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Abstract

We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny accord-
ing to continuous-time Markov models of sequence evolution. Pyvolve incorporates most standard models
of nucleotide, amino-acid, and codon sequence evolution, and it allows users to fully customize all model
parameters. Pyvolve additionally allows users to specify custom evolutionary models and incorporates
several novel features, including a novel rate matrix scaling algorithm and branch-length perturbations.
Easily incorporated into Python bioinformatics pipelines, Pyvolve represents a convenient and flexible
alternative to third-party simulation softwares. Pyvolve is an open-source project available, along with
a detailed user-manual, under a FreeBSD license from https://github.com/sjspielman/pyvolve. API
documentation is available from http://sjspielman.org/pyvolve.

Introduction

In computational molecular evolution and phylogenetics, sequence simulation represents a fundamental as-
pect of model development and testing. Through simulating genetic data according to a particular evolution-
ary model, one can rigorously test hypotheses about the model, examine the utility of analytical methods
or tools in a controlled setting, and assess the interactions of different biological processes (Arenas, |2012]).

To this end, we introduce Pyvolve, a sequence simulation library written in Python [with dependencies
BioPython (Cock et al. [2009)), SciPy, and NumPy (Oliphant, |2007))]. Pyvolve simulates sequences along a
phylogeny using continuous-time Markov models of sequence evolution, according to standard approaches
(Yang, 2006)). Pyvolve supports a variety of standard modeling frameworks, as detailed in Table 1.

Similar to other simulation platforms (e.g. refs. Rambaut and Grassly| (1997); |Strope et al.| (2007)); Fletcher
and Yang| (2009)), Pyvolve can simulate sequences in groups of partitions, such that different partitions
can have unique evolutionary models and/or parameters. Pyvolve additionally supports both site-wise
and branch (temporal) heterogeneity. Site-wise heterogeneity is modeled using either a discrete gamma
distribution or a discrete user-specified rate distribution. This release of Pyvolve does not include insertions
and deletions (indels), although this functionality is planned for a future release.
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Modeling Framework Available Models

Nucleotide GTR (Tavare, [1984) and nested variants [e.g. HKY85
(Hasegawa et all,[1985) and TN93 (Tamura and Nei,

1993)

Amino acid JTT (Jones et all [1992)), WAG (Whelan and Gold-|
man, 2001), LG (Le and Gascuel, 2008)

Mechanistic codon GY-style (Goldman and Yang| 1994; Nielsen and|
Yang) |1998) and MG-style (Muse and Gaut, |1994)

Empirical codon ECM (restricted and unrestricted) (Kosiol et al.|
2007)

Mutation-selection Halpern-Bruno model (Halpern and Bruno, [1998),

for both nucleotides and codons

Table 1. Modeling frameworks included in Pyvolve. Note that Pyvolve also allows users to specify their own rate matrix
instead of using a built-in framework.

The general framework for a simple simulation with the Pyvolve module is shown in Figure [II To
simulate sequences, users should input the phylogeny along which sequences will evolve, define evolutionary
model(s), and assign model(s) to partition(s). Pyvolve implements all evolutionary models in their most
general forms, such that any parameter in the model may be customized. This behavior stands in contrast
to other simulation frameworks; for instance, the simulation platform Indelible (Fletcher and Yang [2009)
does not allow users to specify dS rate variation in codon models, but Pyvolve provides this option, among
many others.

# Import the Pyvolve module
import pyvolve

# Read in phylogeny along which Pyvolve should simulate
my_tree = pyvolve.read_tree(file = "tree.tre")

# Define a mechanistic codon evolutionary model with the Model class
parameters = {"omega": 0.75, "kappa": 3.25}
my_model = pyvolve.Model ("codon", parameters)

# Define partition(s) with the Partition class
my_partition = pyvolve.Partition(models = my_model, size = 100)

# Evolve partition(s) with the callable Evolver class
my_evolver = pyvolve.Evolver (tree = my_tree, partitions = my_partition)
my_evolver ()

Figure 1: Example code for a simple Pyvolve simulation. The code shown here will simulate an alignment of 100 codons
with a dN/dS = 0.75 and a k (transition-tranversion mutational bias) of 3.25. Additional parameters, such as equilibrium
frequencies or other mutation rates, or indeed d/N and dS separately, may be incorporated into the parameters dictionary.
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The following sections describe novel simulation features in Pyvolve.

Inclusion of mutation-selection models

Pyvolve is, to our knowledge, the only open-source simulation tool that accommodates mutation-selection
models. These models, first introduced over 15 years ago by [Halpern and Bruno| (1998)), are based on popula-
tion genetics principles and use scaled selection coefficients to model fitness effects of all possible mutations.
Due to their high computational expense, mutation-selection models have seen little use, and consequently
the properties of these models remain poorly understood. However, in the past few years, several compu-
tationally efficient mutation-selection model implementations have been released (Tamuri et al., 2012, [2014;
Rodrigue et al.}|2010; [Rodrigue and Lartillot}, 2014]), allowing, for the first time, the potential for large-scale
adoption by the scientific community. Pyvolve’s inclusion of mutation-selection models, therefore, provides
the first open-source simulation platform for independently evaluating the behavior and performance of these
models. Indeed, the Pyvolve engine has already successfully been applied to investigate the relationship be-
tween mutation-selection and dN/dS modeling frameworks (Spielman and Wilke, [2015]). Moreover, although
the original mutation-selection model framework was developed in the context of coding sequence evolution
(Halpern and Brunol [1998; |Yang and Nielsen, |2008])), Pyvolve implements mutation-selection models for both
codons and nucleotides.

Novel rate matrix scaling approach

By convention, rate matrices used in models of sequence evolution are scaled such that the mean substitution
rate is 1, e.g. — ) ., miqi; = 1, where 7; represents the equilibrium frequency of state 4, and ¢;; represents
the diagonal elements of the rate matrix. This standard approach, introduced by Yang (Goldman and Yangj,
1994; |Yang), [1994]), ensures that branch lengths explicitly represent the expected number of substitutions per
unit (nucleotide, amino acid, or codon). However, this scaling scheme has some undesirable consequences
when applied to modeling frameworks that contain explicit parameters representing selection strength, e.g.
mechanistic codon and mutation-selection models.

Consider, for example, the case of dN/dS rate heterogeneity: due to the nature of mechanistic codon
models, a different matrix is required for each dN/dS value. If each matrix is scaled according to Yang’s
approach, then the average number of substitutions will be the same for all matrices, regardless of dN/dS. In
other words, sites with dN/dS = 0.05 would experience the same average number of substitutions as would
sites with dN/dS = 2.5. From a biological perspective, this result is undesirable, as sites with low dN/dS
values should evolve more slowly than sites with high dN/dS values, assuming the underlying mutation rate
(and hence, dS) is the same across sites.

To overcome this issue, Pyvolve provides an option to scale matrices such that the mean neutral sub-
stitution rate is 1. For dN/dS codon models, this approach scales the matrix such that the mean number
of substitutions is 1 when dN/dS = 1. For mutation-selection models (both nucleotide and codon), this
approach scales the matrix such that the mean substitution rate is 1 when all states (nucleotides/codons)
have equal fitness. We show, in Figure[2] how our neutral scaling approach more reasonably reflects selective
pressure.
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Figure 2: Neutral scaling approach yields more realistic expected numbers of substitutions, as represented by branch lengths.
We simulated alignments of 200 codons each under the GY94 (Goldman and Yang, [1994) mechanistic codon model. All
simulations were performed along the same, randomly generated 25-taxon tree (Paradis et al.,2004). We simulated alignments
(50 replicates each) with a global dN/dS value ranging from 0.1 — 2.0, for each scaling approach. We inferred a maximum-
likelihood phylogeny with RAxML (Stamatakis, [2014), under the GTRGAMMA model, for each simulated alignment. We
then calculated a tree length, indicating the expected number of substitutions in the full tree, for each inferred phylogeny using
DendroPy (Sukumaran and Holder} |2010). When using Yang’s scaling approach, the tree length remains constant across dN/dS
values, whereas under Pyvolve’s neutral scaling approach the tree length increases linearly with increasing dN/dS, as should
be the case if dN is varied while dS is held fixed. Further, the Yang and neutral scaling approaches yield the same number of
average substitutions when dN/dS = 1, as expected. Error bars represent standard deviations.

Perturbing branch lengths

Conventional sequence simulation algorithms apply a given branch length uniformly across all sites for a given
branch. For example, if a given branch has a length of 0.1, then every site along that branch will evolve
with a branch length of exactly 0.1. However, given that phylogenetic inference methods compute branch
lengths effectively as an average value for all sites along that branch, there is no reasonable justification to
apply the same branch length to all sites.

To address this issue, Pyvolve allows users to perturb branch lengths at individual sites. At each site 1,
for a given branch length ¢, Pyvolve draws a new branch length ¢; from a user-specified distribution with a
mean of t. Users can select from either a normal, gamma, or exponential distribution.
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