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32  Abstract

33 A fundamental challenge common to studies of animal movement, behavior, and

34  ecology is the collection of high-quality datasets on spatial positions of animals as
35 they change through space and time. Recent innovations in tracking technology have
36 allowed researchers to collect large and highly accurate datasets on animal

37  spatiotemporal position while vastly decreasing the time and cost of collecting such
38 data. One technique that is of particular relevance to the study of behavioral ecology
39 involves tracking visual tags that can be uniquely identified in separate images or
40  movie frames. These tags can be located within images that are visually complex,

41  making them particularly well suited for longitudinal studies of animal behavior and
42  movement in naturalistic environments. While several software packages have been
43  developed that use computer vision to identify visual tags, these software packages
44  are either (a) not optimized for identification of single tags, which is generally of the
45  mostinterest for biologist, or (b) suffer from licensing issues, and therefore their

46  use in the study of animal behavior has been limited. Here, we present BEEtag, an
47  open-source, image-based tracking system in Matlab that allows for unique

48 identification of individual animals or anatomical markers. The primary advantages
49  of this system are that it (a) independently identifies animals or marked points in
50 each frame of a video, limiting error propagation, (b) performs well in images with
51 complex background, and (c) is low-cost. To validate the use of this tracking system
52  in animal behavior, we mark and track individual bumblebees (Bombus impatiens)
53  and recover individual patterns of space use and activity within the hive. Finally, we
54  discuss the advantages and limitations of this software package and its application
55 to the study of animal movement, behavior, and ecology.
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63

64 Introduction

65 A fundamental challenge facing diverse fields of research is the accurate

66 reconstruction of spatial position information over time. In biology, for example,

67 fields such as biomechanics, animal behavior, and ecology all depend heavily on

68 reconstructing accurate spatio-temporal data on either anatomical components (e.g.
69 different joints) of animals or their entire bodies. Traditionally, such tracking has

70  been done primarily through human observation or manual tracking of positional
71  information. Studies of animal locomotion, for example, have traditionally involved
72 manual (although often computer-aided) tracking of anatomical features to

73  reconstruct accurate movement kinematics (Tobalske et al.,, 2007; Wakeling and

74  Ellington, 1997). On the other hand, studies of animal behavior and ecology have

75  often involved marking animals with uniquely identifiable tags combined with

76  manual observation (Seeley et al., 1991).

77 While such data sets have been indispensable for advancing their respective
78  fields, manual collection of these data is time-intensive, laborious, and poorly-suited
79  to generating large datasets, particularly those that involve tracking either multiple
80 individuals or body parts simultaneously. In recent decades, advances in tracking
81 technology have allowed researchers to collect large, highly accurate datasets in a
82  fraction of the time taken by manual methods. For example, semi-automated marker
83  tracking (Hedrick, 2008) or visual hull reconstruction (Ristroph et al., 2009) have
84  allowed for the collection of highly accurate spatio-temporal datasets on animal

85 locomotion. In ethology, automated tracking techniques have allowed for the

86  collection of vast, highly-accurate behavioral datasets (Dell et al., 2014; Kain et al,,
87  2013; Pérez-Escudero et al., 2014), which can be used, for example, in detailed

88  quantitative analysis of animal behavior (Berman et al.,, 2014; Mersch et al,, 2013).
89 A fundamental limit of many of the tracking methods described above,

90 however, is the need for a controlled, laboratory environment for high-quality

91  tracking results, which for certain research questions can present a significant

92  limitation. Partially for this reason, radio-frequency identification (RFID)

93  technology, which does not require a controlled visual environment for
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94 identification, has become particularly popular among behavioral ecologists for
95  tracking and identifying individuals in both vertebrate (see Bonter and Bridge, 2011
96 for an excellent review of the use of this technology in birds) and invertebrate
97  (Henry etal., 2012; Stelzer and Chittka, 2010) animals. While robust to limitations of
98  the visual environment, however, the spatial information provided by RFID is
99 limited, since spatial position is only recorded when an animal is near an RFID
100 reader, and the technology is therefore of limited utility for addressing certain
101 experimental questions.
102 Increasingly, automated image-based tracking has been used to explore basic
103  questions in behavior and ecology (Dell et al., 2014). However, each tracking
104  method has distinct strengths and limitations. One limitation that faces many image-
105 based individual tracking methods is error propagation: since tracking is often
106  based on using information from previous frames in a movie (e.g. spatial proximity
107  of an animal from one frame to the next (Branson et al., 2009; de Chaumont et al,,
108  2012; Hedrick, 2008)), errors can be introduced when the paths of two animals
109  cross. Such errors are generally irreversible and propagate through time, thus
110  making it difficult or impossible to track individuals over long time periods. While
111  computational advances can reduce (Branson et al., 2009) or nearly eliminate
112  (Pérez-Escudero et al., 2014) this problem, these techniques still rely on controlled,
113  homogenous visual environments for accurate tracking.
114 One method for avoiding such errors and allowing for long-term tracking of
115 uniquely identified points or individuals in complex visual environments is to use
116  markers that can be uniquely identified by computer-vision in each picture or frame.
117  Image-based recognition of such markers has been widely used in commercial (e.g.
118  barcodes and Quick-Response, or QR codes) as well as in augmented reality (ARTag,
119  Fiala, 2005) and camera-calibration (CALTag, Atcheson et al.,, 2010 ) applications.
120  While such marker-systems have previously been used for high-throughput
121  behavioral studies in ants (Mersch et al., 2013), previous software packages are
122  either not optimized for recognizing isolated tags (as desired for most applications
123  in animal movement), or suffer from licensing issues, making access to these

124  techniques limited. Here, we present and characterize BEEtag (BEhavioral Ecology
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125  tag), a new open-source software package in Matlab for tracking uniquely

126  identifiable visual markers. First, we provide a basic description of the software and
127  characterize its performance. Next, we validate the tracking system by marking and
128  tracking individual bumblebees (Bombus impatiens) within a hive. Finally, we

129  consider the potential extensions, future applications, and limitations of this

130  tracking technique.

131

132 Tag Design and Tracking Software

133  Tag design

134 We use a tag design that is inspired by similar markers for visual tracking
135 such as ARtag (Fiala, 2005) and CALTag (Atcheson et al., 2010). Our tags consist of a
136 25 bit (5x5) code matrix of black and white pixels that is unique to each tag

137  surrounded by (1) a white pixel border and (2) a black pixel border (Figure 1). The
138  25-bit matrix consists of a 15-bit identity code, and a 10-bit error check. The 15-bit
139  identity is the binary representation of a number between 1 and 32767, left-padded
140  with zeros and reoriented into a 5x3 pixel matrix (Figure 1A). A unique 10-bit error
141  checkis then generated for each code. The first 3 bits of this error code are parity
142  checks (1 (white) for odd and 0 (black) for even) of each of the three columns of the
143  5x3 code matrix. The next two bits are generated by checking the parity of the first 3
144  and last 2 columns of the 5x3 code matrix, respectively. This 5-bit error check is
145 then repeated and reversed to give a complete 10-bit error check (Figure 1). This
146  simple binary image matrix can then be scaled to any size where it can be visualized
147 by a camera, for example small tags for use with bumblebees (Bombus impatiens,
148  Figure 1B, see below) or moderately larger tags for bigger invertebrates (Blaberus

149  discoidalis, Figure 1C, tags roughly 8 mm per side).


https://doi.org/10.1101/020347
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/020347; this version posted June 3, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A Code example

Tag number: 9

/ \

|dentification code  Error check
Binary  43300.00000-01001 00011-11000

code
wa (LR
code ol ol 1 1 o
D Generating unigue tags
000000000001001
Binary number l
¥
Code matrix
¥
Orientation check _1 /_\ _1
¢ B[] M |
Hamming distance \/ X X X
¥
7,515 viable codes l
14 19 11 15 18

]|
B

________

Figure 1. BEEtag code tructure and generation. (A) Basic tag design (see text for details). (B) A
bumblebee worker (Bombus impatiens) outfitted with a BEEtag and encountered
opportunistically in the natural environment. (C) Cockroaches (Blaberus discoidalis) outfitted

with BEEtags. (D). Schematic representation of the process for generating a list of unique, usable
RFFtaoc
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151  Generating a usable set of BEEtags

152 While a 15 bit encoding theoretically allows for 32,768 different possible
153  code combinations, not all of these can be safely distinguished in practice when the
154  orientation of the tag is unknown (as is the case in most tracking applications). We
155  therefore restrict codes to be used in tracking based on two additional criteria. First,
156  atag must be valid in only one orientation (i.e. the 10-bit error check matches the
157  15-bit code in only one of the four possible tag orientations, Figure 1D). Second, any
158 tag must have a Hamming distance of at least 3 (i.e. 3 bits are different) between
159 itself and any valid tag (and its associated alternative orientation). These

160 restrictions, which reduce the number of false positive tag identifications from an
161 image, resultin a set of 7,515 viable tags out of the 32,767 possibilities (Figure 1D).
162

163  Identifying BEEtags from an image or video frame

164 Using this technique, each tag can be uniquely identified in a still image or
165 movie frame without prior knowledge of its position. The raw input for tracking is
166 animage, in color or grayscale format. If tracking tags in a movie, each frame is

167  extracted and analyzed as a separate image. If the frame or still image is in color, it is
168 first converted to grayscale before further processing.

169 From the grayscale image, the first step is to threshold into a black and white
170  image (Figure 2). In brief, this thresholding step works by converting the matrix of
171  continuous pixel intensity values of an image (i.e. a grayscale image) into a binary
172  matrix using a specified threshold value. This results in a binary (i.e. black and

173  white) image, where zeros are represented by black and ones are represented by
174  white. After converting to a binary image, the software finds all unique regions of
175  white in theimage and checks to see which are rectangular, and all of these regions
176  are considered possible tags (Figure 1C). To verify which regions are true tags and
177  identify them, the software then reads pixel values from within each white

178 rectangle, converts them from black and white values to binary numbers, and

179  references them against the list of viable tags described above. Finally, the position,
180 identity, and orientation of all these tags are recorded and returned to the user as a

181  Matlab structure array.
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Figure 2. Schematic representation of the algorithm for identify unique BEEtags
from an image.Green circles show identified corners of the white quadrangle, and
red dots show points where separate pixel values were measured. See text for
details.

182

183  Software performance

184 To test the basic performance of the BEEtag software, we took a video of 12

185  printed tags with the built-in camera of an iPhone 5 from a constantly moving

186  perspective (Figure 2A, Supplementary Movie 1). We identified codes in each frame
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187  while independently varying image resolution, noise level, and black-white

188  threshold levels to examine the effects of these parameters on tracking

189  performance.

190 In general, tracking performance is strongly affected by all three of these
191 parameters. Resolution was artificially modified using the “imresize” function in
192  Matlab to a range of image resolutions. The average area (in pixels) of the 12 tags in
193  the image was then calculated and the square root of this value taken to estimate the
194  functional resolution of each tag, expressed as the mean length of each tag side

195 (measured as the distance between 2 adjacent corners of the white rectangle

196 containing the tag, Figure 3B). The portion of tags correctly tracked across 255

197  frames from this sample video dropped dramatically below a resolution of around
198 25 pixels per tag edge (Figure 3B).

199 We explored the extent to which noise impairs tracking performance (Figure
200  3C) by introducing Gaussian noise to each of 100 frames from the sample video

201  using the “imnoise” function in Matlab. This function allowed us to apply Gaussian
202  noise with varying levels of intensity (normalized to an image intensity of 0 to 1) to
203  afull resolution image (i.e. around 38 pixels per tag edge). As expected, increased
204 noise progressively impaired tracking performance, until values of around 0.05 (i.e.
205 variance of 5% of the intensity range) when very few tags were successfully tracked
206  (Figure 2C). Noise impairs tracking by both reducing the efficiency of quadrant

207  tracking and increasing noise within the tag itself. In real applications, noise (i.e.
208 “graininess”) appears in images as a result of unwanted electronic signal, and can
209 depend heavily on the sensor, camera, and recording settings used. For example,
210 digital image noise increases significantly at higher ISO (or light sensitivity of the
211 camera’s sensor) values. In general, however, the noise values reported here are
212 very high (the “0” noise value here represents the direct output of the camera,

213  including digital noise), demonstrating that this tracking system is relatively robust
214 to moderate noise levels. Nevertheless, noise remains an important consideration
215  when designing an image-recording setup.

216 Finally, black-white thresholding values significantly affected tracking

217  performance (Figure 3D). In parallel to the noise test, we tested the impact of
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threshold value on tracking performance across 100 frames of the same sample
video described above, varying the threshold value over a range from 0.2 to 0.9,
corresponding to a normalized intensity value. Tracking performance was optimal
at intermediate threshold values, but significantly deteriorated at both low and high
threshold values (Figure 3D). Since lighting conditions will vary substantially among
real tracking applications, ideal threshold values will vary accordingly (see

Validation Experiment below), and therefore finding an optimal tracking threshold

will be an important step in each specific application of BEEtag.
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Figure 3. Performance of the BEEtag tracking system in a sample video (A) in response to
variation in resolution (B), gaussian noise (C), and binary threshold value (D). See text
for details. Transparent blue lines show data from a single video frame (N = 277 in B and
N =100 in C-D), and thickened red lines show the mean across all frames.

Overall, the rate of false positives for tag identification (i.e. the number of

tags that are incorrectly identified, rather than not being identified) was low. Among
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228 11,166 codes identified across the combination of 100 images and 15 resolution
229  values described in the resolution test above, 5 were not values actually contained
230  within the image, giving a false positive rate of ~0.04 % (i.e. 99.96% of codes

231  returned were correctly identified).

232

233 Userinterface

234 The BEEtag package consists of a small library of functions available in the
235  supplementary material of this paper. Additionally, a continuously updated

236  respository of the code is available at https://github.com /jamescrall/BEEtag. After

237  installation (i.e. downloading all relevant functions and adding these to the Matlab
238  search path), users interface with the software package primarily through the

239  “locateCodes” function. This function takes a grayscale or color (rgb) image and
240 returns the locations and relevant information (identity, orientation, etc) of any
241  BEEtag tags located in the image as a Matlab structure array. Users have the option
242  of manually specifying the threshold value for binary image conversion, size limits
243  for tags in pixels, and other visualization options.

244

245  Experimental validation: Spatial behavior patterns in a bumblebee hive

246  Study species and tag attachment

247 To validate the BEEtag tracking system, we outfitted individual bumblebees
248  (Bombus impatiens) with unique BEEtags to track spatial movement of multiple

249  individuals simultaneously within the hive. A single hive (Biobest) was maintained
250 indoors but with access to the natural environment through a plastic tube, which
251 allowed the bees to enter and exit the hive at will to forage for nectar and pollen.
252 The hive was initially placed on July 9t and given seven days to acclimate and begin
253  normal foraging activity. On July 16, we outfitted roughly 100 workers with unique
254  BEEtags. All BEEtags used were printed on a single 8.5 x 11”sheet of waterproof,
255  tear-resistant paper on a high-resolution (1200 dpi) laserjet printer at Staples®.
256  Each tag was cut out from the sheet by hand, measured roughly 2.1mm x 2.1 mm,
257  and weighed around 1.83 mg. All bees except the queen were removed from the hive

258  at the same time using a vacuum aspirator (Bioquip Products) and maintained for
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30-60 min at 4° C to reduce activity level. Bees were then individually cold-
anaesthetized at -20° C and outfitted with a unique tag attached with cyanoacrylate
gel glue. After tagging, all bees were then returned to the hive and allowed to
acclimate for 24 hours before data collection and data collection occurred on July

17th,

Imaging setup and data collection

To capture images of sufficiently high resolution to track individual tags over
the entire hive arena (roughly 21.5 x 15.0 cm), we used an entry-level DSLR camera
(Nikon D3200), operating at the maximum resolution of 6016 x 4000 pixels per
image. The hive was outfitted with a clear plexiglass top prior to data collection and
illuminated by three red lights, to which bees have poor sensitivity (Briscoe and
Chittka, 2001). The camera was placed ~ 1 m above the hive top and triggered
automatically with a mechanical lever driven by an Arduino microcontroller. On
July 17, pictures were taken every 5 seconds between 12:00 pm and 12:30 pm, for
a total of 372 photos. 20 of these photos were analyzed with 30 different threshold
values to find the optimal threshold for tracking BEEtags (Figure 4M), which was

then used to track the position of individual tags in each of the 372 frames.

Results and tracking performance

Overall, 3516 locations of 74 different tags were returned at the optimal
threshold. In the absence of a feasible system for verification against human
tracking, false positive rate can be estimated using the known range of valid tags in
the pictures. Identified tags outside of this known range are clearly false positives.
Of 3516 identified tags in 372 frames, one tag (identified once) fell out of this range
and was thus a clear false positive. Since this estimate does not register false
positives falling within the range of known tags, however, this number of false
positives was then scaled proportionally to the number of tags falling outside the
valid range, resulting in an overall correct identification rate of 99.97%, or a false

positive rate of 0.03%.
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Figure 4. Validation of the BEEtag system in bumblebees (Bombus impatiens). (A-E,
G-I) Spatial position over time for 8 individual bees, and (F) for all identified bees at
the same time. Colors show the tracks of individual bees, and lines connect points
where bees were identified in subsequent frames. (J) A sample raw image and (K-L)
inlays demonstrating the complex background in the bumblebee hive. (M) Portion of
tags identified vs. threshold value for individual pictures (blue lines) and averaged
across all pictures (red line).

289 Data from across 30 threshold values described above were used to estimate
290  the number of recoverable tags in each frame (i.e. the total number of tags identified
291  across all threshold values) estimated at a given threshold value. The optimal

292  tracking threshold returned an average of around 90% of the recoverable tags in
293  each frame (Figure 4M). Since the resolution of these tags (~33 pixels per edge) was
294  above the obvious size threshold for optimal tracking (Figure 3B), untracked tags
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295  most likely result from heterogeneous lighting environment. In applications where
296 itis important to track each tag in each frame, this tracking rate could be pushed
297  closer to 100% by either (a) improving lighting homogeneity or (b) tracking each
298 frame at multiple thresholds (at the cost of increased computation time).

299 These locations allow for the tracking of individual-level spatial behavior in
300 the hive (see Figure 4F) and reveal individual variations in both activity and spatial
301 preferences. For example, some bees remain in a relatively restricted portion of the
302  hive (e.g. Figure 4C and D) while others roamed widely within the hive box (e.g.
303  Figure 4I). Spatially, some bees restricted movement largely to the hive pots and
304 developing brood (e.g. Figure 4B), while others tended to remain off the hive pots
305 (e.g. Figure 4H) or showed mixed spatial behavior (e.g. Figure 4A, E, and G).

306

307 Discussion

308 Here, we have presented a new open-source software package - BEEtag - for
309 tracking unique visual markers and demonstrated its utility for studies of animal
310 behavior. This package builds directly off previous work aimed at tracking

311  individually identifiable markers (Atcheson et al., 2010; Fiala, 2005) and extends
312  previous efforts by providing a simple interface in Matlab that is intended to

313 improve ease of use for researchers in behavioral ecology and other branches of the
314 life sciences.

315 Tracking systems that utilize uniquely identifiable markers such as BEEtag
316  (or ARTag and CALTag) have some fundamental advantages over other techniques.
317  One primary advantage is that tags are identified independently in each photo or
318 frame, so errors don’t propagate across frames. For example, in most automated
319  tracking systems (e.g. (Branson et al.,, 2009; de Chaumont et al., 2012; Hedrick,

320  2008), with notable exceptions such as (Pérez-Escudero et al., 2014)), individual
321  tracking depends on information from previous frames, and therefore when an
322  individual is either (a) not tracked or (b) incorrectly tracked in one or a few frames
323  (i.e. because the individual is occluded from view or interacts with another

324  individual), tracking fails (Pérez-Escudero et al., 2014). While acceptable for short-

325 term data-collection, longer-term longitudinal data sets (as are often particularly
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326 relevant for behavioral ecology) are difficult or impossible to collect with such

327  techniques.

328 Another important advantage of this tracking system is that it does not

329 require a homogenous background, as do many optical tracking systems (Branson et
330 al, 2009; de Chaumont et al., 2012; Pérez-Escudero et al., 2014). While it is possible
331 inacontrolled laboratory setting to create a homogenous background for

332 automated detection of image regions associated with an animal’s body, this is

333  difficult or impossible in most naturalistic contexts (Dell et al., 2014). BEEtags, on
334  the other hand, are robust to complexity in the background image (see Figure 1B
335 and Figure 4J-L [although not necessarily lighting heterogeneity, Figure 4M, see
336  discussion above]). For example, the sample image used in Figure 2 of a bumblebee
337  worker with a BEEtag was taken opportunistically with an iPhone 5 against a

338 natural background when the bee was encountered foraging outside of the hive, and
339 emphasizes the robustness of this tracking system in natural environments.

340 Another important advantage of the BEEtag system is its cost. The examples
341 included here used either an iPhone 5, or a commercially available Nikon DSLR

342  camera (currently available for ~$500 USD), and tags were printed on waterproof,
343  tear-resistant paper at a cost of $0.87 USD for 600 tags (approximately 0.145 cents
344  each). This system thus makes the collection of high-quality, high-throughput

345  behavioral datasets possible at an extremely low cost compared to alternative

346  systems.

347 Like all other tracking systems, however, BEEtag has limitations that make it
348  Dbetter suited to certain applications than others. First, the system requires the

349  application of a tag. Handling (Pankiw and Page, 2003) and tag application (Dennis
350 etal, 2008) can significantly affect stress levels (Sockman and Schwabl, 2001) and
351  behavior in animals (Ropert-Coudert and Wilson, 2005). While BEEtags are

352  lightweight (depending on size and printing material), the potential biomechanical
353 and behavioral effects of both tag attachment (Aldridge and Brigham, 1988) and
354  handling need to be carefully considered for each study organism and specific

355  application.
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356 Since BEEtag depends on visual information, performance also can be

357  substantially affected by (a) uneven lighting (see above and Figure 4M), (b) animal
358 posture, and (c) tag cleanliness. While issues of uneven lighting can be

359  computationally overcome by either identifying codes at multiple threshold values
360 orapplying an appropriate high-pass spatial filter to images, the other limitations
361 are more fundamental and mean that BEEtag tracking performance will be impaired
362  insituations where tags are not visible (i.e. when animals are piled on top of each
363 other) or cannot be kept clean (potentially an important consideration for freely
364  behaving animals in natural environments).

365 Another important limitation when considering the utility of BEEtag for

366  specific applications are the challenges of data storage and processing, which can be
367 significant for any image processing techniques when compared to alternative

368 tracking techniques such as RFID (Henry et al,, 2012). While performing processing
369 inreal time can minimize data storage problems, this is not possible in all

370  applications. In particular, large images such as those used in the validation

371 experiment described above (Figure 4) can be computationally intensive, and

372  therefore impractical for real-time processing.

373

374

375  Alternative application and future directions

376 While we have focused here on using BEEtags for tracking the overall spatial
377  position of individuals, the utility of this tracking system is not limited to ethology or
378  behavioral ecology. One such potential direction that seems particularly promising
379  isusein the field of animal locomotion. Focus in the study of animal locomotion has
380 increasingly shifted from steady-state locomotion in laboratory environments to
381 dynamic movement in complex, naturalistic environments (Combes et al,, 2012;

382  Daley and Biewener, 2006; Dickinson et al., 2000), where tracking is particularly
383  challenging (Dell et al,, 2014). Since having tags obscured for some or many frames
384 isnot highly problematic for BEEtag, we suggest that this tagging system could be of
385  particular utility for tracking the kinematics of animal locomotion through cluttered

386 environments, where they are likely to be temporarily obscured. Additionally, in
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applications where multiple rigid points are tracked in order to, for example,
reconstruct three-dimensional body rotations (Ravi et al., 2013), these points could
be automatically extracted from a properly oriented BEEtag, thereby negating the
need for manual or semi-automated digitizing (Hedrick, 2008).

The BEEtag package will be maintained regularly on the GitHub site, which
allows for user contributions, and it is our hope that as use of this software
increases, users will contribute improvements, modifications, and extensions that
will both improve performance and ease of use to the current implementation of

BEEtag, as well as extending this technology to new applications.
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