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Abstract 

The importance of epistasis – or statistical interactions between genetic variants – to the 

development of complex disease in humans has long been controversial. Genome-wide 

association studies of statistical interactions influencing human traits have recently become 

computationally feasible and have identified many putative interactions. However, several 

factors that are difficult to address confound the statistical models used to detect interactions and 

make it unclear whether statistical interactions are evidence for true molecular epistasis. In this 

study, we investigate whether there is evidence for epistasis regulating gene expression after 

accounting for technical, statistical, and biological confounding factors that affect interaction 

studies. We identified 1,119 (FDR=5%) interactions within cis-regulatory regions that regulate 

gene expression in human lymphoblastoid cell lines, a tightly controlled, largely genetically 

determined phenotype. Approximately half of these interactions replicated in an independent 

dataset (363 of 803 tested). We then performed an exhaustive analysis of both known and novel 

confounders, including ceiling/floor effects, missing genotype combinations, haplotype effects, 
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single variants tagged through linkage disequilibrium, and population stratification. Every 

replicated interaction could be explained by at least one of these confounders, and replication in 

independent datasets did not protect against this issue.  Assuming the  confounding factors 

provide a more parsimonious explanation for each interaction, we find it unlikely that cis-

regulatory interactions contribute strongly to human gene expression. As this calls into question 

the relevance of interactions for other human phenotypes, the analytic framework used here will 

be useful for protecting future studies of epistasis against confounding. 

 

Introduction 

Epistasis, a phenomenon wherein the effect of a genetic variant on the phenotype is dependent on 

other genetic variants, was first identified over a century ago; however, it has been highly 

contested whether or not epistasis plays an important role in the development of complex disease 

in humans. In model organisms, epistasis is commonly observed: variants associated with the 

trait of interest often interact with other variants, and more broadly, such interactions account for 

a notable proportion of variance in an array of phenotypes.
1–3

 Epistasis may play a similar role in 

humans as additive genetic effects are unable to account for the majority of heritability in most 

complex traits;
4,5

 however, evidence for epistasis in human remains elusive. Most studies rely on 

the statistical association between genetic variants and phenotype to identify signs of epistasis, 

and the interactions identified are notoriously difficult to replicate.
6,7

 This may be attributable to 

the inherent inability to tightly control a variety of factors when studying phenotypes in humans, 

or the fact that most phenotypes studied are several steps removed from the underlying biological 

processes. These methodological limitations make it unclear whether the lack of observed 
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epistasis in humans is a true feature of the genetic architecture, or is simply much more difficult 

to observe outside experimental systems.  

 

Human-derived cell lines, while a proxy for primary tissue, provide a unique opportunity to 

investigate epistasis. Like model systems, the environment can be tightly controlled, and 

moreover, comprehensive genetic and gene expression data can readily be collected from cell 

lines. Through statistical association studies, the genetic architecture underlying thousands of 

genes’ expression – a quantitative phenotype directly tied to the nucleotide sequence – can be 

interrogated.  Furthermore, molecular mechanisms that drive gene expression are known to 

involve complex interactions among transcription factors and regulatory sequences, and 

experimental maps of chromatin looping and transcription factor binding enable biological 

interpretations for observed interactions.
8,9

 The study of gene expression is also directly relevant 

to complex disease: the vast majority of variants identified in genome-wide association studies 

are non-protein coding, and thus it is presumed that the disruption of gene regulation is causally 

involved in the development of many common diseases.
10,11

 In several instances, it has been 

shown that single nucleotide variants regulate gene expression by altering the function of 

regulatory elements, and that these altered gene expression profiles result in clinical 

phenotypes.
12,13

 By better understanding the genetic control of gene expression, we may 

therefore better understand the genetic architectures underlying complex disease. 

  

Genetic variants associated with gene expression levels – termed expression quantitative trait 

loci (eQTL) – have been studied extensively in primary human tissue and in cell lines. In many 

eQTL analyses, a gene-based approached is taken wherein variants within the cis-regulatory 
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region for a given gene are tested for association with its expression. Until recently, the number 

of association tests required to perform a similar genome-wide association test for interactions 

was not computationally feasible. However, advances in computational power are continually 

diminishing this barrier and two genome-wide studies of epistasis have identified replicating 

interactions.
14,15

 The validity of these interactions, however, was questioned when it was 

demonstrated that through complex linkage disequilibrium (LD) patterns, these putative 

interactions could tag single variant eQTL.
16

 Notably, all of the interactions identified in those 

studies were either no longer significant or were strongly attenuated when the effects of cis-

eQTL were considered. This illustrates that, compared to single-locus analyses, the statistical 

models used to detect epistasis are subject to novel confounding factors, which are rarely 

addressed in studies of epistasis.  

 

In this study, we investigate whether evidence for epistasis in humans persists after 

systematically accounting for technical, statistical, and biological confounding factors. We 

performed a targeted investigation of interactions regulating gene expression levels in human 

lymphoblastoid cell lines (LCLs): the analysis was restricted to nominal eQTL within the target 

gene’s cis-regulatory region, to drastically reduce the number of association tests performed 

while retaining the genomic regions most likely to harbor pertinent regulatory elements. Few 

genes showed evidence of epistasis (165 of 11,465 genes tested), although multiple interactions 

were often detected for the same gene. A total of 1,119 interactions were identified, many of 

which replicated in an independent dataset (363 of 803 possible).  We then investigated 

confounding factors – technical (variants within probe binding sites, ceiling/floor effect), 

statistical (missing genotype combinations, population stratification), and biological (haplotype 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/020479doi: bioRxiv preprint 

https://doi.org/10.1101/020479
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

effects, tagging cis-eQTL) – that provide alternative, more parsimonious explanations than 

biological epistasis. Ultimately, each of the interactions identified could be accounted for by an 

alternative mechanism, suggesting that the majority of statistical interactions identified without 

accounting for confounding factors are spurious associations. Many of these confounding factors 

are inherent to the statistical models used, and will therefore generalize to other phenotypes; 

consequently, the analytic framework of this study will be of use to many future studies of 

statistical epistasis. 

 

Subjects and Methods 

Genotyping and gene expression data. 

The discovery dataset was comprised of individuals ascertained as part of the International 

HapMap Project, PhaseI+II,
17

 which consisted of 210 unrelated individuals with genome-wide 

genotyping data (Phase I+II, release 24). For each of these individuals, Stranger et al. collected 

and normalized gene expression levels from immortalized LCLs using the Sentrix Human-6 

Expression Bead Chip, v1.
18

 All probes with a HapMap SNP underlying the expression probe 

were removed from analysis.
18

 We applied a population normalization procedure, described by 

Veyrieras et al.,
19

 to the gene expression values that such that the expression of each gene within 

each population followed a normal distribution. This removed population-level differences in 

gene expression, which enabled us to combine all ethnicities in our analysis.  Our replication 

dataset consists of 232 unrelated individuals from the 1000 Genomes Project (1KG), for whom 

gene expression in LCLs was available. These individuals had been sequenced at low coverage 

as part of the 1KG Project;
20

 we used genetic data from phase I, version 3. Stranger et al. also 

collected and normalized gene expression levels in LCLs for these individuals using Illumina 
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Sentrix Human-6 Expression BeadChip, v2.
21

 We applied the same population normalization 

procedure 
19

 to these data. Both the discovery and replication dataset are multiethnic; the sample 

composition by ethnicity is shown in Table 1. 

 

Two additional replication datasets were used to investigate a promising interaction. The first 

consisted of 283 European-descent individuals from the Genotype-Tissue Expression (GTEx) 

Project, for whom gene expression in whole blood was assessed by RNA-sequencing.
22

 

Genotype data for these individuals was collected on both the HumanOmni5-Quad Array and the 

Infinium Exome Chip, and then imputed to 1KG.
22

 The second dataset consisted of brain 

samples from autopsied European-descent individuals in the Mayo Late Onset Alzhemier’s 

Disease Consortium.
23

 These individuals were genotyped on the Illumina HumanHap300-Duo 

Genotyping Beadchip and gene expression was collected using the Illumina Whole-Genome 

DASL HT BeadChip.
23

 370 individuals had expression data available from cerebellum, and 385 

had expression in the temporal cortex.  

 

Generating SNP pairs for interaction testing. 

To generate SNP-pairs for each gene, we first identified all common SNPs within the gene’s cis-

regulatory region. To be considered common, variants had to have a MAF > 5% when all 

ethnicities were combined. Based on cis-eQTL analyses,
19

 the cis-regulatory region was defined 

as starting 500 kb upstream of the gene’s start and ending 500 kb downstream of the gene’s stop 

(including the gene itself); gene boundaries were taken from ENSEMBL. Previously, these 

variants were individually tested for association with the gene’s expression level in the discovery 

dataset by Veyrieras et al.
19

 Based on this analysis, we filtered out SNPs whose marginal effects 
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were not nominally associated with gene expression (excluded p > 0.05), under the hypothesis 

that nominally associated variants may represent weak marginal effects from a true underlying 

interaction. We then considered all possible SNP-pairs amongst the remaining variants. Once this 

was done for each gene, over 21 million SNP-pairs were generated for interaction testing.  

 

Identifying significant interactions. 

Each SNP pair was tested for interactions significantly associated with the expression of the gene 

for which it was generated.  The following interaction model (Equation 1)
24

 was used: 

 

                                                                 

     

(Equation 1) 

where   represents gene expression,    and    use additive encoding to represent the genotype at 

SNP A and SNP B respectively,    and    use Cordell’s 
24

 dominant encoding to represent the 

genotype at SNP A and B respectively,    and    are estimated coefficients representing the 

additive and dominant effects of SNP A,    and    are estimated coefficients representing the 

additive and dominant effects of SNP B, and             and     are estimated coefficients 

representing both additive and dominant interaction effects.   The top three principal components 

were also included as covariates (      . To determine the significance of interactions, this 

model was compared to a reduced model lacking the four interaction terms using a likelihood 

ratio test (LRT) (Equation 2).  

                                         (Equation 2) 
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This test was implemented using the program INTERSNP.
25

 We calculated an FDR of 5% using 

the qvalue package in R.
26

 

 

Identification of representative interaction eQTL models for distinct pairs of interacting genomic 

loci.  

Some interaction eQTL (ieQTL) models identified in the discovery analysis were redundant due 

to LD. For two ieQTL models to be considered redundant, each SNP within one significant 

ieQTL model had to be in high LD (r
2
 ≥ 0.9) with a SNP within the second ieQTL model, and 

vice versa.  By using this criterion, the pairs were effectively correlated at r
2
 ≥ 0.8, the threshold 

typically used for tag-SNP selection. The redundant SNP-pairs have very similar betas for all 

parameters (Supplemental Figure 2), indicating they represent the same signal from a pair of 

interacting genomic loci. Redundant ieQTL models were grouped together. The model with the 

most significant LRT p-value in the discovery analysis was used to represent the entire group in 

most analyses, so that each pair of interacting genomic loci was equally represented. A visual 

schematic of this process is provided in Figure 1.  

 

Variants within the probe binding site.  

To determine if variants were within the probe binding locations, we first used BLAT to identify 

the probe binding location in hg19 coordinates. Some probes returned multiple hits; 

consequently, we filtered the binding sites (binding sites had to be on the same chromosome as 

the gene, have a length > 30 base pairs, and an identity score > 95%) to identify unique binding 

locations. We then exclusively looked within a subset of our discovery dataset with sequencing 
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data in the 1KG Project (n=174) to determine if there were any variants within binding sites that 

might confound the interaction analysis. 

 

Ceiling/floor effect.  

Microarrays have a limited dynamic range that is not able to capture the extremes of gene 

expression. If the combined additive effect of two variants exceeds the threshold of detection, 

they may be spuriously identified as interacting. We looked for statistical patterns characteristic 

of a ceiling/floor effect to determine an upper bound of its prevalence within our results. First, 

we identified the significant (β±SE could not contain zero) variables in the model.  All 

interactions were then categorized as having 0, 1, or 2 SNPs with a significant main effect - 

either additive or dominant main effects counted; if both additive and dominant main effects 

were significant for the same variant, the one with the largest effect size was used to represent 

the main effect.  For interactions where both variants had at least one significant main effect, we 

determined whether or not they had a concordant direction of effect. For those pairs with 

concordant directions of effect, we compared the significant interaction term with the largest 

absolute effect size to determine if it was discordant with the main effects. If this was the case, 

the interaction had a pattern consistent with a ceiling/floor effect. 

 

Population specific cis-eQTL.  

Population-specific cis-eQTL can confound the interaction analysis, even though gene 

expression values were population normalized and the top three PCs were included as covariates. 

To investigate this, we first stratified the discovery dataset by each of the three ethnicities (CEU, 

YRI, CHB+JPT), and tested each interaction for significance, using the same methodology. For 
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interactions that were not significant (p < 0.05) in any of the populations, we determined if the 

interacting variants were population-specific cis-eQTL using the following model (Equation 3): 

                                    (Equation 3) 

ere   represents gene expression,    uses additive encoding to represent the genotype for the 

variant,    uses Cordell’s 
24

 dominant encoding to represent the genotype, and the top three 

principal components were included as covariates (PC1-3). Variants with nominally significant (p 

< 0.05) main effects were considered cis-eQTL. If a variant was identified as a cis-eQTL in only 

a subset of populations, it was considered population-specific.  

 

Conditional cis-eQTL analysis.  

To determine if interaction-eQTL pairs were tagging a cis-eQTL as suggested by Wood et al.,
16

 

we first identified all nominal cis-eQTL (p < 0.05) for genes with significant ieQTL. To identify 

all nominal cis-eQTL, we used a subset of the discovery analysis individuals (n=174) who were 

also sequenced as part of the 1KG Project.
20

 We used the called genotypes from Phase III, v5. 

The same gene expression data previously described for the discovery set was used. Within this 

subset, we performed a single-marker cis-eQTL analysis for each common variant (MAF > 5%) 

within the cis-regulatory region using Equation 4: 

                                (Equation 4) 

where   represents gene expression,    uses additive encoding to represent the genotype for the 

variant, and the top three principal components were included as covariates (PC1-3). Variants 

with nominal significant (p < 0.05) main effects were considered cis-eQTL. 
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To determine if any of these cis-eQTL could account for the interaction, we created all pairs of 

cis-eQTL and ieQTL for the same gene. We incorporated each cis-eQTL into each interaction 

model (Equation 5) as shown below.  

 

                                                                               

                       (Equation 5) 

 

where   represents gene expression,    and    use additive encoding to represent the genotype at 

interacting SNPs A and B respectively,    and    use Cordell’s dominant encoding to represent 

the genotype at interacting SNPs A and B respectively,    and    are estimated coefficients 

representing the additive and dominant effects of SNP A,    and    are estimated coefficients 

representing the additive and dominant effects of SNP B, and             and     are estimated 

coefficients representing both additive and dominant interaction effects.  .   The main effect of 

the cis-eQTL is represented with additive encoding by    and with dominant encoding by   ; the 

estimated coefficients corresponding to the main effects are    and    respectively. The top three 

principal components were also included as covariates (PC1-3). We then performed a LRT 

comparing this model to a reduced model lacking the interaction terms (Equation 6).  

 

                                                                      (Equation 6) 

 

If the LRT p-value of an interaction was nominally significant (p < 0.05) for all conditional 

analyses, we considered this evidence that the interaction and cis-eQTL represented independent 

signals. 
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Results 

Discovery and replication of genetic interactions that impact gene expression levels.   

We identified interactions between nominal cis-eQTL that were significantly associated with 

gene expression levels. Our analysis was conducted using 210 individuals from the HapMap 

Project, Phase I+II, on whom both genotyping
17

 and gene expression data within LCLs
18

 were 

available. A population normalization procedure was applied to the gene expression data, so that 

there were no systematic differences between populations. The overall workflow for the analysis 

is shown in Figure 1. For each gene with expression data (n=11,465), we identified common 

SNPs (global MAF > 5%) within its cis-regulatory region, defined as 500 kb upstream to 500 kb 

downstream of the gene.  To increase power, we only considered variants nominally associated 

with the gene’s expression (p < 0.05) in a single-marker analysis.
19

 We analyzed all pair-wise 

combinations of these variants for each gene, resulting in over 21 million SNP pairs.  We then 

performed a likelihood ratio test (LRT) comparing a full model, which contains the top three 

PCs, main effects, and interaction terms, to a reduced model, containing only the covariates and 

main effects, to determine which interactions significantly improved model fit.
24

 Given the large 

number of correlated tests, we controlled the false discovery rate (FDR) at 5% (p ≤ 1.328x10-5) 

across p-values from all LRT performed.
26

  

 

LD between variants complicates the interpretation of the interaction models. We addressed two 

types of LD in significant interaction models: within-pair LD, defined as the LD between the 

variants in the same interaction model, and between-pair LD, defined as the LD between variants 

in different interaction models. Modest within-pair LD indicates the variants may be identifying 

a haplotype, which complicates their interpretation because the haplotype may carry other 
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variants that drive the association with gene expression.  To protect against confounding by 

haplotype effects, we removed all pairs with variants in modest LD with one another (r
2
 > 0.6) 

from the remainder of the analysis.  The median r
2
 between remaining pairs of interacting 

variants was 0.06 (Supplemental Figure 1); however, we examined them for further evidence of 

haplotype effects (including applying stricter LD filters) in subsequent sections. Ultimately, 

5,439 interaction models were both significant and passed the within-pair LD filtering criteria; 

they were significantly associated with the expression of 165 unique genes (Dataset S1).  We 

then calculated between-pair LD, or the correlation of variants in different interaction models. 

Highly correlated interaction models were grouped together (Methods, Figure 1) because they 

likely represent the same pair of interacting genomic loci, as evidenced by their very similar 

statistical models (Supplemental Figure 2). The 5,439 interaction models represented 1,119 pairs 

of interacting genomic loci (Dataset S1). The interaction model with the most significant p-value 

in the discovery analysis was selected to represent the entire group in all subsequent analyses, 

unless specifically stated otherwise, to ensure that each pair of interacting genomic loci was 

equally represented. 

 

Next, we performed a replication analysis using an independent dataset of 232 unrelated 

individuals from the 1KG Project who had both whole-genome sequencing 
20

 data and gene 

expression levels in LCLs
21

 available. All ieQTL composed of variants that were common (MAF 

> 5%) and had available genotyping data were tested for significant interactions with the same 

procedure used in the discovery analysis. Of the 803 ieQTL tested, 363 had p-values < 0.05 and 

90 passed a Bonferroni multiple testing correction for all tests performed in the replication 
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analysis. We used a liberal threshold, and considered all ieQTL models with LRT p-values < 

0.05 as successfully replicated.       

 

 All interactions can be explained by confounding factors. 

Statistical interactions can be produced by a variety of factors other than biological epistasis, 

including technical artifacts, statistical artifacts, and LD artifacts driven by other biological 

processes. Technical artifacts are caused by the limitations of the data itself; for instance, 

limitations in the dynamic range of measureable gene expression can result in interactions being 

identified through the ceiling/floor effect.  Statistical artifacts are caused by improper application 

of statistical methodology; for example, when there are population-level differences in the 

phenotype, analyzing multiple ethnicities together can produce spurious associations due to 

population stratification. Technical and statistical artifacts are especially troubling since they are 

unlikely to represent real biological association between the loci and phenotype. Other biological 

phenomena, namely haplotype effects and cis-eQTL effects, can be captured by interaction 

analyses due to LD patterns. We investigated whether the observed significant ieQTL models 

could be explained by each of these phenomena.  

 

Some statistical interactions are consistent with confounding by technical limitations. 

The gene expression data used in this analysis was collected using microarrays. Microarray 

technology has a limited dynamic range, meaning that the upper and lower bound on the level of 

gene expression that microarrays can detect does not cover the full range observed in nature. 

When the observed range of gene expression values is limited due to technical constraints, 

variants with sufficiently large main effects may mask the main effects of other variants in the 
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model if their combined effect exceeds the range limitation.
27

 This phenomenon, referred to as 

the ceiling/floor effect, may result in the identification of spurious interactions. Interactions 

caused by the ceiling/floor effect have a characteristic pattern, in which the main effects of both 

variants have the same direction of effect and the interaction terms are in the opposite direction. 

For example, both main effects may increase gene expression, but the interactions will decrease 

gene expression. An example of an interaction putatively caused by the ceiling effect is shown in 

Figure 2. Of 1,119 locus pairs, 48 exhibited a pattern consistent with the ceiling/floor effect. 

Since transcript production may also have a true biological ceiling, it is possible that true genetic 

interactions could produce this pattern; consequently, we consider this an upper bound of the 

influence of ceiling/floor artifacts within our analysis.  

 

The interpretation of microarray data is also complicated by genetic variants in the probe binding 

site, as different alleles may have different affinities for the probe. Probes containing any 

HapMap variant had previously been removed from the analysis;
18,19

 however, HapMap does not 

provide comprehensive coverage of genetic variants. Consequently, we looked in a subset of 

individuals from the discovery analysis (n=174) with low-coverage sequencing data through the 

1KG Project to see if genetic variants within the probe binding site may result in apparent 

interactions.  The probes for 508 of 1,119 ieQTL contained a SNPs or indel in the 1KG Project. 

The probes for 255 ieQTL contained at least one common (MAF > 5%) variant. While the 

conditional analysis (Methods) would likely account for the effect of these variants, we did not 

consider ieQTL with a common variant in the binding site evidence for biological epistasis.  The 

probes for the remaining 253 ieQTL contained at least one rare variant, but no common 

variation. To determine if these rare variants could result in the interaction, we performed the 
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interaction analysis using only the 1KG individuals who did not have a rare variant in the probe 

binding site.  The interactions for 200 ieQTL remained nominally significant (p < 0.05) when all 

individuals with rare variants were removed.  Consequently, the interactions for 811 ieQTL are 

not attributable to variants within the probe binding sites. 

 

Missing genotype combinations may result in ieQTL. 

Linear regression models for epistasis may be unable to accurately decompose variance between 

genetic terms if there is either LD between the interacting variants or if there are missing 

genotype combinations. The issue of LD has previously been explored, and the Cordell model is 

robust to LD between variants when all genotype combinations are present.
28

 Consequently, we 

examined all interactions within the discovery dataset to see if all of the nine possible two-locus 

genotype combinations were present. For 457 of the 1,119 ieQTL, at least one genotype 

combination was absent. While failure to see certain two-locus genotypes may be due to lethal 

combinations, and thus perhaps is evidence for epistasis, it may also simply be a result of certain 

combinations being uncommon due to allele frequencies. Either way, the statistical model used 

cannot provide robust estimates unless all genotype combinations are present, and therefore, we 

do not consider these interactions to provide evidence for biological epistasis. 

 

Haplotype effects captured through complex LD patterns may produce ieQTL. 

In some LD architectures, a combination of two variants can identify haplotypes. While there is 

evidence to suggest haplotypes form in response to biological interactions between variants,
29

 

haplotypes may simply carry other variants that additively regulate gene expression.  Figure 3 

illustrates how additional variants on the haplotype may result in statistical interactions. 
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Consequently, interactions between variants on the same haplotype cannot be used to 

demonstrate the existence of ieQTL in this analysis. As previously stated, we removed all 

interaction models composed of variants in modest LD with one another (r
2
 > 0.6) from all 

portions of the study. We additionally investigated whether or not variants within the same 

interaction model were in modest LD with one another as measured by D’.  Of the 1,119 

interacting loci, 806 had D’ values < 0.6. The distribution of LD statistics, both r
2
 and D’, for 

interaction models is shown in Supplemental Figure 1.  

 

Population specific eQTLs may produce statistical interactions. 

In our discovery and replication analyses we analyzed multiple ethnicities together. When there 

are population differences in both the distribution of genotypes and phenotypes, analyzing 

multiple populations together can lead to spurious results. The population normalization 

procedure applied to the gene expression data removes systematic population differences in the 

phenotype, thereby enabling multiple ethnicities to be combined for analysis without risk of 

known complications from population stratification. While this approach has been used in other 

studies, we also controlled for the top three PCs in our analysis to adjust for residual ethnicity-

dependent effects.
19,30

 Furthermore,  we performed a stratified analysis, wherein we tested each 

of the 1,119 ieQTL in  each of the three discovery ethnicities (CEU, YRI, and CHB+JPT) 

separately. While the Cordell model was not robust in the stratified analysis in many cases (due 

to the reduced sample size, all nine possible two-locus genotype combinations were often not 

observed in all populations), 859 of 1,119 ieQTL were nominally significant (p < 0.05) in at least 

one population, suggesting that population stratification is unlikely to account for their 

significance.  
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However, the interaction for 260 ieQTL was completely attenuated in the stratified analysis, 

suggesting that interaction testing was subject to a novel form of confounding by population 

stratification. Indeed, we found that 234 of 260 ieQTL attenuated in the stratified analysis 

involved at least one population-specific cis-eQTL, meaning that while the variant was present in 

all populations, it operated as a cis-eQTL in only a subset.
21

 The systematic differences between 

the main effect of each variant and the frequency of two-locus genotype combinations between 

populations resulted in a spurious interaction signature; an example is provided in Figure 4. To 

investigate whether population-specific effects may impact the 859 ieQTL that were nominally 

significant in at least one population, we calculated the within-population LD between each pair 

of interacting variants. 689 of 859 ieQTL were significant in at least one population where the 

variants were not in LD with one another (r
2
 and D’ < 0.6) (Dataset S2).  We did not consider the 

170 ieQTL that were exclusively significant in populations with population-specific haplotypes 

as evidence for biological epistasis. Ultimately, 689 of the 1,119 ieQTL did not appear to be 

driven by population-specific effects. 

 

Statistical interactions may tag single-variant cis-eQTL through LD patterns. 

It was recently demonstrated that all the ieQTL identified in one genome-wide association study 

of epistasis could be explained by the effects of cis-eQTL.
16

 To illustrate this, the most 

significant cis-eQTL for each gene with an interaction was identified and the interaction was 

then conditioned on it (i.e., the cis-eQTL was included in the interaction model). When this was 

done, no interaction remained significant. This occurs when the two interacting SNPs together 

tag a single cis-eQTL through complex LD patterns. Rather than examining only the most 
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significant cis-eQTL for each gene, we conditioned all interactions on all nominal cis-eQTL (p < 

0.05) identified for the regulated gene. This approach requires a comprehensive list of cis-eQTL; 

consequently, we performed this analysis in a subset of individuals from our discovery dataset 

(n=174) with sequencing data available through the 1KG Project. While the 1KG sequencing 

data is low coverage, it is extremely unlikely we would fail to detect the effect of a common cis-

eQTL – 1KG estimates they had 99.3% power to detect variants of 1% frequency.
20

 Even if a 

common cis-eQTL was missed, all variants that could tag it through LD would additionally have 

to be absent for its effect to not be captured in the conditional analysis.  In the 1KG data, all 

common variants (MAF > 5%) within the cis-regulatory region that were nominally associated (p 

< 0.05) with gene expression were considered cis-eQTL.  We then created all pairs of cis-eQTL 

and ieQTL for the same gene. For each of these combinations, we performed a conditional 

analysis in which the additive and dominant main effect for the cis-eQTL were incorporated into 

both the full and reduced model used in the LRT to determine the significance of the interaction.  

The majority of interactions appeared to be mediated by cis-eQTL (Figure 5); however, 139 of 

the 965 testable ieQTL remained significant (p < 0.05) in all conditional analyses performed, 

indicating that these interactions are not explained by cis-eQTL.  

 

IeQTL can be entirely accounted for by alternative mechanisms. 

Finally, we assessed the cumulative impact of alternative explanations on interaction models 

(Dataset S2). Of the 1,119 interacting genomic loci identified, 363 replicated in an independent 

dataset.  Of these, 68 ieQTL could be explained by technical artifacts (i.e., the ceiling/floor effect 

and/or variants within the probe binding sites). 199 of the remaining 295 ieQTL could be 

explained by statistical artifacts (i.e., population stratification and/or missing genotypes). 
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Biological explanations other than epistasis – namely haplotype effects or the tagging of cis-

eQTL – could account for 94 of these ieQTL. Ultimately, two interactions (Table 2) replicated 

and were not explained by the ceiling/floor effect, population stratification, variants within the 

probe binding site, missing genotype combinations, haplotype effects, or the tagging of cis-

eQTL.  

 

We further investigated these two interactions. The interaction between rs1549791 and 

rs7115749 to regulate APIP was not consistent in the direction of effect between the discovery 

and replication datasets (Supplemental Figure 3). This interaction was only observed in African-

descent populations, and without additional datasets to further investigate it, we do not consider 

it evidence for epistasis due to lack of consistency. The interaction between rs1262808 and 

rs11615099 regulating the expression of MYRFL had concordant effects in both the discovery 

and replication datasets (Figure 6). As this interaction was observed in European-descent 

populations, we were able to validate this interaction in 283 individuals from the Genotype-

Tissue Expression (GTEx) Project with RNA-sequencing of gene expression in whole blood, and 

again found a similar pattern of effect (Figure 6).  The same trend was also observed in 370 

European-descent individuals with gene expression in both cerebellum and temporal cortex, 

illustrating that the interaction was found in very different cellular conditions and was robust in 

four independent datasets (Figure 6). However, given that the conditional cis-eQTL analysis was 

conducted in the multi-ethnic discovery dataset, it was possible that population-specific LD 

patterns could have obfuscated the signal from a single-variant and resulted in the residual 

significance of the interaction. Consequently, we performed conditional cis-eQTL analyses in the 

additional datasets composed only of European-descent individuals – and found cis-eQTL that 
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completely attenuated the significance of the interaction signal in all cases.  While the cis-eQTL 

that most attenuates the signal varies between datasets, all tag the same locus (Figure 6). The 

same locus also attenuates the interaction completely in a conditional analysis on the CEU subset 

of the discovery dataset (Figure 6). Thus, despite consistent replication in numerous datasets, this 

interaction can be explained by confounding by cis-eQTL. 

 

Discussion 

In this study, we demonstrated that many technical, statistical, and biological factors confound 

the interpretation of statistical interactions identified and replicated in human LCLs. We first 

detected interactions for less than 2% of genes (165 of 11,465 tested); while this is certainly an 

underestimate and would increase with sample size, it is markedly lower than the prevalence of 

cis-eQTL.
19

 We then performed a comprehensive investigation of confounding factors 

(haplotype effects, ceiling/floor effect, single variant eQTL tagged through LD, missing 

genotype combinations, population stratification, and others), and found that all the interactions 

identified could potentially be accounted for by at least one of these confounding factors. 

Consequently, we find no clear evidence for interactions between variants within the cis-

regulatory region regulating gene expression in humans. 

 

In a range of model organisms, however, epistasis is commonly found
1–3

 – this discrepancy in 

prevalent genetic architectures may be accounted for by a variety of factors. First, humans are an 

‘outbred’ population, whereas model organisms typically are from lab strains with a fairly 

homogenous genetic background between individuals. If epistatic interactions are actually 

between numerous variants, the greater diversity in both number of variants and their frequencies 
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observed in outbred populations may prevent any pair-wise interaction from demonstrating a 

consistent trend at the population level. Additionally, many studies of epistasis in model systems 

are based upon hybrid crosses, and use linkage to identify broader regions associated with the 

phenotype of interest.  Such studies are more likely to have detected gene-gene or haplotype 

interactions – which may represent multiple genetic variants at each locus – rather than SNP-

SNP interactions.  Finally, studies in model organisms that apply similar statistical association 

designs may also be subject to the confounding factors addressed here. 

 

Confounding factors have a pervasive influence on statistical association studies of epistasis: all 

the interactions identified in this study could be accounted for by at least one confounder. Our 

comprehensive exploration of potential confounders, the majority of which are likely to 

generalize broadly across phenotypes,  illustrates the alternative explanations that must be 

addressed in future studies before concluding that evidence for true biological epistasis has been 

found. Further, replication – long held as the gold standard for genetic association studies – does 

not safeguard against these confounding factors, as many are robust to independent replication.  

It is also critical to note that other statistical models of epistasis have additional modes of 

confounding. For example, reduced interaction models that assume exclusively additive main 

effects for each variant 
30–32

 can partition deviations from non-additive main effects (i.e., 

dominant main effects), into the interaction term. By contrast, the full model used here contains 

additive and dominant effects for each variant and all four possible interaction terms, thereby 

allowing variance to be properly partitioned amongst genetic terms.
24

 Additionally, other 

phenotypes will have distinct forms of confounding; for example, the more removed a phenotype 

is from the underlying biological process, the more susceptible it is to confounding by threshold 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/020479doi: bioRxiv preprint 

https://doi.org/10.1101/020479
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

effects. To illustrate, imagine that a disease results when the expression of a specific gene 

exceeds a certain threshold. If that gene has multiple cis-eQTL that additively regulate its 

expression, and only in combination do their effects exceed the threshold, they will be identified 

as interacting to influence disease risk, even though they behave additively at the mechanistic 

level. Given the pervasive nature of confounding, it must be considered in all future studies of 

epistasis. The analytic approach used in this study provides a trait-independent framework for 

explicitly examining confounding factors and avoiding reporting spurious results. 

 

Future studies of epistasis face many challenges. First, regardless of confounding, epistasis 

within the cis-regulatory region does not appear to be a major component of the genetic 

architecture underlying the regulation of gene expression in humans. While more statistical 

interactions with smaller effect sizes would assuredly be identified with increased sample size, 

the confounding factors would also complicate their interpretation.  Furthermore, studies from 

model organisms have illustrated that epistasis is most commonly observed between variants that 

exhibit significant single-marker effects
1
; consequently, the study of epistasis is unlikely to 

identify novel genomic loci or biological pathways related to the phenotype of interest. Instead, 

studies of epistasis will likely be the most fruitful when looking for modifiers of single-variants 

that impact a trait of interest, or when trying to determine the cumulative effect (i.e., genetic risk 

scores) of such variants on the phenotype. Ultimately, the development of high-throughput 

methodologies to confirm the biological validity of detected interactions at the molecular level 

will be critical in moving the study of epistasis forward. 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/020479doi: bioRxiv preprint 

https://doi.org/10.1101/020479
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Supplemental Information 

 

Supplemental Dataset 1. Significant interactions identified in the discovery analysis. This 

file provides all 5,439 interactions identified in the discovery analysis. When these interactions 

appeared to represent the same signal, due to LD, they were placed into groups (n = 1,119) and a 

representative interaction was chosen. We provide the group identifier for each of the 

interactions, and the group’s representative interaction.  

 

Supplemental Dataset 2. Alternative explanations for significant interactions identified in 

the discovery analysis. We examined whether or not the 1,119 interactions could be explained 

by confounding factors. Here, we present which alternative explanations could account for each 

interaction. 
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Supplemental Figure 1. Linkage disequilibrium between interacting variants.  We 

calculated LD between interacting variants using both r
2
 and D’ to determine if they were on the 

same haplotype. Interactions between variants in modest LD (r
2
 > 0.6) had been removed from 

all stages of the analysis, and hence are not shown here.  
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Supplemental Figure 2. Redundant SNP-pairs have very similar parameter estimates. We 

grouped together all pairs of interacting SNPs (n=5,439) identified as being redundant through 

LD measures. For each group, we identified all terms that were significant in at least one of the 

associated interactions (p < 0.05). We extracted the betas for these significant terms from all 

interactions within the group. We then calculated the standard deviation of the betas for each 

significant term within each group to determine how similar the parameter estimates were across 

all interactions in the same group. The distribution of these standard deviations, categorized by 

type of variable, is shown above. 
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Supplemental Figure 3. The interaction between rs1549791 and rs7115749 associated with 

the expression of APIP is not consistent between the discovery and replication datasets.   In 
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the interaction plot, each individual is categorized according to their two-locus genotype at 

rs1549791 and rs7115749. This results in nine possible genotype combinations, and the mean 

expression of APIP for each combination is shown here for the (A) discovery and (B) replication 

datasets. There are markedly different patterns in gene expression by two-locus genotype 

between the two datasets, illustrating the putative interaction does not replicate with a consistent 

direction of effect. 
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Figure Titles and Legends 

 

 

 
 

Figure 1. Workflow used to identify and group ieQTL. In the discovery analysis, nominally 

significant cis-eQTL (denoted by triangles) were paired together and tested for interactions 

significantly associated with gene expression levels (denoted by arcs). The within-pair LD was 

then calculated (Supplemental Figure 1), and interactions composed of variants in modest LD (r
2
 

> 0.6) with one another were removed from the remainder of the analysis. Some of the remaining 

interactions represented the same pair of interacting genomic loci (Supplemental Figure 2), and 

were paritioned into distinct groups (denoted by the arc color). For two interactions to be 

grouped together, each SNP within one significant ieQTL model had to be in high LD (r
2
 ≥ 0.9) 

with a SNP within the second ieQTL model, and vice versa.  
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Figure 2. The interaction between rs1783165 and rs1673426 associated with the expression 

of PKHD1L1 may be a ceiling effect. The ceiling effect, caused by limitations in the detectable 

range of gene expression, has a hallmark pattern – both variants have main effects with 

concordant direction of effect, and the interaction term has a discordant direction. (A) The minor 

allele of rs1673426 increases the expression of PKHD1L1. (B) The minor allele of rs1783165 

also increases the expression of PKHD1L1, meaning both variants have a concordant direction of 

effect. The interaction plot (C) depicts the mean gene expression for all individuals with the 

specified genotype combination.  When there is only one minor allele at rs1673426, the mean 

gene expression increases for each minor allele at rs1783165; however, when there are two 

minor alleles at rs1673426, the increase in gene expression due to minor alleles at rs1783165 

reaches a ‘maximum’ at one minor allele. There is no additional increase in expression for 

having two minor alleles at rs1783165. This is denoted by the flat line connecting the two 

genotype combinations. Given that each minor allele at rs1783165 increases gene expression on 

the background of one minor allele at rs1673426, and that the ‘maximum’ reached on the 

background of two minor alleles at rs1673426 is very close to the maximum gene expression 

levels possible to observe, we consider this an example of the ceiling effect. 
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Figure 3. Interactions impacting the expression of CPEB4 may represent haplotype 

effects.  (A) A significant interaction between rs6864691 and rs969518 regulating the expression 

of CPEB4 was identified that replicated and was inconsistent with other confounding factors. 

The cis-eQTL rs72812817 mediated this interaction in the conditional analysis; however, none of 

these variants were within putative regulatory elements in GM12878 assayed by the ENCODE 

Project . However, a D' heatmap (B) of the region (the numbers correspond to SNP labels in A) 

illustrated that an indel, rs144869372, always occurred on the background of the cis-eQTL (D' = 

1). (C) This occurs despite modest r
2
 values, as shown in the r

2 
heatmap of the region. (A) There 

is evidence from ENCODE suggesting the structural variant may be functional, as it occurs 

within both a ChromHMM strong enhancer (yellow) and a CTCF binding peak in GM12878.  

(D) Notably, the structural variant is predicted to alter the binding of CTCF by HaploReg, by 
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altering the last three nucleotides in the binding motif.  Given the functional genomics evidence, 

the indel may be the causal variant, which is detected through interactions that tag the haplotype 

carrying the indel. 
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Figure 4. Population specific eQTLs may underlie ieQTL regulating C12orf54. The 

interaction between rs2731091 and rs4760707 regulating C12orf54 replicated, but was not 

nominally significant (p < 0.05) in any population in the stratified analysis. (A) Due to the 

population normalization procedure, there are not systematic differences in the expression of 

C12orf54 between populations; however, we found that each variant was a population-specific 

cis-eQTL. (B) rs2731091 significantly regulated gene expression as a cis-eQTL in YRI (p = 

7.28x10
-6

), but not CEU (p = 0.14) or CHB+JPT (p=0.84).  (C) rs4760707 was a cis-eQTL in 

CHB+JPT (p=7.25x10
-6

), but not in YRI (p=0.17) or CEU (p=0.96). (D) There were clear 

population differences in the frequency of two-locus genotypes between populations; in 

combination, it appears the population differences in two-locus genotypes and population 

specific cis-eQTL produced a nuanced form of population stratification.  
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Figure 5. The interacting SNPs regulating ACCS are likely tagging a single-variant cis-

eQTL through linkage disequilibrium. The interaction between rs178501 and rs7121151 is 
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mediated by the cis-eQTL rs2074038 in the conditional analysis (interaction p-value > 0.05). (A) 

While the interacting variants are in low LD with the cis-eQTL based on r
2
, their high D’ 

indicates they often occur on the same haplotype. (B) The interacting variants are not located 

within DNase hypersensitivity sites, predicted chromatin states with a regulatory function, or any 

of the uniform binding peaks identified for all transcription factors tested in GM12878 by 

ENCODE; however, the cis-eQTL is located within the canonical promoter for ACCS, a DNase 

hypersensitivity site, and numerous transcription factor binding peaks identified in GM12878 by 

ENCODE. (C) Notably, the cis-eQTL occurs within a binding peak for both ELF1 and SPI1 in 

GM12878, and also alters the binding motifs of these transcription factors at the position 

highlighted in orange. Thus, the cis-eQTL rs2074038 is likely the causal variant, and the 

interaction is simply capturing its effect through LD. 
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Figure 6. Despite consistent replication, the interaction regulating MYRFL is attributable 

to cis-eQTL.  In each interaction plot, all individuals are categorized according to their two-

locus genotype at rs1262808 and rs11615099.  The mean expression of MYRFL for all 

individuals with each of the nine possible two-locus genotypes is shown here for the (A) 

discovery; (B) replication; (C) Mayo, cerebellum; (D) Mayo, cortex; (E) GTEx, whole blood 

datasets.  The interaction plot illustrates a consistent trend across all datasets, this interaction is 

mediated by cis-eQTL. (F) Conditional cis-eQTL analyses were conducted in the discovery 

(CEU only, yellow); GTEx (purple); Mayo, cerebellum (teal); and Mayo, temporal cortex 

(orange). For each conditional analysis, the conditional LRT p-value is plotted by the genomic 

position of the cis-eQTL conditioned on. The p-value peak observed in this region illustrates that 

cis-eQTL completely attenuate the interaction when they are conditioned on. 
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Tables 

 

Analysis Total  

Sample Size 

Ethnicity 

CHB CEU GIH JPT LWK MXL MKK YRI 

Discovery 210 45 60 - 45 - - - 60 

Replication  232 34 - - 35 80 38 - 45 

Table 1. Dataset Composition by Ethnicity. The number of individuals of each ethnicity (1KG 

abbreviations) in the discovery and replication analyses.  

 

 

 

Table 2 | Interactions that replicate and are not accounted for by other explanations. 

Gene SNP 1 SNP 2 Discovery‡ Replication‡ r
2 

D’ 

MYRFL rs1262808 rs11615099 7.41 2.69 0.11 0.36 

APIP rs1549791 rs7115749 5.00 2.54 0.12 0.43 

‡ -log10 P values for 4 d.f. LRT interaction test.  
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