
The weighting is the hardest part: on the behavior of

the likelihood ratio test and score test under weight

misspecification in rare variant association atudies
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Abstract

Rare variant association studies are gaining importance in human genetic re-
search with the increasing availability of exome/genome sequence data. One
important test of association between a target set of rare variants (RVs) and
a given phenotype is the sequence kernel association test (SKAT). Assign-
ment of weights reflecting the hypothesized contribution of the RVs to the
trait variance is embedded within any set-based test. Since the true weights
are generally unknown, it is of interest to establish the effect of weight mis-
specification in SKAT.

We used simulated and real data to characterize the behavior of the like-
lihood ratio test (LRT) and score test under weight misspecification. Results
revealed that LRT is generally more robust to weight misspecification, and
more powerful than score test in such a circumstance. For instance, when the
rare variants within the target were simulated to have larger betas than the
more common ones, incorrect assignment of equal weights reduced the power
of the LRT by ∼5% while the power of score test dropped by ∼30%. Fur-
thermore, LRT was more robust to the inclusion of weighed neutral variation
in the test.

To optimize weighting we proposed the use of a data-driven weighting
scheme. With this approach and the LRT we detected significant enrichment
of case mutations with MAF below 5% (P-value=7e-04) of a set of highly
constrained genes in the Swedish schizophrenia case-control cohort of 4940
individuals with observed exome-sequencing data.

The score test is currently widely used in sequence kernel association
studies for both its computational efficiency and power. Indeed, assuming
correct specification, in some circumstances the score test is the most power-
ful test. However, our results showed that LRT has the compelling qualities
of being generally more robust and more powerful under weight misspecifi-
cation. This is a paramount result, given that, arguably, misspecified models
are likely to be the rule rather than the exception in the weighting-based
approaches.

Keywords: SKAT, variable weighting, robustness, MAF thresholding,
schizophrenia
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1. Introduction

With the availability of high-coverage exome/genome sequence data in in-
creasingly large samples, rare variant association studies (RVAS) are gaining
importance in human genetic research. One important test of association
between a target set of rare variants (RVs) and a given phenotype is the
sequence kernel association test (SKAT; [1, 2, 3, 4, 5, 6, 7]). SKAT is based
on a random effects model, in which the effect sizes of the RVs are assumed
to be drawn from a zero mean distribution and variance that can be specified
by weights. These weights are typically assigned based on meta-information
about the RVs, such as allele frequency and functional predictions [8, 9, 10, 1],
with rarer and functional variants expected to have larger effects. Allele fre-
quency, in particular, is an important weighting factor, as the rarer the vari-
ant is, the stronger the average purifying selection coefficient [11, 12]. If this
assumption is true, the effect sizes for rare variants will tend to be larger
than for more common variants.

The relationship between effect size, frequency and selection, however,
rests on assumptions about the extent of direct selection on the phenotype
in question and the demographic history of the population [13, 10, 14]. Ge-
nomic regions under low selection pressures may harbor rare as well as more
common so-called goldilocks alleles, both with strong functional effects, as
simulation studies [10] and empirical results have demonstrated (e.g., [15]).
Testing such genomic regions by relying on a weighting scheme which up-
weighs rarer variants and puts low or zero weights on the more common
ones, may weaken the association signal. Correct weighting is expected to
boost the power of detection [1]. However, as the true weights are generally
unknown, it is important to establish the effect of weight misspecification in a
kernel-based variance component test. Here we assessed the loss of power as-
sociated with incorrect weighting in sequence-based kernel association tests.
Because hypothesis testing can be performed by using either the score [1]
or the likelihood ratio test [5], we characterize the behavior of both tests
within the misspecification space. We considered various weighting schemes
and target regions harboring functional variants or mixtures of functional and
neutral variants. We show that the choice of the statistical test has an impor-
tant bearing on power, with the likelihood ratio test being appreciably more
robust to weight misspecification. Furthermore, we show that the power loss
depends not only on the degree of misspecification, but also on the presence
of neutral variants within the target set. As to how to minimize the power
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loss resulting from misspecification of weights, we examined the efficiency of
a data-driven weighting scheme. We propose the use of a set of theoretically
defensible weighting schemes, of which, we assume, the one that gives the
largest test statistic is likely to capture best the allele frequency-functional
effect relationship. The use of alternative weighting schemes is intended to
accommodate genomic regions where only very rare variants are likely to be
functional, as well as regions under weak selection pressures, harboring both
rare and common variants, both (possibly) related to the risk of the disease
of interest. Family-wise error rate can be protected either by permutations
or by using a Bonferroni correction. We show the power benefits conferred by
the use of such a variable data-driven weighting procedure both in simulated
and in empirical data.

Below we first formulate the model and briefly consider the two tests of
variance components, namely the likelihood ratio test and the score test.
Next we explore the behavior of the two tests under (in)correct model spec-
ification in a simulation study. We then present and evaluate the use of a
data-driven weighting scheme in simulated and empirical data. Finally, we
discuss the robustness of the likelihood ratio test to misspecification and the
power advantages conferred by our proposed weighting procedure in SKAT.

2. Methods

2.1. Model formulation

Let y be the n-dimensional vector of continuous phenotypes measured in
a sample consisting of n individuals. Let X be the n × p design matrix
containing the relevant covariates. Let G be the n ×m matrix of genotype
values, with the gij element denoting the genotype value of the individual
i (i = 1 . . . n) at locus j (j = 1 . . .m). Genotypes are coded as additive-
codominant, i.e., gij = (0, 1, 2). The association between the phenotype and
the set of m SNPs is modeled within the linear mixed model framework as:

y = Xβ + Gb + e (1)

with βt = (β1, . . . βp) being the p-dimensional vector of fixed effects of co-
variates, bt = (b1, . . . , bm) being the m× 1 vector of regression coefficients in
the regression of the phenotype on the m genetic variants within the target
set, and e being the n-dimensional vector of random residuals. The random
vectors b and e are assumed to be normally distributed: b ∼ N(0, Iσ2

b ) and
e ∼ N(0, Iσ2

e), with I being the identity matrix of appropriate dimension.
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Let W be the m×m diagonal matrix containing the weights used to weigh
the contribution to the test statistic of the SNPs in the set. The normally dis-
tributed phenotype y has expected mean E[y] = Xβ and variance-covariance
matrix:

Σy = E[(y − E(y))(y − E(y))t] = GWGtσ
2
b

m
+ Iσ2

e (2)

with GWGt being the weighted kernel or genetic relationship matrix. As
implemented in the SKAT [1], the diagonal elements of the matrix W,
diag(w1 . . . , wm), are related to the minor allele frequency of the j-th variant
by means of the beta density distribution function (dbeta), which is charac-
terized by two shape parameters. The specification of the two shape param-
eters is informed by the hypothesized relationship between the j-th variant
effect and its minor allele frequency (MAF; see section on ‘Weighting’ below).

2.2. Tests of variance components

To test whether the parameter of interest σ2
b deviates significantly from zero,

one can employ a likelihood ratio test (LRT) or a score test. The likeli-
hood ratio test is computed as two times the difference between the log-
likelihoods of the null model (σ2

b constrained to equal 0) and the alternative
model (σ2

b estimated freely). Parameter estimation can be performed by
restricted/residual maximum likelihood (REML):

LogL(σ2
b , σ

2
e) =

1

2
log |Σy|−

1

2
log
∣∣XtΣ−1

y X
∣∣−1

2
rtΣ−1

y r−1

2
(n−p) log(2π) (3)

where r = y −X(XtΣ−1
y X)−XtΣ−1

y y with superscript ‘−’ denoting a gener-
alized inverse [16].

In evaluating the statistical significance of the restricted LRT, we note
that the null distribution of the test statistic is an equally weighted .5 : .5
mixture of a χ2

0 and a χ2
1 distributions (see e.g., [17, 18, 19]). Alternatively,

the null distribution can be constructed empirically by using a permutation-
based approach (e.g., [5]), or a parametric bootstrap (e.g., [20]).

The score test is computed as:

QSKAT = (y −Xβ̂)tGWGt(y −Xβ̂) (4)

with its expected null distribution following a mixture of chi-square distri-
bution and statistical significance assessed by means of the Davies exact
method [21].
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2.3. Data simulation

Phenotypes and genotypes were generated in samples of n = 10, 000 un-
related individuals. Specifically, we simulated two m-dimensional random
vectors of continuous variables representing alleles at m equidistant loci for
each individual i from the sample. The vectors were drawn from a multi-
variate distribution with zero mean and ΣLD correlation matrix. The SNPs
were in linkage equilibrium, i.e., we set ΣLD to equal an identity matrix.
The multivariate normally distributed variables were then discretized given
chosen thresholds based on the MAF at each locus. We considered MAFs
varying randomly between 0.005 and 0.05, sampled from a uniform distribu-
tion. Given the vectors of alleles, we then created the m vectors of genotypes,
gij. Based on the genotypes, the n×1 vector of phenotypes, y, was generated
as:

yi =
m∑
j=1

gijbj ×
√
σ2
b + ei ×

√
σ2
e (5)

bj, the regression weight of the SNP at the j-th locus, was computed as a
function of MAFj and of its contribution to the standardized variance of
the polygenic scores [22]. Namely, the regression weights varied with MAF,
while their contribution to the genetic variance was equal. Simulating data
in this fashion is equivalent to simulation according to dbeta(MAF, .5,.5)
weights [1], with weights increasing with decreasing MAF. We also simulated
data according to dbeta (1,1) weights (second simulation scenario), where
SNPs had equal weights regardless of MAF. This scenario is illustrative for
situations where the tested region harbors both common and rare variants,
both having functional effects on the trait (i.e., where there is no relationship
between allele frequency and effect size). The variance σ2

b equaled 0.01 across
all scenarios we considered, and σ2

e = 1 − σ2
b . The n-dimensional vector

of environmental scores e was drawn from a standard normal distribution
N(0, 1).

2.4. Exploring the misspecification space: Weighting

To explore the effect of weight misspecification on the power and type I er-
ror rates of the LRT and the score test we carried out simulations. The
m-dimensional vector w of SNP weights was computed using the beta den-
sity function, with the j-th element calculated as wj = dbeta(MAFj; a1, a2)
given the MAF of the j-th variant and the shape parameters a1 and a2.
As described in the previous section, data were simulated according to: a)
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dbeta(.5,.5) weights (i.e., the true weights increase with decreasing MAF);
and b) dbeta(1,1) weights (i.e., the SNPs have equal weights, regardless of
MAF). Next, in computing the tests statistic we (mis)specified the weights
as: a) dbeta(1,1); b) dbeta(.5,.5); c) dbeta(1,25). The first weighting scheme
pertains to the hypothesis that there is no relationship between the regression
weight and the frequency of the variant (hence, the more common variants
contribute on average more to variation in the phenotype). In this scenario
the association test is carried out with raw additive-codominant coding of
the genotypes. The use of the second weighting scheme is equivalent to stan-
dardization of the genotypic values prior to the analysis. We considered the
effect of this weighting scheme as this treatment of the genotypes is default
in GCTA [23] and in FaST-LMM-set [5]. Standardization and assignment of
weights dbeta(.5,.5) are equivalent weighting schemes [1] in which the contri-
bution to the test of rarer variants is up-weighed relative to that of the more
common ones [24], and hence the variants contribute on average equally to
the variance in the phenotype, regardless of frequency. We also considered
the effects of the third weighting scheme (dbeta(1,25)) as weights computed
as such are the default weights in SKAT [1].

We assessed the behavior of the two tests under weight misspecification
by considering: a) target regions harboring solely functional variants with
opposite effects on the phenotypic mean, and b) regions harboring a mixture
of protective, deleterious and neutral effects.

2.5. Evaluating the type I error rates and power

We evaluated the type I error rates by generating 1,000,000 datasets under
the null hypothesis of no phenotypic variance explained by the SNPs within
the target set. The type I error rate was computed as the proportion of
datasets in which the tests incorrectly rejected the null hypothesis and it
was evaluated given α=0.01 and 0.001.

Power was assessed based on 1000 simulated datasets, an effect size of
1% explained phenotypic variance and 7 alpha thresholds. Given the 7 alpha
thresholds, power equaled the proportion of datasets in which the effect was
detected. As a validity check of our program, for all the scenarios considered
we also report the power and the type I error rates of the true (i.e., correct)
model.
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2.6. Variant weighting schemes: data-driven search for optimal weights

Because the application of a single weighting scheme might not be accurate
when testing thousands of genes scattered across the whole exome (possibly
subjected to selection pressures of varying intensities) we also considered the
efficiency of a data-driven search for the optimal weights. We generated 1000
samples according to weights dbeta(.5,.5) as described above. Each gener-
ated sample comprised N=3000 individuals with phenotypes and genotypes
observed at 50 variant sites. As above, the variants were either all func-
tional (deleterious or protective, first scenario) or a mixture of functional
and neutrals (second scenario). We performed association tests by using a
set of 7 weighting schemes: a) dbeta(1,75) ; b) dbeta(1,50); c) dbeta(1,35); d)
dbeta(1,25); e) dbeta(1,5); f) dbeta(1,1) and g) dbeta(.5,.5). Statistical sig-
nificance was assessed by means of permutations on phenotypes. Specifically,
we computed a maximum test statistic maxLRT (maxscore) as the largest out of
the seven tests obtained given the genotypes transformed according to each
of the weighting schemes enumerated earlier. We then repeated this step in
1000 permuted datasets obtained by shuffling the phenotypes. We computed
the p-value as the proportion of datasets in which the maxLRT (maxscore)
was larger in the permuted than in unpermuted data. Power equalled the
proportion of datasets yielding a p-value smaller than 0.01.

2.7. Software

The R-package MASS [25] was used for data generation. Model fitting was
performed in R-nlme [26], and SKAT [27]. We used the anova function in R
to obtain the restricted likelihood ratio test, with the p-value computed by
halving the supplied p-value [28]. To check our model fitting approach, we
analyzed one simulated sample of 10,000 individuals by using 3 independent
programs implementing genetic similarity/kernel-based variance component
tests: the nlme R-package, the software Genome-wide Complex Trait Anal-
ysis (GCTA; [23]) and the software FaST-LMM-set [5]. The values for the
restricted LRT and the estimate for the variance component obtained by the
3 programs were almost identical (see Table 1 Supplementary Material for
details https://goo.gl/Thz2cM), indicating that these are equivalent ap-
proaches. Having established the equivalence, all the simulations were next
conducted using the nlme program. Simulations were carried out on the
Broad Institute Gold Compute cluster.
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2.8. Empirical analysis: testing the constrained and the FMRP-Darnell gene
sets for rare case mutations enrichment

We compared the performance of the likelihood ratio test and of the score
test under alternative weights in a real dataset. For this illustration we
used the Swedish schizophrenia case-control cohort of 4940 individuals with
exome-sequencing data from blood DNA. Cases had a clinical diagnosis of
schizophrenia and at least two hospitalizations as determined by expert re-
view based on the Hospital Discharge Register [29, 30]. Controls, without a
diagnosis of schizophrenia or bipolar disorder, were randomly selected from
population registries. Both cases and controls are of Scandinavian ancestry,
aged 18 or older (see [31, 32] for a detailed description of the sample). There
were 169 individuals with unreliable samples (i.e., duplicates, ethnic outliers
or having a genotype missing rate higher than 10%) whom we removed from
the analysis. This left for the analysis 2461 cases and 2479 controls. 2732
of these were males. Written informed consent was obtained from all partic-
ipants (or legal guardian consent and subject assent). All procedures were
approved by the ethical committees in Sweden and in the United States.

Exome-sequencing was performed in seven waves at the Broad Institute
of MIT and Harvard. For samples in the first wave, hybrid capture was per-
formed using the Agilent SureSelect Human All Exon Kit method. In this
version, the method targets ∼28 million base-pairs partitioned in ∼160,000
regions. Sequencing was done using Illumina GAII instruments. For samples
in the waves two to seven, hybrid capture was done by using the newer ver-
sion of the Agilent SureSelect Human All Exon v.2 Kit method, which targets
∼32 million base-pairs partitioned in ∼190,000 regions. Sequencing was per-
formed using the Illumina HiSeq 2000 and HiSeq 2500 instruments. We used
BWA ALN version 0.5.9 [33] to align the reads to the GRCh37 human genome
reference and we applied Picard/GATK to process the sequence data and to
call variants http://broadinstitute.github.io/picard/; [34]. Selected
singletons were validated using Sanger sequencing (see [32] for details).

Variants out of Hardy-Weinberg equilibrium (P-value< 5e-8) and show-
ing excess heterozygosity, or variants showing excessive correlation (P-value< 5e-8)
with the covariates (that could not be explained by principal components)
were excluded from the analysis. In addition, we excluded variants that did
not pass the GATK default filters [35, 36]. There were 892,306 variants with
MAF< 5% meeting all our quality control criteria.

For this empirical illustration we considered the gene-sets rather than the
genes as the unit of analysis. The reason that we extended the targeted re-
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gion is that the current sample sizes afford insufficient power for gene-based
tests (see Purcell et al., 2014) but are more adequate for gene-set enrich-
ment analyses which consider jointly a larger number of weak effects. This
type of analysis has the added benefit of reducing substantially the burden
of multiple testing. By extending the targeted region, the number of tested
variants is large, and hence the effects of (possible) weight misspecification
are expected to be large. In addition, as we do not focus on a specific class
of alleles but rather lump together all observed variants with frequency be-
low specific thresholds, a large amount of variation contributing to the test
statistic will possibly be neutral. This makes the example a near optimal
situation for illustrating the difference in robustness to both model misspec-
ification and neutral variation of the LRT and the score test.

We tested for enrichment of case mutations two partially overlapping
gene-sets likely relevant to schizophrenia. The first set consisted of 899 genes
which are part of the list identified by Samocha et al. [37] as highly con-
strained. These constrained genes were proposed as candidates in autism
spectrum disorder (ASD) given their enrichment for de novo loss of function
case mutations. Given evidence favouring the hypothesis that schizophre-
nia and ASD share genetic aetiology [38, 39], this set of genes is likely to
be relevant also to schizophrenia. The second set consisted of 749 genes
targeted by the Fragile-X mental retardation protein (FMRP). This set is
part of the list of genes derived by Darnell et al. [40] from mouse brain as
likely implicated in regulating synaptic plasticity. Genes targeted by FMRP
were found to be enriched for de novo nonsynonimous case mutations in both
ASD [41] and schizophrenia [39]. Purcell et al. (2014) also tested the FMRP
set for enrichment of rare variants in the current sample, and their analy-
sis yielded nominally significant results. Note that the strategy we adopted
here is however, different. That is, rather than using gene-based statistic,
our procedure tests for the joint effect (variance explained) of rare variants
with MAF lower than 5% and 1% within the gene-set (note that the MAF
thresholds are, however, arbitrary: variants defined as rare in one sample
might feature as common in another sample).

We performed sequence-based kernel association analyses using the like-
lihood ratio and score tests with variable weights. For this empirical analysis
we used the FaST-LMM-Set software [5]. To adjust for ancestry we included
into analysis the first two principal components. Principal components were
computed from genotypes at variants shared with the 1000 Genomes Project
phase 1 dataset. To accommodate the scenario in which only very rare vari-
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ants are likely to be functional, as well as the scenario in which the tar-
geted region is under weak selection pressures, harboring both rare and more
common variants, both (possibly) related to the risk of disease (regardless
of frequency), we used three alternative weighting schemes: dbeta(1,25),
dbeta(.5,.5) and dbeta(1,1). To reduce the computational burden, we chosen
to adapt our alpha for multiple testing rather than to rely on permutations
to compute the p-value. Hence for each tested pathway, we chose the p-value
corresponding to the weighting scheme that yields the largest test statis-
tic. An alpha of 0.05/12= 0.004 was used, corrected for multiple hypothesis
testing of 2 gene-sets, 2 frequency thresholds and 3 weighting schemes. For
computational ease we used a linear model [5]. The linear LRT (and the lin-
ear score test) shows good control of the type I error rate and has performed
as well as a generalized linear model in case-control samples (see [6]).

3. Results

3.1. Type I error

Tables 1 and 2 contain the results pertaining to the type I error rates of
the two tests, given correct and incorrect model specification. Across all
conditions evaluated here, the score test shows good control of the type I
error rate. The likelihood ratio test appears slightly conservative, regardless
of whether the weights are correctly specified or misspecified. A similar re-
sult was reported by Listgarten et al. [5] who suggested that relying on a
.5:.5 mixture of a χ2

0 and a χ2
1 distribution to assess statistical significance of

the one variance component LRT might be conservative. We used this ap-
proach in the simulations as this is default in most statistical software (e.g.,
in GCTA, [23]). Alternatively, Listgarten et al. (2013) proposed a permu-
tation based approach to construct the null distribution of the test statistic,
approach that maintains the type I error rate of the restricted LRT closer to
the expectation. This approach, however, is computationally demanding es-
pecially when the number of tested variants within the target and the sample
is large.

3.2. Power

Figure 1 and Figure 2 display the results relating to power. Four important
conclusions follow from our simulation results. First, the restricted LRT and
the score test have equal power under correct weight specification. This is
expected, as the two tests are asymptotically equivalent when the model
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Table 1: Type I error for the restricted likelihood ratio test (LRT) and the score test,
given genotypic data simulated under the null model of no association between the target
region and the phenotype. The sample consisted of 10,000 individuals with genotypes at
50 SNPs having minor allele frequencies (MAFs) sampled from the uniform distribution
and ranging from .5% to 5%. The restricted LRT and the score tests were computed for
three sets of weights beta in each of the 1,000,000 simulated samples. Type I error equals
the proportion of datasets in which the null hypothesis has been incorrectly rejected given
the three significance thresholds.

weights
α=0.01 [99%CI] α=0.001 [99%CI]

dbeta

LRT (.5,.5) 0.00849 [0.00826, 0.00873] 0.00083 [0.00076, 0.00091]
(1,1) 0.00834 [0.00811, 0.00858] 0.0008 [0.00073, 0.00088]
(1,25) 0.00847 [0.00824, 0.00871] 0.00082 [0.00075, 0.0009]

Score (.5,.5) 0.00991 [0.00966, 0.01017] 0.00098 [0.0009, 0.00107]
(1,1) 0.00992 [0.00967, 0.01018] 0.00099 [0.00091, 0.00107]
(1,25) 0.00988 [0.00962, 0.01013] 0.00098 [0.0009, 0.00106]

is true, i.e., correctly specified (e.g., [42]). The powers of the two tests
– displayed in grey in the power figures – are indistinguishable when the
assigned weights correspond to the true weights.

Second, misspecification of weights always reduces power. This is shown
in Figure 1 and in Figure 2, as the departure of the power under model mis-
specification (the black lines) from the power of the true models (the grey
lines). The exact loss in power depends on the degree of weight misspeci-
fication and on the statistical test employed. We note that the power loss
is relatively small given mild misspecification of weights. This result is il-
lustrated in Figure 1A, where the assigned weights dbeta(1,25) resemble the
true weights dbeta(.5,.5). In this circumstance, it is mainly the presence of
neutral SNPs in the target that dilutes the power (see Figure 1C). However,
the power may suffer dramatically with increasing misspecification. For in-
stance, when data were simulated according to the dbeta(.5,.5) weights, using
a dbeta (1,1) weighting scheme (equal weights assigned to all variants) results
in a loss in power of up to ∼5% and ∼30% for the restricted LRT and for the
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Table 2: Type I error for the restricted likelihood ratio test (LRT) and the score test,
given genotypic data simulated under the null model of no association between the target
region and the phenotype. The sample consisted of 10,000 individuals with genotypes at
50 SNPs having equal beta weights and minor allele frequencies (MAFs) sampled from
the uniform distribution and ranging from .5% to 5%. The LRT and the score tests were
computed for three sets of weights beta in each of the 1,000,000 simulated samples. Type
I error equals the percent of datasets in which the null hypothesis has been incorrectly
rejected given the three significance thresholds.

weights
α=0.01 [99%CI] α=0.001 [99%CI]

dbeta

LRT (.5,.5) 0.00844 [0.00821, 0.00868] 0.0008 [0.00073, 0.00088]
(1,1) 0.00844 [0.00821, 0.00868] 0.0008 [0.00073, 0.00088]
(1,25) 0.00817 [0.00794, 0.00841] 0.00074 [0.00067, 0.00082]

Score (.5,.5) 0.00989 [0.00964, 0.01015] 0.00099 [0.00091, 0.00107]
(1,1) 0.0098 [0.00954, 0.01005] 0.00098 [0.00090, 0.00106]
(1,25) 0.00993 [0.00968, 0.01019] 0.00094 [0.00086, 0.00102]

score test, respectively (see Figures 1B and 1D). This result is informative
for RVASs in which the raw genotypes (unweighted) are used in the test of
association. A more dramatic power loss is illustrated in Figure 2D where
we consider the reverse situation: weights dbeta (.5,.5) are assigned to SNPs
simulated under flat weights. That is, in this scenario, the allele frequency
is incorrectly used to inform on the weights assignment. With this misspeci-
fication the drop in power relative to the true model is ∼17% and ∼80% for
the restricted LRT and for the score test, respectively.

Third, the inclusion of neutral SNPs dilutes the power of both tests. In
our examples, with 40% neutral SNPs the power drops are in the range of
∼10%-∼17% relative to the power of the true model, regardless of the de-
gree of weight misspecification. Clearly, discarding neutral variation present
within the target is beneficial to improve power to detect significant associ-
ation.

Forth, relative to the score test, we note that the restricted LRT is con-
sistently more robust, both to weight misspecification and to the presence of
neutral variation in the target region. These results are consistent with those
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Figure 1: The power of the likelihood ratio test (LRT) and the score test to detect a gene
harboring 50 low-frequency SNPs: all functional (A and B) or a mixture of 30 functional
and 20 neutral SNPs (C and D). We randomly sampled MAFs ranging from .5% to 5% from
the uniform distribution. The gene explains 1% of the phenotypic variance. Genotypic
data were simulated according to weights dbeta(.5,.5), models were fitted according to
weights dbeta(1,25) (A and C) and dbeta(1,1) (B and D). The power of the true models
(i.e., with correct weights) is displayed in grey. Power was evaluated in 1000 datasets
consisting of 4000 individuals. Note that while the SNP-set explain the same amount
of phenotypic variance (i.e., 1%) across all scenarios considered, the true individual SNP
weights increase as the proportion of functional SNPs in the set decreases.
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Figure 2: The power of the likelihood ratio test (LRT) and the score test to detect a gene
harboring 50 low-frequency SNPs: all functional (A and B) or a mixture of 30 functional
and neutral SNPs (C and D). We randomly sampled MAFs ranging from .5% to 5% from
the uniform distribution. The gene explains 1% of the phenotypic variance. Genotypic
data were simulated according to weights dbeta(1,1), models were fitted according to
weights dbeta(1,25) (A and C) and dbeta(.5,.5) (B and D). The power of the true models
(i.e., with correct weights) is displayed in grey. Power was evaluated in 1000 datasets
consisting of 4000 individuals. Note that while the SNP-set explain the same amount
of phenotypic variance (i.e., 1%) across all scenarios considered, the true individual SNP
weights increase as the proportion of functional SNPs in the set decreases.
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Table 3: Power results for the variable threshold approach given all variants being func-
tional in the target set (A) or a mixture of protective, deleterious and neutral variants
(B). Power was evaluated given alpha of 0.01 in 1000 simulated samples, each sample
comprinsing 3000 individuals. The minor allele frequency of the 50 variants within the
target set ranged from .5% to 5%.

A.

weights
LRT Score

dbeta
(1,1) (Incorrect) 0.483 0.469
Variable weights 0.529 0.364

(.5,.5) (True) 0.547 0.559

B.

weights
LRT Score

dbeta
(1,1) (Incorrect) 0.498 0.471
Variable weights 0.564 0.382

(.5,.5) (True) 0.709 0.734

reported by Lippert et al. [6], who found their proposed LRT to be generally
more powerful than the score test across their simulated settings. Although
Lippert et al. did not consider the behavior of the two tests under misspeci-
fied weights, they reported the same pattern of results in real data analysis,
where the LRT yielded consistently more associations than the score test.
As the real weights are in all likelihood not known, the superior power of the
restricted LRT in real data might be explained as well by its robustness to
weight misspecification and to the inclusion of weighed neutral variation in
the computation of the test statistic.

3.3. Variable weighting schemes: data-driven search for optimal weights

Table 3 contains the simulation results relating to the power of the two
tests under alternative weighting schemes. On one hand, the likelihood ratio
test appears to benefit from the use of variable weights. When the variants
within the target are all functional, the use of alternative weights increases its
power relative to the incorrect weighting setting (power goes up from 48.3%
to 52.9%). This increase is to be larger (about 7% given alpha of 0.01) when
neutral variants are also present in the target set. On the other hand, the
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score test performs worst in the variable weighting setting. Power goes down
about 10% relative to the incorrect weighting setting, both when the target
set contains only functional variants or a mixture of functional and neutral
variants.

It should be noted, however, that there is a price to pay in terms of
power by using a variable weighting scheme in contrast to correct weight-
ing. The price is largest for regions containing mixtures of functional and
neutral variants (e.g., the power of the LRT decreases from 70.9% given cor-
rect weights to 56.4% with the variable weighting approach) and relatively
small for the (less realistic) scenarios in which the target set contains only
functional variants (i.e., with the LRT, the power drops about 2%).

As typically the true weights are unknown, conjecturing the correct ones
by employing alternative weights and using the likelihood ratio test appears
to be the strategy likely to maintain the power close to that of the true
model. This strategy appears to be advantageous especially when the target
set contains also neutral variants. However, by being based on permutations,
the variable weighting approach is likely to be computationally too complex
when the number of tests and the sample is large.

3.4. Empirical analysis: testing the constrained and the FMRP-Darnell gene
sets for rare case mutations enrichment

We also looked at the behavior of the score test and of the likelihood ratio
test [5] under variable weights in the empirical dataset. Table 4 displays
results pertaining to the enrichment tests in the gene-set-based analyses.

From Table 4 we note that the likelihood ratio test appears more pow-
erful than the score test across all conditions evaluated here. It is likely the
combination of weight misspecification coupled with the presence of neutral
variation in the target set that yielded the difference in power between the
two tests. With the current sample and the likelihood ratio test with weights
dbeta(1,1), the set of constrained genes showed significant enrichment for
disruptive case mutations with MAF below 5% (i.e., P-value = 7e-04; see
Table 4 A). The score test under flat weights (i.e., dbeta(1,1)) with its asso-
ciated p-value also passed the significance threshold, providing support for
enrichment for disruptive rare case mutations of the constrained gene-set,
although the evidence was weaker (P-value = 0.0031).

Note the difference in the strength of association of the two tests un-
der variant weighting schemes. For instance, in the 5% MAF threshold
analyses, the enrichment signal in the constrained gene-set was rendered
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Table 4: Results of the gene-set enrichment analysis run in the Swedish sample (N=4940;
prevalence in the sample = 0.49). The 2 gene-sets included variants with MAF below 5%
(A) or below 1% (B).

A.

Gene-set weights
LRT Score

(autosome variants in set) dbeta
constrained (1,1) 7e-04 0.0031

(63,492) (.5,.5) 0.1240 0.3444
(1,25) 0.0037 0.0331

FMRP-Darnell (1,1) 0.0339 0.0577
(72,161) (.5,.5) 0.1062 0.3384

(1,25) 0.0434 0.1319

B.

Gene-set weights
LRT Score

(autosome variants in set) dbeta
constrained (1,1) 0.0373 0.1139

(61,269) (.5,.5) 0.2341 0.3988
(1,25) 0.0357 0.1293

FMRP-Darnell (1,1) 0.0723 0.1679
(69,668) (.5,.5) 0.1467 0.3621

(1,25) 0.0556 0.1668

non-significant when the dbeta(1,25) weights were used with the score test
(P-value = 0.0331), and yet it reached statistical significance when the like-
lihood ratio test was employed instead (P-value = 0.0037). Had one relied
on the score test and a default weighting scheme, the association signals in
this pathway would have been missed.

The FMRP-Darnell gene-set showed no significant enrichment for rare
case mutations, regardless of the test, MAF threshold and weighting schemes
used. This result does not rule out the possibility that rarer variants (e.g.,
singletons) within the pathway play a role in the liability to schizophrenia
phenotype. To implicate such variants, however, testing approaches other
than those exploiting genetic similarity among the individuals are required.

The 1% MAF threshold yielded similar differences among the two tests
(see table 1B). Note that the signal in the constrained gene-set no longer
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reached statistical significance. This result suggests that imposing this thresh-
old probably removed from the target causal variants and so, weakened the
association signal.

Summarizing, the empirical analysis showed that the choice of the test
and of the weighting scheme is no trivial matter. The LRT always yielded
smaller p-values than the score test, probably due to the greater sensitivity
the latter has to weighed neutral variation and to model misspecification (as
we found in the simulated data). We also found that either thresholding or
relying on default weights would trick one into missing association signals.
We elaborate on these results in the Discussion.

4. Discussion

We characterized the behavior of the likelihood ratio test and of the score
test under weight misspecification in association studies based on the rare
variant sequence kernel test. The principal finding of this study is that the
likelihood ratio test is generally more robust to weight misspecification, and
more powerful than the score test in such a circumstance. Our results are
of interest because weight assignment is embedded within any set-based test
and the true weights of the variants within the target are generally unknown.

As we found the power to be maximal under correct model specifica-
tion, we next considered the issue of optimizing weighting. In the literature,
weighting is mostly informed by allele frequency; frequency is taken as in-
dicative of the strength of the purifying selection coefficient [8]. Accordingly,
rarer variants are typically being assigned larger weights/contribution to the
test statistic (e.g., [1]). This relationship between effect size, frequency and
selection is not always straightforward, however, because it relies on assump-
tions about the extent of direct selection on the phenotype in question and
the demographic history of the population [13, 10, 14]. Genes under weak
selection may harbor rare as well as more common variants with disruptive
effects [14]. Such variants with deleterious effects, escaping selection and
occurring at relatively high frequencies in the population, are plausible also
under strong purifying selection, as simulation studies have demonstrated
[10]. Achieving maximal power when testing such regions requires adapt-
ing the weighting scheme to match the hypothesized selection. To this end,
we proposed the use of a data-driven weighting approach. Our simulation
results showed that such an approach maintains the power close to that of
the true (i.e., correctly specified) model. When applied to real data, this
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approach allowed us to capture significant enrichment signal coming from
variants with MAF below 5% within the constrained pathway [37]; P-value
= 7e-04), lending support to the conclusion that such a variable weighting
approach is likely to boost statistical power. Such adaptive approaches were
also recommended by Zuk et al. (2014) and by Price et al. (2010) as being
optimal for gene-based tests. Deriving weights based on allele frequency is
but one of the possible ways of prioritizing the contribution to the test statis-
tic of the variants within the target set [1]. Alternative weighting schemes
that incorporate probabilities of a variant being damaging (as estimated by
annotation tools such as e.g., Polyphen-2 [43] or SIFT [44] may also be con-
sidered.

It should be emphasized that our variable weighting approach renders
thresholding unnecessary. Thresholding (either based on counts or on al-
lele frequency) has been initially used in burden tests (e.g., [45, 9, 10]; see
also [46] for an overview on burden tests), but it has been employed also in
sequence-based variance component tests (e.g., [47, 48] ) for the purpose of
removing neutral variation (see e.g., [8]). Yet, in our empirical analysis this
practice was counterproductive: imposing the (arbitrarily chosen) 1% MAF
threshold reduced the association signal in the constrained gene-set below
the significance threshold. Considering common variants along with the rare
ones in sequence-based kernel association tests appears to be justified for
three main reasons. First, the use of variable weighting schemes is equivalent
to applying variable frequency thresholds: the weights are removing from the
test or favoring the contribution to the test statistic of the variants within
the target set based on their frequency. Second, only the joint signal - com-
ing from rare and more common variants - enabled us to detect significant
enrichment. And third, importantly, with the current samples, our tests are
mostly powered to locate regions under relatively weak selection pressures,
and such regions are expected to harbour rare as well as common variants
both with functional effects. To locate genes under stronger selection pres-
sures, larger samples (see [14]) and the inclusion of more extreme weights
(i.e., weights that overlook common variants and favour the rarer ones) will
probably be required.

In the empirical analysis, we chose to correct out alpha in place of using
permutations to compute the p-value. The data-driven weighting approach
based on permutations is prohibitively slow when the number of tested vari-
ants within the target set (or the number of genes) and the sample is large.
The Bonferroni correction though easier computationally, comes at a price in
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terms of power: the more weighting schemes one tries, the more stringent the
significance threshold correction. An optimization algorithm for an optimal
search for the true weights (e.g., [49] or limiting the choice of weights based
on knowledge on theorized selection on each gene [14] would decrease the
burden of multiple testing, and further increase power.

The score test is currently widely used in sequence-based association stud-
ies (e.g., [50, 51, 52, 53] for both its computational efficiency and power [1].
Indeed, assuming correct specification, in some circumstances the score test
is the most powerful test [1, 6]. However, the results provided herein showed
that the likelihood ratio test has the compelling qualities of being generally
more robust and more powerful under weight misspecification. This is an
important result, given that, arguably, misspecified models are likely to be
the rule rather than the exception in the weighting-based approaches.
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line Vink are supported by the ERC starting grant 284167 (PI-JMV). For
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