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Abstract 

Natural products, which result from secondary or specialized metabolism, have provided with 

molecules to human welfare for millennia. However, decline of chemical discovery pace has 

imposed a pressure upon human health, such as in antibiotic resistance. Current genome mining 

approaches have revitalized research into natural products, but the empirical nature of these 

methods limits the chemical space that is explored. By means of integrating evolutionary concepts 

related to emergence of specialized metabolism, we have gained fundamental insights that are 

translated into the discovery of hidden chemical diversity through a unique and unbiased genome 

mining approach. This method, termed EvoMining, can be defined as a functional phylogenomics 

platform for identification of expanded, repurposed enzyme families, with the potential to catalyze 

new conversions. A bioinformatics pipeline is proposed and validated by comparing its 

performance with the state-of-the-art genome mining approach antiSMASH. Moreover, as the 

founding assumption of EvoMining relates to the evolution of enzyme function, our approach was 

experimentally validated after solving two milestone problems that include unprecedented enzyme 

conversions. First, we report the discovery of a biosynthetic gene cluster for an orphan metabolite, 

which could not be unveiled with current methods, i.e. the biosynthesis of the protease inhibitor 

leupeptin by Streptomyces roseus ATCC 31245. Second, we characterized a novel enzyme, 

catalyzing the formation of an arsenic-carbon bond, in model organisms that have been thoroughly 

mined, i.e. Streptomyces coelicolor and Streptomyces lividans. This work provides evidence that 

bacterial chemical repertoire is still underexploited, as well as an alternative approach that 

promises to speed up the discovery of novel enzymes and biosynthetic logics that can feedback 

into current genome mining methods.  
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Introduction  

 

The concept of genome mining can be defined as both an extension of the central dogma of 

molecular biology, situating metabolites at the downstream end, and a novel approach that 

promises to turn the discovery of natural products (NPs) drugs into a chance-free endeavor (1–3). 

Within the context of increased antibiotic resistance and emergence of modern diseases, and given 

the strong track of NPs (which are the result of secondary or specialized metabolism) in providing 

useful molecules to human welfare (3, 4), genome mining has revitalized the investigation into NP 

biosynthesis and their mechanisms of action (3, 5). Evidence for this has steadily increased since 

the first NP that was discovered using genome mining approaches, i.e the farnesylated 

benzodiazepinone ECO4601, entered into human clinical trials more than a decade ago (6–8). 

In contrast to experimental hurdles, which have been acknowledged elsewhere (9), in silico 

genome mining has enjoyed a relatively higher success. Early genome mining approaches built up 

from the merger between a wealth of genome sequences and an accumulated biosynthetic 

empirical knowledge, mainly surrounding polyketide synthases (PKS) and Non-Ribosomal 

Peptide Synthetases (NRPSs) (10, 11). These approaches, which rely on high quality genome 

sequences due to the modularity and repetitive nature of PKSs and NRPSs, can be classified as: (i) 

chemically-driven, where the structure of a metabolite is linked to potential enzymes, such that the 

biosynthetic genes of an ‘orphan’ metabolite that has been isolated and structurally characterized, 

are identified (12) ; or (ii) genetically-driven, where known sequences of protein domains (13) or 

active-site motifs (14) help to identify putative biosynthetic gene clusters (BGCs) and their 

products. The latter relates to the term ‘cryptic’ BGC, defined as a genetic locus that has been 

predicted to direct the synthesis of a NP, but which remains to be experimentally confirmed (15). 
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Genome mining of NPs has also helped to prioritize strains and metabolites on which to 

focus for further investigation. During this process, based on a priori biosynthetic insights, 

educated guesses surrounding PKS and NRPS can be put forward, increasing the likelihood of 

discovering interesting chemical and mechanistic variations. Moreover, biosynthetic logics for a 

growing number of NP classes, such as phosphonates (16–18) and ribosomally synthesized post-

translationally modified peptides (RiPPs) (19) are further complementing early NRPS/PKS-centric 

approaches. Nevertheless, the current pace of deciphering novel biosynthetic logics, which can 

only be achieved after long periods of research, hampers our ability to cope with the rate of 

appearance of antibiotic resistance. Moreover, focusing in known chemical scaffolds with the 

concomitant high rate of rediscovering the same classes of NPs, although useful under certain 

circumstances and specific cases (20), seems sub-optimal for the discovery of much-needed novel 

drugs. From these observations it becomes apparent that more efficient approaches that will lead 

to the discovery of novel chemistry are needed.  

In this work we have developed an alternative method for current NP genome mining, 

which is guided by evolutionary theory. By means of integrating three evolutionary concepts 

related to emergence of specialized metabolism, we have gained fundamental insights that are 

translated into the discovery of novel NPs. First, we embraced the concept that new enzymatic 

functions evolve by retaining their reaction mechanisms, while expanding their substrate 

specificities (21). In consequence, this process expands enzyme families. Second, evolution of 

contemporary metabolic pathways frequently occurs through recruitment of existing enzyme 

families to perform new metabolic functions (22). Indeed, in the context of NP biosynthesis, cases 

of functional overlap driven by promiscuous enzymes that have been expanded and recruited have 

been reported (23, 24). The correspondence of enzymes to either central or specialized metabolism 
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is typically solved through detailed experimental analyses, but we argue here that these could also 

be achieved through phylogenomics. Third, BGCs are rapidly evolving metabolic systems, 

consisting of smaller biochemical sub-systems or ‘sub-clusters’, which may have their origin in 

central metabolism (25–27). 

Integration of these three evolutionary principles was formalized as a bioinformatics 

pipeline, termed EvoMining, which can be defined as a functional phylogenomics tool for 

identification of expanded, repurposed enzyme families, with the potential to catalyze new 

conversions in specialized metabolism. As this process does not rely on sequence similarity 

searches of previously identified NP biosynthetic enzymes, but rather on recapitulation of an 

evolutionary process, the predictive power of evolutionary theory is fully embraced. Moreover, 

given that predictions are done at the single-gene level, rather than looking at large PKS, NRPS or 

BGC sequence assemblies, low quality draft genome sequences are compatible with this approach. 

Indeed, we demonstrate that EvoMining can predict biosynthetic genes for orphan molecules, as 

well as new NP biosynthetic pathways in model strains, both involving novel enzymatic 

conversions.  

Experimentally, we focused in the phylum Actinobacteria, which includes renowned NP-

producing genera that have provided a plethora of useful NPs to human welfare, such as 

Streptomyces (3). Experimental evidence for two critical cases using Streptomyces species, needed 

to advance the field of genome mining of NPs, is reported. First, the BGC for the biosynthesis of 

the orphan small peptide aldehyde (SPA) leupeptin, of high economic importance, is identified in 

the genome of Streptomyces roseus ATCC 31245. Second, a novel NP synthesized by the model 

organisms Streptomyces coelicolor A3(2) and Streptomyces lividans 66 is experimentally 

characterized. Both of these case studies include novel chemical conversions catalyzed by 
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enzymes that were blindly targeted by EvoMining. Therefore, these results validate EvoMining as 

an alternative and complementary method for the discovery of potential drug leads. Moreover, the 

insights gained during this integrative approach suggest that bacterial genomes encode a larger 

chemical diversity yet-to-be discovered that can be untapped by means of using evolutionary 

theory. 

 

Results & Discussion 

 

The EvoMining bioinformatics pipeline, in its current version 1.0, uses three input 

databases (green cylinders, Figure 1A). First, a genome database that contains the annotated 

genomes of 230 members of the phylum Actinobacteria, as retrieved from the GenBank database 

(Table S1). Second, a database containing the amino acid sequences of enzymes belonging to nine 

‘precursor supply central metabolic pathways’ (PSCP), defined as previously (28). This dataset 

provides a universe of 103 enzyme families, to be used as query sequences (Table S2), which 

were extracted from genome-scale metabolic network reconstructions (GSMR) of model 

Actinobacteria. Third, a NP seed database consisting of 226 experimentally characterized BGCs 

(mainly from Actinobacteria), including: (i) NRPSs and PKSs biosynthetic systems extracted from 

specialized databases (10, 11) ; and (ii) other classes of well-described NPs biosynthetic pathways, 

e.g. terpenes, phosphonates and RiPPs, extracted from the literature (Table S3).  

The sequences in the PSCP database were used as queries to retrieve homologous 

sequences contained in the genome database. The threshold used for defining homology was non-

conservative, such that expansion events resulting from both gene duplication and horizontal gene 

transfer could be retrieved. When propagated through the genomes database, after homology 
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searches, these query sequences gave rise to an enzyme family internal database. After a heuristic 

approach, an organism’s enzyme expansion was called by statistical measure when the number of 

homologs on its genome was larger than the average of each enzyme family plus its standard 

deviation. The enzymes that complied with this criterion were stored on the enzyme expansion 

internal database (yellow cylinders, Figure 1A; Table S4). The expansion of each enzyme family 

was sorted throughout a phylogenetic species tree (Tree S1), allowing taxonomic resolution of 

expansions, as previously observed (28). With this approach we found that 98 enzyme families, 

out of 103 enzymes from the PSCP database, had expansion events. 

A critical function for the EvoMining approach is identification of enzyme families 

expanded in concert with NP biosynthesis clusters. To accomplish this, the expanded enzyme 

families were then mined for recruitment of their members within the context of NP biosynthesis. 

In the cases where an expanded enzyme family could be connected via sequence homology to one 

or more proteins within the NP seed database, their sequences were stored on the enzyme 

recruitment internal database (yellow cylinders, Figure 1A, Table S5). It should be noted that 

only a fraction of all sequences in the NP seed database have been characterized in the context of 

NP biosynthesis. Therefore, the functional association between recruited enzymes and this 

relatively large sequence space is supported by the occurrence of the expanded enzymes within 

BGCs that have been linked to a known metabolite. The enzyme recruitment internal database 

consisted of 23 enzyme families, including both known recruitments, e.g. aconitase in 

phosphinothricin biosynthesis (16), and all related sequences codified by the analyzed genomes. 

Thus, the functional potential of the NP seed and the genome databases, together, is fully 

exploited.  
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The sequences of the recruited enzymes, together with those from the expanded enzyme 

families, were used to make multiple sequence alignments (MSA) and Bayesian phylogenetic 

reconstructions (Figure 1A). Moreover, in order to provide useful functional annotation for 

interpretation of EvoMining phylogenetic trees (Figure 1B), a bidirectional best-hit analysis, 

between the enzyme recruitment and the PSCP databases, was used for directing the labeling of 

central metabolic orthologs (red branches). We adopted this simple strategy, as it is safe to assume 

that NP biosynthetic enzymes will highly diverge from central metabolic homologs. Homologs 

related to the very few known recruitments (blue branches) were therefore considered to be NP 

biosynthetic homologs identified by EvoMining. This proof-of-concept analysis provided 515 

recruitment events, which were called EvoMining hits, and their gene identifiers (GIs) were used 

as queries to retrieve contigs (12-109 kbp, 71.3 Kbp in average, 19.9 Kbp standard deviation). The 

retrieved contigs were then analyzed for putative NP BGCs using antiSMASH and ClusterFinder 

(29, 30). When an NP positive hit was obtained after this process, this was also noted in the 

phylogenetic tree (cyan branches).  

The abovementioned functional annotation provides information that validates NP-related 

phylogenetic clades that consist of EvoMining hits (Figure 1B). Subtraction of the known (blue 

branches) and antiSMASH / ClusterFinder predicted (cyan branches) NP lineages, within the NP-

related clades, reveals putative BGCs coding for repurposed enzymes only accessible by 

EvoMining (green branches). Henceforth, we refer to these homologs as EvoMining predictions, 

which we define as unknown NP biosynthetic enzymes supported by phylogenetic evidence 

encoded within previously undetected BGCs. Chemically, an implication of an EvoMining hit is 

that it uncovers enzymatic conversions, mainly involving diverging substrate specificities (but 

potentially also mechanistic variations), which in turn can lead to alternative biosynthetic logics 
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and therefore chemical scaffolds. Thus, an EvoMining prediction, as a concept, is here applied to 

entire BGCs rather than to specific enzymes. In addition to Figure 1, EvoMining version 1.0 can 

be explored at http://148.247.230.39/newevomining/new/evomining_web/index.html. 

  

Evolutionary insights and performance of EvoMining 

Of the 515 EvoMining hits we successfully retrieved contigs containing their cognate 

enzyme coding genes for 448 of them (71.3 kbp on average; 87 %) (Table S5). Among these, 

many EvoMining hits (20 %) were included in contigs with internal gaps, which hampers 

sequence annotation. This subset, together with the remaining 13 % of the total hits whose contigs 

could not be retrieved, account for one third of contigs that come from highly fragmented 

genomes. So, the advantage of EvoMining in this respect is that predictions can be made, early on 

during analysis, in draft genomes that can be further improved. This provides an opportunity to 

prioritize in cost-effective manner large strain collections during genome-driven drug discovery 

efforts. Focusing on an EvoMining hit related to the enolase enzyme family (Tree S2), which was 

found in the genome of Streptomyces sviceus (1 scaffold of 9 Mbp with 552 gaps and 8X 

coverage, GI: 297196766), illustrates the benefit of EvoMining in this respect. The contig 

containing this recruited enolase (GI: 297146550) had 6 gaps including missing sequence at its 5’ 

end. After closing of these gaps by sequencing PCR products, the complete sequences for several 

phosphonate-related enzymes, namely, alcohol dehydrogenase (phpC), phosphonopyruvate 

decarboxylase (ppd), nicotinamide mononucleotide adenyl transferase (phpF), carboxy-

phosphonoenolpyruvate synthase (phpH, EvoMining hit) and aldehyde dehydrogenase (phpJ), 

could be annotated. Further sequence analysis suggested that indeed this locus encodes for a 

putative phosphonate BGC related to phosphinothricin (31) (Text S1, Figures S1 and S2). 
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We further asked the question of whether EvoMining enzymes are indeed encoded within 

BGCs potentially directing the synthesis of NPs. The retrieved contigs were mined for BGCs of 

known classes of NPs using antiSMASH (29) as well as for putative new BGCs using 

ClusterFinder (30). From this analysis we found that these tools could predict BGCs for 62.5 % 

and 10.5 %, respectively, of the contigs harboring EvoMining hits (73 % together). The remaining 

27 % of contigs are unique EvoMining hits, and therefore potentially EvoMining predictions 

related to emerging BGCs and chemical scaffolds (Figure 2A). The enzymes included in this 27 

% represent the core of EvoMining, and due to the lack of functional information subsequent 

analysis is experimentally and bioinformatically challenging. However, manual analysis of the 

green branches within the NP-related clade provided as an example in Figure 1B, allowed us to 

identify a highly conserved BGC-like loci present in the genus Streptomyces (see below 

discussion related to Figure S7, Table S7 and S8).  

As a first step towards eventual characterization of completely unprecedented BGCs we 

determined whether EvoMining hits are associated to particular BGC classes. For this purpose, we 

used antiSMASH to classify and count for the number of BGCs contained in each contig. 

Globally, BGCs for 22 out of the 24 categories used by antiSMASH (29) could be detected. Only 

aminoglycosides and indoles could not be detected, which may be due to the limited enzymatic 

repertoire explored by our seed NP and PSCP input databases. Among the 22 antiSMASH 

categories, type I PKSs and NRPSs represent the most abundant classes (Figure S3), confirming 

that EvoMining can identify well-known NP biosynthetic systems following a unique, non-biased 

strategy. Despite this convergence, at least with this limited analysis, it was also found that the 

number of EvoMining hits increased in parallel to the number of BGC classes (Figure 2B). The 
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implication of this observation is that novel classes may be discovered for any given enzyme 

recruitment, as long as enough sequence space is explored. 

For instance, among the 23 recruited enzyme families, only that of indole-3-

glycerolphosphate synthase was linked to a single class of BGCs. It should be noted, however, that 

this family has the smallest number of EvoMining hits. At the other end, the enzyme families with 

the larger number of EvoMining hits showed the highest BGC diversity, namely, 17 BGC classes 

for the asparagine synthetase enzyme family, followed by 10 BGC classes for both 3-

phosphoshikimate-1-carboxyvinyl-transferase and 2-dehydro-3-deoxyphosphoheptonate aldolase 

families (Figure 2B). It seems, therefore, that some of the recruitments have high predictive 

potential when used as beacons for detection of BGCs. The latter may be due to the evolvability of 

enzymes towards specificities for common precursors of NPs, driven by enzyme promiscuity (23, 

24), or because these enzymes catalyse recurrent reactions in NP biosynthesis with less 

mechanistic restrictions (27).  

After our in silico analysis, we aimed to demonstrate that EvoMining could indeed be used 

to predict enzymes of unknown function involved in the synthesis of NPs. More specifically, we 

focused in providing experimental evidence to support two critical cases, which could not be 

solved with current methods: (i) the discovery of a BGC of an orphan metabolite that has been 

extensively investigated; and (ii) the discovery of a BGC driving the synthesis of an NP produced 

by well-studied model strains. Remarkably, and in agreement with the definition of an EvoMining 

hit, the enzymes identified by this approach are proposed to catalyse unprecedented chemical 

conversions. These enzymes may have occurred through convergent evolution, or after high 

sequence divergence, hampering the possibility of detecting them after sequence similarities 

searches. 
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Discovery of leupeptin BGC in Streptomyces roseus: the orphan metabolite problem 

 

 Leupeptin is the first member of a large family of NPs generically known as small 

peptide aldehydes (SPA), and it is widely used in industry and bioresearch due to its potent anti-

proteolytic activity (32). Despite the fact that leupeptin was discovered during the golden age of 

antibiotic research (32) its BGC remained elusive until now (Figure 3). The structure of leupeptin 

includes a C-terminal aldehyde group in a peptide chain that includes an acyl group at its N-

terminal end. Early biochemical studies of leupeptin revealed that: (i) this peptide is produced 

from acetate, leucine and arginine; (ii) an ATP-dependent synthetase is responsible for the 

condensation of an acetyl-leucine-leucine intermediary; (iii) this intermediary is released from an 

enzymatic complex before its condensation with an arginine residue; and (iv) the enzymatic 

complex responsible for the synthesis of acetyl-leucine-leucine-arginine, called leupeptidic acid, 

has a molecular mass of approximately 320 KDa (33–36).  

 A more recent study on the biosynthesis of the SPA flavopeptin produced by 

Streptomyces sp. NRRL-F6652 (37), suggested that synthesis of leupeptin by producing strains, 

such as S. roseus ATCC 31245 (32), may occur via a distinctive NRPS complex. Key features of 

this putative NRPS were proposed to be: (i) an acyl transfer domain typically found as an N-

terminal starter C-domain, responsible for initial acylation of non-ribosomal peptides (38) ; (ii) 

three complete modules for peptide synthesis, two for leucine and one for arginine residues; and 

(iii) a reductase domain at its C-terminal end, responsible for reductive peptide release, leading to 

an aldehyde. Based in this modern proposal, after sequencing the genome of S. roseus ATCC 

31245 (genome accession number pending), we searched for flavopeptin-like NRPSs. However, 

this approach proved to be unsuccessful.  
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 Mining of the S. roseus genome sequence with EvoMining, by contrast, produced a hit to 

an enzyme annotated as argininosuccinate lyase (ASL), typically involved in arginine 

biosynthesis. ASLs condense succinate and arginine via an amidic bond at the guanidine group of 

the arginine in a reversible reaction (39). Indeed, two ASL homologs sharing 25 % amino acid 

sequence identity, which could be phylogenetically resolved, were found in the genome of S. 

roseus (Figure 3A and Tree S3). The first homolog, as expected, is located within a clade that 

includes central metabolic homologs (ASL1 or argH gene); whereas the second homolog is 

located in a clade together with enzymes previously related to the biosynthesis of uridyl-peptides, 

namely, napsamycin and pacidamycin (40, 41). Thus, the members of the latter clade, termed here 

ASL2, are predicted to include recruited enzymes involved in NP biosynthesis, and that these 

enzymes are performing a related but different chemistry than that catalyzed by ASL1.  

 After detailed annotation of the region surrounding the recruited ASL2 gene, a NRPS, 

was found (Figure 3A). The product of this gene was predicted to have an N-terminal 

condensation domain (C1), followed by an adenylation domain predicted to bind threonine (A1); a 

peptidyl carrier protein domain (PCP1); a second condensation domain (C2); an adenylation 

domain predicted to bind serine (A2); a second peptidyl carrier protein (PCP2); and a thioesterase 

domain (TE) (Figure 3B). On the basis of this annotation, which drastically differs to the 

prediction based in the flavopeptin system, we predicted that this NRPS would produce an 

acylated dipeptide, which is released upon the action of the thioesterase domain. This biosynthetic 

logic is indeed consistent with the early biochemical data available for leupeptin (33–36).  

 We therefore renamed the EvoMining hit as leupB, and the NRPS as leupA, and a 

functional association between LeupA and LeupB was assumed. Specifically, we speculated that 

LeupB is capable of condensing the dipeptide produced by LeupA, possibly acyl-Leu-Leu, with an 

arginine residue, leading to leupeptidic acid or acyl-Leu-Leu-Arg peptide (Figure 3C). In 
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accordance with this hypothesis the total predicted mass of LeupA and LeupB is 318 KDa, which 

is strikingly close to that mass of 320 KDa early on estimated by Umezawa and co-workers for the 

complex directing leupeptidic acid formation (36). Additional genes downstream of leupB, 

transcribed in the same direction and therefore possibly involved in leupeptin biosynthesis include 

leupC and leupD, that are annotated as a threonine kinase and cysteine synthase, respectively 

(Figure 3B). The relevance of this functional annotation remains to be further investigated, but 

may have to do with reduction of the leupeptidic acid or other non-apparent functions.  

 To demonstrate that the predicted locus is involved in leupeptin biosynthesis, we used 

insertional mutagenesis to disrupt the leupA gene. We chose this rather simple approach due to the 

lack of genetic tools for manipulation of S. roseus, and because this gene could be considered to 

be essential for synthesis of leupeptin. We did not target leupB, as the central ASL homolog may 

complement its function via enzyme promiscuity, masking the expected phenotype (unless a 

double mutant is obtained) as previously reported in other BGCs (23). The S. roseus leupA mutant, 

termed PCMSr1, was obtained, and after comparative LC-MS analysis of this mutant with the 

parental wild-type strain, it was found that mutation of leupA renders PCMSr1 unable to produce 

leupeptin. The peak absent from the LC chromatograms obtained from PCMSr1, present in the 

wild type strain, corresponds with leupeptin authentic standard, as confirmed after electrospray 

ionization (ESI) mass spectrometry (m/z 427) and fragmentation pattern (ms2 of 367 and 409) 

(Figures S4A and S5). 

 To further establish a link between leupeptin biosynthesis and the postulated locus, 

currently involving leupA-D (Figure 3), we constructed a genomic library from which two clones, 

containing at least these four genes, were isolated. Both constructs were introduced into E. coli 

DH10B, and the resulting transformants were used for comparative fermentation experiments. LC-

MS analysis of these cultures revealed that extracts of supernatants from both strains presented 
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fractions with peaks with same retention times and expected mass as authentic leupeptin standard 

(Figures S4B and S5). Therefore, we concluded that this locus, as predicted using EvoMining, is 

indeed directing the synthesis of leupeptin in S. roseus ATCC31245. However, given that the 

constructs bearing the leupABCD genes are 65 to 70 Kbp in size (clone 8_10B and 9_18N, 

respectively), the involvement of further genes in leupeptin biosynthesis, which are included in 

these constructs, cannot be ruled out at current time.  

 

Discovery of an arseno-organic enzyme in Streptomyces lividans and Streptomyces coelicolor: 

novel chemistry in model organisms.  

For the second case, we aimed to identify a novel NP in the model organisms S. coelicolor 

A3(2) and S. lividans 66, that have been mined thoroughly, and presumably most of their NP 

repertoire has been elucidated (42). Furthermore, several methods for genetic manipulation of 

these two strains are available (43), making these organisms ideal for these proof-of-concept 

experiments. EvoMining hits for these two strains include recruitments belonging to the 3-

phosphoshikimate-1-carboxyvinyltransferase enzyme family. This enzyme, or AroA, catalyzes the 

transfer of a vinyl group from phosphoenolpyruvate (PEP) to 3-phosphoshikimate forming 5-

enolpyruvylshikimate-3-phosphate and releasing phosphate. The reaction is part of the shikimate 

pathway, a common pathway for the biosynthesis of aromatic amino acids and other metabolites 

(44). 

The phylogenetic reconstruction of the actinobacterial AroA enzyme family (Fig 1B and 

Tree S4), as expected, shows a major clade associated with central metabolism; this clade 

includes SLI_5501 from S. lividans and SCO5212 from S. coelicolor. The phylogeny also has a 

divergent clade that includes two family members linked to the BGCs of the polyketide 
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asukamycin (45) and phenazines (46), as well as AroA homologs from 26 % of the genomes in the 

database. In S. coelicolor and S. lividans these recruited homologs are encoded by SLI_1096 and 

SCO6819, respectively. Moreover, in S. lividans, these orthologous genes are located within a 

large genome island, SliGI-1, which has been functionally linked to metal homeostasis (47), and 

they are situated only six genes upstream of a two-gene PKS system spanning SCO6826-7 and 

SLI_1088-9, respectively. This PKS was identified in S. coelicolor since the early days of the 

genome mining of this organism, but often it was referred to as a cryptic BGC (48, 49). Indeed, 

the divergent AroA homologs have not been associated with it. Furthermore, these homologs are 

classified as “other genes” when both genomes are mined using antiSMASH. 

The gene neighborhood of these aroA genes is highly conserved between the genomes of 

S. lividans and S. coelicolor. Thus, from this point onwards we will refer to the S. lividans genes 

only. The syntenic region spans from SLI_1077 till SLI_1103, including several biosynthetic 

enzymes, regulators, transporters and the PKS, suggesting that these genes, together with other 

biosynthetic genes in this locus, are functionally linked and form a single BGC (Figure 4A). 

Detailed annotation of this BGC (Table S5) revealed the presence of a 2,3-bisphosphoglycerate-

independent phosphoenolpyruvate mutase enzyme (SLI_1097; PPM), downstream and possibly 

transcriptionally coupled to the aroA homolog. Thus, a functional link between these genes, as 

well as with phosphonopyruvate decarboxylase gene (PPD; SLI_1091) encoded in this BGC, was 

proposed. The combination of mutase-decarboxylase enzymes is a conserved biosynthetic feature 

of NPs containing carbon-phosphate bonds (16).  

Other non-enzymatic functions were found encoded within this BGC, including a set of 

ABC transporters, originally annotated as phosphonate transporters (SLI_1100 and SLI_1101). 

Four arsenic tolerance-related genes (SLI_1077-1080) located upstream of the PKS could also be 
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annotated. These genes are paralogous to the main arsenic tolerance system encoded by the ars 

operon (50), which is located at the core of the S. lividans chromosome (SLI_3946-50). This BGC 

also codes for regulatory proteins, mainly arsenic responsive repressor proteins (SLI_1078, 

SLI_1092, SLI_1102 and SLI_1103). Thus, overall, our detailed annotation suggests a link 

between arsenic and phosphonate biosynthetic chemistry. Accordingly, in order to reconcile the 

presence of phosphonate-like biosynthetic, transporter and arsenic resistance genes, within a BGC, 

we postulated a biosynthetic logic analogous to that of phosphonate biosynthesis, but involving 

arsenate as the driving chemical moiety (Figure 4A).  

The abovementioned hypothesis was further supported by the three following observations. 

First, arsenate and phosphate are similar in their chemical and thermodynamic properties, causing 

phosphate and arsenate utilizing enzymes to have overlapping affinities and kinetic parameters, 

although arsenate-derived products are more labile. Indeed, as exemplified in the two next points, 

arsenic compounds are commonly used as analogs of native substrates in mechanistic studies of 

phosphate enzymes (51, 52). Second, previous studies have demonstrated that AroA is able to 

inefficiently catalyze a reaction in the opposite direction to the biosynthesis of aromatic amino 

acids, namely, the formation of PEP and 3-phosphoshikimate from enolpyruvyl shikimate 3-

phosphate and phosphate (44). However, since phosphate is an intrinsically non-reactive substrate, 

the demonstration of the backwards reaction catalyzed by AroA requires the use of phosphate 

analogues. Indeed, arsenate and enolpyruvyl shikimate 3-phosphate can react to produce 

arsenoenolpyruvate (AEP), a labile analog of PEP, which is spontaneously broken down into 

pyruvate and arsenate (44). Third, it has been demonstrated that the phosphoenolpyruvate mutase, 

PPM, an enzyme responsible for the isomerization of PEP to produce phosphonopyruvate, is 

capable of recognizing AEP as a substrate. Although at low catalytic efficiency, the formation of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2015. ; https://doi.org/10.1101/020503doi: bioRxiv preprint 

https://doi.org/10.1101/020503


18 
 

3-arsonopyruvate by this enzyme, a product analog of the phosphonopyruvate intermediate in 

phosphonate NPs biosynthesis (16), has been previously demonstrated (53).  

The previous evidence was used to postulate a novel biosynthetic pathway encoded by 

SLI1077-SLI1103. A putative arseno-organic product synthesized by this pathway may resemble 

the structural characteristics and properties of a phospolipid. A detailed functional annotation, and 

biosynthetic proposal, is provided as supplementary information (Figure S6 and Table S6). To 

determine the product of the predicted BGC we used expression analysis, as well as comparative 

metabolic profiling of wild type and mutant strains, in both S. lividans and S. coelicolor. Using 

RT-PCR analysis, we first determined the transcriptional expression profiles of the PKS 

(SLI1088), aroA (SLI1096), one of the arsR-like regulator (SLI1103), and the periplasmic-binding 

protein of the ABC-type transporter (SLI1099). As expected for a cryptic BGC, the results of 

these experiments demonstrate that the proposed pathway is repressed under standard laboratory 

conditions. We then analyzed the potential role of arsenate as an inducer of the expression of this 

BGC, either alone or in combination with phosphate deprivation. Indeed, we found that the 

analyzed genes were induced when S. lividans 66 was grown in the presence of 500 µM of arsenic 

and 3 µM of phosphate (Figure 4B). 

In parallel, we used PCR-targeted gene replacement to produce mutants of the SLI1096 

and SCO6819 genes, and analyzed the phenotypes of the mutant and wild type strains on a 

combined arsenate/phosphate gradient, i.e. low phosphate and high arsenate, and vice versa. After 

this, we cultivated the wild type and mutant strains in liquid cultures, with and without arsenic, 

during 14 days to obtain enough biomass for chemical analysis. Organic extracts from the pellets 

of these cultures were analyzed using HPLC coupled with an ICP-MS calibrated to detect arsenic-

containing molecular species. Simultaneously, a high-resolution mass spectrometer determined the 
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mass over charge of the ions detected by the ICP. This set up allows for high-resolution detection 

of arseno-organic metabolites (54). Using this approach, we detected the presence of arseno-

organic metabolites in the organic extracts from the pellets of both wild-type S. coelicolor and S. 

lividans, with m/z of 331.1248, 333.1041, and 351.1147 (Figure 4C and Figure S6). These 

metabolites could not be detected in either identical extracts from wild type strains grown in the 

absence of arsenate or in the mutant strains deficient for the SLI1096/SCO6819 genes. Thus, it is 

tempting to speculate that the product of this pathway may be a relatively polar arsenolipid 

(Figure S6). The actual structures of these products are still subject to further investigation and 

will be discussed in detail in a future publication.  

 

EvoMining and its future impact into NP genome mining  

On one hand, confirmation of a link between SLI1096/SCO6819 and the synthesis of an 

arseno-organic metabolite provides an example on how genome-mining efforts, based in novel 

enzyme sequences, can be advanced. For instance, co-occurrence of divergent SLI1096 orthologs, 

now called arsenoenolpyruvate synthases (AEPS); arsenopyruvate mutase (APM) and 

arsonopyruvate decarboxylase (APD), can be used as beacons to mine publically available 

bacterial genomes. Indeed, thirteen more BGCs with the potential to synthesize arseno-organic 

metabolites, all of them encoded in genomes of myceliated Actinobacteria, were identified after 

sequence similarity searches using the non-redundant GenBank database. The divergence and 

potential chemical diversity within these arseno-related BGCs was characterized after a 

phylogenetic analysis, using as matrix all conserved genes of these BGCs (Figure 5). This 

analysis suggests three possible sub-classes with distinctive features, PKS-related, PKS-

independent and PKS/NRPS hybrid that warrant further investigation. 
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On the other hand, once an EvoMining hit is validated as an enzyme with an 

unprecedented function in the context of a hidden BGC, i.e. an EvoMining prediction, this could 

lead to identification of novel classes of conserved BGCs. To illustrate this, which relates to the 27 

% of the EvoMining predictions discussed during analysis of the performance of this approach, we 

focused in the AroA EvoMining tree. The green branches within the NP-related clade of this tree 

were manually curated in search for a conserved BGC (Figure 1B). One particular case was found 

to appear frequently, and thus its genes were annotated in detail. For this purpose, fifteen genes 

upstream and downstream the EvoMining AroA hit were extracted as before, and annotated on the 

basis of the locus from S. griseolus NRRL B-2925, as this organism provides a condensed version 

of this locus (Table S7). Indeed, the locus has some of the expected features for an NP BGC, 

including: (i) gene organization suggesting an assembly of operons, most of them (84 %) 

transcribed in the same direction; (ii) genes encoding for enzymes, regulators and potential 

resistance mechanisms; and (iii) enzymes that have been found in other known NP BGCs. The 

latter observation, which actually includes seven genes out of thirty-one, present in an equal 

number of NP BGCs, actually confirms the NP nature of this locus. The reason of why EvoMining 

did not lead to these homologs as expanded and recruited enzymes has to do with the fact that 

none of these enzyme families are included within the limited space explored by our PSCP 

database. Moreover, this BGC was found to be conserved in at least sixty-three Streptomyces 

genomes, and in the genome of Microtetraspora glauca NRRL B-3735, included in the non-

redundant GenBank database (Table S8).  

Thus, we conclude that EvoMining has great potential to ease natural product and drug 

discovery by means of accelerating the conceptual genome-mining loop that goes from novel 

enzymatic conversions, their sequences, and propagation after homology searches.  
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Methods  

 

Bioinformatics methods 

Seed NP database: NRPS and PKS BGCs were obtained from the DoBISCUIT and ClusterMine 

360 databases (10, 11). BGCs for other NP classes were collected from available literature (Table 

S1). The database included amino acid fasta sequences from GenBank, DoBISCUIT and 

ClusterMine360. Annotated GenBank formatted files were downloaded from the GenBank 

database to assemble a database that included 226 BGCs. Genome database: Complete and draft 

genomes of 230 members of the Actinobacteria family (Table S1) were retrieved from the 

GenBank either as single contigs or as groups of contigs in GenBank format, amino acid and DNA 

sequences were extracted from these files using in-house made scripts. Precursor supply central 

pathway (PSCP) database: the amino acid sequences from the proteins involved in central 

metabolism were obtained from a database that we assembled for a previous enzyme expansion 

assessment, published elsewhere (28). The final database for this work included a total of 339 

queries for nine pathways, including amino acid biosynthesis, glycolysis, pentose phosphate 

pathway and tricarboxylic acids cycle (Table S2).  

EvoMining pipeline: The PSCPs database was used as query to retrieve PSCP enzyme families 

from the genome database using BlastP (55), with an e-value cutoff of 0.0001 and a score cutoff 

of 100. At least three query sequences, representing each of the GSMRs used as sources of these 

sequences (28), were used for Blast searches. The average number of homologs of each enzyme 

family per genome and the standard deviation were calculated to establish a cutoff to identify and 

highlight significant expansion events (Table S4). An enzyme family expansion was scored if the 

number of homologs in at least one genome was higher than the average number of homologs plus 
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a standard deviation unit. Enzyme families with expansions were used for the next step of the 

analysis. To identify enzyme recruitments, the amino acid sequences of the seed NP database were 

used as queries for BlastP searches against expanded enzyme families identified in the previous 

step using an e-value cutoff of 0.0001 and a bit score cutoff of 100. These parameters were 

consistent with the approach used by EvoMining, as confirmed heuristically.  

The homologs found in known BGCs were added as seeds to the sequences from the 

expanded enzyme families with recruitments for future clade identification and labeling. These 

sets of sequences were aligned using Muscle version 3.8.31 (56). The alignments were inspected 

and curated manually using JalView (57). The curated alignments were used for phylogenetic 

reconstructions, which were estimated using MrBayes (58) with the following parameters: 

aamodelpr=mixed, samplefreq=100, burninfrac=0.25 in four chains and for 1000000 generations. 

The bidirectional best hits with the sequences in the PSCP database were identified and tagged 

using in-house scripts to distinguish PSCP orthologs from other homologs that result from 

expansion events. The gene identifiers (GIs) of the EvoMining hits were used as queries to 

retrieve their genome context as DNA regions of approximately 80 Kbs including the EvoMining 

hit coding genes. These contigs were retrieved from the genomes in GenBank format using an in-

house script. These contigs were annotated using antiSMASH (29) through its web interface. The 

whole process was executed semi-automatically using in-house scripts written in Perl. 

 

Gene knockout methods 

S. coelicolor (SCO6819) and S. lividans 66 (SLI1096) knock-out mutants were constructed using 

in-frame PCR-targeted gene replacement of their coding sequences with an apramycin resistance 

cassette (acc(3)IV) (59). The plasmid pIJ773 was used as template to obtain a mutagenic cassette 
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containing the apramycin resistance marker by PCR amplification with the primers reported in 

Table S9. The mutagenic cassettes were used to disrupt the coding sequences of the genes of 

interest from the cosmid clone 1A2 that spans from SCO6971 to SCO6824 (60). Given the high 

sequence identity between the regions covered by cosmid 1A2 with the orthologous region in S. 

lividans, this cosmid clone was also used for disruption of SLI1096. The gene disruptions were 

performed using the Redirect system reported elsewhere (59). Double cross-over ex-conjugants 

were selected using apramycin resistance and kanamycin sensitivity as phenotypic markers. The 

genotype of the clones was confirmed by PCR. The strains and plasmids of the Redirect system 

were obtained from the John Innes Centre (Norwich, UK). 

The S. roseus leupA mutant was constructed following an insertional mutagenesis strategy. 

For this purpose, a fragment of 640 bp was amplified by PCR and cloned in the vector pCR2.1-

TOPO (ampicillin/ kanamycin resistance) using a TA cloning kit from Invitrogen (Carlsbad, 

USA), to produce the suicide plasmid pLEUPA that cannot be replicated in S. roseus. This 

plasmid was introduced into S. roseus via protoplasts, generated following standard protocols. The 

transformants were selected using kanamycin (50µ/mL) and the genotype of the insertional 

mutants was confirmed by PCR.  

 

Transcriptional analysis 

The S. lividans 66 wild type strain was grown on 0 and 3; 0 and 300; 500 and 3; 500 and 300 µM 

of Na3AsO4 and KH2PO4 respectively in solid modified R5 media for eight days. The complete 

culture conditions used in this work are further detailed in a following section. Mycelium 

collected from plates was used for RNA extraction with a NucleoSpin RNA II kit (Macherey-

Nagel). The RNA samples were used as template for RT-PCR using the one step RT-PCR kit 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2015. ; https://doi.org/10.1101/020503doi: bioRxiv preprint 

https://doi.org/10.1101/020503


24 
 

(Qiagen) (2ng RNA template for each 40 µl reaction). The housekeeping sigma factor hrdB 

(SLI6088) was used as a control.  

 

S. roseus genome sequencing and library construction  

S. roseus ATCC31245 was obtained from the ATCC collection, and its genomic DNA was 

extracted using common protocols (43) and sequenced at the genomic sequencing facilities of 

Langebio, Cinvestav-IPN (Irapuato, Mexico), using an Illumina MiSeq platform in paired-end 

format with read lengths of 250 bases and insert length of 800 bases. In total, 721 Mbp of 

sequence was obtained. The raw reads were filtered using Trimmomatic (61) and assembled with 

velvet (62), obtaining a 7.8 Mb assembly in 165 contigs with a coverage of 95 X and a GC content 

of 72 %. This assembly was annotated using RAST (63) antiSMASH (29) and EvoMining. A 

genomic library of S. roseus ATCC31245 was further obtained for cloning into the pESAC13A 

vector with an average insert length of 70 Kbps (Bio S&T, Montreal, Canada). pESCA13A is a 

derivative from pPAC-S1 (64), which has an apramycin resistance as selection marker. This 

library was screened for the leup locus by PCR, leading two clones named 9_18N and 8_10B, 

containing the desired region. As described further, these constructs were used for heterologous 

expression in E. coli.  

 

LC-MS metabolite profile analysis 

The SLI1096 and SCO6818 minus mutants were grown on modified R5 medium (K2SO4 

0.25 gr; MgCl2-6H20 10.12 gr; glucose 10 gr; casamino acids 0.1 gr; TES buffer 5.73 gr; trace 

element solution (43) 2 ml; agar 20gr) supplemented with a gradient of KH2PO4 and Na3AsO4 
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ranging from 3 to 300 µM and 0 to 500 µM, respectively. Induction of the arseno-organic BGC in 

both strains was detected in the condition were phosphate is limited and arsenic is available. 

Therefore, modified R5 liquid media supplemented with 3µM KH2PO4 and 500 µM Na3AsO4 was 

used for production of arseno-organic metabolites, and the cultures were incubated for 14 days in 

shaken flasks with metal springs for mycelium dispersion at 30 C. The mycelium was obtained by 

filtration, and the filtered mycelium was washed thoroughly with deionized water and freeze-

dried. The samples were extracted overnight twice with MeOH/DCM (1:2). The extracts were 

combined and evaporated to dryness, and the dry residues were re-dissolved in 1 mL of MeOH 

(HPLC-Grade) and injected to the HPLC. The detection of organic arsenic species was achieved 

by online-splitting of the HPLC-eluent with 75% going to ESI-Orbitrap MS (Thermo Orbitrap 

Discovery) for accurate mass analysis and 25% to ICP-QQQ-MS (Agilent 8800) for the detection 

of arsenic. For HPLC, an Agilent Eclipse XDB-C18 reversed phase column was used with a H2O 

/MeOH gradient (0-20 min: 0-100% MeOH; 20-45 min: 100% MeOH; 45-50 min: 100% H2O). 

The ICP was set to oxygen mode and the transition 75As+ -> (75As16O)+ (Q1: m/z = 75, Q2: m/z = 

91) was observed. The correction for carbon enhancement from the gradient was achieved using a 

mathematical approach as described previously (54). The ESI-Orbitrap-MS was set to positive ion 

mode in a scan range from 250-1100 amu. Also, MS2-spectra for the major occurring ions were 

generated. 

For native leupeptin production wild type S. roseus and LeupA, mutants were grown in 

leupeptin production media (65) containing: Glucose 3gr; NH4NO3 0.5gr; MgSO4 (7H2O) 0.5gr; 

KCl 0.05 gr; L-leucine 0.75 gr; L-arginine 0.75 gr; glycine 0.75 gr; casaminoacids 0.1 gr; yeast 

extract 0.4 gr per liter. These cultures were set up in shaken flasks with metal springs for 48 hours 

at 30 C. For heterologous production of leupeptins, E. coli DH10B transformants carrying the 
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9_18N and 8_10B PAC clones were grown in Luria-Bertani media (LB) in shaken flasks with 50 

µg per mL of apramycin at 37 C for 48 hours. The cultures were centrifuged and the supernatants 

freeze-dried to obtain 10X concentrates. The crude extracts were analyzed using a C18-218TP 

vydac column (Grace Healthcare; Columbia, USA) or Restek C18 column (Restek 

Chromatography; Bellefonte, US), with a 0-100% gradient of [triflouroacetic acid 0.01% in 

water]-acetonitrile, and detected by diode array (DAD) at λ=210 nm. Leupeptin authentic standard 

(L2884, Sigma-Aldrich, St Louis, USA) was used as reference and the peaks with equivalent 

retention times from the extracts were collected for MS analysis performed on an ion trap LTQ-

VELOS equipment in positive mode (Thermo scientific, Waltham, USA) at the MS Unit of 

Unidad Irapuato Cinvestav-IPN (Irapuato, Mexico). 
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Figure legends 

 

Figure 1. EvoMining pipeline for the recapitulation of the evolution of NP biosynthesis. A. 

Bioinformatic workflow: The three input databases, as discussed in the text, are shown in green. 

Internal databases are shown in yellow, whereas grey boxes depict processes. B. An example of a 

typical EvoMining phylogenetic tree (Tree S4) using the case of 3-carboxyvinyl-

phosphoshikimate synthase family. Red branches include homologs related to central metabolism 

and their topology resembles that of a species guide tree (Tree S1), while blue branches have been 

recruited into known BGCs. Cyan braches are EvoMining hits found within regions recognised as 

NP-related also by antiSMASH or ClusterFinder. Green branches are not classifiable by other 

methods and thus represent EvoMining predictions that may form part of BGCs for novel classes 

of NPs (see Figure 2A for further details). 

 

Figure 2. Analysis of EvoMining Hits. A. Pie chart of the whole set of EvoMining hits as 

annotated using antiSMASH and ClusterFinder. B. Diversity of BGCs per recruited enzyme 

family. Top panel, the number of hits and BGC classes per family are compared; as the number of 

hits increases, more BGC classes are found. Bottom panel, a diversity plot for each enzyme 

family, showing the proportion and number of BGC classes, defines by AntiSMASH. The label 

“Detected by ClusterFinder” means EvoMining hits that are also found by this algorithm, whereas 

the label “EvoMining predictions” includes all hits that could not be detected by antiSMASH or 

Cluster Finder.  
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Figure 3. Discovery of the BGC for leupeptin. A. Left panel, phylogenetic reconstruction of the 

actinobacterial argininosuccinate lyase enzyme family (Tree S3). Homologs related to central 

metabolism are shown in red branches. A clade including recruited homologs is shown in cyan. 

The LeupB homolog from S. roseus, a leupeptin producer, together with the known recruitments 

for pacidamycin and napsamycin (blue branches), are indicated. B. Genome context of leupB, 

including leupA (novel NRPS), leupC (annotated as threonine kinase) and leupD (annotated as 

cysteine synthase). The enzyme functions in the context of leupeptin biosynthesis remain to be 

characterized C. Biosynthetic proposal for leupeptin, based in the EvoMining prediction and 

earlier biochemical analyses. LeupA is proposed to produce Acyl-Leu-Leu, which is used by 

LeupB, together with arginine, for the synthesis of leupeptidic acid. A reductase activity, that 

remains to be identified, is required for formation of the characteristic aldehyde group. 

 

Figure 4. Discovery of a BGC for arseno-organic NPs in S. coelicolor and lividans. A. BGC 

for arseno-organic biosynthesis in S. lividans 66 and S. coelicolor are indicated. The proposed 

biosynthetic logic for early intermediates in the biosynthesis of arseno-organic metabolites is 

shown. B. Transcriptional analysis of selected genes within the arseno-organic BGC, showing that 

the expression of the genes is repressed under standard conditions, but induced upon the presence 

of arsenate. C. HPLC-Orbitrap/QQQ-MS trace of organic extracts from mycelium of wild type 

and the SLI_1096 mutant showing the detection of arsenic-containing species. Three m/z signals 

were detected within the two peaks found in the trace from the wild type strain grown on the 

presence of arsenate. These m/z signals are absent from the wild type strain grown without 

arsenate, and from the mutant strain grown on phosphate limitation and the presence of arsenate. 
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Identical results were obtained for S. coelicolor and the SCO6819 mutant when tested in identical 

conditions. 

 

Figure 5. Novel BGCs for arseno-organic metabolites found in Actinobacteria. The BGCs 

were found by mining for the co-occurrence of arsenoenol pyruvate synthase (AEPS), 

arsenopyruvate mutase (APM), arsenoenolpyruvate decarboxylase (APD), in available bacterial 

genomes from the GenBank, as of November 2014. Related BGCs were only found in 

actinomycetes. The phylogeny was constructed with a concatenated matrix of conserved enzymes 

among the BGCs that included AEPS, APM, APD (purple arrows), plus CTP synthase and 

anaerobic dehydrogenase (shown as blue arrows together with other enzymes). Variations in the 

functional content of the BGCs are accounted by PKSs (red arrows), hybrid PKS-NRPS (yellow 

genes), arsenic regulation and metabolism proteins (brown arrows), and other regulators and 

transporters (green arrows). Three main classes or arseno-organic BGCs could be expected from 

this analysis: PKS-independent, PKS-NPRS-dependent and PKS-dependent biosynthetic systems. 

Dotted lines indicate sequence gaps, and an asterisk marks the sequence from Nocardiopsis 

lucentensis, which is assumed that have a missing PKS gene in one of the sequence gaps. 
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