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Abstract

Transcriptional and post-transcriptional regulation shape tissue-type-specific proteomes, but their

relative contributions remain contested. Estimates of the factors determining protein levels in hu-

man tissues do not distinguish between (i) the factors determining the variability between the

abundances of different proteins, i.e., mean-level-variability and, (ii) the factors determining the

physiological variability of the same protein across different tissue types, i.e., across-tissue vari-

ability. We sought to estimate the contribution of transcript levels to these two orthogonal sources

of variability, and found that mRNA levels can account for most of the mean-level-variability but

not for across-tissue variability. The precise quantification of the latter estimate is limited by sub-

stantial measurement noise. However, protein-to-mRNA ratios exhibit substantial across-tissue

variability that is functionally concerted and reproducible across different datasets, suggesting

extensive post-transcriptional regulation. These results caution against estimating protein fold-

changes from mRNA fold-changes between different cell-types, and highlight the contribution of

post-transcriptional regulation to shaping tissue-type-specific proteomes.
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Introduction

The relative ease of measuring mRNA levels has facilitated numerous investigations of how cells

regulate their gene expression across different pathological and physiological conditions (Sørlie

et al, 2001; Slavov and Dawson, 2009; Spellman et al, 1998; Slavov et al, 2011, 2012; Djebali

et al, 2012a). However, often the relevant biological processes depend on protein levels, and

mRNA levels are merely proxies for protein levels (Alberts et al, 2014). If a gene is regulated

mostly transcriptionally, its mRNA level is a good proxy for its protein level. Conversely, post-

transcriptional regulation can set protein levels independently from mRNA levels, as in the cases of

classical regulators of development (Kuersten and Goodwin, 2003), cell division (Hengst and Reed,

1996; Polymenis and Schmidt, 1997) and metabolism (Daran-Lapujade et al, 2007; Slavov et al,

2014). Thus understanding the relative contributions of transcriptional and post-transcriptional

regulation is essential for understanding their trade-offs and the principles of biological regulation,

as well as for assessing the feasibility of using mRNA levels as proxies for protein levels.

Previous studies have considered single cell-types and conditions in studying variation in ab-

solute mRNA and protein levels genome-wide, often employing unicellular model organisms or

mammalian cell cultures (Gygi et al, 1999; Smits et al, 2014; Schwanhäusser et al, 2011; Li et al,

2014; Csárdi et al, 2015; Jovanovic et al, 2015). However, analyzing per-gene variation in relative

mRNA and protein expression across different tissue types in a multicellular organism presents a

potentially different and critical problem which cannot be properly addressed by examining only

genome-scale correlations between mRNA and protein levels. Wilhelm et al (2014) and Kim

et al (2014) have measured protein levels across human tissues, thus providing valuable datasets

for analyzing the regulatory layers shaping tissue-type-specific proteomes. The absolute levels of

proteins and mRNAs in these datasets correlate well, highlighting that highly abundant proteins

have highly abundant mRNAs. Such correlations between the absolute levels of mRNA and pro-

tein mix/conflate many sources of variation, including variability between the levels of different

proteins, variability within the same protein across different conditions and cell-types, and the

variability due to measurement error and technological bias.

However, these different sources of variability have very different biological interpretations

and implications. A major source of variability in protein and mRNA data arises from differences
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between the levels of mRNAs and proteins corresponding to different genes. That is, the mean

levels (averaged across tissue-types) of different proteins and mRNAs vary widely. We refer to

this source of variability as mean-level variability. This mean-level variability reflects the fact that

some proteins, such as ribosomal proteins, are highly abundant across all profiled tissues while

other proteins, such as cell cycle and signaling regulators, are orders of magnitude less abundant

across all profiled conditions (Wilhelm et al, 2014). Another principal source of variability in

protein levels, intuitively orthogonal to the mean-level variability, is the variability within a protein

across different cell-types or physiological conditions and we refer to it as across-tissue variability.

The across-tissue variability is usually much smaller in magnitude, but may be the most relevant

source of variability for understanding different phenotypes across cells-types and physiological

conditions.

Here, we sought to separately quantify the contributions of transcriptional and post-transcriptional

regulation to the mean-level variability and to the across-tissue variability across human tissues.

Our results show that the much of the mean-level protein variability can be explained well by

mRNA levels while across-tissue protein variability is poorly explained by mRNA levels; much of

the unexplained variance is due to measurement noise but some of it is reproducible across datasets

and thus likely reflects post-transcriptional regulation. These results add to previous results in the

literature (Gygi et al, 1999; Schwanhäusser et al, 2011; Li et al, 2014; Wilhelm et al, 2014; Jo-

vanovic et al, 2015; Csárdi et al, 2015; Smits et al, 2014) and suggest that the post-transcriptional

regulation is a significant contributor to shaping tissue-type specific proteomes in human.

Results

The correlation between absolute mRNA and protein levels conflates distinct

sources of variability

We start by outlining the statistical concepts underpinning the common correlational analysis and

depiction (Gygi et al, 1999; Schwanhäusser et al, 2011; Wilhelm et al, 2014; Csárdi et al, 2015)

of estimated absolute protein and mRNA levels as displayed in Figure 1a. The correlation between

the absolute mRNA and protein levels of different genes and across different tissue-types has been
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used to estimate the level at which the protein levels are regulated (Wilhelm et al, 2014).

One measure reflecting the post-transcriptional regulation of a gene is its protein to mRNA

ratio, which is sometimes referred to as a gene’s “translational efficiency” because it reflects, at

least in part, its translational rate. Since this ratio also reflects other layers of regulation, such as

protein degradation (Jovanovic et al, 2015), and noise we will refer to it descriptively as protein-

to-mRNA (PTR) ratio. If the across-tissue variability of a gene is dominated by transcriptional

regulation, its PTR in different tissue-types will be a gene-specific constant. Based on this idea,

Wilhelm et al (2014) estimated these protein-to-mRNA ratios and suggested that the median ratio

for each gene can be used to scale its tissue-specific mRNA levels and that this “scaled mRNA”

predicts accurately tissue-specific protein levels.

Indeed, mRNA levels scaled by the corresponding median PTR explain large fraction of the

total protein variance (R2
T = 0.77, across 6104 measured proteins, Figure 1a) as previously ob-

served (Schwanhäusser et al, 2011; Wilhelm et al, 2014). However, R2
T quantifies the fraction of

the total protein variance explained by mRNA levels between genes and across tissue-types; thus,

it conflates the mean-level variability with the across-tissue variability. This conflation is shown

schematically in Figure 1b for a subset of 100 genes measured across 12 tissues. The across-tissue

variability is captured by the variability within the regression fits and the mean-level variability is

captured by the variability between the regression fits.

Such aggregation of distinct sources of variability, where different subgroups of the data show

different trends, may lead to counter-intuitive results and incorrect conclusions, and is known as

the Simpson’s or amalgamation paradox (Blyth, 1972). To illustrate the Simpson’s paradox in

this context, we depicted a subset of genes for which the measured mRNA and protein levels are

unrelated across-tissues– the mean-level variability still spans the full dynamic range of the data.

For this subset of genes, the overall (conflated/amalgamated) correlation is large and positive,

despite the fact that all within-gene trends are close to zero. This counter-intuitive result is possible

because the conflated correlation is dominated by the variability with larger dynamical range, in

this case the mean-level variability. This conceptual example taken from the Wilhelm et al (2014)

data demonstrates thatR2
T is not necessarily informative about the across-tissue variability, i.e., the

protein variance explained by scaled mRNA within a gene (R2
P ). Thus the conflated correlation

is not generally informative about the level — transcriptional or post-transcriptional — at which
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across-tissue variability is regulated. This point is further illustrated in Supplementary Fig. 1 with

data for all quantified genes: The correlations between scaled mRNA and measured protein levels

are not informative for the correlations between the corresponding relative changes in protein and

mRNA levels.

While across-tissue variability is smaller than mean-level variability, it is exactly the across-

tissue variability that contributes to the biological identity of each tissue type. This across-tissue

variability has a dynamic range of about 2 − 10 fold and is thus dwarfed by the 103 − 104 fold

dynamic range of abundances across different proteins.

Estimates of transcriptional and post-transcriptional regulation across-tissues

depend strongly on data reliability

Next, we sought to estimate the fractions of across-tissue protein variability due to transcriptional

regulation and to post-transcriptional regulation. This estimate depends crucially on noise in the

mRNA and protein data, from sample collection to measurement error. Both RNA-seq (Marioni

et al, 2008; Consortium et al, 2014) and mass-spectrometry (Schwanhäusser et al, 2011; Peng

et al, 2012) have relatively large and systematic error in estimating absolute levels of mRNAs and

proteins, i.e., the ratios between different proteins/mRNAs. These errors originate from DNA se-

quencing GC-biases, and variations in protein digestion and peptide ionization. However, relative

quantification of the same gene across tissue-types by both methods can be much more accurate

since systematic biases are minimized when taking ratios between the intensities/counts of the

same peptide/DNA-sequence measured in different tissue types (Ong et al, 2002; Blagoev et al,

2004; Consortium et al, 2014; Jovanovic et al, 2015). It is this relative quantification that is used

in estimating across-tissue variability, and we start by estimating the reliability of the relative

quantification across human tissues, Figure 2a-d. Reliability is defined as the fraction of the ob-

served/empirical variance due to signal. Thus reliability is proportional to the signal strength and

decreases with the noise levels.

To estimate the within study reliability of mRNA levels, we split each dataset into two subsets,

each of which contain measurements for all tissues. The levels of each mRNA were estimated from

each subset and the estimates correlated, averaging across tissues (Figure 2a). These correlations
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provide estimates for the reliability of each mRNA and their median provides a global estimate for

the reliability of relative RNA measurement, not taking into account noise due to sample collection

and handling.

To estimate the within study reliability of protein levels, we computed separate estimates of the

relative protein levels within a dataset. For each protein, Estimate 1 was derived from 50 % of the

quantified peptides and Estimate 2 from the other 50 %. Since much of the analytical noise related

to protein digestion, chromatographic mobility and peptide ionization is peptide-specific, such

non-overlapping sets of of peptides provide mostly, albeit not completely, independent estimates

for the relative protein levels. The correlations between the estimates for each protein (averaging

across 12 tissues) are displayed as a distribution in Figure 2b.

In addition to the within study measurement error, protein and mRNA estimates can be affected

by study-dependable variables such as sample collection and data processing. To account for

these factors, we estimated across study reliability by comparing estimates for relative protein

and mRNA levels derived from independent studies, Figure 2c-d. For each gene, we estimate the

reliability for each protein by computing hte the empirical correlation between mRNA abundance

reported by the ENCODE (Djebali et al, 2012b) and by (Fagerberg et al, 2014). The distribution of

correlations Figure 2c is shifted towards lower values compared to the within-study correlations,

indicating that much of the noise in mRNA estimates is study-dependent.

To estimate the across study reliability of protein levels, we compared the protein levels es-

timated from data published by Wilhelm et al (2014) and Kim et al (2014). To quantify protein

abundances, Wilhelm et al (2014) used iBAQ scores and Kim et al (2014) used spectral counts.

To ensure uniform processing of the two datasets, we downloaded the raw data and analyzed them

with maxquant using identical settings, and estimate protein abundances in each dataset using

iBAQ; see Methods. The corresponding estimates for each protein were correlated to estimate

their reproducibility. The distribution of correlations Figure 2d is shifted towards significantly

lower values compared to the within-study correlations Figure 2d, indicating that, as with mRNA,

the vast majority of the noise is study-dependent.

The across tissue correlations and the reliability of the measurements can be used to estimate

the across tissue variability in protein levels that can be explained by mRNA levels (i.e., tran-

scriptional regulation) as shown in Figure 2e and proven in the methods. As the reliability of
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the protein and the mRNA estimates decrease, the sensitivity of the estimated transcriptional con-

tribution increases. Although the average across-tissue mRNA protein correlation was only 0.29

(R2 = 0.08), because of massive noise attenuation the data are consistent with approximately 50%

of the variance being explained by transcriptional regulation and approximately 50% coming from

post-transcriptional regulation, although the low reliability of the data and large sampling variabil-

ity precludes making this estimate precise. Thus, we next considered analyses that can provide

estimates for the scope of post-transcriptional regulation even when the reliability of the data is

low.

Coordinated post-transcriptional regulation of functional gene sets

The low reliability of estimates across datasets limits the reliability of estimates of transcriptional

and post-transcriptional regulation for individual proteins, Figure 2. Thus, we focused on estimat-

ing the post-transcriptional regulation for sets of functionally related genes as defined by the gene

ontology (Consortium et al, 2004). By considering such gene sets, we may be able to average out

some of the measurement noise and see regulatory trends shared by functionally related genes. In-

deed, some of the noise contributing to the across-tissue variability of a gene is likely independent

from the function of the gene; see Methods. Conversely, genes with similar functions are likely

to be regulated similarly and thus have similar tissue-type-specific PTR ratios. Thus, we explored

whether the across-tissues variability of the PTR ratios of functionally related genes reflects such

tissue-type-specific and biological-function-specific post-transcriptional regulation.

Since this analysis aims to quantify across-tissue variability, we define the “relative protein

to mRNA ratio” (rPTR) of a gene in a given tissue to be the PTR ratio in that tissue divided by

the median PTR ratio of the gene across the other 11 tissues. We evaluated the significance of

rPTR variability for a gene-set in each tissue-type by comparing the corresponding gene-set rPTR

distribution to the rPTR distribution for those same genes pooled across the other tissues (Figure 3);

we use the KS-test to quantify the statistical significance of differences in the rPTR distributions;

see Methods. The results indicate that the genes from many GO terms have much higher rPTR in

some tissues than in others. For example the ribosomal proteins of the small subunit (40S) have

high rPTR in kidney but low rPTR in stomach (Figure 3a-b).

While the strong functional enrichment of rPTR suggests functionally concerted post-transcriptional
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regulation, it can also reflect systematic dataset-specific measurement artifacts. To investigate this

possibility, we obtained two estimates for rPTR from independent datasets: Estimate 1 is based

on data from Wilhelm et al (2014) and Fagerberg et al (2014), and Estimate 2 is based on data

from Kim et al (2014) and Djebali et al (2012b). These two estimates are highly reproducible for

most tissues, as shown by the correlation between the median rPTR for GO terms in Figure 3d;

Supplementary Fig. 2 shows the reproducibility for all tissues. The correlations between the two

rPTR estimates remain strong when computed with all GO terms (not only those showing signifi-

cant enrichment) as shown in Table S1, as well as when computed between the rPTRs for all genes

Table S2.

Consensus protein levels

Given the low reliability of protein estimates across studies Figure 2, we sought to increase it by

deriving consensus estimates. Indeed, combining data from both studies can allow to average out

some of the noise, and thus provide more reliable consensus estimates; see Methods. As expected

for protein estimates with increased reliability, the consensus protein levels correlate better to

mRNA levels than the corresponding protein levels estimated from a either dataset alone, Figure

4.

Discussion

Highly abundant proteins have highly abundant mRNAs. This dependence is consistently observed

(Jovanovic et al, 2015; Csárdi et al, 2015; Gygi et al, 1999; Smits et al, 2014; Schwanhäusser et al,

2011) and dominates the explained variance in the estimates of absolute protein levels (Figure 1

and Supplementary Fig. 1). This underscores the role of transcription for setting the full dynamic

range of protein levels. In stark contrast, differences in the proteomes of distinct human tissues are

poorly explained by transcriptional regulation, Figure 1. This is due to measurement noise (Figure

2) but also to post-transcriptional regulation. Indeed, large and reproducible rPTR ratios suggest

that the mechanisms shaping tissue-specific proteomes involve post-transcriptional regulation, Fig-

ure 3. This result underscores the role of translational regulation and of protein degradation for

mediating physiological functions within the range of protein levels consistent with life.
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As with all analysis of empirical data, the results depend on the quality of the data and the

estimates of their reliability. This dependence on data quality is particularly strong given that

some conclusions rest on the failure of across-tissue mRNA variability to predict across-tissue

protein variability. Such inference based on unaccounted for variability is substantially weaker than

measuring directly and accounting for all sources of variability. The low across study reliability

suggest that the signal is strongly contaminated by noise, especially systematic biases in sample

collection and handling, and thus the data cannot accurately quantify the contributions of different

regulatory mechanisms, Figure 2. Another limitation of the data is that isoforms of mRNAs and

proteins are merged together, i.e., using razor proteins. This latter limitation is common to all

approaches quantifying proteins and mRNAs from peptides/short-sequence reads. It stems from

the limitation of existing approaches to their to infer isoform and quantify them separately.

The strong enrichment of rPTR ratios within gene sets (Figure 3) demonstrates a functionally

concerted regulation at the post-transcriptional level. Some of the rPTR trends can account for

fundamental physiological differences between tissue types. For example, the kidney the most

metabolically active (energy consuming) tissue among the 12 profiled tissues (Hall, 2010) and it

has very high rPTR for many gene sets involved in energy production (Figure 3a). In this case, post-

transcriptional regulation very likely plays a functional role in meeting the high energy demands

of kidneys.

The rPTR patterns and the across tissue correlations in Supplementary Fig. 1 indicate that the

relative contributions of transcriptional and post-transcriptional regulation can vary substantially

depending on the tissues compared. Thus, the level of gene regulation depends strongly on the con-

text. For example transcriptional regulation is contributing significantly to the dynamical responses

of dendritic cells (Jovanovic et al, 2015) and to the differences between kidney and prostate gland

(Supplementary Fig. 1b) but less to the differences between kidney and thyroid gland (Supple-

mentary Fig. 1a). All data, across all profiled tissues, suggest that post-transcriptional regulation

contributes substantially to the across-tissue variability of protein levels. The degree of this contri-

bution depends on the context.

Indeed, if we only increase the levels for a set of mRNAs without any other changes, the corre-

sponding protein levels must increase proportionally as demonstrated by gene inductions (McIsaac

et al, 2011). However, the differences across cell-types are not confined only to different mRNA
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levels. Rather, these differences include different RNA-binding proteins, alternative untranslated

regions (UTRs) with known regulatory roles in protein synthesis, specialized ribosomes (Xue et al,

2015; Slavov et al, 2015; Preiss, 2016), and different protein degradation rates (Mauro and Edel-

man, 2002; Gebauer and Hentze, 2004; Rojas-Duran and Gilbert, 2012; Castello et al, 2012; Ar-

ribere and Gilbert, 2013; Katz et al, 2014). The more substantial these differences, the bigger the

potential for post-transcriptional regulation. Thus cell-type differentiation and commitment may

result in much more post-transcriptional regulation than observed during perturbations preserving

the cellular identity. Consistent with this possibility, tissue-type specific proteomes may be shaped

by substantial post-transcriptional regulation; in contrast, cell stimulation that preserves the cell-

type, may elicit a strong transcriptional remodeling but weaker post-transcriptional remodeling.
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Methods

Data and scaled mRNA levels

We used data from Wilhelm et al (2014); Kim et al (2014); Fagerberg et al (2014); Djebali et al

(2012b) containing estimates for the mRNA levels (based on RNA-seq) and for the protein levels

(based on mass-spectrometry) of N = 6104 genes measured in each of twelve different human tis-

sues: adrenal gland, esophagus, kidney, ovary, pancreas, prostate, salivary gland, spleen, stomach,

testis, thyroid gland, and uterus. For these genes, about 8% of the mRNA measurements and about

40% of the protein measurements are missing.

First, denote mit the log mRNA levels for gene i in tissue t. Similarly, let pit denote the

corresponding log protein levels. First, we normalize the columns of the data, for both protein and
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mRNA, to different amounts of total protein per sample. Any multiplicative factors on the raw

scale correspond to additive constants on the log scale. Consequently, we normalize data from

each tissue-type by minimizing the absolute differences between data from the tissue and the first

tissue (arbitrarily chosen as a baseline). That is, for all t > 1, we define

pnit = (puit − µ̂t)

with

µ̂t = argmin
µ

∑
i

|pui1 − (puit − µ)|

Where pnit and puit represent the normalized and non-normalized protein measurements respectively.

For each t, the value of µt which minimizes the absolute difference is

µ̂t = median
u

(pi1 − puit)

We use the same normalization for mRNA. This normalization, which corresponds to a location

shift of the log abundances for each tissue, corrects for any multiplicative differences in the raw

(unlogged) mRNA or protein. We normalize these measurements by aligning the medians rather

than the means, as the median is more robust to outliers.

After normalization, we define rit = pit − mit as the log PTR ratio of gene i in condition t.

If the post-transcriptional regulation the ith gene were not tissue-specific, then the ith PTR ratio

would be independent of tissue-type and can be estimated as

T̂i = median
t

(pit −mit)

In such a situation the log “scaled mRNA” (or mean protein level) can be defined as

pit = mit + Ti

On the raw scale this amounts to scaling each mRNA by its median PTR ratio and represents and

estimate of the mean protein level. The residual difference between the log mean protein level and
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the measured log protein level

rit = pit − pit

consists of both tissue-specific post-transcriptional regulation and measurement noise.

Across-Tissue Correlations

For each gene, i, we can compute the correlation between mRNA and protein across tissues. Un-

like the between gene correlations which are consistently large after scaling for each tissue (Figure

1a), across-tissue correlations are highly variable between genes. Although this could be in part

because true mRNA/protein correlations vary significantly between genes, a huge amount of the

heterogeneity can be explained sampling variability. There are only between 10 and 12 tissues in

common across datasets and for many genes the abundances are missing, which means that the em-

pirical estimates of across tissue correlation for each gene are very noisy. To find a representative

estimate of the across-tissue correlation we can take the median over all genes.

As an alternative, if the correlation was roughly constant between genes, we could pool infor-

mation to yield a representative estimate of this across-tissue correlation. For a gene i, we compute

the fisher transformed within gene correlation as zi = arctanh(r̂i) which is approximately normal:

zi ∼ N

(
1

2
log(

1 + ρ

1− ρ
),

1√
Ni − 3

)
where Ni are the number of observed mRNA-protein pairs for gene i (at most 11) and ρ corre-

sponds to the population correlation. We can then easily find the maximum likelihood estimate of

the Fisher transformed population correlation by weighting each observation by its variance:

ωi =
1

ni − 3

Wi =
ωi∑
j ωj

ẑpop =
∑

Wizi
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We can then transform this estimate back to the correlation scale

ρ̂ =
e2ẑpop − 1

e2ẑpop + 1

Depending on the datasets used, using this method we estimated the population across-tissue

mRNA/protein correlation to be between 0.21 for data by Wilhelm et al (2014) and 0.29 for data by

Kim et al (2014). This correlation cannot be used as direct evidence for the relationship between

mRNA and protein levels since both mRNA and protein datasets are unreliable due to measure-

ment noise. This measurement noise attenuates the true correlation. Below we address this by

directly estimating data reliability and correcting for noise.

Noise Correction

measured mRNA and protein across tissues. Measurement noise attenuates estimates of correla-

tions between mRNA and protein level (Franks et al, 2015). A simple way to quantify this attenu-

ation of correlation due to measurement error is via Spearman’s correction. Spearman’s correction

is based on the fact that the variance of the measured data can be decomposed into the sum of vari-

ance of the noise and the signal. If the noise and the signal are independent, this decomposition

and the Spearman’s correction are exact (Csárdi et al, 2015).

Note that it is simple to show that the empirical variance is the sum of the variance of the signal

and the variance of the noise:

• ei - Expectation at the ith data point; ẽi = ei − 〈e〉

• ζi - Noise at the ith data point; 〈ζ〉 = 0

• xi - Observation at the ith data point; x̃i = xi − 〈x〉, xi = ei + ζi;

σ2
x =

1

n

∑
i

x̃2i =
1

n

∑
i

(ẽi + ζi)
2 =

=
1

n

∑
i

ẽ2i︸ ︷︷ ︸
σ2
e

+
1

n

∑
i

ζ2i︸ ︷︷ ︸
σ2
ζ

+
2

n

∑
i

ẽiζi︸ ︷︷ ︸
≈0
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Spearman’s correction is based on estimates of the “reliability” of the measurements, which is

defined as the fraction of total measured variance due to signal rather than to noise:

Reliability =
σ2
signal

σ2
total

(1)

= 1− σ2
err

σ2
err + σ2

signal

(2)

If X and Y are noisy measurements of two quantities, we can comptue the noise corrected corre-

lation between them as

Cor(X, Y )√
Rel(X)Rel(Y )

(3)

(4)

In practice, reliabilities are not known but we can often estimate them. In this application, for

both mRNA and protein we need measurements in which all steps, from sample collection to

level estimation, are repeated independently. In order to estimate the mRNA reliabilities we use

independent measurements from Fagerberg et al (2014) and Djebali et al (2012b). For estimating

protein reliabilities we use measurements from Wilhelm et al (2014) and Kim et al (2014). Across-

tissue reliabilities are computed per gene whereas within-tissue reliabilities are computed per tissue

across genes. If two independent measurements have the same reliability, it can be estimated

by computing the correlation between the two measurements (Spearman, 1904; Zimmerman and

Williams, 1997; Csárdi et al, 2015). We estimated the approximate across-tissue protein reliability

to be 0.21 and the across-tissue mRNA reliability to be 0.77. Given the estimated across-tissue

mRNA/protein correlation of 0.29 (calculated using data from Kim et al (2014) and Fagerberg et al

(2014)) we estimated the noise-corrected fraction of across-tissue protein variance explained by

mRNA to be approximately 50% 2. Note that if both mRNA or both protein datasets share biases,

then the estimated reliabilities will be too small, thus deflating the inferred fraction of protein

variance explained by mRNA. Moreover, because the reliabilities are low, sampling variability

is large, missing data is prevalent, and mRNA/protein correlation likely vary by gene there is

significant uncertainty about this estimate.
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Creating an Aggregated Dataset

We use the two independent protein datasets to create a single aggregated dataset which is of ar-

guably higher reliability than either dataset individually. To create this dataset, we take a weighted

average of the two protein abundance datasets, by tissue. We compute the weights based on mea-

surement reliabilities for each tissue in each of the two datasets.

Assume we have two random variables,
∼
X1 and

∼
X2, corresponding to measurements on the

same quantity (e.g. two independent protein measurements) with
∼
X i = X + εi where X ∼

N(0, σ2
X) is the signal which is independent of εi ∼ N(0, σ2

εi
), the measurement error for sample

i. We have a third random variable corresponding to a different quantity (e.g. an mRNA measure-

ment),
∼
Y that is typically positively correlated with

∼
X1 and

∼
X2 with the same covariance σ2

XY . To

create the aggregated dataset we first compute the reliability of
∼
X i Rel(

∼
X i) =

σ2
X

σ2
∼
Xi

=
σ2
X

σ2
X+σ2

εi

for

both datasets.

Note that

Cor(
∼
X1,

∼
X2) =

σ2
X

σ∼
X1
σ∼
X2

Cor(
∼
X i, Y ) =

σ2
XY

σ∼
Xi
σY

Thus,

Cor(
∼
X1,

∼
X2)

Cor(
∼
X1,

∼
Y )

Cor(
∼
X2,

∼
Y )

=
σ2
X

σ2
∼
X1

=
σ2
X

σ2
X + σ2

ε1

= Rel(
∼
X1)

Similarly, Cor(
∼
X1,

∼
X2)

Cor(
∼
X2,
∼
Y )

Cor(
∼
X1,
∼
Y )

= Rel(
∼
X2). We use these facts and compute the empirical corre-

lations between datasets to independently estimate the across gene reliabilites for each tissue from

each dataset. We then Fisher weight the protein abundances based on their reliabilities. That is,
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for each tissue t, the aggregated dataset, XAt is

XAt = w
∼
X1t + (1− w)

∼
X2t

w =
Rel(

∼
X1t)

Rel(
∼
X1t) +Rel(

∼
X2t)

When the reliability of
∼
X1t and

∼
X2t are close, each dataset is weighted equally. When one relia-

bility dominates the other, that dataset contributes more to the aggregated dataset. We found that

the full aggregated dataset has a higher median per gene correlation with mRNA than either of the

protein datasets individually (0.34) which suggests that it may be of higher reliability. When com-

puting the per tissue reliabilities, we found that the reliabilities of the lung and pancreas datasets

from Wilhelm et al (2014) had lower reliability relative to the data from Kim et al (2014). This

offers a partial explanation for why the independent estimates of the rPTR ratios for these tissues

did not have a significant positive correlation (Figure 3d).

Functional gene set analysis

To identify tissue-specific PTR for functional sets of genes, we analyzed the distributions of PTR

ratios within functional gene-sets using the same methodology as Slavov and Botstein (2011). We

restrict our attention to functional groups in the GO ontology (Consortium et al, 2004) for which

at least 10 genes were quantified by Wilhelm et al (2014). Let k index one of these approximately

1600 functional gene sets. First, for every gene in every tissue we estimate the relative PTR (rPTR)

or equivalently, the difference between log mean protein level and measured protein level:

r̂it = pit −median
t′ 6=t

(pit′ −mit′)

To exclude the possibility that r̂it = 0 exactly, we require that t′ 6= t. When the estimated

rPTR is larger than zero, the measured protein level in tissue t is larger than the estimated mean

protein level. Likewise, when this quantity is smaller than zero, the measured protein is smaller

than expected. Measured deviations from the mean protein level are due to both measurement

noise and tissue specific PTR. To eliminate the possibility that all of the variability in the rPTR
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ratios is due to measurement error we conduct a full gene set analysis.

For each of the gene sets we compute a vector of these estimated log ratios so that a gene set is

comprised of

Gkt = {r̂i1j, ..., r̂ink t}

where i1 to ink index the genes in set k and t indexes the tissue type.

Let KS(G1,G2) be the function that returns the p-value of the Kolmogorov-Smirnov test on

the distribution in sets G1 and G2. The KS-test is a test for a difference in distribution between two

samples. Using this test, we identify gene sets that show systematic differences in PTR ratio in a

particular tissue (t) relative to all other tissues.

Specifically, the p-value associated with gene set k in condition j is

ρkt = KS(Gkt, ∪
t′ 6=t
Gkt′)

To correct for testing multiple hypotheses, we computed the false discovery rate (FDR) for all

gene sets in tissue t (Storey, 2003). In Figure 3a-c, we present only the functional groups with

FDR less than 1% and report their associated p-values. Note that the test statistics for each gene

set are positively correlated since the genesets are not disjoint, but Benjamini et al (2001) prove

that the Benjamini-Hochberg procedure applied to positively correlated test statistics still controls

FDR. Thus, the significance of of certain functional groups suggests that not all of the variability

in rPTR is due to measurement noise. We also calculated rPTR using two pairs of measurements:

one set of rPTR estimates was calculated using protein data from Wilhelm et al (2014) and mRNA

from Fagerberg et al (2014) and the other was calculated using data from Kim et al (2014) and

Djebali et al (2012b). rPTR of the significant sets was largely reproducible across estimates from

independent datasets (Figure 3d and Supplementary Fig. 2) and across genes (Table S2).
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Figure 1. The fraction of total protein variance explained by scaled mRNA levels is not informative
about the across-tissue variance explained by scaled mRNA levels. (a) mRNA levels scaled by the
median protein-to-mRNA (PTR) ratio correlate strongly with measured protein levels (R2

T = 0.77 over
6104 measured mRNAs and proteins in each of 12 different tissues). (b) A subset of 100 genes are used to
illustrate an example Simpson’s paradox: regression lines reflect within-gene and across-tissue variability.
Despite the fact that the overall correlation between scaled mRNA and measured protein levels is large and
positive RT = 0.89, for any single gene in this set, mRNA levels scaled by the median PTR ratio are not
correlated to the corresponding measured protein levels (RP ≈ 0). See Supporting Information and
Supplementary Fig. 1.
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Figure 2. Data reliability crucially influences estimates of transcriptional and post-transcriptional
regulation across-tissue. (a) The within-study reliability – defined as the fraction of the measured
variance due to the signal – of relative mRNA levels is estimated as the correlation between the mRNA
levels measured in the twelve different tissues. Replicate estimates from (Fagerberg et al, 2014) for the
levels of each transcript were correlated (averaging across the 12 tissue-types) and the results for all
analyzed transcripts displayed as a distribution. (b) The within-study reliability of relative protein levels is
estimated as the correlation between the protein levels measured in 12 different tissues by Wilhelm et al
(2014). Separate estimates for each protein were derived from non-overlapping sets of peptides and were
correlated (averaging across the 12 tissue-types) and the results for all analyzed proteins displayed as a
distribution; see Methods. (c) The across-study reliability of mRNA was estimated by correlating estimates
as in (a) but these estimates came from different studies (Djebali et al, 2012b) and (Fagerberg et al, 2014).
(d) The across-study reliability of proteins was estimated by correlating estimates as in (b) but these
estimates came from different studies (Wilhelm et al, 2014) and (Kim et al, 2014). (e) The fraction of
across-tissue protein variance that can be explained by mRNA levels is plotted as a function of the
reliability of the estimates of mRNA and protein levels, given an mRNA/protein correlation of 0.29. The
red Xs correspond to two estimates of reliability of the mRNA and protein measurements computed from
both independent mRNA and protein datasets.
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Figure 3. Concerted and reproducible variability in the relative protein-to-RNA (rPTR) ratio of
functional gene-sets across tissue-types (a) mRNAs coding for the small ribosomal subunit, NADH
dehydrogenase and respiratory proteins have much higher protein-to-mRNA ratios in kidney as compared
to the median across the other 11 tissues (FDR < 2%). In contrast mRNAs coding for focal adhesion have
lower protein-to-mRNA ratios (FDR < 2%). (b) The stomach also shows very significant rPTR variation,
with low rPTR for the small ribosomal subunit and high rPTR for tRNA-aminoacylation (FDR < 2%). (c)
Summary of rPTR variability, as depicted in panel (a-b), across all tissues and many gene ontology (GO)
terms. Metabolic pathways and functional gene-sets that show statistically significant (FDR < 2%)
variability in the relative protein-to-mRNA ratios across the 12 tissue types. All data are displayed on a
log10 scale, and functionally related gene-sets are marked with the same color. (d) The reproducibility of
rPTR estimates across estimates from different studies is estimated as the correlation between the median
rPTRs for GO terms showing significant enrichment as shown in panels (a-c). See Supporting Information
and Supplementary Fig. 2.
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Figure 4. Deriving a consensus protein dataset for improved quantification of human tissue
proteomes We compiled a consensus protein dataset my merging data from Wilhelm et al (2014) and Kim
et al (2014) as described in Methods. The relative protein levels estimated from (Wilhelm et al, 2014),
(Kim et al, 2014), and the consensus dataset were correlated to mRNA levels from Fagerberg et al (2014)
(a) or to mRNA levels from (Djebali et al, 2012b) (b). The correlations are shown as a function of the
median correlation between protein estimates from Wilhelm et al (2014) and Kim et al (2014). The
consensus dataset exhibits the highest correlations, suggesting that it has averaged out some of the noise in
each dataset and provides a more reliable quantification of of human tissue proteomes.
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Tables
adrenal colon esophagus kidney liver lung ovary pancreas prostate testis

Corr. 0.38 0.33 0.14 0.34 0.16 0.14 0.07 0.18 0.39 0.27
Lower 0.34 0.30 0.09 0.31 0.12 0.10 0.03 0.13 0.36 0.24
Upper 0.41 0.36 0.19 0.38 0.20 0.18 0.10 0.22 0.42 0.31

Table S1. Estimates of relative protein-to-RNA (rPTR) ratio for GO terms reproduce
across different datasets Pearson correlations between two estimates of the median rPTR ratios
for all GO terms indicate reproducible effects in all tissues. As in Figure 2, rPTR estimates are
derived using independently data sources. The lower and upper estimates are the endpoints of the
95% confidence interval.

adrenal colon esophagus kidney liver lung ovary pancreas prostate testis
Corr. 0.39 0.36 0.18 0.32 0.49 0.18 0.07 0.22 0.38 0.27
Lower 0.36 0.33 0.13 0.28 0.46 0.14 0.03 0.18 0.35 0.24
Upper 0.42 0.39 0.22 0.35 0.52 0.22 0.10 0.27 0.42 0.31

Table S2. Estimates of relative protein-to-RNA (rPTR) ratio for genes reproduce across
different datasets Correlations between the two estimates of rPTR ratios for all genes indicate
reproducible effects in all tissues. The rPTR ratios were estimated independently from different
datasets (as in Figure 2). The lower and upper estimates are the endpoints of the 95% confidence
interval.
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Supplementary Figures
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Figure S1. The total protein variance explained by scaled mRNA levels is not indicative of
the correlations between mRNA and protein fold-changes across the corresponding tissue
pairs. While scaled mRNA is predictive of the absolute protein levels (a-c, top row), the accuracy
of these predictions does not generally reflect the accuracy of protein fold-changes across tissues
that are predicted from the corresponding mRNA fold-changes (d-f, bottom row).
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Figure S2. Reproducibility of rPTR ratios estimated from different datasets
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