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Abstract.—The paleontological record chronicles numerous episodes of mass extinction that14

severely culled the Tree of Life. Biologists have long sought to assess the extent to which15

these events may have impacted particular groups. We present a novel method for16

detecting mass-extinction events from phylogenies estimated from molecular sequence data.17

We develop our approach in a Bayesian statistical framework, which enables us to harness18

prior information on the frequency and magnitude of mass-extinction events. The approach19

is based on an episodic stochastic-branching process model in which rates of speciation and20

extinction are constant between rate-shift events. We model three types of events: (1)21

instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide shifts in22

extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each of the events23

is described by a separate compound Poisson process (CPP) model, where the waiting24

times between each event are exponentially distributed with event-specific rate parameters.25

The magnitude of each event is drawn from an event-type specific prior distribution.26

Parameters of the model are then estimated using a reversible-jump Markov chain Monte27

Carlo (rjMCMC) algorithm. We demonstrate via simulation that this method has28

substantial power to detect the number of mass-extinction events, provides unbiased29

estimates of the timing of mass-extinction events, while exhibiting an appropriate (i.e.,30

below 5%) false discovery rate even in the case of background diversification rate variation.31

Finally, we provide an empirical application of this approach to conifers, which reveals that32

this group has experienced two major episodes of mass extinction. This new approach—the33

CPP on Mass Extinction Times (CoMET) model—provides an effective tool for identifying34

mass-extinction events from molecular phylogenies, even when the history of those groups35

includes more prosaic temporal variation in diversification rate.36

(Keywords: Birth-Death Stochastic-Branching Process, Speciation, Lineage Diversification,37

Mass Extinction, Bayesian Inference, Phylogeny, Compound Poisson Process Model)38
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The paleontological record documents numerous episodes of mass extinction that40

severely culled the Tree of Life. As biologists, we often wish to assess whether these events41

may have impacted particular groups. To this end, several statistical phylogenetic42

approaches have been proposed to identify mass-extinction events from estimated43

molecular phylogenies with divergence times, e.g., Nee et al. (1994) and Harvey et al.44

(1994). These methods generally assume that the dated phylogeny is known without error,45

and decompose the tree into a vector of waiting times between speciation events. Various46

models of lineage diversification are then fit to these phylogenetic ‘observations’ using47

maximum likelihood to estimate the speciation, b, and extinction, d, rates, and to identify48

tree-wide shifts in diversification rate, including episodes of mass extinction.49

This research program was initially derailed when it was demonstrated that it is not50

possible to distinguish among different histories of temporal variation in diversification51

rates within a maximum-likelihood framework (Kubo and Iwasa 1995): an infinite number52

of unique diversification histories may give rise to an identical vector of waiting times53

between speciation events in this tree. For this reason, recent developments of inferring54

diversification process parameters have focused on speciation and extinction rates only55

(e.g., Rabosky 2006; Paradis 2011; Stadler 2011a; Morlon et al. 2011; Etienne and56

Haegeman 2012; Höhna 2014). Unfortunately, more realistic diversification models—such57

as a birth-death process with speciation- and extinction-rate shifts and mass-extinction58

events—are non-identifiable when parameters are estimated in a maximum-likelihood59

framework (Stadler 2009; 2011a).60

In order to distinguish more prosaic temporal variation in diversification rate from61

bona fide mass-extinction events, we adopt a Bayesian statistical framework that enables us62

to leverage prior information on the frequency and magnitude of mass-extinction events.63

Specifically, we develop an episodic stochastic-branching process model where rates of64

speciation and extinction are constant between rate-shift events. The events are of three65

types: (1) instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide66

shifts in extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each67

event type is described by a separate compound Poisson process (CPP) model, where the68

waiting times between events are exponentially distributed with event-specific Poisson-rate69

parameters. These rate parameters—λB, λD, and λM—therefore control the frequency of70

speciation-rate shifts, extinction-rate shifts, and mass-extinction events, respectively. When71

an event occurs, its magnitude is described by the corresponding prior probability density.72

Specifically, when an event entails a shift in speciation or extinction rate, we draw a new73

rate from a lognormal prior distribution with hyperpriors µ and σ specifying the mean and74
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standard deviation, respectively, of the lognormal diversification-rate priors. Similarly,75

when an event involves an episode of mass extinction, the number of surviving lineages is76

drawn from a beta prior to describe the survival probability, with hyperpriors α and β77

specifying the shape of the beta prior. Between events, the tree evolves under a78

(piece-wise) constant birth-death stochastic-branching process, motivating its description79

as an episodic birth-death process.80

In principle, all of the free parameters of the CPP on Mass Extinction Time (CoMET)81

model could be estimated, including: (1) the number and timing of tree-wide shifts in82

speciation rate; (2) the number and timing of tree-wide shifts in extinction rate; (3) the83

rate of speciation and extinction between each rate-shift event, and; (4) the number, timing84

and severity of tree-wide mass-extinction events. In practice, however, it may not be85

possible to reliably estimate all of the CoMET model parameters. This limitation stems from86

the tendency of the CPP model to be non-(or weakly) identifiable (Rannala 2002). For87

example, when used as a model describing shifts in substitution rate across branches of a88

phylogeny (the ‘CPP relaxed-molecular clock model’; Huelsenbeck et al. 2000; Blanquart89

and Lartillot 2008), the CPP model can explain the substitution-rate variation in a given90

dataset equally well by specifying relatively frequent substitution-rate shifts of small91

magnitude, or by specifying less frequent substitution-rate shifts of greater magnitude. In92

fact, there are an infinite number of CPP model parameterizations for which the data have93

an identical likelihood (i.e., for which the model is non-identifiable). Accordingly, this94

model is known to be very sensitive to the choice of priors that specify the frequency and95

magnitude of substitution-rate shifts (e.g., Rannala 2002; Ronquist et al. 2012).96

Our use of the CPP model to describe mass-extinction events, however, benefits97

from the ability to impose strongly informative, empirically grounded priors on the98

magnitude (survival probability) and frequency (expected number) of mass-extinction99

events. The former prior derives from the definition of a mass-extinction event as the loss100

of a specified fraction of species diversity, and the latter can be guided by paleontological101

information regarding the likely number of mass-extinction events in the relevant period.102

By contrast, it is difficult to justify strongly informative priors related to the frequency and103

magnitude of temporal shifts in rates of speciation and extinction. Accordingly, estimates104

of the corresponding CoMET parameters (model components 1− 3, above) are expected to105

be extremely sensitive to the choice of prior, and therefore difficult to estimate reliably.106

Nevertheless, it is well established that temporal variation in diversification rates is a107

pervasive feature of empirical phylogenies (e.g., Moen and Morlon 2014), which may108

impact our ability to accurately identify mass-extinction events. Accordingly, several109
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components (1− 3) of the CoMET model are included as nuisance parameters intended to110

improve estimation of the focal parameters: the number and timing mass-extinction events.111

In this paper, we first provide a detailed description of the CoMET model and the112

numerical algorithms used to estimate the parameters of this model. We then perform a113

comprehensive simulation study to explore the statistical behavior of the CoMET model,114

including its liability to detect spurious mass-extinction events (the false discovery rate),115

the ability of the method to detect actual mass-extinction events (the power), and the116

accuracy of the method to estimate the timing of mass-extinction events (the bias).117

Finally, we apply our approach to an empirical dataset to reveal the impact of118

mass-extinction events in coniferous land plants.119

Methods120

The episodic reconstructed process with explicit mass-extinction events121

Our approach is based on the reconstructed evolutionary process described by Nee122

et al. (1994); a birth-death process in which only surviving lineages are observed. Let N(t)123

denote the number of species at time t. Assume the process starts at time t1 (the ‘crown’124

age of the most recent common ancestor of the study group, tMRCA) when there are two125

species. Thus, the process is initiated with two species, N(t1) = 2. We condition the126

process on sampling at least one descendant from each of these initial two lineages;127

otherwise t1 would not correspond to the tMRCA of our study group. Each lineage evolves128

independently of all other lineages, giving rise to exactly one new lineage with rate b(t) and129

losing one existing lineage with rate d(t) (Figure 1A). Note that although each lineage130

evolves independently, all lineages share both a common (tree-wide) speciation rate b(t)131

and a common extinction rate d(t) (Nee et al. 1994; Stadler 2011a; Höhna 2013; 2014;132

2015). Additionally, at certain times, tM, a mass-extinction event occurs and each species133

existing at that time has the same probability, ρ, of surviving the mass-extinction event.134

Finally, all extinct lineages are pruned and only the reconstructed tree remains.135

Our derivation of the CoMET model assumes piecewise-constant speciation and136

extinction rates that shift instantaneously at rate-change events (see Figure 1B). Therefore,137

we specify the times of the kB speciation-rate shifts in the vector TB = {tB[1], . . . , tB[kB]}.138

We specify the speciation rate within each of the k intervals in the vector B = {b0, . . . , bkB},139

and define the speciation-rate function as b(t) = bi for the interval tB[i] ≤ t < tB[i+ 1].140

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


Similarly, we specify the times of the kD extinction-rate shifts in the vector141

TD = {tD[1], . . . , tD[kD]}. We specify the extinction rates in the vector D = {d0, . . . , dkD},142

and the extinction-rate function is defined as d(t) = di for the interval tD[i] ≤ t < tD[i+ 1].143

Finally, we specify the times of the kM mass-extinction events in the vector144

TM = {tM[1], . . . , tM[kM]}, where the survival probability for each event is specified in the145

vector P = {ρ1, . . . , ρkM}. We note that mass-extinction events might be modeled implicitly,146

where a shift to a relatively high extinction rate is followed—after a short interval—by a147

return to a relatively low extinction rate. By contrast, we model episodes of mass148

extinction explicitly—as instantaneous events—so that we can estimate the probability149

that such events have occurred.150

Index
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Figure 1: The piecewise-constant birth-death process with mass extinction. A)
A realization of the process involves one speciation-rate shift, three extinction-rate shifts,
and one mass-extinction event. B) Corresponding plots of the episodic (piecewise constant)
speciation and extinction rates, with the times of the five events (see Table 1 for notation).
The survival probability for the single mass-extinction event is ρ = 0.05.

We present a graphical model description of the CoMET model (Figure S1), and151

summarize the notation and interpretation of the model parameters in Table 1.152
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Table 1: CoMET model parameters and their interpretation

Parameter Interpretation

Ψ Labeled history with divergence times.

τ Tree topology.

T Vector of divergence times.

B Vector of speciation rates per interval.

bi Speciation rate in the interval tB[i− 1] to tB[i].

TB Vector of times of the speciation-rate changes.

tB[i] Time of the ith speciation-rate change.

kB Number of speciation-rate changes.

D Vector of extinction rates per interval.

di Extinction rate in the interval tD[i− 1] to tD[i].

TD Vector of times of the extinction-rate changes.

tD[i] Time of the ith extinction-rate change.

kD Number of extinction rate changes.

P Vector of the survival probabilities per mass-extinction event.

ρi Survival probability of the ith mass-extinction event.

TM Vector of times of the mass-extinction events.

tM[i] Time of the ith mass-extinction event.

kM Number of mass-extinction events.

Likelihood function.—Let Ψ denote a reconstructed evolutionary tree relating n species,153

comprising a tree topology, τ , and the set of branching times, T. For a birth-death process154

where the rates of speciation and extinction are the same for all branches at any instant in155

time, the probabilities of the tree topology and the branching times are independent. Thus,156

we can compute the probability of the reconstructed evolutionary tree as the product of157

the independent probabilities: P (Ψ) = P (τ)× P (T).158

For a tree with n species, there are n!(n− 1)!/2n−1 unique labeled histories (we use

labeled histories and tree topologies interchangeably). Under a birth-death process, all

labeled histories are equally likely (Edwards 1970; Rannala and Yang 1996), so

P (τ) =
2n−1

n!(n− 1)!
.
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We call a lineage that begins with a single species at time t and ends with a single159

sampled species at time T (the present) a singleton lineage. We proceed by recognizing160

that a reconstructed evolutionary tree is composed of a set of independently evolving161

singleton lineages: a tree with a single node (the root) has two singleton lineages, and each162

additional node generates an additional singleton lineage (Figure 2A). Under a birth-death163

process, the probability density of a singleton lineage is just the probability of starting with164

a single species at time t and ending with a single sampled lineage at the present T ,165

P (N(T ) = 1 | N(t) = 1) (Figure 2B).166

We must also incorporate the probability density that each new singleton lineage167

arises in the first place (i.e., that there is a speciation event at time t). Each singleton168

lineage gives rise to new species at rate b(t); therefore, in general, the probability density169

that a speciation event occurs at time t is simply b(t) multiplied by the number of singleton170

lineages that exist at t. For the episodic model we have described, b(t) = bi for the interval171

tB[i] ≤ t < tB[i+ 1].172

We condition the probability density of observing the branching times on the173

survival of both lineages that descend from the root (otherwise, the root would not exist).174

To do so, we divide by P (N(T ) > 0|N(0) = 1)2.175

The probability density of the branching times, T, becomes

P (T) =

both initial lineages have one descendant︷ ︸︸ ︷
P (N(T ) = 1 | N(0) = 1)2

P (N(T ) > 0 | N(0) = 1)2︸ ︷︷ ︸
both initial lineages survive

×
n−1∏
i=2

speciation rate︷ ︸︸ ︷
i× b(ti) ×

singleton lineage has one descendant︷ ︸︸ ︷
P (N(T ) = 1 | N(ti) = 1) ,

and the probability density of the reconstructed tree (topology and branching times) is then

P (Ψ) = P (τ)× P (T)

=
2n−1

n!(n− 1)!
×
(
P (N(T ) = 1 | N(0) = 1)

P (N(T ) > 0 | N(0) = 1)

)2

×
n−1∏
i=2

i× b(ti)× P (N(T ) = 1 | N(ti) = 1) (1)

We can simplify Equation (1) by substituting P (N(T ) > 0 | N(t) = 1)2 exp(r(t, T ))

for P (N(T ) = 1 | N(t) = 1), where r(u, v) =
∫ v

u
d(t)− b(t)dt (for a detailed description of
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this substitution, see Höhna 2015); the above equation becomes

P (Ψ) =
2n−1

n!(n− 1)!
×

(
P (N(T ) > 0 | N(0) = 1)2 exp(r(0, T ))

P (N(T ) > 0 | N(0) = 1)

)2

×
n−1∏
i=2

i× b(ti)× P (N(T ) > 0 | N(ti) = 1)2 exp(r(ti, T ))

=
2n−1

n!
×
(
P (N(T ) > 0 | N(0) = 1) exp(r(0, T ))

)2

×
n−1∏
i=2

b(ti)× P (N(T ) > 0 | N(ti) = 1)2 exp(r(ti, T )). (2)

This probability density was originally derived by Thompson (Thompson 1975; Equation176

(3.4.6)) for constant rates (see also Equation 20 in Nee et al. 1994) and later extended to177

arbitrary rate functions (Lambert 2010; Höhna 2013; 2014; 2015).178

The probability density of a reconstructed phylogeny Ψ in Equation (2) is given for179

any time-dependent birth-death process. Analytical solutions to this equation can be180

obtained if the following quantities can be computed analytically: b(ti),181

P (N(T )>0|N(ti)=1), and r(ti, T ). Given the speciation and extinction rate and the182

mass-extinction survival probabilities, we can compute the probability of no extinction (see183

Equation 16 in Höhna 2015)184

P (N(T )>0|N(t)=1)185

=

1 +
k∑

i=0

 di
di − bi

× e

i−1∑
j=0

(dj−bj)(tj+1−tj)−ln(ρj)

×
(
e(di−bi)(ti+1−ti) − 1

)
186

− ρi − 1∏i
j=1 ρj

× e

i−1∑
j=0

(dj−bj)(tj+1−tj)




−1

. (3)187

Inserting Equation (3) into Equation (2) yields the probability density of an observed (i.e.,188

reconstructed) tree under the episodic birth-death process with explicit mass-extinction189

events. We provide this expanded equation in the Appendix; see Equation (4).190
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Figure 2: Computing the likelihood of a phylogeny under the birth-death process.
We first identify lineages within the phylogeny that begin and end with a single species (panel
A, colored branches). Then, for each of those lineages, we compute the probability that the
lineage ended with a single extant species at time T given that it began with a single species
at time t, P (N(T ) = 1 | N(t) = 1) (panel B). We then multiply those probabilities by the
number of labeled histories, as well as the probability that there were speciation events
at each non-root node in the tree, b(t); finally, we condition on survival of the process by
dividing by the probability that each lineage descending from the root left at least one extant
descendant, P (N(T )>0 | N(0)=1)2 (panel C, see also Equation (1)).

Bayesian Inference191

Parameterization and prior distributions.—In the previous section we described the192

episodic birth-death process with mass-extinction events and gave the probability density193

of an observed tree given the parameters, i.e., the likelihood function for the CoMET model.194

The likelihood function allows us to estimate parameters of the model using different195

statistical approaches, including maximum-likelihood estimation and Bayesian inference.196

Previously, the study of temporal variation in diversification rates has largely been pursued197

in a maximum-likelihood framework (e.g., Rabosky 2006; Stadler 2011a; Höhna 2014).198

However, Kubo and Iwasa (1995) demonstrated that stochastic-branching process models199
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are non-identifiable when parameters are estimated using maximum likelihood. That is, the200

phylogenetic observations (the vector of waiting times between speciation events) are201

equally likely to be the outcome of an infinite number of distinct diversification processes.202

For example, a diversification process in which a low initial speciation rate later shifts to a203

higher speciation rate produces the same phylogenetic observations as a constant-rate204

process with a mass-extinction event (Stadler 2011b).205

These considerations motivated our adoption of a Bayesian solution to this problem.206

Pursuing the detection of mass-extinction events within a Bayesian statistical framework207

both allows us to specify a prior distribution on the number of events—thereby208

automatically penalizing more complex histories—and also to leverage biologically relevant209

information (as informative priors) on the survival probability of mass-extinction events.210

Specifically, we draw the number of speciation and extinction rate-shifts from a Poisson211

prior with rate λB and λD, respectively. Following a shift in speciation or extinction rate,212

we draw a new rate from a lognormal prior with parameters µB and σB or µD and σD.213

Similarly, we draw the number of mass-extinction events from a Poisson prior with rate λM,214

and draw the survival probability from a Beta prior with parameters α and β. By default,215

we assume that α = 2 and β = 18; this corresponds to a prior belief that a mass-extinction216

event will on average result in the loss 90% of the contemporaneous species diversity.217

Accordingly, the parameters and prior densities of the CoMET model are as follows:218

kB ∼ Poisson(λB)219

kD ∼ Poisson(λD)220

kM ∼ Poisson(λM)221

bi ∼ Lognormal(µB, σB)222

di ∼ Lognormal(µD, σD)223

ρi ∼ Beta(α, β)224

tB[i] ∼ Uniform(0, T )225

tD[i] ∼ Uniform(0, T )226

tM[i] ∼ Uniform(0, T )227

Empirical Bayesian hyperpriors.—Our use of lognormal priors for the speciation and228

extinction rates raises the issue of how we should parameterize these distributions.229

Specifically, we need to specify the mean and standard deviation of these prior densities.230

Were we to specify a lognormal prior that is too narrow (i.e., where the standard deviation231
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is too small), the rates would be close to the mean and the model would disfavor large rate232

shifts. Conversely, if we were to specify a lognormal prior that is too diffuse (i.e., where the233

standard deviation is too large), the rates would be overly dispersed and the model would234

tend to overfit patterns of rate variation the data.235

It is therefore crucial to carefully select the parameters of these prior distributions.236

We might pursue one of three possible approaches for specifying the prior mean and237

standard deviation of the lognormal priors: (1) we could adopt an ‘empirical prior’238

approach that treats the mean and standard deviation as fixed values, perhaps guided by239

biological information on these parameters; (2) we could adopt a ‘hierarchical Bayesian’240

approach that treats the mean and standard deviation as random variables, allowing these241

parameters to be estimated from the data (Holder and Lewis 2003), or; (3) we could adopt242

an ‘empirical Bayesian’ approach, where the values of these parameters are guided by the243

data at hand (c.f., Huelsenbeck and Bollback 2001; Yang et al. 2005).244

Use of empirical priors is not viable because we typically lack information regarding245

reasonable values for the mean and standard deviation of speciation and extinction rates.246

The development of a hierarchical Bayesian model would provide an elegant solution, but247

defers rather than solves the problem. That is, we avoid specifying values for the mean and248

standard deviation of the lognormal priors by treating them as random variables, but this249

necessitates that we specify both the type of second-order hyperpriors (beta, gamma, etc.)250

and the associated second-order hyperparameters (shape, scale, etc.) for these variables.251

There are also some immediate practical concerns with a hierarchical Bayesian solution.252

First, this solution involves adding an extra level of complexity to the CoMET model, which253

may complicate our characterization of the statistical behavior of this new method.254

Additionally, a hierarchical Bayesian solution is more computationally demanding,255

which—although not an issue for empirical applications of the CoMET model—is of more256

concern for our simulation study that involves a large number of analyses.257

Accordingly, we have adopted an empirical Bayesian approach for parameterizing258

the lognormal priors for the speciation- and extinction-rate parameters. This involves259

performing a preliminary MCMC simulation for the data at hand under a constrained260

CoMET model—where rates of speciation and extinction are assumed to be constant—to261

estimate the posterior probability densities for the speciation and extinction rates. We262

then center the lognormal prior on the inferred posterior mean for each parameter.263

Similarly, we specify the standard deviation of the lognormal prior such that the variance264

of the prior density is ten-fold that of the inferred posterior density.265
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Markov chain Monte Carlo implementation.—We approximate the posterior probability266

distribution of the CoMET model parameters using a Metropolis-Hastings algorithm267

(Metropolis et al. 1953; Hastings 1970; Gelman et al. 2003). Specifically, we employ a268

Markov chain Monte Carlo (MCMC) simulation where we propose updates for all numeric269

parameters using normally distributed proposal densities centered on the current values270

(Gelman et al. 2003; Yang and Rodŕıguez 2013), and propose updates for the number of271

events using reversible-jump MCMC (rjMCMC; Green 1995; 2003). We implemented two272

rjMCMC proposals to add or remove an event—the ‘birth move’ and ‘death move’,273

respectively—following Huelsenbeck et al. (2000).274

Birth move275

1. Simulate the time of the new event: tk+1 ∼ unif(0, T )276

2. Simulate the parameter value for the new event from the corresponding prior:277

θk+1 ∼ Prior, such that θ′ = {θ ∪ θk+1}278

3. Compute the posterior probability for the proposed value:279

f(θ′) ∝ Likelihood(θ′)× Prior(θ′)280

4. Compute the posterior probability for the current value:281

f(θ) ∝ Likelihood(θ)× Prior(θ)282

5. Compute the forward proposal probability: q(θ′|θ) = 1/T × Prior(θk+1)× 1/(k + 1)283

6. Compute the reverse proposal probability: q(θ|θ′) = 1/(k + 1)284

7. Compute the Jacobian: J = 1285

8. Compute the acceptance probability:286

α = f(θ′)/f(θ)× q(θ|θ′)/q(θ′|θ)× J = f(θ′)/f(θ)× (1/T × Prior(θk+1))
−1

287

Death move288

1. Select an event to delete: idx ∼ unif(1, k) so that θ′ = {θ\θidx}289

2. Compute the posterior probability for the proposed value:290

f(θ′) ∝ Likelihood(θ′)× Prior(θ′)291

3. Compute the posterior probability for the current value:292

f(θ) ∝ Likelihood(θ)× Prior(θ)293

4. Compute the forward proposal probability: q(θ′|θ) = 1/k294

5. Compute the reverse proposal probability: q(θ|θ′) = 1/T × Prior(θidx)× 1/k295

6. Compute the Jacobian: J = 1296

7. Compute the acceptance probability:297

α = f(θ′)/f(θ)× q(θ|θ′)/q(θ′|θ)× J = f(θ′)/f(θ)× 1/T × Prior(θidx)298
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Both birth and death proposals are used to update the number of speciation299

rate-shifts, extinction rate-shifts, and mass-extinction events. When the number of events300

is being updated, a birth move or a death move will be applied with equal probability301

during an iteration of the MCMC simulation. We validated the algorithms and our302

implementation by sampling from the prior distribution. When the rjMCMC simulation is303

run without data, it will target the joint prior probability density of the model parameters.304

This allows us to compare the inferred marginal prior probability density to the305

corresponding known prior probability density for each model parameter: if the rjMCMC306

algorithm and implementation are correct, we will recover the known prior densities. These307

experiments confirmed the validity of the CoMET algorithms.308

The CoMET model and the rjMCMC algorithm are implemented in the R package309

TESS and are available from http://cran.r-project.org/.310

Hypothesis Testing311

Testing hypotheses regarding the timing of significant mass-extinction events.— Explicitly

modeling mass-extinction events enables us to perform robust Bayesian hypothesis testing

using Bayes factors. The Bayes factor compares the relative performance of two models

(denoted M0 and M1) by comparing their marginal likelihoods :

BFM1,M0 =
marginal likelihood of M1

marginal likelihood of M0

=
P (X | M1)

P (X | M0)
,

where the marginal likelihood, P (X | Mi) =
∫
θ
P (X | θ)P (θ | Mi)dθ, is the likelihood of the312

data, X, integrated over the entire joint prior distribution of the model parameters (i.e.,313

the average probability of observing the data under the model). Values of BFM1,M0 greater314

than 1 indicate a preference for M1, whereas values of BFM1,M0 less than one indicates a315

preference for M0 (Kass and Raftery 1995).316

Normally, the marginal likelihood is an intractable quantity to compute; however,

the Bayes factor can be re-written as:

BFM1,M0 =
posterior probability of M1

posterior probability of M0

÷ prior probability of M1

prior probability of M0

.

For example, we may be interested in testing the hypothesis that mass extinction i
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occurred at time t:

BFtM[i]=t,tM[i]̸=t =
P (tM[i] = t | X)

1− P (tM[i] = t | X)
÷ P (tM[i] = t)

1− P (tM[i] = t)
.

Unfortunately, because we must approximate the posterior probability density of

mass-extinction times with MCMC, the (estimated) posterior probability P (tM[i] = t | X)

will always be 0 (i.e., the probability that a numerical sample takes some real value t is 0).

We can, however, test the hypothesis that at least one mass extinction occurred in the

interval I = (t, t+∆t):

BF|M∈I|̸=0,|M∈I|=0 =
1− P (|M ∈ I| = 0 | X)

P (|M ∈ I| = 0 | X)
÷ 1− P (|M ∈ I| = 0)

P (|M ∈ I| = 0)
.

Conveniently, we can calculate the prior probability of no mass extinction under the CPP

model:

P (|M ∈ I| = 0) = e−λM
∆t
T ,

where ∆t
T

is the duration of the interval relative to the height of the tree. The posterior

probability can be approximated directly from the MCMC samples:

P (|M ∈ I| = 0 | X) =
1

N

N∑
i=1

1 if |Mi ∈ I| = 0

0 otherwise
,

where N is the number of MCMC samples and Mi is the vector of mass-extinction times in317

the ith sample.318

Our procedure for identifying the timing of mass-extinction events is as follows:319

(1) discretize the interval (0, T ) into n intervals of duration ∆t = T
n
; (2) for each interval,320

compute the Bayes factor for at least one mass extinction in the interval; (3) identify321

intervals with significant Bayes factor support for the specified significance threshold,322

BFcrit, as containing a mass-extinction event, and; (4) merge contiguous runs of intervals323

with mass-extinction events into a single mass extinction whose time corresponds to the324

interval with the highest support. This procedure is depicted in Figure 3.325

There are several practical considerations for this approach. Intervals that are too326

large relative to T will provide imprecise estimates of the mass-extinction times, and may327

in fact include multiple well-supported mass extinctions, confounding the interpretation of328

the Bayes factor test. Conversely, intervals that are very small will lead to more precise329
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Figure 3: Identifying significant mass-extinction events using Bayes factors. An
example of the procedure for estimating the timing of significant mass-extinction events.
Each bar represents the posterior probability of at least one mass extinction in that interval.
Bars that exceed the significance threshold (in this case, 2 lnBF > 6) indicate significant mass
extinction events. When multiple adjacent bars are greater than the significance threshold,
only the bar with the greatest support is considered a mass extinction. In this example, the
Bayes factors are computed assuming λM = ln 2, and we infer significant mass-extinction
events in intervals 48 and 93.

estimates of mass-extinction times, but will also decrease the number of sampled mass330

extinctions in the interval, resulting in unstable estimates of the posterior probability. We331

have found that ∆t = T
100

provides a good compromise between precision and stability. The332

identification of well-supported mass extinctions relies on a significance threshold, BFcrit.333

By convention, we use a significance threshold that corresponds to “strong” support334

(2 lnBFcrit ≥ 6, Kass and Raftery 1995). A well-supported mass extinction may also335

appear in multiple consecutive intervals, which motivates step 4, the merger of contiguous336

mass extinctions. We note that setting ∆t = T is equivalent to testing the hypothesis337

regarding the occurrence of any significant mass-extinction events over the entire tree;338

however, we can also test hypotheses about the exact number of mass-extinction events,339

which we describe in the next section.340

Testing hypotheses regarding the number of significant mass-extinction events.—Bayes

factors can also be used to test hypotheses related to the number of mass-extinction events.

By treating the number of mass extinctions as the model, we can assess the support for
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exactly k mass-extinction events:

BFkM=k,kM ̸=k =
P (kM = k | X)

1− P (kM = k | X)
÷ P (kM = k)

1− P (kM = k)
,

where, under the CPP model, the prior probability is simply calculated as:

P (kM = k) =
(λM)

k

k!
e−λM ,

and the posterior probability is directly estimated from the MCMC samples:

P (kM = k | X) =
1

N

N∑
i=1

1 if ki
M = k

0 otherwise
,

where ki
M is the number of mass-extinction events in the ith MCMC sample.341

Simulation Study342

The complex nature of both the CoMET model and the algorithms used to estimate343

parameters of the model demand a comprehensive simulation study to characterize the344

statistical behavior of this new method. We designed our simulation study to understand:345

(1) the rate at which mass-extinction events are incorrectly inferred (the false discovery346

rate); (2) the rate at which mass-extinction events are correctly inferred (the power);347

(3) the accuracy of the inferred timing of mass-extinction events (the bias); (4) the ability348

to distinguish multiple mass-extinction events, and; (5) the influence of shifts in349

background diversification rates on the false discovery rate, power and bias of our approach.350

All simulations and analyses were performed in the R package TESS (Höhna 2013).351

False discovery rate.—We first assessed the liability of the CoMET model to detect spurious352

mass-extinction events in trees simulated under constant speciation and extinction rates.353

For each tree, we sampled the speciation rate, b, from a lognormal distribution with mean354

µB = 1 and standard deviation σB = exp(0.2). Similarly, we sampled the extinction rate, d,355

from a lognormal distribution with mean µD = 0.5 and standard deviation σD = exp(0.2).356

We ran each simulation for T = 10 time units, generating trees with357

N = {100, 200, 400, 800} species. For each tree size, we simulated 100 trees (400 trees in358

total; c.f., Figure 4A).359

We also assessed the liability of the CoMET model to detect spurious mass-extinction360
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events in trees simulated under episodically shifting speciation and extinction rates. For361

each tree, we sampled the number of speciation- and extinction-rate shifts, kB and kD, from362

a Poisson distribution with rate parameters λB = λD = 2. We sampled the times of the363

speciation- and extinction-rate shifts, TB = {tB[1], . . . , tB[kB]} and TD = {tD[1], . . . , tD[kD]},364

from a uniform distribution on (0, T ). We sampled the speciation rates, B = {b0, . . . , bkB},365

from a lognormal distribution with mean µB = 1 and standard deviation σB = exp(0.2).366

Similarly, we sampled the extinction rates, D = {d0, . . . , dkD}, from a lognormal367

distribution with mean µD = 0.5 and standard deviation σD = exp(0.2). We ran each368

simulation for T = 10 time units, simulating 100 trees of each size, with369

N = {100, 200, 400, 800} species (400 trees in total; c.f., Figure 4B).370

In order to explore the impact of the chosen priors on our ability to detect371

mass-extinction events, we analyzed each simulated tree under a variety of prior settings.372

We considered cases where the prior expected relative-extinction rate (d÷ b) was either too373

low, centered on the correct value, or too high. We achieved this by varying the hyperprior374

on the mean extinction rate, µD = {0.1, 0.5, 0.9}, while fixing the other hyperpriors to the375

generating values. Specifically, we set the mean and standard deviation of the lognormal376

speciation-rate prior to µB = 1 and σB = exp(0.2), respectively, and set the standard377

deviation of the lognormal extinction-rate prior to σD = exp(0.2). In addition to analyses378

using fixed hyperprior values, we also performed analyses where the values of the379

hyperpriors for the speciation and extinction rates were estimated using the empirical380

Bayesian approach described above. We also varied the priors on the frequency of381

diversification-rate shifts, λB = λD = {0.1, ln 2, 2, 5}, and the frequency of mass-extinction382

events, λM = {0.1, ln 2, 2, 5}. We set the hyperpriors on the mass-extinction survival383

probability to α = 2, β = 18. We analyzed each simulated tree under every combination of384

prior settings, resulting in 4× 4× 4 = 64 analyses per tree, for a total of 64× 800 = 51, 200385

MCMC analyses.386

We ran each MCMC simulation until one of two stopping conditions was reached:387

(1) the effective sample size (ESS, computed with the R package coda) for all of the388

event-rate parameters—kB, kD and kM—exceeded 500, or; (2) the maximum number of389

cycles (one million) was reached. We thinned the chains by sampling every 100th state.390

Occasionally, one or more parameters were found to have low ESS values (≤ 200) after the391

MCMC simulation reached the maximum length. In such cases, we repeated the analysis.392

We discarded the first 25% of the samples for each MCMC simulation as burnin. We then393

classified any analyses that identified strong support for at least one mass-extinction event394

as a false positive, and computed the false discovery rate for a particular combination of395
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prior settings as the fraction of analyses that contained false positives.396
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Figure 4: Simulation study design. Panels A and B depict simulations that explore the
false discovery rate (where trees are simulated without mass-extinction events); panels C and
D depict simulations that explore the power and bias (where trees are simulated with mass-
extinction events). Panels A and C entail simulations where the speciation and extinction
rates are constant; panels B and D entail simulations where the speciation and extinction
rates shifted episoodically. Each panel shows an actual tree (above) from the simulations
with N = 100 species, as well as the parameters of the stochastic-branching-process model
used in those simulations (below).

Power.—We first assessed the power of the CoMET model to correctly detect mass-extinction397

events against a background of constant speciation and extinction rates. We sampled398

speciation and extinction rates as described above for the false discovery rate experiments.399

For each tree, we sampled the number of mass-extinction events, kM, from a Poisson400

distribution with a rate parameter λM = 1. We sampled the times of the mass-extinction401

events, TM = {tM[1], . . . , tM[kM]}, from a uniform distribution on the interval (0, T ). For402

each mass-extinction event, we sampled the survival probabilities, P, from a beta403

distribution with shape parameters α = 2 and β = 18, so that the expected survival404

probability E[ρ] = α
α+β

= 0.1. We ran each simulation for T = 10 time units, simulating 100405

trees of each size, with N = {100, 200, 400, 800} species (400 trees in total; c.f., Figure 4C).406

We also assessed the power of the CoMET model to correctly identify mass-extinction407

events against a background of episodically shifting speciation and extinction rates. For408

this experiment, we simulated trees exactly as in the initial power experiment, except that409

we simulated diversification-rate shifts as described in the false discovery rate experiment.410
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We ran each simulation for T = 10 time units, simulating 100 trees of each size, with411

N = {100, 200, 400, 800} species (400 trees in total; c.f., Figure 4D).412

We analyzed each simulated tree under the same variety of prior settings, and413

performed and diagnosed the MCMC simulations as described in the false discovery rate414

experiments (51, 800 analyses in total). We classified an analysis as having correctly415

inferred a mass-extinction event if it indicated strong support for one mass-extinction event416

when the tree actually experienced one mass-extinction event. We computed the power for417

a particular combination of prior settings as the fraction of analyses that correctly418

identified a mass-extinction event.419

Bias.—We assessed the ability of the CoMET model to accurately estimate the timing of420

mass-extinction events using the analyses from the previous section. When an analysis421

correctly inferred a single mass-extinction event, we computed the bias of the estimated422

event time as (tsimulated − testimated)/tree height× 100%.423

Multiple mass-extinction events.—Motivated by our empirical conifer analysis (see below),424

we investigated the behavior of the CoMET model under sequential mass-extinction events.425

In particular, we were interested in the ability of the method to successfully detect the426

older of two mass-extinction events, and the ability to distinguish the two mass extinctions427

as a function of their relative age.428

To approximate the conifer dataset (see below), we simulated trees with N = 492429

species and a tree height of T = 340.43 million years. We simulated the trees under430

constant background speciation and extinction rates, which were sampled from the431

posterior distributions estimated from our empirical analyses. We simulated one ancient432

mass-extinction event at ta = 250 Ma to mimic the Permo-Triassic mass-extinction event.433

We then simulated a second, more recent mass extinction at tr = {200, 150, 100, 50} Ma.434

Both mass-extinction events had a survival probability of ρ = 0.1. We simulated 100 trees435

for each value of tr, for a total of 400 simulated trees.436

We analyzed each tree using empirical Bayesian estimates of the diversification-rate437

hyperpriors—µB, σB and µD, σD—and assumed a constant background diversification rate438

(λB = λD = 0). We analyzed each simulated tree under a variety of prior settings for the439

frequency of mass-extinction events, λM = {0.1, ln 2, 2, 5}, for a total of 4× 400 = 1, 600440

analyses. We performed MCMC analyses and diagnostics as described previously.441
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For each analysis, we then estimated the time of inferred mass-extinction events as442

described previously in the hypothesis-testing section. We considered CoMET to have443

provided a correct result if the inferred mass-extinction event was within four intervals444

[4% = (340.43÷ 100)× 4 = ±13.6 million years] of the simulated mass-extinction event.445

We then calculated the fraction of analyses under each set of priors that identified the more446

recent, the more ancient, or both mass-extinction events.447

An Empirical Example: Mass Extinction in Conifers448

To demonstrate the application of the CoMET model to an empirical dataset, we449

present an analysis exploring mass-extinction events in conifers. Our analysis is based on a450

recent study of the phylogeny and divergence times of conifers (Leslie et al. 2012), which451

included 492 of 630 (78%) described species and inferred a crown age of 340.43 Ma.452

Accordingly, this conifer tree spans three major mass-extinction events; the Permo-Triassic453

(252 Ma), the Triassic-Jurassic (201.3 Ma), and the Cretaceous-Paleogene (66 Ma)454

mass-extinction events. Each event is estimated to have caused the loss of ∼ 70− 75% of455

contemporaneous terrestrial species (e.g., Raup and Sepkoski 1982; Labandeira and456

Sepkoski 1993; Rees 2002; McElwain and Punyasena 2007; Cascales-Miñana and Cleal457

2014).458

We conditioned our conifer analyses on the maximum-clade credibility consensus459

tree from the Leslie et al. (2012) study, with the three cycad (outgroup) species removed.460

We first performed a series of preliminary analyses on this tree to estimate the marginal461

posterior probability densities for the diversification-rate hyperpriors, µB, σB, µD, and σD.462

We performed these analyses under a constrained CoMET model, where background463

diversification rates were held constant and mass-extinction events were precluded464

(specified by setting λB = λD = λM = 0). We approximated the joint posterior probability465

density under this constrained model by running four independent MCMC simulations, and466

thinned each chain by sampling every 1,000th state. The chains were terminated when the467

ESS values for every parameter reached 500. We discarded the first 25% of samples from468

each chain as burnin, and combined the stationary samples from the four independent469

chains. We then used the inferred composite marginal posterior probability densities to470

specify values for the diversification-rate hyperpriors; that is, for the mean and standard471

deviation of the lognormal priors on the speciation and extinction rates, µB, σB, µD, and σD.472

Specifically, we centered each of the lognormal priors on the corresponding estimate of the473

posterior mean, and specified the standard deviation such that the variance of the prior474
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density was ten-fold that of the corresponding inferred marginal posterior density. The475

inferred marginal posterior densities for the diversification rate hyperparameters—and the476

marginal hyperprior densities elicited from them—are depicted in Figure S8.477

We then performed a second series of analyses under the full CoMET model to infer478

the history of mass extinction in conifers. For these analyses, we used the previously479

specified empirical Bayesian diversification-rate hyperpriors (i.e., µB, σB, µD, and σD), and480

assumed phylogenetically uniform species sampling (e.g., Höhna et al. 2011; Höhna 2014).481

We specified the prior probability of surviving mass-extinction events using a beta prior482

with shape parameters α = 2.5 and β = 7.5; this specifies an expected survival probability483

of 25%, which is consistent with prior knowledge (McElwain and Punyasena 2007;484

Cascales-Miñana and Cleal 2014). As in our analyses of the simulated datasets, we assessed485

the prior sensitivity of our inferences by performing analyses under a variety of priors.486

Specifically, we performed analyses under a range of values for the prior on the frequency of487

mass-extinction events, λM = {0.1, ln 2, 2, 5}, and also for the priors on the frequency of488

shifts in diversification rate, λB = λD = {0.1, ln 2, 2, 5}. For each unique combination of489

prior settings, we approximated the joint posterior probability density by running four490

independent MCMC simulations, and thinned each chain by sampling every 1,000th state.491

We terminated terminated an MCMC simulation when the ESS values for every parameter492

reached 500, discarded the first 25% of samples from each chain as burnin, and then493

combined the stationary samples from the four independent chains. Our estimates of the494

number and timing of mass-extinction events were based on the resulting composite495

marginal posterior probability density for each of the unique prior settings.496

Data availability statement.—The authors confirm that all data supporting the results of497

this study are fully available without restriction. We have made these data available as an498

archive—including all of the empirical and simulated datasets, as well as the scripts used to499

simulate and analyze those data—that has been deposited in the Dryad digital repository.500

The Dryad data identifier for this archive is: doi:xx.xxxx/dryad.xxxxx.501

Results502

Simulation Study503

False discovery rates.—We evaluated the false discovery rate (FDR) of the CoMET model by504

computing the fraction of cases where it identified strong support for one or more spurious505
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mass-extinction events in trees that were simulated without episodes of mass extinction.506

Figure 5 depicts the FDR for analyses of trees with N = 400 species, where the extinction507

rate was centered on the true value (µD = 0.5, left column), or where the508

diversification-rate hyperpriors were specified using the empirical Bayesian approach (right509

column). Results were qualitatively similar across all analyses (see Figures S2 and S3).510
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Figure 5: False discovery rates. Frequency of detecting spurious mass-extinction events.
Rows of panels correspond to the absence (top panels) or presence (bottom panels) of back-
ground diversification-rate shifts, and columns of panels correspond to relative-extinction
rate priors centered on the true values (left panels) or estimated from the data (right panels).
Within each panel, the rows correspond to false discovery rates under various priors on the
expected number of diversification-rate shifts (rows) and mass-extinction events (columns).

Our simulation study implies that the CoMET model has a slightly elevated FDR511

(relative to the conventional 5% threshold): the overall FDR was inferred to be 8.1% or512

9.9% for trees simulated under constant or episodically shifting background diversification513

rates, respectively. However, a more careful examination of the results reveals that spurious514

mass-extinction events are far more likely under specific combinations of prior settings.515

Specifically, the false discovery rate was substantially inflated when the prior rate of516

mass-extinction events was very low (FDR for λM = 0.1: 18.9% without diversification-rate517

shifts, 21.2% with diversification-rate shifts), compared to the remainder of the analyses518

(FDR for λM ̸= 0.1: 4.4% without diversification-rate shifts, 6.1% with diversification-rate519

shifts). The prior mean on the extinction rate, µD, had a less pronounced effect on the false520
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discovery rate (FDR for µD = {0.1, 0.5, 0.9}: 10.8%, 5.3%, 13.5% without521

diversification-rate shifts; 12.6%, 7.4%, 15.3% with diversification-rate shifts). Importantly,522

the false discovery rate was much lower for analyses using empirical Bayesian approach to523

specify hyperpriors (FDR for empirical hyperprior analyses: 2.8% without524

diversification-rate shifts, 4.1% with diversification-rate shifts).525

Power.—We evaluated the power of the CoMET model by computing the fraction of cases526

where it identified strong support for a known (i.e., simulated) mass-extinction event.527

Moreover, we assessed power as a function of the relative timing of mass-extinction events;528

we placed each analysis into one of six bins corresponding to the simulated mass-extinction529

time and computed the power for each of the bins under each combination of prior settings.530

Figure 6 depicts the statistical power of the CoMET model for trees with N = 400 species,531

where the extinction rate was centered on the true value (µD = 0.5, left column), or where532

the diversification-rate hyperpriors were specified using the empirical Bayesian approach533

(right column). Results were qualitatively similar across all analyses (see Figures S4 and534

S5).535

Our ability to correctly infer mass-extinction events depended critically on the536

timing of the event. Detection rates were much higher in the more recent half of the tree537

(power in the recent half: 51.5% without diversification-rate shifts, 53.7% with538

diversification rate shifts) compared to the more ancient half (power in the ancient half:539

8.8% without diversification-rate shifts, 11.6% with diversification rate shifts). Indeed,540

power was the greatest when the mass-extinction event occurred somewhere between 4T
6

541

and 5T
6

(power: 64.0% without diversification-rate shifts, 58.8% with diversification-rate542

shifts). The prior on mass-extinction rate had a small influence on the power, with smaller543

values having greater power (power in the more recent half of the tree for544

λM = {2, ln 2, 2, 5}: 60.1%, 65.3%, 47.7%, 32.4% without diversification-rate shifts, 59.7%,545

65.7%, 49.9%, 39.6% with diversification-rate shifts). Importantly, the empirical Bayes546

approach did not markedly reduce overall power (power in the more recent half of the tree547

for empirical hyperpriors: 50.4% without diversification rate-shifts, 54.3% with548

diversification-rate shifts; compared to a priori hyperpriors: 51.7% without549

diversification-rate shifts, 53.5% with diversification rate-shifts). As expected, overall550

power increased with the size tree, especially in the face of diversification-rate shifts (power551

in the more recent half of the tree for N = {100, 200, 400, 800}: 47.1%, 54.5%, 48.8%,552

55.6% without diversification-rate shifts, 40.6%, 56.2%, 55.9%, 62.1% with diversification553

rate-shifts).554
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Figure 6: Power as a function of the relative time of mass-extinction events.
Frequency of detecting true mass-extinction events. Rows of panels correspond to the ab-
sence (top panels) or presence (bottom panels) of background diversification-rate shifts, and
columns of panels correspond to relative-extinction rate priors centered on the true values
(left panels) or estimated from the data (right panels). Within each panel, the rows corre-
spond to the power under various priors on the expected number of diversification-rate shifts
(rows) and mass-extinction events (columns). Within each cell, we plot power as a function
of time by binning simulated trees by the relative time of the detected mass-extinction event,
and compute the fraction of those trees where a mass-extinction event was correctly inferred.

Bias.—We evaluated the bias of inferred mass-extinction times under the CoMET model as555

follows: for all cases in which a mass-extinction event was correctly inferred, we compared556

the actual event time to the estimated event time as (tactual − testimated)/tree height× 100%.557

Figure 7 depicts the bias of the CoMET model for analyses of trees with N = 400 species,558

where the extinction rate was centered on the true value (µD = 0.5, left column), or where559

the diversification-rate hyperpriors were specified using the empirical Bayesian approach560

(right column). Results were similar for the entire simulation (see Figures S6 and S7).561

Across all analyses, the estimated mass-extinction times were approximately unbiased;562

overall, the inferred event times were biased by −0.5% or −3.2% of the true event times for563

trees simulated under constant or episodically shifting background diversification rates,564

respectively.565
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Figure 7: Bias in the estimated timing of mass-extinction events. Rows of pan-
els correspond to the absence (top panels) or presence (bottom panels) of background
diversification-rate shifts, and columns of panels correspond to relative-extinction rate priors
centered on the true values (left panels) or estimated from the data (right panels). Within
each panel, rows correspond to the bias under various priors on the expected number of
diversification-rate shifts (rows) and mass-extinction events (columns). We computed the
bias as (tsimulated event − testimated event)/tree height× 100%.

Multiple mass-extinction events.—Figure 8 summarizes results of our empirically motivated566

investigation of sequential mass-extinction events. The ability of the CoMET model to detect567

the more recent mass extinction depends on the relative age of the event: we detected568

≈ 90% of the events that occurred 50 Ma, but only ≈ 15% of those that occurred 200 Ma.569

These findings are consistent with our results based on the single-event simulations, which570

indicate that power increases with the recency of the mass-extinction event (c.f., Figure 6).571

Similarly, our ability to detect the more ancient event depends on the interval between the572

sequential mass-extinction events: the more recent event casts a shadow backward in time573

that can completely eclipse an older event if they are spaced too close together in time.574
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Figure 8: Power to detect sequential mass-extinction events. We plot the frequency
of correctly detecting relatively recent (open circles) and ancient (open triangles) mass-
extinction events as a function of the age of the more recent event. We plot the age of the
more recent mass-extinction event along the x-axis, and the probability of correctly detecting
mass-extinction events along the y-axis.

Mass Extinction in Conifers575

Our analysis of the conifer phylogeny identified two mass-extinction events: the first576

event was inferred to have occurred approximately 173 Ma with positive support, and the577

second event to have occurred approximately 23 Ma with very strong support (Figure 9).578

Based on the results of our simulation study, we suspect that the “shadow effect” of the579

more recent event has diminished the signal of the earlier mass-extinction event. Curiously,580

the inferred times of the two events do not coincide with the established ages of major581

mass-extinction events. The closest known events to the inferred mass-extinction times are582

the Eocene-Oligocene event (34 Ma) and the Toarcian-turnover event (183 Ma); however,583

these mass-extinction events are not thought to have strongly impacted terrestrial flora584

(McElwain and Punyasena 2007; Cascales-Miñana and Cleal 2014).585

Our estimates of the mass-extinction times in conifers are, of course, based on586

divergence-time estimates for this group. Accordingly, any bias in the inferred divergence587

times will cause a corresponding bias in the inferred timing of the mass-extinction events.588

If, for example, conifer divergence times are slightly underestimated, then the timing of the589

more recent event could conceivably correspond to the Cretaceous-Paleogene590
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mass-extinction event (66 Ma), and the age of the earlier event could easily correspond to591

the Triassic-Jurassic (201.3 Ma) or the Permo-Triassic mass-extinction events (252 Ma).592

We note, however, that our method is unlikely to detect both the Triassic-Jurassic and the593

Permo-Triassic mass-extinction events, given their close temporal proximity (c.f., Figure 8).594
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Figure 9: Mass-extinction events in conifers. We inferred two mass-extinction events:
a recent event at 23 Ma (with very strong support), and an earlier event at 173 Ma (with
positive support).
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Discussion595

We present a novel Bayesian approach for detecting mass-extinction events from596

trees inferred from molecular sequence data—the CPP on mass-extinction time (CoMET)597

model—and describe the behavior of our method via a comprehensive simulation study.598

Simulation studies are critical both for validating statistical methods—to ensure that the599

algorithms and implementation provide reliable estimates under controlled conditions—and600

also for providing practical advice for the application of these methods to empirical data.601

Overall, our simulation study reveals that the CoMET model is statistically well behaved:602

the method has substantial power to detect the number of mass-extinction events, provides603

precise and unbiased estimates of the timing of mass-extinction events, and exhibits an604

appropriate false discovery rate even when background diversification rates may vary.605

Below, we first consider the implications of our simulation study for the practical606

application of the CoMET model, and then discuss various avenues for usefully extending the607

model.608

Practical Application of the CoMET Model609

Specifying (hyper)priors of the CoMET model.—The perennial issue of prior specification is610

particularly acute for the CoMET model for two reasons. First, our approach relies on the611

CPP model to infer the history of episodic events—tree-wide shifts in diversification rate612

and mass-extinction events—and this model is known to be sensitive to the choice of priors.613

Second, there is typically little biological basis for specifying priors for some of the CoMET614

model parameters, particularly those describing the frequency and magnitude of shifts in615

speciation and extinction rates. We should therefore be concerned that the choice of poorly616

specified (hyper)priors may cause inflated false discovery rates (where the method identifies617

spurious mass-extinction events) and/or biased parameter estimates (where the method618

systematically over- or under-estimates the timing of inferred mass-extinction events).619

Fortunately, the results of our simulation study provide clear guidance on this issue.620

Our simulation study demonstrates that the CoMET model is relatively robust to621

(mis)specification of the hyperpriors describing the frequency of events—i.e., the specified622

values for the Poisson-rate parameters λB, λD, and λM (c.f., Figures 5, S2, S3).623

Nevertheless, we recommend performing analyses under a range of event-rate priors to624

assess their potential impact (as demonstrated in our conifer analyses; c.f., Figure S9).625
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Although the CoMET model appears quite robust to the specified hyperpriors on event626

frequencies, our simulation reveals that it is somewhat sensitive to the hyperpriors on event627

magnitudes. This is unproblematic for the focal parameter, as we will typically have ample628

evidence regarding the expected magnitude of mass-extinction events (i.e., to specify values629

for the α and β hyperpriors describing the shape of the beta prior on survival probability).630

By contrast, we will typically lack information regarding the expected magnitude of631

diversification-rate shifts—i.e., to specify values of the hyperpriors describing the shape of632

the lognormal speciation- and extinction-rate priors (µB, σB, and µB, σB, respectively).633

Under simulation, very poorly specified diversification-rate hyperpriors caused the634

overall false discovery rate of the CoMET model to become slightly elevated: we detected635

spurious mass-extinction events in 8.1% or 9.9% of the trees simulated under constant or636

episodically shifting background diversification rates, respectively (Figures S2 and S3).637

Fortunately, our simulation study indicates that the empirical Bayesian procedure provides638

a reliable means for specifying appropriate values for the diversification-rate hyperpriors.639

Under this approach, the false discovery rate of the CoMET model was slightly conservative640

(we detected spurious mass-extinction events in 2.8% or 4.1% of the trees simulated under641

constant or episodically shifting background diversification rates, respectively).642

Accordingly, we strongly recommend use of the empirical Bayesian approach for specifying643

diversification-rate hyperpriors of the CoMET model (in fact, we have automated this644

procedure and made it the default setting in our TESS software package).645

Size and relative age of empirical trees.— Our simulation provides guidance on key aspects646

of study trees that render them appropriate candidates for analysis using the CoMET model.647

The power of the CoMET model to detect mass-extinction events increases with tree size: all648

else being equal, it will therefore be easier to detect mass-extinction events in larger trees.649

Nevertheless, detection rates were quite high even for the smallest trees in our simulation650

(with N = 100 species). Although size is clearly an important factor, the age of the tree651

relative to the mass-extinction time has a much greater impact on the detection652

probability. In order for a mass-extinction event to leave a detectable phylogenetic signal,653

the study tree must both contain a sufficient number of lineages at the time of the event,654

and must also be afforded a sufficient recovery period following a mass-extinction event.655

Therefore, a mass-extinction event that occurs too close to the root of the study tree will656

be difficult to detect because too few lineages will have participated in that event (see657

Figure 6). Similarly, a mass-extinction event that occurs too close to the tips of a study658

tree will be difficult to detect because too little time has elapsed for the tree to recover659
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from the event. Accordingly, there is a ‘sweet spot’ where our ability to detect a660

mass-extinction event will be greatest: a candidate study tree should ideally be ∼ 2− 3661

times the age of the putative mass-extinction event, but the event should not occur in the662

last ∼ 15% of the tree height. This same reasoning explains the power of the CoMET model663

to detect sequential mass-extinction events. An earlier mass-extinction event has to occur664

sufficiently far from the root of the tree to ensure that an adequate number of lineages are665

exposed to the event, but it must also have sufficient time to recover from that event before666

a subsequent mass-extinction event occurs.667

Future Extensions of the CoMET Model668

The CoMET model describes the history of three types of events: tree-wide shifts in669

speciation rate, tree-wide shifts in extinction rate, and mass-extinction events. Our focus670

here, however, is restricted to inferring the number and timing of mass-extinction events.671

Accordingly, we have explicitly adopted the perspective that episodic changes in672

diversification rate are merely ‘nuisance’ parameters of the CoMET model. These events are673

primarily included because diversification-rate shifts are thought to be a common feature of674

empirical trees that, if ignored, might impact our estimates of the focal model parameters.675

Of course, it might also be possible to use the CoMET model to infer the number, timing,676

and magnitude of tree-wide shifts in diversification rate. However, we have not investigated677

the ability of the CoMET model to provide reliable estimates of tree-wide diversification-rate678

shifts, and so caution users against over-interpreting estimates of these parameters.679

The CoMET model is currently restricted to the analysis of trees that have a680

complete—or if incomplete, a random sample—of species. Given that most empirical trees681

include a non-random subsample of species, this may limit the application of our method.682

Of course, it is possible to apply the CoMET model to trees with non-random species683

sampling, although the statistical behavior of the method is unknown for these datasets.684

Instead, it would be preferable to provide greater flexibility for accommodating incomplete685

and non-uniform taxon sampling. For example, we could explicitly incorporate various686

departures from random species sampling—such as diversified species sampling (c.f., Höhna687

et al. 2011; Cusimano et al. 2012; Höhna 2014)—in the CoMET model. In fact, the presented688

likelihood equations of the episodic birth-death process with explicit mass-extinction events689

and the Bayesian inference framework can readily be applied to diversified species sampling690

(Höhna 2014; 2015). This is an area of current work (Höhna, May, and Moore, in prep.).691

Currently, the CoMET model assumes that a mass-extinction event is equally likely to692
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occur at any time over the interval spanned by the study tree. Our use of a uniform prior693

on mass-extinction times is therefore somewhat naive, as this expectation effectively694

ignores relevant information regarding the probable timing of mass-extinction events.695

Fortunately, a straightforward extension of the CoMET model would allow the use of696

informative priors that reflect our knowledge regarding probable mass-extinction times.697

Similarly, the CoMET model presently assumes that a mass-extinction event is equally likely698

to impact all contemporaneous lineages in the study tree. Our use of a uniform prior on699

the survival probability across lineages may also be somewhat naive. Imagine, for example,700

that other variables might render species more or less susceptible to mass-extinction events.701

This possibility could be addressed by extending the CoMET model to allow the survival702

probability of a lineage to depend on the inferred state of a continuous (e.g., body size,703

metabolic rate, range size) or a discrete (e.g., marine/terrestrial, endothermic/ectothermic)704

variable.705

As currently implemented, the CoMET model effectively treats the study tree as an706

observation. Phylogenies are, of course, inferences from data, and so entail (sometimes707

considerable) uncertainty. Ignoring this phylogenetic uncertainty will therefore tend to708

make us overly confident in our conclusions regarding mass-extinction events. We could709

accommodate phylogenetic uncertainty by extending the CoMET model in one of two ways.710

A sequential Bayesian approach provides a simple (albeit computationally intensive)711

solution: mass-extinction events could simply be inferred by integrating over a posterior712

distribution of trees that has previously been estimated using some other program.713

Alternatively, a hierarchical Bayesian approach involves jointly inferring the phylogeny,714

divergence times, and history of mass-extinction events. This solution would require715

considerably more effort, as it would require implementation of the CoMET model within an716

existing Bayesian phylogenetic inference program, such as RevBayes (Höhna et al. 2015).717

Although more involved, this would provide an elegant solution for accommodating718

phylogenetic uncertainty that would permit more robust inferences regarding719

mass-extinction events.720

Currently, the CoMET model is limited to the analysis of a single study phylogeny.721

However, we may also want to explore the impact of mass-extinction events on a set of722

trees. We might, for example, wish to study the effect of mass extinction on the flora of a723

particular geographic region that is comprised of several distantly related plant groups.724

This inference scenario could be addressed by extending our approach by allowing the725

parameters of the CoMET model to be inferred from a composite vector of waiting times for726

a set of trees. Moreover, we could either assume that the survival probability is identical for727
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all groups, or allow each group to have a unique response to episodes of mass extinction.728

This extension is relatively straightforward, and would simultaneously extend the range of729

questions that can be addressed using the CoMET model, and also increase the power of the730

method to detect mass-extinction events by virtue of increasing the effective tree size.731

Summary732

We present a novel Bayesian approach—the CoMET model—that provides an effective tool733

for identifying mass-extinction events in molecular phylogenies, even when those groups734

have experienced more prosaic temporal variation in diversification rates. We performed a735

thorough simulation study to characterize the statistical behavior of this new approach,736

which reveals that the CoMET model has substantial power to detect the number of737

mass-extinction events, provides precise and unbiased estimates of the timing of738

mass-extinction events, and exhibits an appropriate false discovery rate. Based on the739

results of our simulation study, we offer some practical advice for applying the method to740

empirical datasets—including guidance regarding the choice of (hyper)priors, and insights741

on the properties of study trees that will impact detection probabilities using our method.742

We also demonstrate the empirical application of the CoMET model to a recent phylogeny of743

conifers, which reveals that this group experienced two major episodes of mass extinction.744

We are optimistic that the development of a robust and powerful statistical approach for745

detecting mass-extinction events will provide an important tool for advancing our746

understanding of how events in Earth history have shaped the Tree of Life.747
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Appendix847

Here we provide a single equation to calculate the probability of an observed tree.848

For convenience of notation, we construct a unique vector, X, that contains all of the849

divergence times and event times (for shifts in speciation and extinction rates, and850

mass-extinction events) sorted in increasing order (see Fig. 1.b). It is convenient to expand851

the vectors for all of the other parameters so that they have the same number of elements852

as X. We use the notation S(2, t1=0, T ) to represent the survival of two lineages in the853

interval [t1, T ], which is the condition we enforce on the reconstructed evolutionary process.854

This allows us to write the more convenient equation for the probability density of a855

reconstructed tree856

f(Ψ|N(t1=0)=2, S(2, t1=0, T ))857

=
2n−1

n!
×

1 +
k∑

i=0

 di
di − bi

× e

i−1∑
j=0

(dj−bj)(xj+1−xj)−ln(ρj)

×
(
e(di−bi)(xi+1−xi) − 1

)
858

− ρi − 1∏i
j=1 ρj

× e

i−1∑
j=0

(dj−bj)(xj+1−xj)




−2

×

e

k∑
j=0

(dj−bj)(xj+1−xj)−ln(ρj)

2

859

×
∏
i∈IT

bi ×
1 +

k∑
l=i

 dl
dl − bl

× e

l−1∑
j=0

(dj−bj)(xj+1−xj)−ln(ρj)

×
(
e(dl−bl)(xl+1−xl) − 1

)
860

− ρl − 1∏l
j=1 ρj

× e

i−1∑
j=0

(dj−bj)(xj+1−xj)




−2

× e

k∑
j=i

(dj−bj)(xj+1−xj)−ln(ρj)

 . (4)861

Additional details regarding the derivation of this probability density and its relation to862

other birth-death models are discussed by Höhna (2015).863
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Supporting Information864

CoMET: A Graphical Model Description865

Below, we provide a graphical-model representation of the CoMET model (Figure S1).866

The phylogenetic application of graphical models is described by Höhna et al. (2014).867

uniform lognormal Poisson

0 T

Speciation

uniform lognormal Poisson

0 T

Extinction

uniform beta Poisson

0 T

Mass Extinction

Figure S1: The CoMET model graph. By convention, constant parameters—such as the
rate of the Poisson process, λi—are enclosed in solid squares, whereas random variables—
such as the number of speciation-rate shifts, kB, or the number of mass-extinction events,
kM—are enclosed in solid circles, and the observations—the vector of waiting times in the
tree, Ψ—are enclosed in a shaded circle to indicate that these variables have been observed.
Here the choice of prior distribution and the hierarchical structure of the model is explicit;
the number of speciation-rate shifts, extinction-rate shifts, and mass-extinction events are
Poisson distributed variables—kB, kD, and kM, respectively—where lognormal distributions
are used for the speciation and extinction rates and a beta distribution is used for the sur-
vival probability. Arrows indicate the dependence between parameters, where the direction
specifies the conditional relation (e.g., an arrow from the constant parameters 0 and T to
the random variable tB[i] indicates that tB[i] is conditional on 0 and T ). Dashed squares
(‘plates’) indicate repetition; here the number of replicates depends on the variables kB, kD,
and kM.
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Figure S2: False discovery rates. Frequency of detecting spurious mass-extinction events
in the absence of background shifts in diversification rates. Rows of panels correspond to
different tree sizes (N = {100, 200, 400, 800}), and columns of panels correspond to different
priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}). Within each panel, the
rows correspond to false discovery rates under various priors on the number of diversification
rate shifts (rows) and mass extinction events (columns).

40

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


0.612

0.44

0.588

0.712

0.2

0.13

0.13

0.09

0.1

0.03

0.075

0.1

0.05

0.02

0.05

0.025

0.3

0.08

0.225

0.25

0.05

0.02

0.02

0.02

0.075

0.02

0.038

0.088

0.088

0.02

0.05

0.012

0.37

0.05

0.18

0.15

0.04

0.02

0.01

0

0.2

0.01

0.15

0.14

0.11

0.01

0.09

0.09

0.3

0.12

0.02

0.01

0.12

0.06

0.01

0.01

0.04

0.03

0.01

0

0.02

0.02

0.02

0

0.3

0.21

0.35

0.425

0.13

0.09

0.07

0.06

0.05

0.04

0.025

0.025

0

0

0

0

0.275

0.08

0.162

0.188

0.07

0.04

0.03

0.04

0.15

0.03

0.038

0.038

0.1

0

0.062

0.012

0.52

0.07

0.23

0.17

0.07

0.03

0.02

0

0.21

0.01

0.18

0.14

0.17

0

0.15

0.15

0.24

0.05

0.04

0

0.1

0.05

0.01

0

0.02

0.03

0.01

0

0.01

0

0

0

0.225

0.13

0.225

0.288

0.1

0.07

0.05

0.08

0.05

0.03

0.05

0.05

0.038

0.01

0.012

0.025

0.175

0.05

0.15

0.15

0.05

0.04

0.04

0.04

0.038

0.03

0.05

0.062

0

0

0.012

0.025

0.56

0.02

0.31

0.19

0.02

0.01

0.02

0

0.35

0.01

0.26

0.25

0.29

0

0.23

0.23

0.17

0.08

0.04

0

0.08

0.05

0.02

0

0.04

0.01

0.01

0

0.02

0

0

0

0.212

0.18

0.188

0.238

0.12

0.1

0.08

0.07

0.062

0.05

0.05

0.062

0.025

0.02

0.038

0.012

0.2

0.1

0.15

0.175

0.12

0.08

0.06

0.03

0.062

0.04

0.038

0.038

0.012

0.01

0.025

0.05

0.52

0.05

0.37

0.29

0.11

0.05

0.01

0

0.36

0.02

0.35

0.33

0.32

0

0.31

0.25

0.22

0.1

0.04

0.01

0.14

0.07

0.04

0

0.05

0.05

0.02

0

0.03

0.02

0

0

5

2

log(2)

0.1

sh
ift

-ra
te

 p
rio

r
100

0.1 log(2) 2 5
mass-extinction rate prior

0.1

0.1 log(2) 2 5
mass-extinction rate prior

0.5

0.1 log(2) 2 5
mass-extinction rate prior

0.9

0.1 log(2) 2 5
mass-extinction rate prior

empirical hyperprior

5

2

log(2)

0.1

sh
ift

-ra
te

 p
rio

r
200

5

2

log(2)

0.1

sh
ift

-ra
te

 p
rio

r
400

5

2

log(2)

0.1

sh
ift

-ra
te

 p
rio

r
800

relative-extinction rate prior

tree size

Figure S3: False discovery rates. Frequency of detecting spurious mass-extinction events
in the presence of background shifts in diversification rates. Rows of panels correspond to
different tree sizes (N = {100, 200, 400, 800}), and columns of panels correspond to different
priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}). Within each panel, the
rows correspond to false discovery rates under various priors on the number of diversification
rate shifts (rows) and mass extinction events (columns).
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Figure S4: Power as a function of time. Frequency of correctly identifying mass-
extinction events in the absence of background shifts in diversification rates. Rows of panels
correspond to different tree sizes (N = {100, 200, 400, 800}), and columns of panels cor-
respond to different priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}).
Within each panel, the rows correspond to the power under various priors on the number
of diversification rate shifts (rows) and mass extinction events (columns). In each cell, we
compute the power as a function of time by binning simulated trees into the interval corre-
sponding to their mass-extinction time, and computing the fraction of those trees where a
mass-extinction event was correctly inferred.
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Figure S5: Power as a function of time. Frequency of correctly identifying mass-
extinction events in the presence of background shifts in diversification rates. Rows of
panels correspond to different tree sizes (N = {100, 200, 400, 800}), and columns of panels
correspond to different priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}).
Within each panel, the rows correspond to the power under various priors on the number
of diversification rate shifts (rows) and mass extinction events (columns). In each cell,
we compute the power as a function of time by binning simulated trees into the interval
corresponding to their mass-extinction time, and computing the fraction of those trees where
a mass-extinction event was correctly inferred.
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Figure S6: Bias in estimates of mass-extinction time. The distribution of bias
in estimated mass-extinction times in the absence of background shifts in diversification
rates. Rows of panels correspond to different tree sizes (N = {100, 200, 400, 800}), and
columns of panels correspond to different priors on the relative extinction rate (µD =
{0.1, 0.5, 0.9, empirical}). Within each panel, the rows correspond to the bias under var-
ious priors on the number of diversification rate shifts (rows) and mass extinction events
(columns). The bias is computed as (tsimulated event − testimated event)/tree height× 100%.
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Figure S7: Bias in estimates of mass extinction time. The distribution of bias
in estimated mass-extinction times in the presence of background shifts in diversification
rates. Rows of panels correspond to different tree sizes (N = {100, 200, 400, 800}), and
columns of panels correspond to different priors on the relative extinction rate (µD =
{0.1, 0.5, 0.9, empirical}). Within each panel, the rows correspond to the bias under var-
ious priors on the number of diversification rate shifts (rows) and mass extinction events
(columns). The bias is computed as (tsimulated event − testimated event)/tree height× 100%.

45

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 2, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


parameter value

po
st

er
io

r p
ro

ba
bi

lit
y

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

20
25

30
35

marginal distribution of extinction rate
empirical prior distribution on extinction rate
mean of empirical distribution on extinction rate

marginal distribution of speciation rate
empirical prior distribution on speciation rate
mean of empirical distribution on speciation rate

Figure S8: Empirical hyperpior analysis of the conifers. Histograms are the marginal
posterior densities of the speciation (purple) and extinction (red) rates for the constant-rate
birth-death-sampling process applied to the conifer data. Solid lines are the corresponding
marginal prior densities of the speciation and extinction rates used for the subsequent CoMET
analyses, dashed vertical lines are means of the empirical prior densities.
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Figure S9: Bayes factors for conifer analyses under various priors. We divided the
time period (0, 340.43) into 100 discrete intervals and computed the Bayes factor support
for there being at least one mass-extinction event in each interval. Point types and colors
correspond to different combinations of prior settings on λB, λD, and λM (see legend). Bayes
factor support is fairly consistent across all the prior settings; in particular, there is always at
least strong support for a mass-extinction event about 23 Ma, and consitently high positive
support for another mass-extinction event at approximately 173 Ma.
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