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Abstract: High-dose chemotherapy has long been advocated as a means of controlling1

drug resistance in infectious diseases but recent empirical and theoretical studies have2

begun to challenge this view. We show how high-dose chemotherapy engenders opposing3

evolutionary processes involving the mutational input of resistant strains and their release4

from ecological competition. Whether such therapy provides the best approach for5

controlling resistance therefore depends on the relative strengths of these processes. These6

opposing processes lead to a unimodal relationship between drug pressure and resistance7

emergence. As a result, the optimal drug dose always lies at either end of the therapeutic8

window of clinically acceptable concentrations. We illustrate our findings with a simple9

model that shows how a seemingly minor change in parameter values can alter the outcome10

from one where high-dose chemotherapy is optimal to one where using the smallest11

clinically effective dose is best. A review of the available empirical evidence provides broad12

support for these general conclusions. Our analysis opens up treatment options not13

currently considered as resistance management strategies, and greatly simplifies the14

experiments required to determine the drug doses which best retard resistance emergence15

in patients.16

Significance Statement: The evolution of antimicrobial resistant pathogens threatens17

much of modern medicine. For over one hundred years, the advice has been to ‘hit hard’, in18

the belief that high doses of antimicrobials best contain resistance evolution. We argue19

that nothing in evolutionary theory supports this as a good rule of thumb in the situations20

that challenge medicine. We show instead that the only generality is to either use the21

highest tolerable drug dose or the lowest clinically effective dose; that is, one of the two22

edges of the therapeutic window. This approach suggests treatment options not currently23

considered, and greatly simplifies the experiments required to identify the dose that best24

retards resistance evolution.25
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Antimicrobial resistance is one of greatest challenges faced by modern medicine. There is a26

widely held view that the evolutionary emergence of drug resistance is best slowed by using27

high doses of drugs to eliminate pathogens as early and quickly as possible. This view, first28

expounded by Ehrlich (1) (‘hit hard’) and later Fleming (2) (‘if you use penicillin, use29

enough’), is today encapsulated in the advice to administer ‘the highest tolerated antibiotic30

dose’ (3, 4). The rationale is two-fold. First, a high concentration of drug will eliminate31

drug-sensitive microbes quickly and thereby limit the appearance of resistant strains.32

Second, a high concentration of drug will also eliminate strains that have some partial33

resistance, provided the concentration is above the so-called mutant prevention34

concentration (MPC) (5–12).35

This is an intuitively appealing idea, but several authors have recently questioned whether36

high-dose chemotherapy is, as a generality, defensible in terms of evolutionary theory37

(13–16). This is because the use of extreme chemical force comes at the cost of maximizing38

the selective advantage of the very pathogens that we fear most; namely, those which39

cannot be eradicated by safely administered doses of drug. Some experimental studies have40

also shown that lighter-touch chemotherapy not only better prevents the emergence of41

resistance but it restores host health just as well as high-dose chemotherapy (15–17).42

Here we examine when high-dose chemotherapy is the best strategy and when it is not, by43

developing a general mathematical model for resistance emergence within a treated patient44

using principles from evolutionary biology. The analysis shows that high-dose45

chemotherapy gives rise to opposing evolutionary processes. As a result, the optimal46

therapy for controlling resistance depends on the relative strengths of these processes.47

High-dose therapy can, in some circumstances, retard resistance emergence but48

evolutionary theory provides no support for using this strategy as a general rule of thumb,49

nor does it provide support for focussing on the MPC as a general approach for resistance50

prevention. More broadly we find that the opposing evolutionary processes lead to a51
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unimodal relationship between drug concentration and resistance emergence. Therefore the52

optimal strategy is to use either the largest tolerable dose or the smallest clinically effective53

dose. We illustrate these general points with a simple model that shows how a seemingly54

minor change in parameter values can alter the outcome from one where high-dose55

chemotherapy is optimal to one where using the smallest clinically effective dose is best. A56

review of the empirical evidence provides broad support for these conclusions.57

A Theoretical Framework for Resistance Evolution58

Determining a patient treatment regimen involves choosing an antimicrobial drug (or59

drugs) and determining the frequency, timing, and duration of administration. The impact60

of each of these on resistance emergence has been discussed elsewhere (e.g., 9, 18). Here we61

focus solely on drug concentration because it has historically been the factor most often62

discussed, and because it is the source of recent controversy (e.g., 10, 12–14, 16). We seek63

to understand how the probability of resistance emergence changes as a function of drug64

concentration.65

For simplicity we assume that drug concentration is maintained at a constant level during66

treatment and refer to this concentration as ‘dose’. This assumption is not meant to be67

realistic but it serves as a useful tool for gaining a better understanding of how drug68

resistance evolves. After laying the groundwork for this simple case we show in the69

Appendix that allowing for more realistic pharmacokinetics does not alter our qualitative70

conclusions.71

Drug resistance is a matter of degree, with different genotypes having different levels of72

resistance (measured, for example, as the minimum inhibitory concentration, MIC). Our73

main focus is on what we call high-level resistance (HLR). This will be defined precisely74

below but for the moment it can be thought of as resistance that is high enough to render75
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the drug ineffective (so that its use is abandoned) . We begin by supposing that the HLR76

strain is one mutational step away from the wild type but we relax this assumption in the77

Appendix.78

Why is it that resistant strains reach appreciable densities in infected patients only once79

drug treatment is employed? The prevailing view is that there is a cost of resistance in the80

absence of the drug, but that this cost is compensated for by resistance in the presence of81

the drug. It is not the presence of the drug per se that provides this compensation; rather,82

it is the removal of the wild type by the drug that does so (13, 19). This implies that the83

presence of the wild type competitively suppresses the resistant strain, and that drugs84

result in the spread of such strains because they remove this competitive suppression (a85

process called ‘competitive release’; 19).86

To formalize these ideas, consider an infection in the absence of treatment. The wild type87

pathogen enters the host and begins to replicate. As it does so, it consumes resources and88

stimulates an immune response. We use P (t) to denote the density of the wild type and89

X(t) to denote a vector of within-host state variables (e.g., density of immune system90

components, resources, etc). Without loss of generality we suppose that the vector X is91

defined in such a way that pathogen replication causes its components to decrease. This92

decrease in X, in turn, makes the within-host environment less favorable for pathogen93

replication. If X is suppressed enough, the net replication rate of the wild type will reach94

zero. Thus X can be viewed as the quality of the within-host environment from the95

standpoint of pathogen replication.96

As the wild type replicates it gives rise to the HLR strain through mutation and the initial97

infection might include some HLR pathogens as well. But the HLR strain is assumed to98

bear some metabolic or replicative cost, meaning that it is unable to increase in density99

once the wild type has become established. Mechanistically this is because the wild type100

suppresses the host state, X, below the minimum value required for a net positive101
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replication by the HLR strain (19). Thus, we ignore the effect of the HLR strain when102

modeling the joint dynamics of P (t) and X(t) in the absence of treatment (see Appendix A103

for details).104

At some point (e.g., the onset of symptoms) drug treatment is introduced. Provided the105

dosage is high enough the wild type will be driven to extinction. We use c to denote the106

(constant) concentration of the drug in the patient. We distinguish between theoretically107

possible versus feasible doses. Theoretically possible doses are those that can be applied in108

vitro. Feasible doses are those that can, in practice, be used in vivo. There will be a109

smallest clinically effective dose that places a lower bound on the feasible values of c110

(denoted cL) and a maximum tolerable dose because of toxicity (denoted cU). The dose111

range between these bounds is called the therapeutic window (20).112

Once treatment has begun, we use p(t; c) and x(t; c) to denote the density of the wild type113

strain and the within-host state. This notation reflects the fact that different dosages (i.e.,114

concentrations) will give rise to different trajectories of p and x during the remainder of the115

infection. We model the dynamics of p and x deterministically during this phase.116

As the wild type is driven to extinction it will continue to give rise to HLR microbes117

through mutation. The mutation rate is given by a function λ[p(t; c), c] that is increasing in118

p and decreasing in c. We suppose that limc→∞ λ[p, c] = 0 because a high enough drug119

concentration will completely suppress wild type replication and thus mutation. Any HLR120

microbes that are present during treatment will no longer be destined to rarity because121

they will be released from competitive suppression (19). We use π[x(t; c), c] to denote the122

probability of escaping initial extinction when rare. The function π is increasing in x123

because it is through this state that the HLR strain has been competitively suppressed124

(19). And π is decreasing in c with limc→∞ π[x, c] = 0 because a high enough dose will also125

suppress even then HLR strain.126
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We can now provide a precise definition of high-level resistance (HLR). Although127

limc→∞ π[x, c] = 0, the concentration at which this limit is reached can lie outside the128

therapeutic window [cL, cU ]. We define HLR to mean that π[x, c] is very nearly equal to129

π[x, 0] over the therapeutic window. Biologically this means that, in terms of clinically130

acceptable doses, significant suppression of HLR is not possible. We focus on HLR because,131

for genotypes that do not satisfy this property, there is then no resistance problem to begin132

(since one can always use a high enough dose to remove all pathogens).133

With the above formalism, we focus on resistance emergence, defined as the replication of134

resistant microbes to a high enough density within a patient to cause symptoms and/or to135

be transmitted (19). In the analytical part of our results this is equivalent to the resistant136

strain not being lost by chance while rare.137

The probability of resistance emergence is approximately equal to 1− e−H(c) where138

H(c) = D(c) + S(c) (1)

and139

D(c) =

∫ a

0

λ[p(s; c), c] π[x(s; c), c]ds (2)

S(c) = −n ln (1− π[x(0; c), c]) (3)

(see Appendix A). We refer to H(c) as the resistance ‘hazard’, and a is the duration of140

treatment with s = 0 corresponding to the start of treatment. The quantity D(c) is the de141

novo hazard - it is the hazard due to resistant strains that appear de novo during142

treatment. It is comprised of the integral of the product of λ[p(s; c), c], the rate at which143

resistant mutants appear at time s after the start of treatment, and π[x(s; c), c], the144

probability of escape of any such mutant. The quantity S(c) is the standing hazard - it is145
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the hazard due to a standing population of n resistant microbes that are already present at146

the beginning of treatment (see Appendix A). To minimize the probability of resistance147

emergence we therefore want to minimize the hazard H(c), subject to the constraint that148

the dosage c falls within the therapeutic window [cL, cU ].149

Results150

To determine how high-dose chemotherapy affects the probability of resistance emergence151

we determine how H(c) changes as drug dosage c increases. Differentiating expression (1)152

with respect to c we obtain153

dH

dc
=

mutation︷ ︸︸ ︷∫ a

0

π

(
∂λ

∂p

∂p

∂c
+
∂λ

∂c

)
ds+︸ ︷︷ ︸
de novo hazard

+

replication︷ ︸︸ ︷∫ a

0

λ

(
∇xπ · xc +

∂π

∂c

)
ds+

n

1− π

(
∇xπ

0 · x0c +
∂π0

∂c

)
︸ ︷︷ ︸

standing hazard

(4)

where π0 = π[x(0; c), c], x0 = x(0; c), and subscripts denote differentiation. Equation (4) is154

partitioned in two different ways to better illustrate the effect of increasing dose. The first155

is a partitioning of its effect on mutation and replication. The second is a partitioning of156

its effect on the de novo and standing hazards. We have also indicated the terms that157

represent competitive release in blue (as explained below).158

The first term in equation (4) represents the change in de novo mutation towards the HLR159

strain that results from an increase in dose. The term (∂λ/∂p)(∂p/∂c) is the change in160

mutation rate, mediated through a change in wild type density; ∂λ/∂p specifies how161

mutation rate changes with an increase in the wild type density p (positive) while ∂p/∂c162

specifies how the wild type density changes with an increase in dose (typically negative for163

much of the duration of treatment). Thus the product, when integrated over the duration164

of treatment, is expected to be negative. The term ∂λ/∂c is the change in mutation rate165
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that occurs directly as a result of an increased dose (e.g., the direct suppression of wild166

type replication, which suppresses mutation). This, is expected to be non-positive in the167

simplest cases and is usually taken as such by proponents of high-dose chemotherapy.168

Therefore high-dose chemotherapy decreases the rate at which HLR mutations arise during169

treatment. Note, however, that if the drug itself causes a higher mutation rate (e.g., 21),170

then it is possible for an increased dose to increase the rate at which resistance appears.171

The second term in equation (4) represents replication of HLR strains once they have172

appeared de novo during the course of treatment. The term ∇xπ · xc is the indirect173

increase in escape probability, mediated through the effect of within-host state, x.174

Specifically, xc is a vector whose elements give the change in each state variable arising175

from an increased dosage (through the removal of the wild type). These elements are176

typically expected to be positive for much of the duration of treatment because an increase177

in dose causes an increased rebound of the within-host state through a heightened removal178

of wild type microbes. The quantity ∇xπ is the gradient of the escape probability with179

respect to host state x, and its components are expected to be positive (higher state leads180

to a greater probability of escape). The integral of the dot product ∇xπ · xc is therefore the181

competitive release of the HLR strain in terms of de novo hazard (19). This will typically182

be positive. The term ∂π/∂c is the direct change in escape probability of de novo mutants183

as a result of an increase in dosage (i.e., the extent to which the drug suppresses even the184

HLR strain). This term is negative at all times during treatment but, by the definition of185

HLR, this is small. Therefore, high-dose chemotherapy increases the replication of any HLR186

mutants that arise de novo during treatment.187

Finally, the third term in equation (4) represents the replication of any HLR strains that188

are already present at the start of treatment. The term
n

1− π
(∇xπ

0 · x0c) is the indirect189

effect of dose on standing hazard, where n is the number of resistant pathogens present at190

the start of treatment. The quantity x0c is again a vector whose elements give the change in191
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state arising from increased dosage (through the removal of the wild type). The192

components of this are typically expected to be positive because an increase in dose causes193

a rebound in the within-host state. ∇xπ
0 is the gradient of the escape probability with194

respect to state, and its components are expected to be positive (higher state leads to195

greater probability of escape). The dot product of the two, ∇xπ · xc, is therefore the196

competitive release of the HLR strain in terms of standing hazard (19). This will typically197

be positive. The term
n

1− π
∂π0

∂c
is the direct change in escape probability of pre-existing198

mutants as a result of an increase in dosage (i.e., the extent to which the drug suppresses199

even these HLR mutants) and is negative. Again, however, by the definition of HLR, this200

will be small and therefore high-dose chemotherapy increases the replication of any HLR201

mutants that are present at the start of treatment. Appendix B shows that the same set of202

qualitative factors arise if there are strains with intermediate resistance as well.203

The above results provide a mathematical formalization of earlier verbal arguments204

questioning the general wisdom of using high-dose chemotherapy as a means of controlling205

resistance emergence (13, 16). Advocates of the conventional heavy dose strategy tend to206

emphasize how high-dose chemotherapy can reduce mutational input and potentially even207

suppress the replication of resistant strains (the black derivatives in equation 4). However,208

high-dose chemotherapy leads to competitive release and thus greater replication of any209

resistant strains that are present (the blue derivatives in equation 4). Equation (4) shows210

that it is the relative balance among these opposing processes that determines whether211

high-dose chemotherapy is the optimal approach. We will present a specific numerical212

example shortly that illustrates these points, but first we draw two more general213

conclusions from the theory.214

(1) Intermediate doses yield the largest hazard and thus the greatest likelihood of resistance215

emergence across all theoretically feasible doses216

The opposing evolutionary processes explained above are the reason for this result (also see217
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16). First note that the functions λ and π will typically be such that D(0) ≈ 0. In other218

words, the HLR strain does not emerge de novo within infected individuals if they are not219

receiving treatment. Mechanistically, this is because any resistant strains that appear tend220

to be competitively suppressed by the wild type strain (19). Although, S(0) need not be221

zero (see Appendix C, Figure C2), the rate of change of S(c) with respect to c (i.e., the222

third term in equation 4) is positive at c = 0. Therefore the maximum hazard cannot occur223

at c = 0.224

Second, for large enough doses we have π[x(s; c), c] ≈ 0 for all s because such extreme225

concentrations will prevent replication of even the HLR strain. This makes both the de226

novo hazard D(c) and the standing hazard S(c) zero. Furthermore, for large enough c we227

also have λ[p(s; c), c] ≈ 0 for all s as well if HLR can arise only during wild type228

replication, because such extreme concentrations prevent all replication of the wild type.229

This is an additional factor making the de novo hazard D(c) decline to zero for large c.230

Therefore limc→∞H(c) = 0 and so the maximum hazard cannot occur for large values of c231

either (16). Thus, the maximum hazard must occur for an intermediate drug dosage.232

Although this prediction is superficially similar to that of the mutant selection window233

hypothesis (5–9), there are important differences between the two as will be elaborated234

upon in the discussion.235

(2) The optimal dose is either the maximum tolerable dose or minimum clinically effective236

dose237

We have seen that the maximum hazard occurs for an intermediate dose. Suppose, further,238

that the hazard H(c) is a unimodal function of c (i.e., it has a single maximum). Several239

specific mathematical models (Day unpubl. results) and a body of empirical work (see240

Discussion) are consistent with that assumption. Then the drug dose which best reduces241

the probability of resistance emergence is always at one of the two extremes of the242

therapeutic window. This means that it is best to use either the smallest clinically effective243
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dose or the largest tolerable dose depending on the situation, but never anything in244

between (Figure 1).245

A Specific Example246

To illustrate the general theory we now consider an explicit model for the within-host247

dynamics of infection and resistance. We model an acute infection in which the pathogen248

elicits an immune response that can clear the infection. Treatment is nevertheless called for249

because, by reducing the pathogen load, it reduces morbidity and mortality (see Appendix250

C for details).251

We begin by considering a situation in which the maximum tolerable drug concentration cU252

causes significant suppression of the resistant strain (Figure 2a). We stress however that if253

this were true then, by definition, the resistant strain is not really HLR and thus there254

really is no resistance problem to begin with. We include this extreme example as a255

benchmark against which comparisons can be made.256

Not surprisingly, under these conditions a large dose is most effective at preventing257

resistance (compare Figure 2b with 2c). This is a situation in which the conventional ‘hit258

hard’ strategy is best.259

Now suppose that the maximum tolerable drug concentration cU is not sufficient to directly260

suppress the resistant strain (Figure 3a). In this case the only difference from Figure 2 is a261

change in the resistant strain’s dose-response curve. Now there really is a potential262

resistance problem in the sense that, from a clinical standpoint, the drug is largely263

ineffective against the resistant strain.264

Under these conditions we see that a small dose is more effective at preventing resistance265

emergence than a large dose (compare Figure 3b with 3c). This is a situation in which the266
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conventional or orthodox ‘hit hard’ strategy is not optimal.267

Equation (4) provides insight into these contrasting results. The only difference between268

the models underlying Figures 2 and 3 is that ∂π/∂c and ∂π0/∂c are both negative for269

Figure 2 whereas they are nearly zero for Figure 3 (that is, at tolerable doses, the drug has270

negligible effects on resistant mutants). As a result, the negative terms in equation (4)271

outweigh the positive terms for Figure 2 whereas the opposite is true for Figure 3.272

These results appear to contradict those of a recent study by Ankomah and Levin (12).273

Although their model is more complex than that used here, equation (4) and its extensions274

in the appendices show that such additional complexity does not affect our qualitative275

conclusions. Ankomah and Levin (12) defined resistance evolution in two different ways: (i)276

the probability of emergence, and (ii) the time to clearance of infection. For the sake of277

comparison, here we focus on the probability of emergence. Ankomah and Levin (12)278

defined emergence as the appearance of a single resistant microbe. As such their emergence279

is really a measure of the occurrence of resistance mutations rather than emergence per se.280

In comparison, we consider emergence to have occurred only once the resistant strain281

reaches clinically significant levels; namely, a density high enough to cause symptoms or to282

be transmitted. There are two process that must occur for de novo resistant strains to283

reach clinically relevant densities. First, the resistant strain must appear by mutation, and284

both our results (Figure 3d) and those of Ankomah and Levin (12) show that a high dose285

better reduces the probability that resistance mutations occur (this can also be seen in286

equation 4). Second, the resistant strain must replicate to clinically significant levels.287

Ankomah and Levin (12) did not account for this effect and our results show that a high288

concentration is worse for controlling the replication of resistant microbes given a resistant289

strain has appeared (Figure 3d). This is because higher doses maximally reduce290

competitive suppression. In Figure 3 the latter effect overwhelms the former, making291

low-dose treatment better. In Figure 2 these opposing processes are also acting but in that292
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case the drug’s effect on controlling mutation outweighs its effect on increasing the293

replication of such mutants once they appear.294

More generally, Figure 4 illustrates the relationship between drug concentration and the295

maximum size of the resistant population during treatment, for the model underlying296

Figure 3. In this example a high concentration tends to result in relatively few outbreaks of297

the resistant strain but when they occur they are very large. Conversely, a low298

concentration tends to result in a greater number of outbreaks of the resistant strain but299

when they occur they are usually too small to be clinically significant.300

One can also examine other metrics like duration of infection, total resistant strain load301

during treatment, likelihood of resistant strain transmission, etc. but the above results are302

sufficient to illustrate that no single, general, result emerges. Whether a high or low dose is303

best for managing resistance will depend on the specific context (i.e., the parameter values)304

as well as the metric used for quantifying resistance emergence. In Appendices C and D,305

we consider cases where there is pre-existing resistance at the start of infection, strains306

with intermediate resistance, and other measures of drug dosing and resistance emergence.307

None of these factors alters the general finding that the optimal strategy depends on the308

balance between competing evolutionary processes.309

Discussion310

Equation (4) clearly reveals how high-dose chemotherapy gives rise opposing evolutionary311

processes in the emergence of resistance. It shows how the balance between mutation and312

competition determines the optimal resistance management strategy (13, 19). Increasing313

the drug concentration reduces mutational inputs into the system but it also unavoidably314

reduces the ecological control of any HLR pathogens that are present. These opposing315

forces generate an evolutionary hazard curve that is unimodal. Consequently, the worst316
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approach is to treat with intermediate doses (Figure 1) as many authors have recognized317

(5–7, 9). The best approach is to administer either the largest tolerable dose or the318

smallest clinically effective dose (that is, the concentration at either end of the therapeutic319

window). Which of these is optimal depends on the relative positions of the hazard curve320

and the therapeutic window (Figure 1). Administering the highest tolerable dose can be a321

good strategy (Figure 1c,d) but it can also be less than optimal (Figure 1b) or even the322

worst thing to do (Figure 1a). Thus, nothing in evolutionary theory supports the323

contention that a ‘hit-hard’ strategy is a good rule of thumb for resistance management.324

Empirical evidence325

Our framework makes a number of empirical predictions that are consistent with existing326

data. First, the resistance hazard will be a unimodal function of drug concentration. This327

is well-verified in numerous studies. In fact a unimodal relationship between resistance328

emergence and drug concentration (often called an ‘inverted-U’ in the literature) is329

arguably the single-most robust finding in all of the empirical literature (e.g., 22–40).330

Second, the position and shape of the hazard curve will vary widely among drugs and331

microbes, depending on how drug dose affects mutation rates and the strength of332

competition. Such wide variation is seen (e.g., 22, 23, 27, 28, 34, 37, 38, 41, 42), presumably333

reflecting variation in the strength of the opposing processes highlighted by equation (4).334

Third, the relationship found between drug concentration and resistance evolution in any335

empirical study will depend on the range of concentrations explored. At the low end,336

increasing dose should increase resistance evolution; at the high end, increasing dose should337

decrease resistance evolution. Examples of both cases are readily seen, often even within338

the same study (e.g., 15, 22–40, 43–49). It is important to note that there are clear339

examples for which low-dose treatments can better prevent resistance emergence than high340
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doses (15, 38, 41, 43–46, 48–50), despite an inherent focus in the literature on experimental341

exploration of high-dose chemotherapy. The theory presented here argues that uniformity342

is not expected and the bulk of the empirical literature is consistent with this prediction.343

Theory does not support using the MPC as a rule of thumb344

An important and influential codification of Ehrlich’s ‘hit hard’ philosophy is the concept345

of the mutant selection window, and the idea that there exists a mutant prevention346

concentration (MPC) that best prevents resistance evolution (7–9). The MPC is defined as347

‘the lowest antibiotic concentration that prevents replication of the least susceptible348

single-step mutant’ (see 8, p. S132). When drug concentrations are maintained above the349

MPC, ‘pathogens populations are forced to acquire two concurrent resistance mutations for350

replication under antimicrobial therapy’ (see 51, p. 731). Below the MPC lies the ‘mutant351

selection window’, where single-step resistant mutants can replicate, thus increasing the352

probability that microbes with two or more resistance mutations will appear. Considerable353

effort has been put into estimating the MPC for a variety of drugs and microbes (4).354

The relationship between these ideas and the theory presented here is best seen using the355

extension of equation (4) that allows for strains with intermediate resistance. Appendix B356

shows that, in this case, equation (4) remains unchanged except that its first term (the357

mutational component) is extended to account for all of the ways in which the HLR strain358

can arise by mutation through strains with intermediate resistance (see expression B-3 in359

Appendix B). A focus on the MPC can therefore be viewed as a focus on trying to control360

only the mutational component of resistance emergence. And as the theory embodied by361

equation (4) shows, doing so ignores the other evolutionary process of competitive release362

that is operating. The use of the MPC therefore cannot be supported by evolutionary363

theory as a general rule of thumb for resistance management.364
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If evolutionary theory does not support the use of MPC as a general approach then why365

does this nevertheless appear to work in some cases (e.g., 33, 52)? The theory presented366

here provides some possible explanations. First, if HLR strains can appear only through367

mutation from strains with intermediate resistance, and if feasible dosing regimens can368

effectively kill all first step mutants, then such an approach must necessarily work since it369

reduces all mutational input to zero. But for most of the challenging situations in370

medicine, achieving this is presumably not possible. For example, if the MPC is not371

delivered to all pathogens in a population because of patient compliance, metabolic372

variation, spatial heterogeneity in concentration, etc, then the mutational input will not be373

zero. Also, if HLR strains can arise in ways that do not require mutating through strains374

with intermediate resistance (e.g., through lateral gene transfer; 53) then again the375

mutational input will not be zero. In either case, one must then necessarily account for376

how the choice of dose affects the opposing evolutionary process of competitive release in377

order to minimize the emergence of resistance. Figure C3 in Appendix C illustrates this378

idea by presenting a numerical example in which the MPC is the worst choice of drug379

concentration for controlling HLR.380

Second, the theory presented here suggests that the MPC can be the best way to contain381

resistance if this concentration happens to be the upper bound of the therapeutic window382

(although see Figure C3 of Appendix C for a counterexample). If, however, the MPC is less383

than the upper bound then even better evolution-proofing should be possible at either end384

of the therapeutic window. If the MPC is greater than the upper bound, as it is for385

example with most individual TB drugs (54) and levofloxacin against S. aureus (27), the386

MPC philosophy is that the drug should then be abandoned as monotherapy. But our387

framework suggests that before doing so, it might be worthwhile considering the lower388

bound of the therapeutic window. Researchers have tended not to examine the impact of389

the smallest clinically effective dose on resistance evolution, perhaps because of an inherent390

tendency to focus on high-dose chemotherapy. It would be informative to compare the391
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effects of the MPC with concentrations from both ends of the therapeutic window on392

resistance emergence experimentally.393

Theory does not support using the highest tolerable dose as a rule of thumb394

The MPC has yet to be estimated for many drug-microbe combinations (4) and it can be395

difficult to do so, especially in a clinically-relevant setting (51, 53). Given the uncertainties396

involved, and the need to make clinical decisions ahead of the relevant research, some397

authors have suggested the working rule of thumb of administering the highest tolerable398

dose (3, 4). Our analysis shows that evolutionary theory provides no reason to expect that399

this approach is best. By reducing or eliminating the only force which retards the400

emergence of any HLR strains that are present (i.e., competition), equation (4) makes clear401

that a hit hard strategy can backfire, promoting the very resistance it is intended to402

contain.403

How to choose dose404

If the relative positions of the HLR hazard curve and the therapeutic window are known,405

rational (evidence-based) choice of dose is possible. If the therapeutic window includes406

doses where the resistance hazard is zero, then those doses should be used. However, by407

definition, such situations are incapable of generating the HLR which causes a drug to be408

abandoned, and so these are not the situations that are most worrisome. If the hazard is409

non-zero at both ends of the therapeutic window, the bound associated with the lowest410

hazard should be used (Figure 1b, c). If nothing is known of the HLR hazard curve (as will411

often be the case), then there is no need to estimate the whole function. Our analysis412

suggests that the hazards need be estimated only at the bounds of the therapeutic window.413

These bounds are typically well known because they are needed to guide clinical practice.414
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Estimating the resistance hazard experimentally can be done in vitro and in animal models415

but we note that since the solution falls at one end of the therapeutic window, they can416

also be done practically and ethically in patients. That will be an important arena for417

testing, not least because an important possibility is that, as conditions change, the418

optimal dose might change discontinuously from the lowest effective dose to the highest419

tolerable dose or vice versa. There is considerable scope to use mathematical and animal420

models to determine when that might be the case and to determine clinical predictors of421

when switches should be made.422

Managing resistance in non-targets423

Our focus has been on the evolution of resistance in the pathogen population responsible424

for disease. Looking forward, an important empirical challenge is to consider the impact of425

drug dose on the broader microbiome. Resistance can also emerge in non-target426

micro-organisms in response to the clinical use of antimicrobials (44). Resistance in those427

populations can increase the likelihood of resistance in future pathogen populations, either428

because of lateral gene transfer from commensals to pathogens, or when commensals429

become opportunistic pathogens (9, 55). For instance, aggressive drug treatment targeted430

at bacterial pneumonia in a rat model selected for resistance in gut fauna. Lower dose431

treatment of the targeted lung bacteria was just as clinically effective and better managed432

resistance emergence in the microbiota (50).433

It is unclear just how important these off-target evolutionary pressures are for patient434

health, but if they are quantitatively important, this raises the interesting and challenging435

possibility that the real hazard curve should be that of the collective microbiome as a436

whole, weighted by the relative risk of resistance evolution in the components of the437

microbiome and the target pathogen. It will be challenging to determine that, but our438

focus on either end of the therapeutic window at least reduces the parameter space in need439
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of exploration.440

Coda441

Our analysis suggests that resistance management is best achieved by using a drug442

concentration from one edge of the therapeutic window. In practice, patients are likely443

treated somewhat more aggressively than the minimum therapeutic dose (to ensure no444

patients fail treatment) and somewhat less aggressively than the maximum tolerable dose445

(to ensure no patients suffer toxicity). This means that medical caution is always driving446

resistance evolution faster than it need go, particularly when the maximum hazard lies447

within the therapeutic window (Figure 1b,c). From the resistance management perspective,448

it is important to determine the level of caution that is clinically warranted rather than449

simply perceived.450

For many years, physicians have been reluctant to shorten antimicrobial courses, using long451

courses on the grounds that it is better to be safe than sorry. It is now increasingly clear452

from randomized trials that short courses do just as well in many cases (e.g., 56–58) and453

they can reduce the risk of resistance emergence (56, 59, 60). We suggest that analogous454

experiments looking at the evolutionary outcomes of lowest clinically useful doses should be455

the next step. Such experiments in plants have already shown unambiguously that low456

dose fungicide treatment best prevents the spread of resistant fungal pathogens (61). How457

generally true this is for other pathogens, or pathogens of other hosts, remains to be seen.458

We also note that our arguments about the evolutionary merits of considering the lowest459

clinically useful doses have potential relevance in the evolution of resistance to cancer460

chemotherapy as well (62).461
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Figure Captions

Figure 1. Hypothetical plots of resistance hazard H(c) as a function of drug concentration c,
with the lowest effect dose and the highest tolerable dose denoted by cL and cU respectively.
The therapeutic window is shown in green. (a) and (b) drug concentration with the smallest
hazard is the minimum effective dose. (c) and (d) drug concentration with the smallest
hazard is the maximum tolerable dose.

Figure 2. An example in which the conventional strategy of high-dose chemotherapy best
prevents the emergence of resistance. (a) The dose-response curves for the wild type in
blue (r(c) = 0.6(1 − tanh(15(c − 0.3)))) and the resistant strain in red (rm(c) = 0.59(1 −
tanh(15(c − 0.45)))) as well as the therapeutic window in green. Red dots indicate the
probability of resistance emergence. Probability of resistance emergence is defined as the
fraction of 5000 simulations for which resistance reached a density of at least 100 (and thus
caused disease).(b) and (c) wild type density (blue), resistant density (red), and immune
molecule density (black) during infection for 1000 representative realizations of a stochastic
implementation of the model. (b) treatment at the smallest effective dose cL, (c) treatment
at the maximum tolerable dose cU . Parameter values are P (0) = 10, Pm(0) = 0, I(0) = 2,
α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, and γ = 0.01.

Figure 3. An example in which the low-dose strategy best prevents the emergence of resis-
tance. (a) The dose-response curves for the wild type in blue (r(c) = 0.6(1 − tanh(15(c −
0.3)))) and the resistant strain in red (rm(c) = 0.59(1 − tanh(15(c − 0.6)))) as well as the
therapeutic window in green. Red dots indicate the probability of resistance emergence.
Probability of resistance emergence is defined as the fraction of 5000 simulations for which
resistance reached a density of at least 100 (and thus caused disease).(b) and (c) wild type
density (blue), resistant density (red), and immune molecule density (black) during infec-
tion for 1000 representative realizations of a stochastic implementation of the model. (b)
treatment at the smallest effective dose cL, (c) treatment at the maximum tolerable dose cU .
(d) The probability that a resistant strain appears by mutation is indicated by grey bars for
low and high dose. The probability of resistance emergence is indicated by the height of the
red bars for these cases. The probability of resistance emergence, given a resistant strain
appeared by mutation, can be interpreted as the ratio of the red to grey bars. Parameter
values are P (0) = 10, Pm(0) = 0, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, and
γ = 0.01.

Figure 4. Frequency distribution of resistant strain outbreak sizes for the simulation underly-
ing Figure 3. Each distribution is based on 5000 realizations of a stochastic implementation
of the model. (a) Low drug dose. (b) High drug dose. Insets show the same distribution on
a different vertical scale.
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Appendices A-E

When does high-dose antimicrobial chemotherapy prevent the evolution of
resistance?

Day, T. and A.F. Read

June 1, 2015
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Appendix A - Derivation of Equation 41

In the absence of treatment we model the within-host dynamics using a system of2

differential equations3

dP

dt
=F (P,X) (A-1a)

dX

dt
=G(P,X) (A-1b)

where P is the density of the wild type and X is a vector of variables describing the4

within-host state (e.g., RBC count, densities of different immune molecules, etc). The5

initial conditions are P (0) = P0 X(0) = X0. At some point, t∗, drug treatment is6

introduced. Using lower case letters to denote the dynamics in the presence of treatment,7

we then have8

dp

dt
=f(p, x; c) (A-2a)

dx

dt
=g(p, x; c) (A-2b)

with initial conditions p(0; c) = P (t∗) and x(0; c) = X(t∗), and where c is the dosage. For9

simplicity, here we assume that a constant drug concentration is maintained over the10

course of the infection. Appendix E considers the pharmacokinetics of discrete drug dosing.11

The notation p(t; c) and x(t; c) reflects the fact that the dynamics of the wild type and the12

host state will depend on dosage. For example, if the dosage is very high p will be driven to13

zero very quickly.14

1
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As the drug removes the wild type pathogen, resistant mutations will continue to arise15

from the wild type population stochastically. For example, if mutations are produced only16

during replication of the wild type, then the rate of mutation will have the form µr(c)p(t; c)17

where µ is the mutation rate and r(c) is the replication rate of the wild type pathogen18

(which depends on drug dosage c). With this form of mutation, if we could administer the19

drug at concentrations above the MIC at the very onset of infection, then resistance20

evolution through de novo mutation would not occur. In reality symptoms and therefore21

drug treatment typically do not occur until later in the infection, meaning that some22

resistant strains might already be present at low frequency at the onset of treatment.23

There are also other plausible forms for the mutation rate as well, and therefore we simply24

specify this rate by some general function λ[p(t; c), c].25

Whenever a resistant strain appears it is subject to stochastic loss. We define π as the26

probability of avoiding loss (which we refer to as ‘escape’). To simplify the present27

analysis, we use a separation of timescales argument and assume that the fate of each28

mutant is determined quickly (essentially instantaneously) relative to the dynamics of the29

wild type and host state (we relax this assumption in all numerical examples). Thus, π for30

any mutant will depend on the host state at the time of its appearance, x(t; c), and it will31

therefore depend indirectly on c. Note that π will also depend directly on c, however,32

because drug dosage might directly suppress resistant strains as well if the dose is high33

enough. Therefore we use the notation π[x(t; c), c], and assume that π is an increasing34

function of x and a decreasing function of c.35

With the above assumptions the host can be viewed as being in one of two possible states36

at any point in time during the infection: (i) resistance has emerged (i.e., a resistant strain37

has appeared and escaped), or (ii) resistance has not emerged. We model emergence as an38

inhomogeneous birth process, and define q(t) as the probability that resistance has emerged39

by time t. A conditioning argument gives40

2
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q(t+ ∆t) = q(t) + (1− q(t))λ∆tπ + o(∆t) (A-3)

where λ∆t is the probability that a mutant arises in time ∆t, and π is the probability that41

such a mutant escapes. Re-arranging and taking the limit ∆t→ 0 we obtain42

dq

dt
= (1− q(t))λπ (A-4)

with initial condition q(0) = q0. Note that q0 is the probability that emergence occurs as a43

result of resistant mutants being present at the start of treatment. Again employing a44

separation of timescales argument, if there are n mutant individuals present at this time,45

then q0 = 1− (1− π[x(0; c), c])n.46

The solution to the above differential equation is47

q(t) = 1− (1− π[x(0; c), c])n exp

(
−
∫ t

0

λπds

)
. (A-5)

If a is the time at which treatment is stopped, and Q is the probability of emergence48

occurring at some point during treatment, then Q = q(a). If we further define49

S = −n ln (1− π[x(0; c), c]) then we can write Q as50

Q = 1− exp(−D − S) (A-6)

where D =
∫ a

0
λπds. We refer to D as the de novo hazard and S as the standing hazard. D51

is the contribution to escape that is made up of mutant individuals that arise during the52

course of treatment. S is the contribution to escape that is made up of mutant individuals53

3
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already presents at the start of treatment.54

Given the expression for Q, all else equal, resistance management would seek the treatment55

strategy, c that makes Q as small as possible. Since Q is a monotonic function of D + S,56

we can simplify matters by focusing on these hazards instead. Thus we define57

H =

∫ a

0

λπds+ S (A-7)

which is the ‘total hazard’ during treatment. Equation (4) is then obtained by58

differentiating the the total hazard H with respect to c.59

Appendix B - Extensions involving intermediate60

strains and horizontal gene transfer61

The results of the main text (which are derived in Appendix A) are based on the62

assumption that a single mutational event can give rise to high-level resistance. In some63

situations several mutational events might be required. These so-called ‘stepping stone64

mutations’ towards high-level resistance might themselves confer an intermediate level of65

resistance. One of the arguments in favour of aggressive chemotherapy has been to prevent66

the persistence of these stepping stone strains, and thereby better prevent the emergence of67

high-level resistance (1–8). Here we incorporate such stepping stone mutations into the68

theory, again placing primarily attention on the emergence of high-level resistance.69

As in Appendix A, in the absence of treatment we model the within-host dynamics using a70

system of differential equations71

4
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dP

dt
=F (P,X) (B-1a)

dX

dt
=G(P,X) (B-1b)

but now P is also a vector containing the density of the wild type and all potential72

intermediate mutants. All intermediate strains are assumed to bear some metabolic or73

replicative cost as well, meaning that they are unable to increase in density in the presence74

of the wild type. Mechanistically again this is because the wild type has suppressed the75

host state, X, below the minimum value required for a net positive growth by any76

intermediate strain. Thus, in the absence of treatment we expect most of these mutants to77

have negligible density. Once treatment is introduced we have78

dp

dt
=f(p, x; c) (B-2a)

dx

dt
=g(p, x; c) (B-2b)

where again p is now a vector. As before we have initial conditions p(0; c) = P (t∗) and79

x(0; c) = X(t∗), and where c is the dosage. Now, however, different choices of c will80

generate different distributions of strain types p(t; c) during the infection. Furthermore,81

each type will give rise to the high-level resistance strain with its own rate. Therefore, the82

function specifying the rate of mutation to the HLR strain λ[p(t; c), c] is a function of the83

vector variable p(t; c).84

The calculations in Appendix A can again be followed. We obtain an equation identical to85

equation (4) except that the first term is replaced by86

5
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∫ a

0

π

(
∇pλ · pc +

∂λ

∂c

)
ds (B-3)

where subscripts denote differentiation with respect to that variable. The difference is that87

(∂λ/∂p)(∂p/∂c) in equation (4) is replaced with ∇pλ · pc. The quantity pc is a vector whose88

components are the changes in the density of each intermediate strain arising from an89

increased dosage. The quantity ∇pλ is the gradient of the mutation rate with respect to a90

change in the density of each intermediate strain. The integral of the dot product of the91

two, ∇pλ · pc, is therefore the overall change in mutation towards the HLR strain during92

treatment. Whereas the first term of equation (4) is expected to be negative, expression93

(B-3) can be negative or positive depending on how different doses affect the distribution of94

intermediate mutants during the infection (i.e., the elements of pc) and the rate at which95

each type of intermediate mutant gives rise to the strain with high level resistance (i.e., the96

elements of ∇pλ). Either way, however, this does not alter the salient conclusion that the97

optimal resistance management dose will depend on the details.98

In an analogous fashion we might also alter the derivation in Appendix A to account for99

the possibility that some microbes acquire high-level resistance via horizontal gene transfer100

from other, potentially commensal, microbes. To do so we would simply need to alter the101

way in which λ is modelled. In particular, it might then be a function of the densities of102

commensal microbes as well, who themselves could be affected by drug dosage. Thus, once103

treatment has begun, we might have a system of equations of the form104

dp

dt
=f(p, x, y; c) (B-4a)

dx

dt
=g(p, x, y; c) (B-4b)

dy

dt
=h(p, x, y; c) (B-4c)

6
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where y is a vector of commensal microbe densities. We might then model λ as105

λ[p(t; c), y(t; c)]. Again, calculations analogous to those of Appendix A can be followed to106

obtain an appropriate expression for the resistance hazard. As with the above examples,107

there will again be a tradeoff between components of this expression as a function of drug108

dosage.109

Appendix C - A Model of acute immune-mediated110

infections111

The dynamics of the mutant and wild type in the absence of treatment are modeled as112

dP

dt
= [r(0)(1− µ)− γ]P − κPI (C-1)

dPm

dt
= [rm(0)− γm]Pm − κPmI + r(0)µP (C-2)

dI

dt
= α(P + Pm)− δI. (C-3)

where r(·) and rm(·) are the growth rates of the wild type and mutant as a function of drug113

concentration, µ is the mutation probability from wild type to resistant, and γ and γm are114

the natural death rates of each. We assume a cost of resistance in the absence of115

treatment, meaning that r(1− µ)− γ > rm − γm The immune response, I, grows in116

proportion to the density of the pathogen population and decays at a constant per capita117

rate δ. Immune molecules kill the pathogen according to a law of mass action with118

parameter κ for both the wild type and the resistant strain (i.e., immunity is completely119

cross-reactive). This is a simple deterministic model for an immune-controlled infection.120

7
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When the mutation rate is zero (µ = 0) and the pathogen can increase when rare, the121

model displays damped oscillations towards an equilibrium with the wild type present122

(P̂ = (r − γ)δ/ακ), the mutant extinct (P̂m = 0), and the immune system at a nonzero123

level (Î = (r − γ)/κ). For many choices of parameter values (including those that we focus124

on here) the first trough in pathogen density is very low, and therefore once we introduce125

stochasticity the entire pathogen population typically goes extinct at this stage, at which126

point the immune molecules then decay to zero. It is in this way that we model an127

immune-controlled infection.128

Under treatment the dynamics are the same as above but where r(·) and rm(·) are then129

evaluated at some nonzero drug concentration. Throughout we assume that the130

dose-response functions r(·) and rm(·) are given by the function b1(1− tanh(b2(c− b3))) for131

some constants b1, b2, and b3. The model used to explore the emergence of resistance132

employs a stochastic implementation of the above equations using the Gillespie algorithm.133

Figure C1 presents output for several runs of the model using three different drug134

concentrations. In all cases we have set the mutation rate to zero (no resistant strains135

arise). In the absence of treatment an infection typically results in a single-peak of wild136

type pathogen before the infection is cleared. To model realistic disease scenarios we137

(arbitrarily) suppose that infected individuals become symptomatic only once the pathogen138

density exceeds a threshold of 100 and treatment is used only once an infection is139

symptomatic. For the parameter values chosen in this example, 99% of untreated140

infections are symptomatic (Figure C1a,b). We further suppose (again arbitrarily) that a141

pathogen load greater than 200 results in substantial morbidity and/or mortality. With142

this assumptions we can then proceed to define the therapeutic window. The upper limit143

cU is arbitrary in the model and so we set cU = 0.5. The lower limit cL is the smallest dose144

that prevents significant morbidity and/or mortality. Therefore it is the smallest dose that,145

in the absence of resistance emergence, keeps pathogen load below 200. Figure C1c shows146

8
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that, for the parameter values used, cL ≈ 0.3. Notice from Figure C1a that a dose of147

c = 0.3 does not fully suppress growth as measured in vitro but it nevertheless controls the148

infection in vivo because the immune response also contributes to reducing the pathogen149

load.150

For simulations in which the mutation rate to resistance is non-zero we quantify the151

emergence of resistance in the following way. For each simulation run we record the152

maximum density of the resistant strain before the infection is ultimately cleared. Runs in153

which this density reaches a level high enough to cause symptoms (a density of 100 in this154

case) are deemed to be infections in which resistance has ‘emerged’. The probability of155

resistance emergence is quantified as the fraction of runs in which this threshold level is156

reached. In Figure 4 of the text we also consider the consequences of using other threshold157

densities to define emergence.158

The simulation results of the main text assume that all resistant strains arise de novo in a159

infection but in some cases we might expect resistant strains to already be present at the160

start of infection. The general theory presented in the main text reveals that again we161

should not expect any simple generalities. For example, one might expect that when the162

initial infection already contains many resistant microbes the relevance of de novo mutation163

might be diminished and so a lower dose might be optimal for managing resistance.164

Although this is sometimes the case (Day, unpubl. results) the opposite is possible as well.165

As an example, Figure C2 presents results for the probability of emergence as a function of166

dose, for three different levels of resistance frequency in the initial infection. As the167

frequency of resistance in the initial infection increases, the optimal concentration changes168

from a low dose to a high dose. The reason is that, if resistance is already very common169

early in the infection, then the competitive release that occurs from removing the wild type170

is greatly diminished since the resistant strain will have already managed to gain a171

foothold before the wildtype numbers increase significantly. Put another way, the benefits172

9
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of low dose therapy have decreased because the magnitude of competitive release (the blue173

terms in equation (4) of the main text) has decreased. Experimental results have verified174

this prediction; namely, that drug resistant pathogens can reach appreciable within-host175

densities in the absence of treatment if the initial infection contains a substantial number176

of these (9).177

A common suggestion is that, when strains with intermediate levels of resistance are178

possible, aggressive chemotherapy is then optimal because anything less will allow these179

intermediate strains to persist and thereby give rise to HLR through mutation. We180

therefore conducted simulations to explore this idea. We note, however, that again the181

general theoretical results of Appendix B reveal that no generalities should be expected182

and our simulations bear this out. For example, we extended equations for the within-host183

dynamics to allow for a strain with intermediate resistance by using the following equations:184

dP

dt
= [r(c)(1− µ)− γ]P − κPI (C-4)

dPm1

dt
= [rm1(c)− γm1]Pm1 − κPm1I + r(c)µP (C-5)

dPm2

dt
= [rm2(c)− γm2]Pm2 − κPm2I + rm1(c)µ1Pm1 (C-6)

dI

dt
= α(P + Pm1 + Pm2)− δI. (C-7)

where Pm1 is the density of the mutant strain with intermediate resistance and Pm2 is the185

strain with HLR. Also, r(·), rm1(·), and rm2(·) are the growth rates of the wild type and186

the two mutant types as a function of drug concentration, µ is the mutation probability187

from wild type to the intermediate strain, µ1 is the mutation rate from the intermediate188

strain to HLR, and the γ’s are the natural death rates of each. Again the immune189

response, I, grows in proportion to the density of the pathogen population and decays at a190

constant per capita rate δ.191
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Again the simulation was conducted with a stochastic implementation of the above model192

using the Gillespie algorithm. While the presence of intermediate strains does alter the193

relative balance of factors affecting resistance emergence, this balance can still move in194

either direction.195

As an example, Figure C3 presents simulation results in which low-dose treatment yields196

the lowest probability of HLR emergence. Note, however, that high-dose treatment controls197

the emergence of the intermediate strain the best.198

The results of Figure C3 can also be interpreted within the context of the mutant selection199

window hypothesis and the mutant prevention concentration or MPC. The MPC is the200

drug concentration that prevents the emergence of all single-step resistant mutants. In201

Figure C3 we can see that the emergence of the intermediate, single step, mutant strain is202

prevented by using the maximum tolerable dose. Nevertheless, even though the HLR strain203

can arise only by mutation from this intermediate strain, it it the lowest effective dose that204

best controls the emergence of HLR. The reason for this is that it is not possible to achieve205

the MPC early enough in the infection to prevent all mutational input from occurring206

because treatment starts only once symptoms appear. For the specific case illustrated in207

Figure C3 the possibility of HLR arising is then enough to tip the balance so that the lower208

edge of the therapeutic window is the best strategy for controlling HLR.209

Appendix D - Other results for the model of acute210

immune-mediated infections211

In the main text we focus on the emergence of the resistant strain but in many clinical212

studies researchers focus instead on successful treatment. For example, one common213

approach is to quantify the probability of treatment failure as a function of drug dose (or214
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some proxy thereof). Such studies cannot provide information about resistance evolution215

per se but they nevertheless might involve a component of resistance evolution if this is one216

of the potential reasons for treatment failure.217

We can explore a similar idea in the context of the model in the main text. Suppose we218

measure clinical success as the complete eradication of infection by day 20. In the219

simulations some individuals then display treatment failure because, through the220

stochasticity of individual infection dynamics, they fail to clear the infection by this time.221

Figure D1a presents the probability of treatment failure, measured by the fraction of the222

simulations for which the infection (wild type or resistant) was still present on day 20 for223

the model underlying Figure 3. Failure occurs under both treatment scenarios but it224

happens more frequently for the high dose treatment (compare red portion of bar graphs in225

Figure D1a). There is an important structure to these failures, however, that can be better226

appreciated by calculating the probability of failure by conditioning on whether or not a227

resistant mutation ever appeared during treatment; i.e.,228

P (F ) = P (F |M)P (M) + P (F |M c)P (M c) (C-8)

where P (F ) is the probability of failure, P (M) is the probability of a resistant mutation229

appearing during treatment (P (M c) is the probability that this doesn’t occur), and230

P (F |M) is the probability of failure given a resistant mutation appears (with P (F |M c) the231

probability of failure given a resistant mutation does not appear). The bar graphs in Figure232

D1a show again that a high dose better controls the appearance of resistant mutations (i.e.,233

P (M) is lower for the high dose treatment), but if a resistant mutation does occur, then a234

high dose results in a greater likelihood of treatment failure (i.e., P (F |M) is higher for the235

high dose treatment - note that this quantity can be interpreted graphically as the ratio of236

the red to grey bars). And in this case the latter effect overwhelms the former, making the237
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probability of treatment failure P (F ) greater overall for the high dose treatment.238

It is not difficult to obtain diametrically opposite results, however, with a small change in239

parameter values. Figure D1b show analogous results for the very same simulation, but240

where the probability of mutation is an order of magnitude lower. In this case we see that,241

even though a high dose results in a greater probability of failure if a resistant mutation242

appears, the effect is diminished such that, overall, the high dose results in a lower overall243

probability of failure. Notice also though that, even though a high dose results in a lower244

likelihood of treatment failure, it nevertheless still results in a higher probability of245

resistance emergence during treatment. The former is measured only by whether or not the246

infection still persists on day 20 whereas the latter is measured by whether or not a large247

outbreak of resistance occurs at some point during treatment. This provides an example248

illustrating the general idea that treatment failure cannot be taken as a proxy for249

resistance emergence.250

Appendix E - Generalizing the pharmacokinetics251

Here we illustrate how the qualitative conclusions of the main text hold more broadly by252

deriving the analogue of equation (4) for quite general forms of pharmacokinetics. For253

simplicity we will ignore the possibility that resistant strains might be present at the start254

of treatment.255

For the sake of illustration we suppose that the drug is administered in some arbitrary way256

for a period of time of length T and then treatment is stopped. The question we ask is,257

how does increasing the duration of treatment T affect the probability of resistance258

emergence? More generally we might alter other aspects of treatment like dose size,259

inter-dose interval, etc but our focus on T will be sufficient to see how one would deal with260

these other factors as well.261
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To allow for more general pharmacokinetics we must model the dynamics of drug262

concentration explicitly. Once treatment has begun the model becomes263

dp

dt
=f(p, x, c) (E-1a)

dx

dt
=g(p, x, c) (E-1b)

dc

dt
=h(p, x, c, t) (E-1c)

The third equation accounts for the pharmacokinetics of the drug and allows for the264

treatment protocol to vary through time. These equations must also be supplemented with265

an initial condition specifying the values of the variables at the start of treatment.266

After time T has elapsed treatment is stopped and the dynamics then follow a different set267

of equations given by268

dp̃

dt
=f̃(p̃, x̃, c̃) (E-2a)

dx̃

dt
=g̃(p̃, x̃, c̃) (E-2b)

dc̃

dt
=h̃(p̃, x̃, c̃, t) (E-2c)

The tildes reflect the fact that the functional form of the dynamical system might change269

when treatment is stopped (e.g., there is no longer any input of the drug in the function h̃270

as compared with the function h), and thus the variables follow a different trajectory than271

they would have under treatment. This system of differential equation must also be272

supplemented with an initial condition as well, and this requires p̃(T ) = p(T ), x̃(T ) = x(T ),273

and c̃(T ) = c(T ). Notice that the trajectories of the new variables p̃, x̃ and c̃ therefore274
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depend on the duration of treatment T because this duration will affect their initial values.275

With the above formalism we can write the hazard as276

H(T ) =

∫ T

0

λπds+

∫ ∞
T

λ̃π̃ds (E-3)

where we have simplified the notation by using a tilde above a function to indicate that the277

function is evaluated along the variables with a tilde. Differentiating with respect to T gives278

dH

dT
= λπ|s=T − λ̃π̃|s=T +

∫ ∞
T

d

dT
λ̃π̃ds (E-4)

By the continuity of the state variables the first two terms cancel and therefore we have279

dH

dT
=

∫ ∞
T

d

dT
λ̃π̃ds (E-5)

Now λ̃ and π̃ depend on T because they depend on the trajectories of the variables p̃, x̃ and280

c̃, and the trajectories of these variables in turn depend on their initial conditions (which281

depend on T as described above). We can capture this notationally by treating the282

variables p̃, x̃ and c̃ as functions of T . Thus we have283

dH

dT
=

∫ ∞
T

d

dT
λ̃π̃ds

=

∫ ∞
T

π

(
∂λ

∂p̃

∂p̃

∂T
+
∂λ

∂c̃

∂c̃

∂T

)
+ λ

(
∇x̃π · x̃T +

∂π

∂c̃

∂c̃

∂T

)
ds

We can see that this has a form that is identical to de novo part of equation (4) except that
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now the drug concentration is no longer directly under our control. Instead, changes in T
affect resistance emergence by how they affect changes in drug concentration. More generally,
the very same potentially opposing processes as those in equation 4 will arise regardless of how
we alter the drug dosing regimen because any such alteration must ultimately be mediated
through its affect on the drug concentration at each point in time during an infection.
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Figure Captions

Figure C1. (a) The dose-response curve r(c) = 0.6(1 − tanh(15(c − 0.3))) as well as the
therapeutic window in green. (b), (c) and (d) show wild type pathogen density (blue) and
immune molecule density (black) during infection for 1000 representative realizations of a
stochastic implementation of the model. (b) no treatment, (c) treatment at the smallest
effective dose cL, (d) treatment at the maximum tolerable dose cU . Parameter values are
P (0) = 10, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, µ = 0, and γ = 0.01.

Figure C2. The effect of different levels of standing variation for resistance in the initial
infection. Simulation is identical to that for Figure 3a except for the initial conditions.
The dose-response curves for the wild type in blue (r(c) = 0.6(1 − tanh(15(c − 0.3)))) and
the resistant strain in red (rm(c) = 0.59(1 − tanh(15(c − 0.6)))) as well as the therapeutic
window in green. Red dots indicate the probability of resistance emergence, and for three
different initial conditions. Probability of resistance emergence is defined as the fraction
of 5000 simulations for which resistance reached a density of at least 100 (and thus caused
disease). Top set of dots have P (0) = 5, Pm(0) = 5; middle set of dots have P (0) = 7,
Pm(0) = 3; bottom set of dots have P (0) = 10, Pm(0) = 0. Other parameter values are
I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, and γ = 0.01.

Figure C3. Simulation results when there is a strain with intermediate resistance. (a)
The dose-response curves for the wild type in blue (r(c) = 0.6(1 − tanh(15(c − 0.3)))),
the intermediate strain in yellow (rm2(c) = 0.595(1 − tanh(15(c − 0.45)))), and the HLR
strain in red (rm2(c) = 0.59(1 − tanh(15(c − 0.6)))) as well as the therapeutic window in
green. Dots indicate the probability of emergence for the intermediate strain (yellow) and
the HLR strain (red). Probability of emergence is defined as the fraction of 5000 simulations
for which the strain reached a density of at least 100. (b) and (c) wild type density (blue),
intermediate strain density (yellow), HLR strain density (red), and immune molecule density
(black) during infection for 1000 representative realizations of a stochastic implementation
of the model. (b) treatment at the smallest effective dose cL, (c) treatment at the maximum
tolerable dose cU . Parameter values are P (0) = 10, Pm1(0) = 0, Pm2(0) = 0, I(0) = 2,
α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, µ1 = 10−2, and γ = γm1 = γm2 = 0.01.

Figure D1. The effect of drug concentration on resistance emergence and treatment failure.
(a) The dose-response curves for the wild type in blue (r(c) = 0.6(1 − tanh(15(c − 0.3))))
and the resistant strain in red (rm(c) = 0.59(1− tanh(15(c− 0.6)))) as well as thetherpeutic
window in green. Dots indicate the probability of resistance emergence. Probability of resis-
tance emergence is defined as the fraction of 5000 simulations for which resistance reached a
density of at least 100 (and thus caused disease). Parameter values are P (0) = 10, I(0) = 2,
α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, and γ = 0.01. Bar graphs: the probability that
a resistant strain appears by mutation is indicated by the left-hand grey bars for each drug
concentration (the right-hand grey bar is the probability that a resistant strain does not
appear). The probability of treatment failure for a specific drug dose is the sum of the red
bars for that dose. (b) Same as panel (a) but with mutation rate decreased to µ = 10−3.
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