood surfaces for Const-600. The likelihood hypersurface
concentrates in a similar manner with respect to the true parameter values, but this time there is
a shift towards the correct effective population size. This suggests that Coalescenator performs
favorably with increasing sample size.

This analysis shows that by using the information from a single pair of loci of 50 nt each,
Coalescenator is able to arrive at a sensible indication of the population parameters for the whole
500 nt region. This raises two questions:

1. For effective inference, how far apart should the two loci be?

2. A pairwise MLE provides only partial information since it utilises a subset of the whole region.
How then, should one come up with the global estimate for the whole region?

To answer the first question, inference quality was assessed with respect to the separation d of a
pair of loci. The 500 nt sequence region was divided into 10 neighboring loci of 50 nt, and for each
of the 36 pairs of non-adjacent loci, pairwise MLEs for the population parameters were calculated.
Figure S1 shows how the MLEs vary with d (the resolution for the mutation and recombination
estimates was reduced for clarity). We observed that the mutation rate estimate is stable across
separation distance. However, this is not the case with the recombination estimates. Specifically, (i)
Variance in MLEs for fixed d is greater than for mutation; and (ii) With increasing d, recombination
rate estimates (per site) seem to be lower.

These two observations could have been anticipated to some extent; the signal for recombination
in genetic data is generally weaker than that of mutation. Furthermore, with increasing separation
between two loci the signal for recombination can become ‘saturated’, so that recombination events
are undetected and recombination rates are underestimated. More precisely, the curvature of the
likelihood curve for ρ is flatter when ρ is greater (Chan et al., 2012). Ultimately, this provides the
basis in deciding the appropriate constraint on locus pair separation for reliable inference. This
is about 50–100 nt, and we proceeded by computing pairwise MLEs for pairs of loci separated by
50 nt.

To address the second challenge of obtaining global parameter estimates, we assessed both of
the two approaches discussed in the section Estimation of local and global parameters. The first
approach is to take the median of the pairwise MLEs. Figure 7 shows pairwise MLEs and the
corresponding median across the datasets. We see that the median can effectively capture the
true estimates. However, there is an appreciable variance in estimates for the recombination rates,
which in turn reflect the confidence we should have in these estimates.

The second approach is via a pairwise composite likelihood (13), in which likelihood surfaces
for pairs of loci separated by 50 nt are multiplicatively combined. Figure S2 shows the composite
likelihood surfaces for dataset Const-120. The MLEs using 100 and 500 Monte Carlo iterations
are both of high accuracy, and differ only slightly in the recombination rate estimates; this further
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Figure 5: Likelihood surfaces on a pair of loci at positions (1,50), (101,150), for dataset Const-120,
using 100 and 500 Monte Carlo iterations. Cells correspond to the searched parameters, colored
by log-likelihoods, with the top 10 estimates numbered. The true mutation, recombination, and
population parameters, are: µ = 2.5× 10−5, r = 10−6, Ne = 103.
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Figure 6: As in Figure 5 but for dataset Const-600.
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Figure 7: Population parameter estimates for simulated datasets generated under a constant
population size model. The effect of using different combinations of sample size and number of
Monte Carlo iterations is compared. Circles correspond to the pairwise MLEs between neighbouring
pairs of loci (those separated by 50 nt). The horizontal lines correspond to the median of the
pairwise MLEs. Crosses indicate the pairwise composite likelihood estimates.

illustrates the fast convergence of Coalescenator. With 500 iterations, the true mutation and
recombination rates are captured, although the effective population size is off-target at N̂e = 3000.
Figure S3 shows the result for Const-600, where the larger sample size also allows the true effective
population size to be captured. With both 100 and 500 iterations, the mutation and recombination
rates are respectively within 50% and 25% of the true values, and the effective population size is
estimated at N̂e = 1250, close to the true value of Ne = 1000. These estimates are also included in
Figure 7 for direct visual comparison with the first approach.

Performance for data from dynamic population sizes. The behavior of Coalescenator for
analysing data generated under dynamic population sizes was assessed using datasets Dynamic-120

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2015. ; https://doi.org/10.1101/020552doi: bioRxiv preprint 

https://doi.org/10.1101/020552
http://creativecommons.org/licenses/by/4.0/


and Dynamic-600. Figure 8 shows the pairwise MLEs and the global estimates based on the me-
dian and pairwise composite likelihoods, for both datasets. Each estimate was based on 100 Monte
Carlo iterations.

With the incorrect assumption of a constant population size, Coalescenator slightly overesti-
mates the mutation rates. The pairwise MLEs for recombination rates increase in accuracy for the
larger sample size, but there is greater variability compared to the analysis in the previous section
on Const-120 and Const-600. Effective population size estimates are of reasonable accuracy and
stability. This suggests that Coalescenator is reasonably robust to unmodelled changes in pop-
ulation size, and can be reliably used in this way. Of course, it is straightforward to extend our
algorithm to impose population size changes between sample collection times, perhaps guided by
viral load information, and even to infer changes in effective population size. However, in the latter
case we found that our chosen ranges of sample size and Monte Carlo iterations were insufficient
to compensate for the significant increase in model complexity.

This analysis also illustrates a case where a pairwise composite likelihood estimator can be
unreliable. The recombination rate given by this estimator for the Dynamic-600 dataset was
ρ̂ = 1× 10−8. This estimate does not reflect the MLEs of the constituent pairwise likelihoods that
make up the composite likelihood surface. This is perhaps attributable to the high variability in
the recombination rate estimates. As all the cases here and the previous section illustrate (Figures
7 and 8), the median of the pairwise MLEs seems to give similar or better global measures than
the pairwise composite likelihood estimator, and we focus on the median to provide our global
summaries hereonwards. Clearly, despite the limited success of the composite likelihood estimator,
strategies more sophisticated than a simple median might be able to aggregate pairwise estimates
more efficiently, and we leave this for future work.

Variance of the importance Weights. For each of the four simulated datasets, we assessed the sta-

bility of Coalescenator’s likelihood estimates by computing a coefficient of variation CV
(

=
√
V ariance
Mean

)
of the importance weights [i.e. the summands in (5)]. We used 100 Monte Carlo iterations for
each particular parameter combination, analysing each pair of loci separated by 50 nt. There
are 11 × 11 × 6 = 726 parameter combinations and 8 pairs of loci, resulting in 5, 808 CV s being
computed for each dataset.

Table 1 summarises the distribution of the coefficient of variation for the four simulated datasets.
The variance appears to be well constrained, with the majority of CV s under 0.001. The larger CV s
originate from parameter combinations that deviate furthest from the ground truth parameters.
While a small CV (equivalently, a large effective sample size) is not a guarantee of good performance,
it is consistent with the idea that the proposal distribution is not too skewed in its exploration of
the space of ARGs.

Running Time. Coalescenator scales approximately linearly with respect to the sample size
and the number of Monte Carlo iterations. For dataset Const-120, a likelihood calculation for
a single parameter combination using 100 iterations takes on average 10 seconds when run on a
16-core computer with a 2.0 GHz processor. For dataset Const-600, the corresponding calculation
increases 5-fold to about 50 seconds.

Real data analysis. Coalescenator was run on nine HIV regions from HIV genome align-
ments collected at seven time points from an HIV infected patient over a period of two years (see
Materials and Methods). The sequence data is summarised in Table S3.

Each gene region is 600 nt long, but some reads had missing data, chiefly up to the first 30 nt
and the last 30 nt of the region. Although Coalescenator can handle missing data, for the purpose
of this analysis we concentrate on the central positions (51, 550) of each gene region.

Figure 9 shows the evolutionary parameter estimates across each region. The median of the
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Figure 8: Population parameter estimates for simulated datasets generated under a dynamic
population size model. Coalescenator was run under a constant population model, and this
analysis shows its robustness to unmodelled changes in population size. Circles correspond to the
pairwise MLEs between neighboring pairs of loci (those separated by 50 nt). The horizontal lines
correspond to the median of the pairwise MLEs. Crosses indicate the pairwise composite likelihood
estimates.
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CV Threshold: < 0.15 < 0.1 < 0.05 < 0.01 < 0.001

Const-120 1 0.99 0.92 0.83 0.83

Const-600 1 0.86 0.86 0.86 0.86

Dynamic-120 1 1 0.99 0.94 0.94

Dynamic-600 1 0.89 0.88 0.87 0.87

TABLE 1: Assessment of the variation of the importance weights, under different simulated
datasets. For each dataset, a CV of the importance weights was calculated for each run of 100
Monte Carlo iterations on a particular parameter combination and each pair of loci separated by
50 nt. This results in 5, 808 CV s being computed in total for each dataset. Each cell in the table
shows the proportion of these CV s that are below the indicated thresholds.

pairwise MLEs and the pairwise composite-likelihood estimates agree closely for the mutation and
effective population size estimates, and all lie in the range [5 × 10−5, 1 × 10−4] for mutation rate
estimates in each region. There was greater variability in effective population size estimates: for
example, all estimates were in the range 750–1000 in regions encompassing env, while the estimate
for the position (2836–3436) had N̂e = 3000. There was greater disagreement between the two
global estimates of recombination rates, however. The pairwise composite likelihood estimates
seem to be less stable, particularly for the nef region, where the recombination estimate plunges
to 1 × 10−8. (As discussed above, this behavior was also seen under the simulation study for the
dynamic data Dynamic-600.) We prefer therefore to use the median of the pairwise MLEs as our
regional summaries, with the uncertainty expressed by the variability in individual MLEs.

It is worth noting that the env regions exhibit both higher mutation rates (as described previously
by Alizon and Fraser, 2013) and higher recombination rates than other regions. A single pairwise
likelihood surface between loci (1, 50) and (101, 151) and a pairwise composite likelihood surface
is shown in Figure 10 for the env 6415-7015 region. This serves as a sanity check that we indeed
have convergence to a plausible likelihood surface, since each gridpoint is simulated independently.

Finally, we compared our estimatesagainst the output of the corresponding analysis using BEAST

(Drummond and Rambaut, 2007; Drummond et al., 2012). Indeed, BEAST is unable to infer recom-
bination rates—Coalescenator’s estimates for the recombination rates are reported on Table 2.
For the other parameter estimates there is good agreement; this is illustrated by Figure 11. The
raw values for all the estimates are reported in detail in Table S4. The mutation µ and recombi-
nation ρ rates estimates from Coalescenator were converted into the number of substitutions and
recombinations per site per year, respectively. Ne denotes effective population size, and the time to
the most recent common ancestor TMRCA, or the time until we reach 5 ancestors TMRCA−5, is given
in years. Across the mutation rates, the notable difference is our higher estimates for the second
gag region (by a factor of 2.5), and the first and second pol regions (by factors of 5.5 and 1.5 respec-
tively). This discrepancy could reflect that Coalescenator can be prone to slight overestimation
of mutation rates, as suggested by the simulation results on Dynamic-120 and Dynamic-600.

DISCUSSION

We have presented a method capable of handling many of the challenges associated with modelling
evolution of rapidly evolving viral populations measured using high-throughput sequencing. It is
based on recent developments in the approximation of conditional sampling distributions (CSDs)
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Figure 9: Population parameter estimates for nine HIV gene regions. Data is from HIV genome
alignments collected at seven time points over the period of two years. Circles correspond to
the pairwise MLEs between neighbouring pairs of loci separated by 50 nt. The horizontal lines
correspond to the median of the pairwise MLEs. Crosses indicate the pairwise composite likelihood
estimates.
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(a) Pairwise likelihood surface for env 6415-7015 region
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(b) Pairwise composite likelihood surface for env 6415-7015 region

Figure 10: Likelihood surfaces for the env 6415–7015 region, using 100 Monte Carlo iterations.
Cells correspond to the searched parameters, colored by log-likelihoods, with the top 10 estimates
numbered. (a) Likelihood surface for a single pair of loci within the region. (b) Pairwise composite
likelihood aggregating all valid pairs of loci within the region.
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Figure 11: Comparison of BEAST’s parameter estimates against Coalescenator’s. An identity
line y = x is plotted in each case, to visually assess the agreement of the estimates by the two
programs. The following abbreviations are used for the nine HIV gene regions: gag-1 = gag 311–
940, gag-2 = gag 960–1560, pol-1 = pol 2005–2605, pol-2 = pol 2836–3436, pol-3 = pol 3796–4396,
env-1 = env 5812–6412, env-2 = env 6415–7015, env-3 = env 7357–7957, nef = nef 8376–9011.
(a) Comparison of mutation rate µ estimates, converted to the number of substitutions per site
per year. (b) Comparison of effective population size Ne estimates. (c) Comparison of BEAST’s
time to the most recent common ancestor TMRCA estimates, against Coalescenator’s time until
5 ancestors is reached TMRCA−5 estimates, given in years.

Region ρ

gag 311-940 5.07e-05

gag 960-1560 1.27e-04

pol 2005-2605 1.52e-04

pol 2836-3436 5.07e-05

pol 3796-4396 1.52e-04

env 5812-6412 3.55e-04

env 6415-7015 1.78e-04

env 7357-7957 5.07e-04

nef 8376-9011 2.03e-04

TABLE 2: Coalescenator’s recombination rate ρ estimates, given in the number of recombinations
per site per year.
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(Stephens and Donnelly, 2000; De Iorio and Griffiths, 2004a; Griffiths et al., 2008; Paul and Song,
2010; Paul et al., 2011), and the adoption of this work into a practical IS algorithm should be a useful
contribution in itself. The model we derive handles recombination by allowing for partially specified
haplotypes and thus avoids the inflation of the model state-space caused by alternative imputation
procedures. It also provides a natural way of dealing with missing data. One limitation is that
data is lost when we simply consider an entire locus as unobserved if any nucleotides are missing;
another possibility for future research would be to impute short stretches of missing nucleotides
within a locus.

High-throughput sequence data from viral genomes presents many challenges. We have focused
in particular on handling high mutation rates, recombination, heterochronous sampling, and miss-
ing data. Each of these presents its own hurdles; dealing with them simultaneously raises numerous
further complications. In this paper we have therefore also explored several statistical and algorith-
mic techniques for reducing the large computational overhead. In particular, employing the Time
Machine strategy developed by Jasra et al. (2011) proves to be effective in saving computational
time, whilst controlling the bias and variance. Nevertheless, the overhead remains large, and it
is likely that further implementation strategies will have to be explored in future as sample sizes
continue to grow. For example, one advantage of an IS approach is that it is especially suited for
parallisation using the rapidly growing GPU processing (Lee et al., 2010). Lee et al. focused on
MCMC and IS as case studies, and concluded that significant performance boost can be achieved
for IS using GPU, whereas BEAST’s MCMC is inherently less suitable for exploitation using GPU’s
massive parallelisation.

In spite of these challenges, it is encouraging that our new method performs comparably to BEAST

in the analysis of a deep sequencing dataset generated from a serially sampled acute HIV infection.
Like previous studies based on coalescent inference, BEAST and Coalescenator also indicate that
the effective population size is of the order ∼ 103 (Brown, 1997). While there has been great interest
in measuring the effective population size of within-host HIV infections, especially in regards to
addressing whether evolution is largely stochastic or deterministic (Rouzine et al., 2014), it is
important to note that estimates of effective population size from methods based on the coalescent
framework do not typically consider natural selection or other factors that may lead to variation
in offspring distribution. Consequently, in populations where variation in reproductive success is
likely to be present, such as in within-host HIV infections, interpretation of the effective population
size is confounded. Instead, a more accurate interpretation of effective population size is that it
represents a measure of population turnover or relative genetic diversity. We further note that in
this paper we have focused our analyses on inference of a single effective population size parameter,
while a priority for future work will be also to make inference of temporal changes in this parameter
computationally tractable.

Notably, the estimates of recombination rate from Coalescenator are approximately of an order
of magnitude lower compared to non-coalescent based estimates obtained by Neher and Leitner
(2010) and Batorsky et al. (2011). This lower recombination rate could be partly explained by
the inherently conservative nature of Coalescenator; even on simulated data the recombination
rates tended to be underestimated. An alternative explanation could be the differences in when
the sequence data was sampled during HIV infection. In contrast to the previous studies that
have estimated recombination rates (Shriner et al., 2004; Neher and Leitner, 2010; Batorsky et al.,
2011), the sequence data analysed in this study has been sampled from an early phase of infection.
Therefore, the lower recombination rates estimated here could correspond to a reduced power
to detect recombination events due to the limited genetic diversity observed during acute HIV
infection.

Despite the complicated evolutionary model considered in this paper, we have omitted other
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mechanisms that are likely to be important to within-host HIV evolution. Our simplified model of
population size changes provides a restrictive model for the phases of exponential expansion and
contraction HIV and other viral populations are known to go through (Nowak and May, 2000). A
natural solution to this problem would be to fit exponential functions between consecutive time-
points. More importantly however, selective responses to the host immune system are known to
be an important evolutionary factor (Edwards et al., 2006; Lemey et al., 2006), having an effect
on intrahost genealogies that is not fully captured merely by adjusting the effective population
size. Other commonly used methods such as BEAST (Drummond et al., 2002, 2005; Minin et al.,
2008; Drummond and Rambaut, 2007; Drummond et al., 2012) also ignore the effects of selection
on genealogies (as well as ignoring recombination); thus, developing methods that can robustly
account for both selection and recombination (and indeed other factors) remains a challenging
task. Another important consideration is population substructure: HIV is known to undergo
compartmentalization, forming distinct subpopulations at different anatomical sites and in different
cell types (Ewing et al., 2004). Incorporating substructure and migration into IS algorithms is in
principle straightforward and has been achieved in other applications (Bahlo and Griffiths, 2000;
De Iorio and Griffiths, 2004b; Griffiths et al., 2008), though it obviously introduces yet more
computational burden.

Exploring more complicated mutation models would also be interesting, though the diallelic
model we consider here allows for a simple analytical solution, which in turn allows for more efficient
computation. However, it should be straightforward to allow for time-varying mutation rates as a
proxy for the effects of selection. Inclusion of indels into the mutation model would also be desirable;
inspection of the HIV data shows that these are highly prevalent. The model also considers only
cross-over recombination; however, McVean et al. (2002) suggested that a gene-conversion model
may be appropriate for bacteria and viruses. Incorporating this type of recombination would also
be a worthwhile extension.

Finally, we remark that in our analysis we tuned our algorithm to analyse data generated under
the 454 platform. However, it should be straightforward to adapt our work for other platforms such
as Illumina paired-end sequencing, in which a haplotype would now comprise a pair of reads. Since
the number of reads generated by this method is typically several-fold larger, this raises further
computational and statistical challenges which form the basis of ongoing work.
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APPENDIX

A BACKWARDS TRANSITION RATES IN THE ARG

The distribution on the most recent event back in time in a two-locus ARG, conditioned on observing
the sample configuration H−k = n, is given in Table A1. This distribution is expressed in terms
of the (unknown) CSD π[(i, j) | n; Θ] and transitions are marginalized over nonancestral genetic
material; thus for example a recombination event changes a (i, j) haplotype to a (i, ∗) and a (∗, j),
with ‘∗’ denoting unspecified alleles. [Such a marginalization approach was proposed by Jenkins
and Griffiths (2011), but was based instead on an infinite sites model]. The corresponding forwards
transition probabilities are also given in the rightmost column of Table A1. Here, ei denotes a unit
vector with ith entry 1 and the rest 0, with eij denoting a unit matrix whose only nonzero entry is
a 1 at position (i, j). The notation n− eCij is shorthand for (a, b, c− eij), and so on, and we write
ci· =

∑
j cij and c·j =

∑
i cij for the marginal counts of fully specified haplotypes.

To derive the entries in this table we use sampling exchangeability and Bayes’ theorem (see
Stephens and Donnelly, 2000; De Iorio and Griffiths, 2004a). For example, to obtain the first row
of Table A1, with H−k−1 = n− eCij , note that sampling exchangeability implies

P(n− eCij)π[(i, j) | n− eCij ] = P(n)
cij
c
, (A1)
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since both sides are equal to the probability that we sample the configuration n and then sub-
sample a type (i, j); on the left by selecting the fully specified haplotype we sampled most re-
cently, and on the right by subsampling from c. [Our convention for ‘unordered’ is that P(n) =
a!b!c!/(

∏
i ai!

∏
j bj !

∏
i,j cij !) · P(An), where An denotes any particular ordering of the sample con-

figuration n. Whether or not a haplotype is fully specified is not considered to be random.] Now,
by Bayes’ theorem,

P(H−k−1 | H−k) = P(H−k | H−k−1)
P(H−k−1)

P(H−k)
, (A2)

with

P(H−k | H−k−1) =
c(cij − 1)

n(n− 1) + (a+ c)θA + (b+ c)θB + ρc
(A3)

known from the coalescent prior. The entry for P(H−k−1 | H−k) in the first row of Table A1 follows
by combining (A1), (A2), and (A3). The remaining entries follow similarly. At the bottom row,
π[{(i, ∗), (∗, j)} | n− eCij ; Θ] denotes

π[{(i, ∗), (∗, j)} | n− eCij ; Θ] = π[(i, ∗) | n− eCij ; Θ]π[(∗, j) | n− eCij + eAi ; Θ]

= π[(∗, j) | n− eCij ; Θ]π[(i, ∗) | n− eCij + eBj ; Θ].

B EMISSION PROBABILITIES FOR GAUSSIAN QUADRATURE

After applying Gaussian quadrature it is necessary to compute discretized emission probabilities of
the form

ξθ(j | ([x, y), i)) =
1

w(j)

∫ y

x
e−τξθ(j | s`) dτ, (A4)

where w(j) =
∫ y
x e
−τ dτ (Paul et al., 2011, eq. 17). In light of (8), we are also able to reduce this

to a closed-form formula as follows. Substituting (8) into (A4), we find

ξθ(j | ([x, y), i)) =
1

w(j)

∫ y

x
e−τ

[
e−θτ/2 sinh

(
θ

2
τ

)]Sij [
e−θτ/2 cosh

(
θ

2
τ

)]l`−Sij
dτ

=
1

w(j)

∫ y

x

e−τ

2l`

[
1− e−θτ

]Sij [
1 + e−θτ

]l`−Sij
dτ

=
1

w(j)

∫ y

x

e−τ

2l`

Sij∑
k=0

(
Sij
k

)
e−θτk(−1)k

l`−Sij∑
m=0

(
l` − Sij
m

)
e−θτm dτ

=
2−l`

w(j)

Sij∑
k=0

(
Sij
k

)
(−1)k

l`−Sij∑
m=0

(
l` − Sij
m

)∫ y

x
e−[(θ(k+m)+1]τ dτ

=
2−l`

w(j)

Sij∑
k=0

(
Sij
k

)
(−1)k

l`−Sij∑
m=0

(
l` − Sij
m

)
e−[θ(k+m)+1]x − e−[θ(k+m)+1]y

θ(k +m) + 1
.
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Haplotype Probabilities up to a normalizing constant

(i, j) cij(cij − 1 + θ + ρ+ ai + bj)

(i, ∗) ai(ai − 1 + b+ ci· + θA)

(∗, j) bj(bj − 1 + a+ c·j + θB)

TABLE A2: Proposal probability of choosing a particular (i, j), (i, ∗), or (∗, j), to be involved in
the next event back in time, for each i, j. These probabilities are given up to a normalizing constant
found by summing all these events over i and j.
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Coalescent inference using serially sampled, high-throughput

sequencing data from HIV infected patients

Kevin Dialdestoro, Jonas Andreas Sibbesen, Lasse Maretty, Jayna Raghwani, Astrid Gall,
Paul Kellam, Oliver G. Pybus, Jotun Hein, Paul A. Jenkins

SUPPORTING INFORMATION

TABLE S1: Distribution of read lengths for the HIV-1 dataset.

Number

Read length of reads

0–100 47

100–200 880

200–300 6255

300–400 12840

400–500 21806

500–600 30676

600–700 14480

700–800 1573

800–900 20
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Figure S1: Variation of maximum likelihood estimates with respect to distance d between pairs
of loci. Each point corresponds to the maximum likelihood estimate (y-axis) for a pair of loci
separated by a particular distance (x-axis). The size of each point corresponds to the number of
estimates with these values.
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Figure S2: Pairwise composite likelihood surfaces for dataset Const-120, using 100 and 500 Monte
Carlo iterations. Cells correspond to the searched parameters, colored by log-likelihoods, with the
top 10 estimates numbered. The true mutation, recombination, and population parameters, are:
µ = 2.5× 10−5, r = 10−6, Ne = 103.
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Figure S3: As in Figure S2 but for dataset Const-600.
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TABLE S2: Distribution of reads across the genome with 95% coverage (i.e.< 5% gaps in sequences)
for the HIV-1 dataset.

Midpoint position Number of reads Midpoint position Number of reads

of window with 95% coverage of window with 95% coverage

50 841 4650 1280

150 13881 4750 1355

250 14143 4850 1244

350 11495 4950 1044

450 10044 5050 1320

550 5234 5150 1558

650 4599 5250 1626

750 4887 5350 1780

850 4581 5450 1989

950 3848 5550 2385

1050 4897 5650 6732

1150 11110 5750 5990

1250 9043 5850 6587

1350 5890 5950 6631

1450 7639 6050 5574

1550 11577 6150 3311

1650 12547 6250 4602

1750 12558 6350 441

1850 11779 6450 3682

1950 844 6550 3531

2050 1497 6650 3861

2150 1545 6750 4187

2250 1763 6850 3756

2350 1815 6950 3653

2450 1884 7050 3484

2550 2005 7150 6

2650 1904 7250 2955

2750 1759 7350 3026

2850 1599 7450 2088

2950 1574 7550 2164

3050 1482 7650 1963

3150 1455 7750 2518

3250 1364 7850 2366

3350 1332 7950 2069

3450 1192 8050 1955

3550 1218 8150 1797

3650 1784 8250 1799

3750 2756 8350 1825

3850 3293 8450 1728

3950 3192 8550 2334

4050 2890 8650 2462

4150 3173 8750 2311

4250 3469 8850 2137

4350 2934 8950 2088

4450 3771 9050 2067

4550 1057
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TABLE S3: Regions of the HIV-1 genome chosen for study and their sample sizes. Samples are
collected at seven time points over the period of two years: 0, 267, 323, 520, 576, 667, 695 (days
towards the past)

Region Nucleotide position
relative to consensus
genome start

Nucleotide position
relative to HXB2
genome start

Number of sequences at col-
lection times

Total sequences

gag 311–911 790–1413 38, 34, 33, 33, 37, 37, 44 256

960–1560 1432–2033 47, 16, 15, 27, 45, 36, 32 218

pol 2005–2605 2482–3072 27, 16, 17, 24, 23, 37, 58 202

2836–3436 3312–3910 20, 15, 23, 12, 29, 19, 56 175

3796–4396 4272–4870 55, 29, 49, 39, 53, 46, 159 430

env 5812–6412 6288–6840 21, 9, 6, 27, 27, 17, 58 165

6415–7015 6843–7420 52, 37, 51, 60, 66, 42, 81 389

7357–7957 7779–8379 34, 12, 24, 22, 23, 16, 43 174

nef 8376–9011 8797–9417 29, 12, 20, 11, 18, 6, 57 153
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