
Pyvolve: A Flexible Python Module for Simulating
Sequences along Phylogenies

Stephanie J. Spielman1,* and Claus O. Wilke1

1 Department of Integrative Biology, Center for Computational Biology
and Bioinformatics, and Institute of Cellular and Molecular Biology. The
University of Texas at Austin, Austin, TX 78712, USA.

*stephanie.spielman@gmail.com

Abstract

We introduce Pyvolve, a flexible Python module for simulating genetic data along a
phylogeny using continuous-time Markov models of sequence evolution. Easily
incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences
according to most standard models of nucleotide, amino-acid, and codon sequence
evolution. All model parameters are fully customizable. Users can additionally specify
custom evolutionary models, with custom rate matrices and/or states to evolve. This
flexibility makes Pyvolve a convenient framework not only for simulating sequences
under a wide variety of conditions, but also for developing and testing new evolutionary
models. Pyvolve is an open-source project under a FreeBSD license, and it is available
for download, along with a detailed user-manual and example scripts, from
http://github.com/sjspielman/pyvolve.

Introduction 1

The Python programming language has become a staple in biological computing. In 2

particular, the molecular evolution community has widely embraced Python as standard 3

tool, in part due to the development of powerful bioinformatics modules such as 4

Biopython [1] and DendroPy [2]. However, Python lacks a robust platform for 5

evolutionary sequence simulation. 6

In computational molecular evolution and phylogenetics, sequence simulation 7

represents a fundamental aspect of model development and testing. Through simulating 8

genetic data according to a particular evolutionary model, one can rigorously test 9

hypotheses about the model, examine the utility of analytical methods or tools in a 10

controlled setting, and assess the interactions of different biological processes [3]. 11

To this end, we introduce Pyvolve, a sequence simulation Python module (with 12

dependencies Biopython [1], SciPy, and NumPy [4]). Pyvolve simulates sequences along 13

a phylogeny using continuous-time Markov models of sequence evolution for nucleotides, 14

amino acids, and codons, according to standard approaches [5]. The primary purpose of 15

Pyvolve is to provide a user-friendly and flexible sequence simulation platform that can 16

easily be integrated into Python bioinformatics pipelines without necessitating the use 17

of third-party software. Furthermore, Pyvolve allows users to specify and evolve custom 18

evolutionary models and/or states, making Pyvolve an ideal engine for novel model 19

development and testing. 20

PLOS 1/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

http://github.com/sjspielman/pyvolve
https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

Substitution models and frameworks in Pyvolve 21

Pyvolve is specifically intended to simulate gene sequences along phylogenies according 22

to Markov models of sequence evolution. Therefore, Pyvolve requires users to provide a 23

fixed phylogeny along which sequences will evolve. Modeling frameworks which are 24

included in Pyvolve are detailed in Table 1. 25

Pyvolve supports both site-wise and branch (temporal) heterogeneity. Site-wise 26

heterogeneity can be modeled with Γ or Γ+I rates, or users can specify a custom 27

rate-distribution. Further, users can specify a custom rate matrix for a given simulation, 28

and thus they can evolve sequences according to substitution models other than those 29

shown in Table 1. Similarly, users have the option to specify a custom set of states to 30

evolve, rather than being limited to nucleotide, amino-acid, or codon data. Therefore, it 31

is possible to specify arbitrary models with corresponding custom states, e.g. states 0, 1, 32

and 2. This general framework will enable users to evolve, for instance, states according 33

to models of character evolution, such as the Mk model [6]. 34

Similar to other simulation platforms (e.g. Seq-Gen [7], indel-Seq-Gen [8], and 35

INDELible [9]), Pyvolve simulates sequences in groups of partitions, such that different 36

partitions can have unique evolutionary models and/or parameters. Although Pyvolve 37

enforces that all partitions within a single simulation evolve according to the same 38

model family (e.g. nucleotide, amino-acid, or codon), Python’s flexible scripting 39

environment allows for straight-forward alignment concatenation. Therefore, it is readily 40

possible to embed a series of Pyvolve simulations within a Python script to produce 41

highly-heterogeneous alignments, for instance where coding sequences are interspersed 42

with non-coding DNA sequences. Moreover, Pyvolve allows users to specify, for a given 43

partition, the ancestral sequence (MRCA) to evolve. 44

In addition, we highlight that Pyvolve is among the first open-source simulation 45

tools to include the mutation-selection modeling framework introduced by Halpern and 46

Bruno in ref. [10] (we note that the simulation software SGWE [11] also includes this 47

model). Importantly, although these models were originally developed for codon 48

evolution [10,12], Pyvolve implements mutation-selection models for both codons and 49

nucleotides. We expect that this implementation will foster the continued development 50

and use of this modeling framework, which has seen a surge of popularity in recent 51

years [13–19]. 52

Table 1. Substitution models included in Pyvolve.

Modeling Framework Available Models
Nucleotide GTR [20] and all nested variants (e.g. HKY85 [21] and TN93 [22])
Amino acid JTT [23], WAG [24], LG [25], mtMAM [26], mtREV24 [27], DAYHOFF [28], AB [29]
Mechanistic codon GY-style [30,31] and MG-style [32]
Empirical codon ECM (restricted and unrestricted) [33]
Mutation-selection Halpern-Bruno model [10], for both nucleotides and codons

Basic Usage of Pyvolve 53

The basic framework for a simple simulation with the Pyvolve module is shown in 54

Fig. 1. To simulate sequences, users should input the phylogeny along which sequences 55

will evolve, define evolutionary model(s), and assign model(s) to partition(s). Pyvolve 56

implements all evolutionary models in their most general forms, such that any 57

parameter in the model may be customized. This behavior stands in contrast to several 58

other simulation platforms of comparable scope to Pyvolve. For example, some of the 59

most commonly used simulation tools that implement codon models, including 60

PLOS 2/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

INDELible [9], EVOLVER [34], and PhyloSim [35], do not allow users to specify dS rate 61

variation in codon models. Pyvolve provides this option, among many others. 62

Import the Pyvolve module
import pyvolve

Read in phylogeny along which Pyvolve should simulate
my_tree = pyvolve.read_tree(file = "tree.tre")

Define a mechanistic codon evolutionary model with the Model class
parameters = {"omega": 0.75, "kappa": 3.25}
my_model = pyvolve.Model("codon", parameters)

Define partition(s) with the Partition class
my_partition = pyvolve.Partition(models = my_model, size = 100)

Evolve partition(s) with the callable Evolver class
my_evolver = pyvolve.Evolver(tree = my_tree, partitions = my_partition)
my_evolver() # By default, the simulated alignment is saved to a file here

1

Figure 1. Example code for a simple codon simulation in Pyvolve. This
example will simulate an alignment of 100 codons with a dN/dS of 0.75 and a κ
(transition-tranversion mutational bias) of 3.25. By default, sequences will be output to
a file called “simulated alignment.fasta”, although this file name can be changed, as
described in Pyvolve’s user manual.

In the example shown in Fig. 1, stationary frequencies are not explicitly specified. 63

Under this circumstance, Pyvolve will assume equal frequencies, although they would 64

normally be provided using the key "state freqs" in the dictionary of parameters. 65

Furthermore, Pyvolve contains a convenient module to help specify state frequencies. 66

This module can read in frequencies from an existing sequence and/or alignment file 67

(either globally or from specified alignment columns), generate random frequencies, or 68

constrain frequencies to a given list of allowed states. In addition, this module will 69

convert frequencies between alphabets, which is useful, for example, if one wishes to 70

simulate amino-acid data using the state frequencies as read from a file of codon 71

sequence data. 72

Validating Pyvolve 73

We carefully assessed that Pyvolve accurately simulates sequences. To this end, we 74

simulated several data sets under a variety of evolutionary models and conditions and 75

compared the observed substitution rates with the simulated parameters. 76

To evaluate Pyvolve under the most basic of conditions, site-homogeneity, we 77

simulated both nucleotide and codon data sets. We evolved nucleotide sequences under 78

the JC69 model [36] across several phylogenies with varying branch lengths 79

(representing the substitution rate), and we evolved codon sequences under a 80

MG94-style model [32] with varying values of dN/dS. All alignments were simulated 81

along a two-taxon tree and contained 100,000 positions. We simulated 50 replicates for 82

each branch length and/or dN/dS parameterization. As shown in Figs. 2A and B, the 83

observed number of changes agreed precisely with the specified parameters. 84

We additionally validated Pyvolve’s implementation of site-wise rate heterogeneity. 85

We simulated an alignment of 400 codon positions, again under an MG94-style 86

model [32], along a balanced tree of 214 taxa with all branch lengths set to 0.01. This 87

large number of taxa was necessary to achieve accurate estimates for site-specific 88

measurements. To incorporate site-specific rate heterogeneity, we specified four dN/dS 89

values of 0.2, 0.4, 0.6, and 0.8, to be assigned in equal proportions to sites across this 90

alignment. We counted the observed dN/dS values for each resulting alignment column 91

PLOS 3/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

A

C D

B

0.00125

0.005

0.02

0.00125 0.005 0.02
Simulated substitution rate

O
bs

er
ve

d
su

bs
tit

ut
io

n
ra

te

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8
Simulated dN/dS

O
bs

er
ve

d
dN
/d
S

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5
Simulated dN/dS

O
bs

er
ve

d
dN
/d
S

0.1

0.5

0.9

1.3

0.1 0.5 0.9 1.3
Simulated dN/dS

O
bs

er
ve

d
dN
/d
S

Figure 2. Pyvolve accurately evolves sequences under homogenous,
site-wise rate heterogeneity, and branch-specific rate heterogeneity. A)
Nucleotide alignments simulated under the JC69 [36] model along two-taxon trees with
varying branch lengths, which represent the substitution rate. Points represent the
mean observed substitution rate for the 50 alignment replicates simulated under the
given value, and error bars represent standard deviations. The red line indicates the
x = y line. B) Codon alignments simulated under an MG94-style [32] model with
varying values for the dN/dS parameter. Points represent the mean dN/dS inferred
from the 50 alignment replicates simulated under the given dN/dS value, and error bars
represent standard deviations. The red line indicates the x = y line. C) Site-wise
heterogeneity simulated with an MG94-style [32] model with varying dN/dS values
across sites. Horizontal lines indicate the simulated dN/dS value for each dN/dS
category. D) Branch-wise heterogeneity simulated with an MG94-style [32] model with
each branch evolving according to a distinct dN/dS value. Horizontal lines indicate the
simulated dN/dS value for each branch, as shown in the inset phylogeny. The lowest
dN/dS category (dN/dS = 0.1) was applied to the internal branch (shown in gray). All
code and data used to validate Pyvolve’s performance and generate this figure are
available in File S1.

using a version of the Suzuki-Gojobori algorithm [37] adapted for phylogenetic data [38]. 92

Figure 2C demonstrates that Pyvolve accurately implements site-specific rate 93

heterogeneity. The high variance seen in Figure 2C is an expected result of enumerating 94

substitutions on a site-specific basis, which, as a relatively small data set, produces 95

substantial noise. 96

Finally, we confirmed that Pyvolve accurately simulates branch heterogeneity. Using 97

a four-taxon tree, we evolved codon sequences under an MG94-style model [32] and 98

specified a distinct dN/dS ratio for each branch. We simulated 50 replicate alignments 99

of 100,000 positions, and we computed the observed dN/dS value along each branch. 100

PLOS 4/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

Figure 2D shows that observed branch dN/dS values agreed with the simulated values. 101

Conclusions 102

Because Pyvolve focuses on simulating the substitution processes using continuous-time 103

Markov models along a fixed phylogeny, it is most suitable for simulating gene 104

sequences, benchmarking inference frameworks, and for developing and testing novel 105

Markov models of sequence evolution. For example, we see a primary application of 106

Pyvolve as a convenient simulation platform to benchmark dN/dS and 107

mutation-selection model inference frameworks such as the ones provided by PAML [34], 108

HyPhy [39], Phylobayes [17], or swMutSel [16]. Indeed, the Pyvolve engine has already 109

successfully been applied to investigate the relationship between mutation-selection and 110

dN/dS modeling frameworks and to identify estimation biases in certain dN/dS 111

models [18]. Moreover, we believe that Pyvolve provides a convenient tool for easy 112

incorporation of complex simulations, for instance those used in approximate Bayesian 113

computation (ABC) or MCMC methods [40], into Python pipelines. 114

Importantly, Pyvolve is meant primarily as a convenient Python library for 115

simulating simple Markov models of sequence evolution. For more complex evolutionary 116

scenarios, including the simulation of entire genomes, population processes, or protein 117

folding and energetics, we refer the reader to several more suitable platforms. For 118

example, genomic process such as recombination, coalescent-based models, gene 119

duplication, and migration, may be best simulated with softwares such as ALF [41], 120

CoalEvol and SGWE [11], or EvolSimulator [42]. Simulators which consider the 121

influence of structural and/or biophysical constraints in protein sequence evolution 122

include CASS [43] or ProteinEvolver [44]. Similarly, the software REvolver [45] 123

simulates protein sequences with structural domain constraints by recruiting profile 124

hidden Markov models (pHMMs) to model site-specific substitution processes. 125

We additionally note that Pyvolve does not currently include the simulation of 126

insertions and deletions (indels), although this functionality is planned for a future 127

release. We refer readers to the softwares indel-Seq-Gen [8] and Dawg [46] for 128

simulating nucleotide sequences, and we suggest platforms such as INDELible [9], 129

phyloSim [35], or πBuss [47] for simulating coding sequences with indels. 130

In sum, we believe that Pyvolve’s flexible platform and user-friendly interface will 131

provide a helpful and convenient tool for the biocomputing Python community. Pyvolve 132

is freely available from http://github.com/sjspielman/pyvolve, conveniently packaged 133

with a comprehensive user manual and several example scripts demonstrating various 134

simulation conditions. In addition, Pyvolve is distributed with two helpful Python 135

scripts that complement Pyvolve simulations: one which implements the 136

Suzuki-Gojobori [37] dN/dS counting algorithm adapted for phylogenetic data [38], and 137

one which calculates dN/dS from a given set of mutation-selection model parameters as 138

described in ref. [18]. Pyvolve is additionally available for download from the Python 139

Package Index (e.g. via pip). 140

Supporting Information 141

File S1 142

This file contains all scripts and data used to validate Pyvolve. 143

PLOS 5/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

http://github.com/sjspielman/pyvolve
https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

Acknowledgments 144

We thank Suyang Wan and Dariya Sydykova for helpful feedback during Pyvolve 145

development and Rebecca Tarvin for her help designing the Pyvolve logo. 146

References

1. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython:
freely available Python tools for computational molecular biology and
bioinformatics. Bioinformatics. 2009;25:1422–1423.

2. Sukumaran J, Holder MT. DendroPy: A Python library for phylogenetic
computing. Bioinformatics. 2010;26:1569–1571.

3. Arenas M. Simulation of Molecular Data under Diverse Evolutionary Scenarios.
PLoS Comp Biol. 2012;8:e1002495.

4. Oliphant T. Python for Scientific Computing. IEEE Comput Sci Eng.
2007;9:10–20.

5. Yang Z. Computational Molecular Evolution. Oxford University Press; 2006.

6. Lewis PO. A Likelihood Approach to Estimating Phylogeny from Discrete
Morphological Character Data. Syst Biol. 2001;50:913–925.

7. Rambaut A, Grassly N. Seq-Gen: an application for the Monte Carlo simulation
of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci.
1997;13:235–238.

8. Strope C, Scott S, Moriyama E. indel-Seq-Gen: a new protein family simulator
incorporating domains, motifs, and indels. Mol Biol Evol. 2007;24(3):640–649.

9. Fletcher W, Yang Z. INDELible: A Flexible Simulator of Biological Sequence
Evolution. Mol Biol Evol. 2009;26(8):1879–1888.

10. Halpern A, Bruno W. Evolutionary distances for protein-coding sequences:
modeling site-specific residue frequencies. Mol Biol Evol. 1998;15:910–917.

11. Arenas M, Posada D. Simulation of Genome-Wide Evolution under
Heterogeneous Substitution Models and Complex Multispecies Coalescent
Histories. Mol Biol Evol. 2014;31:1295–1301.

12. Yang Z, Nielsen R. Mutation-Selection Models of Codon Substitution and Their
Use to Estimate Selective Strengths on Codon Usage. Mol Biol Evol. 2008
Jan;25(3):568–579.

13. Holder M, Zwickl D, Dessimoz C. Evaluating the robustness of phylogenetic
methods to among-site variability in substitution processes. Phil Trans R Soc B.
2008;363:4013–4021.

14. Rodrigue N, Philippe H, Lartillot N. Mutation-selection models of coding
sequence evolution with site-heterogeneous amino acid fitness profiles. Proc Natl
Acad Sci USA. 2010;107(10):4629–4634.

15. Tamuri AU, dos Reis M, Goldstein RA. Estimating the distribution of selection
coefficients from phylogenetic data using sitewise mutation-selection models.
Genetics. 2012;190:1101–1115.

PLOS 6/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

16. Tamuri AU, Goldman N, dos Reis M. A penalized-likelihood method to estimate
the distribution of selection coefficients from phylogenetic data. Genetics.
2014;197:257–271.

17. Rodrigue N, Lartillot N. Site-heterogeneous mutation-selection models within the
PhyloBayes-MPI Package. Bioinformatics. 2014;30:1020–1021.

18. Spielman S, Wilke C. The relationship between dN/dS and scaled selection
coefficients. Mol Biol Evol. 2015;32:1097–1108.

19. dos Reis M. How to calculate the non-synonymous to synonymous rate ratio of
protein-coding genes under the Fisher–Wright mutation–selection framework.
Biol Lett. 2015;11:20141031.

20. Tavare S. Lines of descent and genealogical processes, and their applications in
population genetics models. Theor Popul Biol. 1984;26:119–164.

21. Hasegawa M, Kishino H, Yano T. Dating of human-ape splitting by a molecular
clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174.

22. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the
control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol.
1993;10:512—-526.

23. Jones D, Taylor W, Thornton J. The rapid generation of mutation data matrices
from protein sequences. CABIOS. 1992;8:275–282.

24. Whelan S, Goldman N. A general empirical model of protein evolution derived
from multiple protein families using a maximum likelihood approach. Mol Biol
Evol. 2001;18:691–699.

25. Le S, Gascuel O. An improved general amino acid replacement matrix. Mol Biol
Evol. 2008;25:1307–1320.

26. Yang N, Nielsen R, Hasegawa M. Models of Amino Acid Substitution and
Applications to Mitochondrial Protein Evolution. Mol Biol Evol.
1998;15:1600–1611.

27. Adachi J, Hasegawa M. MOLPHY version 2.3: programs for molecular
phylogenetics based on maximum likelihood. Comput Sci Monogr.
19896;28:1–150.

28. Dayhoff M, Schwartz R, Orcutt B. A model of evolutionary change in proteins.
Atlas of Protein Sequence and Structure. 1978;5(3):345–352.

29. Mirsky A, Kazandjian L, Anisimova M. Antibody-Specific Model of Amino Acid
Substitution for Immunological Inferences from Alignments of Antibody
Sequences. Mol Biol Evol. 2015;32:806–819.

30. Goldman N, Yang Z. A codon-based model of nucleotide substitution for
protein-coding DNA sequences. Mol Biol Evol. 1994;11:725–736.

31. Nielsen R, Yang Z. Likelihood models for detecting positive selected amino acid
sites and applications to the HIV-1 envelope gene. Genetics. 1998;148:929–936.

32. Muse S, Gaut B. A likelihood approach for comparing synonymous and
nonsynonymous nucleotide substitution rates, with application to the chloroplast
genome. Mol Biol Evol. 1994;11:715–724.

PLOS 7/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

33. Kosiol C, Holmes I, Goldman N. An empirical codon model for protein sequence
evolution. Mol Biol Evol. 2007;24:1464–1479.

34. Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular
Biology and Evolution. 2007;24:1586–1591.

35. Sipos B, Massingham T, Jordan GE, Goldman N. PhyloSim - Monte Carlo
simulation of sequence evolution in the R statistical computing environment.
BMC Bioinform. 2011;12(104).

36. Jukes T, Cantor C. Evolution of protein molecules. In: Munro H, editor.
Mammalian protein metabolism. New York: Academic Press; 1969. .

37. Suzuki Y, Gojobori T. A method for detecting positive selection at single amino
acid sites. Mol Biol Evol. 1999;16:1315–1328.

38. Kosakovsky Pond S, Frost S. Not So Different After All: A Comparison of
Methods for Detecting Amino Acid Sites Under Selection. Mol Biol Evol.
2005;22:1208–1222.

39. Kosakovsky Pond S, Frost S, Muse S. HyPhy: hypothesis testing using
phylogenies. Bioinformatics. 2005;12:676–679.

40. Arenas M. Advances in Computer Simulation of Genome Evolution: Toward
More Realistic Evolutionary Genomics Analysis by Approximate Bayesian
Computation. J Mol Evol. 2015;8:189–192.

41. Dalquen D, Anisimova M, Gonnet G, Dessimoz C. ALF–a simulation framework
for genome evolution. Mol Biol Evol. 2012;29:1115–1123.

42. Beiko R, Charlebois R. A simulation test bed for hypotheses of genome evolution.
Bioinformatics. 2007;23:825–831.

43. Grahnen J, Liberles D. CASS: Protein sequence simulation with explicit
genotype-phenotype mapping. Trends in Evolutionary Biology;4:e9.

44. Arenas M, Dos Santos H, Posada D, Bastolla U. Protein evolution along
phylogenetic histories under structurally constrained substitution models.
Bioinformatics. 2013;29:3020–3028.

45. Koestler T, von Haeseler A, Ebersberger I. REvolver: modeling sequence
evolution under domain constraints. Mol Biol Evol. 2012;29:2133–2145.

46. Cartwright R. DNA assembly with gaps (Dawg): simulating sequence evolution.
Bioinformatics. 2005;21:iii31–iii38.

47. Bielejec F, Lemey P, Carvalho L, Baele G, Rambaut A, Suchard M. piBUSS: a
parallel BEAST/BEAGLE utility for sequence simulation under complex
evolutionary scenarios. BMC Bioinformatics. 2014;15:133.

PLOS 8/8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 10, 2015. ; https://doi.org/10.1101/020214doi: bioRxiv preprint

https://doi.org/10.1101/020214
http://creativecommons.org/licenses/by-nd/4.0/

