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Abstract.—The paleontological record chronicles numerous episodes of mass extinction that

severely culled the Tree of Life. Biologists have long sought to assess the extent to which

these events may have impacted particular groups. We present a novel method for

detecting mass-extinction events from phylogenies estimated from molecular sequence data.

We develop our approach in a Bayesian statistical framework, which enables us to harness

prior information on the frequency and magnitude of mass-extinction events. The approach

is based on an episodic stochastic-branching process model in which rates of speciation and

extinction are constant between rate-shift events. We model three types of events: (1)

instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide shifts in

extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each of the events

is described by a separate compound Poisson process (CPP) model, where the waiting

times between each event are exponentially distributed with event-specific rate parameters.

The magnitude of each event is drawn from an event-type specific prior distribution.

Parameters of the model are then estimated using a reversible-jump Markov chain Monte

Carlo (rjMCMC) algorithm. We demonstrate via simulation that this method has

substantial power to detect the number of mass-extinction events, provides unbiased

estimates of the timing of mass-extinction events, while exhibiting an appropriate (i.e.,

below 5%) false discovery rate even in the case of background diversification rate variation.

Finally, we provide an empirical application of this approach to conifers, which reveals that

this group has experienced two major episodes of mass extinction. This new approach—the

CPP on Mass Extinction Times (CoMET) model—provides an effective tool for identifying

mass-extinction events from molecular phylogenies, even when the history of those groups

includes more prosaic temporal variation in diversification rate.

(Keywords: Birth-Death Stochastic-Branching Process, Speciation, Lineage Diversification,

Mass Extinction, Bayesian Inference, Phylogeny, Compound Poisson Process Model)
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The paleontological record documents numerous episodes of mass extinction that

severely culled the Tree of Life. As biologists, we often wish to assess whether these events

may have impacted particular groups. To this end, several statistical phylogenetic

approaches have been proposed to identify mass-extinction events from estimated

molecular phylogenies with divergence times, e.g., Nee et al. (1994) and Harvey et al.

(1994). These methods generally assume that the dated phylogeny is known without error,

and decompose the tree into a vector of waiting times between speciation events. Various

models of lineage diversification are then fit to these phylogenetic ‘observations’ using

maximum likelihood to estimate the speciation, b, and extinction, d, rates, and to identify

tree-wide shifts in diversification rate, including episodes of mass extinction.

This research program was initially derailed when it was demonstrated that it is not

possible to distinguish among different histories of temporal variation in diversification

rates within a maximum-likelihood framework (Kubo and Iwasa 1995): an infinite number

of unique diversification histories may give rise to an identical vector of waiting times

between speciation events in this tree. For this reason, recent developments of inferring

diversification process parameters have focused on speciation and extinction rates only

(e.g., Rabosky 2006; Paradis 2011; Stadler 2011a; Morlon et al. 2011; Etienne and

Haegeman 2012; Höhna 2014). Unfortunately, more realistic diversification models—such

as a birth-death process with speciation- and extinction-rate shifts and mass-extinction

events—are non-identifiable when parameters are estimated in a maximum-likelihood

framework (Stadler 2009; 2011a).

In order to distinguish more prosaic temporal variation in diversification rate from

bona fide mass-extinction events, we adopt a Bayesian statistical framework that enables us

to leverage prior information on the frequency and magnitude of mass-extinction events.

Specifically, we develop an episodic stochastic-branching process model where rates of

speciation and extinction are constant between rate-shift events. The events are of three

types: (1) instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide

shifts in extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each

event type is described by a separate compound Poisson process (CPP) model, where the

waiting times between events are exponentially distributed with event-specific Poisson-rate

parameters. These rate parameters—λB, λD, and λM—therefore control the frequency of

speciation-rate shifts, extinction-rate shifts, and mass-extinction events, respectively. When

an event occurs, its magnitude is described by the corresponding prior probability density.

Specifically, when an event entails a shift in speciation or extinction rate, we draw a new

rate from a lognormal prior distribution with hyperpriors µ and σ specifying the mean and

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


standard deviation, respectively, of the lognormal diversification-rate priors. Similarly,

when an event involves an episode of mass extinction, the number of surviving lineages is

drawn from a beta prior to describe the survival probability, with hyperpriors α and β

specifying the shape of the beta prior. Between events, the tree evolves under a

(piece-wise) constant birth-death stochastic-branching process, motivating its description

as an episodic birth-death process.

In principle, all of the free parameters of the CPP on Mass Extinction Time (CoMET)

model could be estimated, including: (1) the number and timing of tree-wide shifts in

speciation rate; (2) the number and timing of tree-wide shifts in extinction rate; (3) the

rate of speciation and extinction between each rate-shift event, and; (4) the number, timing

and severity of tree-wide mass-extinction events. In practice, however, it may not be

possible to reliably estimate all of the CoMET model parameters. This limitation stems from

the tendency of the CPP model to be non-(or weakly) identifiable (Rannala 2002). For

example, when used as a model describing shifts in substitution rate across branches of a

phylogeny (the ‘CPP relaxed-molecular clock model’; Huelsenbeck et al. 2000; Blanquart

and Lartillot 2008), the CPP model can explain the substitution-rate variation in a given

dataset equally well by specifying relatively frequent substitution-rate shifts of small

magnitude, or by specifying less frequent substitution-rate shifts of greater magnitude. In

fact, there are an infinite number of CPP model parameterizations for which the data have

an identical likelihood (i.e., for which the model is non-identifiable). Accordingly, this

model is known to be very sensitive to the choice of priors that specify the frequency and

magnitude of substitution-rate shifts (e.g., Rannala 2002; Ronquist et al. 2012).

Our use of the CPP model to describe mass-extinction events, however, benefits

from the ability to impose strongly informative, empirically grounded priors on the

magnitude (survival probability) and frequency (expected number) of mass-extinction

events. The former prior derives from the definition of a mass-extinction event as the loss

of a specified fraction of species diversity, and the latter can be guided by paleontological

information regarding the likely number of mass-extinction events in the relevant period.

By contrast, it is difficult to justify strongly informative priors related to the frequency and

magnitude of temporal shifts in rates of speciation and extinction. Accordingly, estimates

of the corresponding CoMET parameters (model components 1− 3, above) are expected to

be extremely sensitive to the choice of prior, and therefore difficult to estimate reliably.

Nevertheless, it is well established that temporal variation in diversification rates is a

pervasive feature of empirical phylogenies (e.g., Moen and Morlon 2014), which may

impact our ability to accurately identify mass-extinction events. Accordingly, several
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components (1− 3) of the CoMET model are included as nuisance parameters intended to

improve estimation of the focal parameters: the number and timing mass-extinction events.

In this paper, we first provide a detailed description of the CoMET model and the

numerical algorithms used to estimate the parameters of this model. We then perform a

comprehensive simulation study to explore the statistical behavior of the CoMET model,

including its liability to detect spurious mass-extinction events (the false discovery rate),

the ability of the method to detect actual mass-extinction events (the power), and the

accuracy of the method to estimate the timing of mass-extinction events (the bias).

Finally, we apply our approach to an empirical dataset to reveal the impact of

mass-extinction events in coniferous land plants.

Methods

The episodic reconstructed process with explicit mass-extinction events

Our approach is based on the reconstructed evolutionary process described by Nee

et al. (1994); a birth-death process in which only surviving lineages are observed. Let N(t)

denote the number of species at time t. Assume the process starts at time t1 (the ‘crown’

age of the most recent common ancestor of the study group, tMRCA) when there are two

species. Thus, the process is initiated with two species, N(t1) = 2. We condition the

process on sampling at least one descendant from each of these initial two lineages;

otherwise t1 would not correspond to the tMRCA of our study group. Each lineage evolves

independently of all other lineages, giving rise to exactly one new lineage with rate b(t) and

losing one existing lineage with rate d(t) (Figure 1A). Note that although each lineage

evolves independently, all lineages share both a common (tree-wide) speciation rate b(t)

and a common extinction rate d(t) (Nee et al. 1994; Stadler 2011a; Höhna 2013; 2014;

2015). Additionally, at certain times, tM, a mass-extinction event occurs and each species

existing at that time has the same probability, ρ, of surviving the mass-extinction event.

Finally, all extinct lineages are pruned and only the reconstructed tree remains.

Our derivation of the CoMET model assumes piecewise-constant speciation and

extinction rates that shift instantaneously at rate-change events (see Figure 1B). Therefore,

we specify the times of the kB speciation-rate shifts in the vector TB = {tB[1], . . . , tB[kB]}.
We specify the speciation rate within each of the k intervals in the vector B = {b0, . . . , bkB},
and define the speciation-rate function as b(t) = bi for the interval tB[i] ≤ t < tB[i+ 1].
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Similarly, we specify the times of the kD extinction-rate shifts in the vector

TD = {tD[1], . . . , tD[kD]}. We specify the extinction rates in the vector D = {d0, . . . , dkD},
and the extinction-rate function is defined as d(t) = di for the interval tD[i] ≤ t < tD[i+ 1].

Finally, we specify the times of the kM mass-extinction events in the vector

TM = {tM[1], . . . , tM[kM]}, where the survival probability for each event is specified in the

vector P = {ρ1, . . . , ρkM}. We note that mass-extinction events might be modeled implicitly,

where a shift to a relatively high extinction rate is followed—after a short interval—by a

return to a relatively low extinction rate. By contrast, we model episodes of mass

extinction explicitly—as instantaneous events—so that we can estimate the probability

that such events have occurred.

Index
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Figure 1: The piecewise-constant birth-death process with mass extinction. A)
A realization of the process involves one speciation-rate shift, three extinction-rate shifts,
and one mass-extinction event. B) Corresponding plots of the episodic (piecewise constant)
speciation and extinction rates, with the times of the five events (see Table 1 for notation).
The survival probability for the single mass-extinction event is ρ = 0.05.

We present a graphical model description of the CoMET model (Figure S1), and

summarize the notation and interpretation of the model parameters in Table 1.
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Table 1: CoMET model parameters and their interpretation

Parameter Interpretation

Ψ Labeled history with divergence times.

τ Tree topology.

T Vector of divergence times.

B Vector of speciation rates per interval.

bi Speciation rate in the interval tB[i− 1] to tB[i].

TB Vector of times of the speciation-rate changes.

tB[i] Time of the ith speciation-rate change.

kB Number of speciation-rate changes.

D Vector of extinction rates per interval.

di Extinction rate in the interval tD[i− 1] to tD[i].

TD Vector of times of the extinction-rate changes.

tD[i] Time of the ith extinction-rate change.

kD Number of extinction rate changes.

P Vector of the survival probabilities per mass-extinction event.

ρi Survival probability of the ith mass-extinction event.

TM Vector of times of the mass-extinction events.

tM[i] Time of the ith mass-extinction event.

kM Number of mass-extinction events.

Likelihood function.—Let Ψ denote a reconstructed evolutionary tree relating n species,

comprising a tree topology, τ , and the set of branching times, T. For a birth-death process

where the rates of speciation and extinction are the same for all branches at any instant in

time, the probabilities of the tree topology and the branching times are independent. Thus,

we can compute the probability of the reconstructed evolutionary tree as the product of

the independent probabilities: P (Ψ) = P (τ)× P (T).

For a tree with n species, there are n!(n− 1)!/2n−1 unique labeled histories (we use

labeled histories and tree topologies interchangeably). Under a birth-death process, all

labeled histories are equally likely (Edwards 1970; Rannala and Yang 1996), so

P (τ) =
2n−1

n!(n− 1)!
.
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We call a lineage that begins with a single species at time t and ends with a single

sampled species at time T (the present) a singleton lineage. We proceed by recognizing

that a reconstructed evolutionary tree is composed of a set of independently evolving

singleton lineages: a tree with a single node (the root) has two singleton lineages, and each

additional node generates an additional singleton lineage (Figure 2A). Under a birth-death

process, the probability density of a singleton lineage is just the probability of starting with

a single species at time t and ending with a single sampled lineage at the present T ,

P (N(T ) = 1 | N(t) = 1) (Figure 2B).

We must also incorporate the probability density that each new singleton lineage

arises in the first place (i.e., that there is a speciation event at time t). Each singleton

lineage gives rise to new species at rate b(t); therefore, in general, the probability density

that a speciation event occurs at time t is simply b(t) multiplied by the number of singleton

lineages that exist at t. For the episodic model we have described, b(t) = bi for the interval

tB[i] ≤ t < tB[i+ 1].

We condition the probability density of observing the branching times on the

survival of both lineages that descend from the root (otherwise, the root would not exist).

To do so, we divide by P (N(T ) > 0|N(0) = 1)2.

The probability density of the branching times, T, becomes

P (T) =

both initial lineages have one descendant︷ ︸︸ ︷
P (N(T ) = 1 | N(0) = 1)2

P (N(T ) > 0 | N(0) = 1)2︸ ︷︷ ︸
both initial lineages survive

×
n−1∏
i=2

speciation rate︷ ︸︸ ︷
i× b(ti) ×

singleton lineage has one descendant︷ ︸︸ ︷
P (N(T ) = 1 | N(ti) = 1) ,

and the probability density of the reconstructed tree (topology and branching times) is then

P (Ψ) = P (τ)× P (T)

=
2n−1

n!(n− 1)!
×
(
P (N(T ) = 1 | N(0) = 1)

P (N(T ) > 0 | N(0) = 1)

)2

×
n−1∏
i=2

i× b(ti)× P (N(T ) = 1 | N(ti) = 1) (1)

We can simplify Equation (1) by substituting P (N(T ) > 0 | N(t) = 1)2 exp(r(t, T ))

for P (N(T ) = 1 | N(t) = 1), where r(u, v) =
∫ v

u
d(t)− b(t)dt (for a detailed description of
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this substitution, see Höhna 2015); the above equation becomes

P (Ψ) =
2n−1

n!(n− 1)!
×

(
P (N(T ) > 0 | N(0) = 1)2 exp(r(0, T ))

P (N(T ) > 0 | N(0) = 1)

)2

×
n−1∏
i=2

i× b(ti)× P (N(T ) > 0 | N(ti) = 1)2 exp(r(ti, T ))

=
2n−1

n!
×
(
P (N(T ) > 0 | N(0) = 1) exp(r(0, T ))

)2

×
n−1∏
i=2

b(ti)× P (N(T ) > 0 | N(ti) = 1)2 exp(r(ti, T )). (2)

This probability density was originally derived by Thompson (Thompson 1975; Equation

(3.4.6)) for constant rates (see also Equation 20 in Nee et al. 1994) and later extended to

arbitrary rate functions (Lambert 2010; Höhna 2013; 2014; 2015).

The probability density of a reconstructed phylogeny Ψ in Equation (2) is given for

any time-dependent birth-death process. Analytical solutions to this equation can be

obtained if the following quantities can be computed analytically: b(ti),

P (N(T )>0|N(ti)=1), and r(ti, T ). Given the speciation and extinction rate and the

mass-extinction survival probabilities, we can compute the probability of no extinction (see

Equation 16 in Höhna 2015)

P (N(T )>0|N(t)=1)

=

1 +
k∑

i=0

 di
di − bi

× e

i−1∑
j=0

(dj−bj)(tj+1−tj)−ln(ρj)

×
(
e(di−bi)(ti+1−ti) − 1

)

− ρi − 1∏i
j=1 ρj

× e

i−1∑
j=0

(dj−bj)(tj+1−tj)




−1

. (3)

Inserting Equation (3) into Equation (2) yields the probability density of an observed (i.e.,

reconstructed) tree under the episodic birth-death process with explicit mass-extinction

events. We provide this expanded equation in the Appendix; see Equation (4).
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Figure 2: Computing the likelihood of a phylogeny under the birth-death process.
We first identify lineages within the phylogeny that begin and end with a single species (panel
A, colored branches). Then, for each of those lineages, we compute the probability that the
lineage ended with a single extant species at time T given that it began with a single species
at time t, P (N(T ) = 1 | N(t) = 1) (panel B). We then multiply those probabilities by the
number of labeled histories, as well as the probability that there were speciation events
at each non-root node in the tree, b(t); finally, we condition on survival of the process by
dividing by the probability that each lineage descending from the root left at least one extant
descendant, P (N(T )>0 | N(0)=1)2 (panel C, see also Equation (1)).

Bayesian Inference

Parameterization and prior distributions.—In the previous section we described the

episodic birth-death process with mass-extinction events and gave the probability density

of an observed tree given the parameters, i.e., the likelihood function for the CoMET model.

The likelihood function allows us to estimate parameters of the model using different

statistical approaches, including maximum-likelihood estimation and Bayesian inference.

Previously, the study of temporal variation in diversification rates has largely been pursued

in a maximum-likelihood framework (e.g., Rabosky 2006; Stadler 2011a; Höhna 2014).

However, Kubo and Iwasa (1995) demonstrated that stochastic-branching process models
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are non-identifiable when parameters are estimated using maximum likelihood. That is, the

phylogenetic observations (the vector of waiting times between speciation events) are

equally likely to be the outcome of an infinite number of distinct diversification processes.

For example, a diversification process in which a low initial speciation rate later shifts to a

higher speciation rate produces the same phylogenetic observations as a constant-rate

process with a mass-extinction event (Stadler 2011b).

These considerations motivated our adoption of a Bayesian solution to this problem.

Pursuing the detection of mass-extinction events within a Bayesian statistical framework

both allows us to specify a prior distribution on the number of events—thereby

automatically penalizing more complex histories—and also to leverage biologically relevant

information (as informative priors) on the survival probability of mass-extinction events.

Specifically, we draw the number of speciation and extinction rate-shifts from a Poisson

prior with rate λB and λD, respectively. Following a shift in speciation or extinction rate,

we draw a new rate from a lognormal prior with parameters µB and σB or µD and σD.

Similarly, we draw the number of mass-extinction events from a Poisson prior with rate λM,

and draw the survival probability from a Beta prior with parameters α and β. By default,

we assume that α = 2 and β = 18; this corresponds to a prior belief that a mass-extinction

event will on average result in the loss 90% of the contemporaneous species diversity.

Accordingly, the parameters and prior densities of the CoMET model are as follows:

kB ∼ Poisson(λB)

kD ∼ Poisson(λD)

kM ∼ Poisson(λM)

bi ∼ Lognormal(µB, σB)

di ∼ Lognormal(µD, σD)

ρi ∼ Beta(α, β)

tB[i] ∼ Uniform(0, T )

tD[i] ∼ Uniform(0, T )

tM[i] ∼ Uniform(0, T )

Empirical Bayesian hyperpriors.—Our use of lognormal priors for the speciation and

extinction rates raises the issue of how we should parameterize these distributions.

Specifically, we need to specify the mean and standard deviation of these prior densities.

Were we to specify a lognormal prior that is too narrow (i.e., where the standard deviation
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is too small), the rates would be close to the mean and the model would disfavor large rate

shifts. Conversely, if we were to specify a lognormal prior that is too diffuse (i.e., where the

standard deviation is too large), the rates would be overly dispersed and the model would

tend to overfit patterns of rate variation the data.

It is therefore crucial to carefully select the parameters of these prior distributions.

We might pursue one of three possible approaches for specifying the prior mean and

standard deviation of the lognormal priors: (1) we could adopt an ‘empirical prior’

approach that treats the mean and standard deviation as fixed values, perhaps guided by

biological information on these parameters; (2) we could adopt a ‘hierarchical Bayesian’

approach that treats the mean and standard deviation as random variables, allowing these

parameters to be estimated from the data (Holder and Lewis 2003), or; (3) we could adopt

an ‘empirical Bayesian’ approach, where the values of these parameters are guided by the

data at hand (c.f., Huelsenbeck and Bollback 2001; Yang et al. 2005).

Use of empirical priors is not viable because we typically lack information regarding

reasonable values for the mean and standard deviation of speciation and extinction rates.

The development of a hierarchical Bayesian model would provide an elegant solution, but

defers rather than solves the problem. That is, we avoid specifying values for the mean and

standard deviation of the lognormal priors by treating them as random variables, but this

necessitates that we specify both the type of second-order hyperpriors (beta, gamma, etc.)

and the associated second-order hyperparameters (shape, scale, etc.) for these variables.

There are also some immediate practical concerns with a hierarchical Bayesian solution.

First, this solution involves adding an extra level of complexity to the CoMET model, which

may complicate our characterization of the statistical behavior of this new method.

Additionally, a hierarchical Bayesian solution is more computationally demanding,

which—although not an issue for empirical applications of the CoMET model—is of more

concern for our simulation study that involves a large number of analyses.

Accordingly, we have adopted an empirical Bayesian approach for parameterizing

the lognormal priors for the speciation- and extinction-rate parameters. This involves

performing a preliminary MCMC simulation for the data at hand under a constrained

CoMET model—where rates of speciation and extinction are assumed to be constant—to

estimate the posterior probability densities for the speciation and extinction rates. We

then center the lognormal prior on the inferred posterior mean for each parameter.

Similarly, we specify the standard deviation of the lognormal prior such that the variance

of the prior density is ten-fold that of the inferred posterior density.
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Markov chain Monte Carlo implementation.—We approximate the posterior probability

distribution of the CoMET model parameters using a Metropolis-Hastings algorithm

(Metropolis et al. 1953; Hastings 1970; Gelman et al. 2003). Specifically, we employ a

Markov chain Monte Carlo (MCMC) simulation where we propose updates for all numeric

parameters using normally distributed proposal densities centered on the current values

(Gelman et al. 2003; Yang and Rodŕıguez 2013), and propose updates for the number of

events using reversible-jump MCMC (rjMCMC; Green 1995; 2003). We implemented two

rjMCMC proposals to add or remove an event—the ‘birth move’ and ‘death move’,

respectively—following Huelsenbeck et al. (2000).

Birth move

1. Simulate the time of the new event: tk+1 ∼ unif(0, T )

2. Simulate the parameter value for the new event from the corresponding prior:

θk+1 ∼ Prior, such that θ′ = {θ ∪ θk+1}
3. Compute the posterior probability for the proposed value:

f(θ′) ∝ Likelihood(θ′)× Prior(θ′)

4. Compute the posterior probability for the current value:

f(θ) ∝ Likelihood(θ)× Prior(θ)

5. Compute the forward proposal probability: q(θ′|θ) = 1/T × Prior(θk+1)

6. Compute the reverse proposal probability: q(θ|θ′) = 1/(k + 1)

7. Compute the Jacobian: J = 1

8. Compute the acceptance probability:

α = f(θ′)/f(θ)× q(θ|θ′)/q(θ′|θ)× J = f(θ′)/f(θ)× 1/(k + 1)× (1/T × Prior(θk+1))
−1

Death move

1. Select an event to delete: idx ∼ unif(1, k) so that θ′ = {θ\θidx}
2. Compute the posterior probability for the proposed value:

f(θ′) ∝ Likelihood(θ′)× Prior(θ′)

3. Compute the posterior probability for the current value:

f(θ) ∝ Likelihood(θ)× Prior(θ)

4. Compute the forward proposal probability: q(θ′|θ) = 1/(k + 1)

5. Compute the reverse proposal probability: q(θ|θ′) = 1/T × Prior(θidx)

6. Compute the Jacobian: J = 1

7. Compute the acceptance probability:

α = f(θ′)/f(θ)× q(θ|θ′)/q(θ′|θ)× J = f(θ′)/f(θ)× (k + 1)/T × Prior(θidx)
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Both birth and death proposals are used to update the number of speciation

rate-shifts, extinction rate-shifts, and mass-extinction events. When the number of events

is being updated, a birth move or a death move will be applied with equal probability

during an iteration of the MCMC simulation. We validated the algorithms and our

implementation by sampling from the prior distribution. When the rjMCMC simulation is

run without data, it will target the joint prior probability density of the model parameters.

This allows us to compare the inferred marginal prior probability density to the

corresponding known prior probability density for each model parameter: if the rjMCMC

algorithm and implementation are correct, we will recover the known prior densities. These

experiments confirmed the validity of the CoMET algorithms.

The CoMET model and the rjMCMC algorithm are implemented in the R package

TESS and are available from http://cran.r-project.org/.

Hypothesis Testing

Testing hypotheses regarding the timing of significant mass-extinction events.— Explicitly

modeling mass-extinction events enables us to perform robust Bayesian hypothesis testing

using Bayes factors. The Bayes factor compares the relative performance of two models

(denoted M0 and M1) by comparing their marginal likelihoods :

BFM1,M0 =
marginal likelihood of M1

marginal likelihood of M0

=
P (X | M1)

P (X | M0)
,

where the marginal likelihood, P (X | Mi) =
∫
θ
P (X | θ)P (θ | Mi)dθ, is the likelihood of the

data, X, integrated over the entire joint prior distribution of the model parameters (i.e.,

the average probability of observing the data under the model). Values of BFM1,M0 greater

than 1 indicate a preference for M1, whereas values of BFM1,M0 less than one indicates a

preference for M0 (Kass and Raftery 1995).

Normally, the marginal likelihood is an intractable quantity to compute; however,

the Bayes factor can be re-written as:

BFM1,M0 =
posterior probability of M1

posterior probability of M0

÷ prior probability of M1

prior probability of M0

.

For example, we may be interested in testing the hypothesis that mass extinction i

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

http://cran.r-project.org/
https://doi.org/10.1101/020149


occurred at time t:

BFtM[i]=t,tM[i]̸=t =
P (tM[i] = t | X)

1− P (tM[i] = t | X)
÷ P (tM[i] = t)

1− P (tM[i] = t)
.

Unfortunately, because we must approximate the posterior probability density of

mass-extinction times with MCMC, the (estimated) posterior probability P (tM[i] = t | X)

will always be 0 (i.e., the probability that a numerical sample takes some real value t is 0).

We can, however, test the hypothesis that at least one mass extinction occurred in the

interval I = (t, t+∆t):

BF|M∈I|̸=0,|M∈I|=0 =
1− P (|M ∈ I| = 0 | X)

P (|M ∈ I| = 0 | X)
÷ 1− P (|M ∈ I| = 0)

P (|M ∈ I| = 0)
.

Conveniently, we can calculate the prior probability of no mass extinction under the CPP

model:

P (|M ∈ I| = 0) = e−λM
∆t
T ,

where ∆t
T

is the duration of the interval relative to the height of the tree. The posterior

probability can be approximated directly from the MCMC samples:

P (|M ∈ I| = 0 | X) =
1

N

N∑
i=1

1 if |Mi ∈ I| = 0

0 otherwise
,

where N is the number of MCMC samples and Mi is the vector of mass-extinction times in

the ith sample.

Our procedure for identifying the timing of mass-extinction events is as follows:

(1) discretize the interval (0, T ) into n intervals of duration ∆t = T
n
; (2) for each interval,

compute the Bayes factor for at least one mass extinction in the interval; (3) identify

intervals with significant Bayes factor support for the specified significance threshold,

BFcrit, as containing a mass-extinction event, and; (4) merge contiguous runs of intervals

with mass-extinction events into a single mass extinction whose time corresponds to the

interval with the highest support. This procedure is depicted in Figure 3.

There are several practical considerations for this approach. Intervals that are too

large relative to T will provide imprecise estimates of the mass-extinction times, and may

in fact include multiple well-supported mass extinctions, confounding the interpretation of
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Figure 3: Identifying significant mass-extinction events using Bayes factors. An
example of the procedure for estimating the timing of significant mass-extinction events.
Each bar represents the posterior probability of at least one mass extinction in that interval.
Bars that exceed the significance threshold (in this case, 2 lnBF > 6) indicate significant mass
extinction events. When multiple adjacent bars are greater than the significance threshold,
only the bar with the greatest support is considered a mass extinction. In this example, the
Bayes factors are computed assuming λM = ln 2, and we infer significant mass-extinction
events in intervals 48 and 93.

the Bayes factor test. Conversely, intervals that are very small will lead to more precise

estimates of mass-extinction times, but will also decrease the number of sampled mass

extinctions in the interval, resulting in unstable estimates of the posterior probability. We

have found that ∆t = T
100

provides a good compromise between precision and stability. The

identification of well-supported mass extinctions relies on a significance threshold, BFcrit.

By convention, we use a significance threshold that corresponds to “strong” support

(2 lnBFcrit ≥ 6, Kass and Raftery 1995). A well-supported mass extinction may also

appear in multiple consecutive intervals, which motivates step 4, the merger of contiguous

mass extinctions. We note that setting ∆t = T is equivalent to testing the hypothesis

regarding the occurrence of any significant mass-extinction events over the entire tree;

however, we can also test hypotheses about the exact number of mass-extinction events,

which we describe in the next section.

Testing hypotheses regarding the number of significant mass-extinction events.—Bayes

factors can also be used to test hypotheses related to the number of mass-extinction events.

By treating the number of mass extinctions as the model, we can assess the support for

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


exactly k mass-extinction events:

BFkM=k,kM ̸=k =
P (kM = k | X)

1− P (kM = k | X)
÷ P (kM = k)

1− P (kM = k)
,

where, under the CPP model, the prior probability is simply calculated as:

P (kM = k) =
(λM)

k

k!
e−λM ,

and the posterior probability is directly estimated from the MCMC samples:

P (kM = k | X) =
1

N

N∑
i=1

1 if ki
M = k

0 otherwise
,

where ki
M is the number of mass-extinction events in the ith MCMC sample.

Simulation Study

The complex nature of both the CoMET model and the algorithms used to estimate

parameters of the model demand a comprehensive simulation study to characterize the

statistical behavior of this new method. We designed our simulation study to understand:

(1) the rate at which mass-extinction events are incorrectly inferred (the false discovery

rate); (2) the rate at which mass-extinction events are correctly inferred (the power);

(3) the accuracy of the inferred timing of mass-extinction events (the bias); (4) the ability

to distinguish multiple mass-extinction events, and; (5) the influence of shifts in

background diversification rates on the false discovery rate, power and bias of our approach.

All simulations and analyses were performed in the R package TESS (Höhna 2013).

False discovery rate.—We first assessed the liability of the CoMET model to detect spurious

mass-extinction events in trees simulated under constant speciation and extinction rates.

For each tree, we sampled the speciation rate, b, from a lognormal distribution with mean

µB = 1 and standard deviation σB = exp(0.2). Similarly, we sampled the extinction rate, d,

from a lognormal distribution with mean µD = 0.5 and standard deviation σD = exp(0.2).

We ran each simulation for T = 10 time units, generating trees with

N = {100, 200, 400, 800} species. For each tree size, we simulated 100 trees (400 trees in

total; c.f., Figure 4A).

We also assessed the liability of the CoMET model to detect spurious mass-extinction
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events in trees simulated under episodically shifting speciation and extinction rates. For

each tree, we sampled the number of speciation- and extinction-rate shifts, kB and kD, from

a Poisson distribution with rate parameters λB = λD = 2. We sampled the times of the

speciation- and extinction-rate shifts, TB = {tB[1], . . . , tB[kB]} and TD = {tD[1], . . . , tD[kD]},
from a uniform distribution on (0, T ). We sampled the speciation rates, B = {b0, . . . , bkB},
from a lognormal distribution with mean µB = 1 and standard deviation σB = exp(0.2).

Similarly, we sampled the extinction rates, D = {d0, . . . , dkD}, from a lognormal

distribution with mean µD = 0.5 and standard deviation σD = exp(0.2). We ran each

simulation for T = 10 time units, simulating 100 trees of each size, with

N = {100, 200, 400, 800} species (400 trees in total; c.f., Figure 4B).

In order to explore the impact of the chosen priors on our ability to detect

mass-extinction events, we analyzed each simulated tree under a variety of prior settings.

We considered cases where the prior expected relative-extinction rate (d÷ b) was either too

low, centered on the correct value, or too high. We achieved this by varying the hyperprior

on the mean extinction rate, µD = {0.1, 0.5, 0.9}, while fixing the other hyperpriors to the

generating values. Specifically, we set the mean and standard deviation of the lognormal

speciation-rate prior to µB = 1 and σB = exp(0.2), respectively, and set the standard

deviation of the lognormal extinction-rate prior to σD = exp(0.2). In addition to analyses

using fixed hyperprior values, we also performed analyses where the values of the

hyperpriors for the speciation and extinction rates were estimated using the empirical

Bayesian approach described above. We also varied the priors on the frequency of

diversification-rate shifts, λB = λD = {0.1, ln 2, 2, 5}, and the frequency of mass-extinction

events, λM = {0.1, ln 2, 2, 5}. We set the hyperpriors on the mass-extinction survival

probability to α = 2, β = 18. We analyzed each simulated tree under every combination of

prior settings, resulting in 4× 4× 4 = 64 analyses per tree, for a total of 64× 800 = 51, 200

MCMC analyses.

We ran each MCMC simulation until one of two stopping conditions was reached:

(1) the effective sample size (ESS, computed with the R package coda) for all of the

event-rate parameters—kB, kD and kM—exceeded 500, or; (2) the maximum number of

cycles (one million) was reached. We thinned the chains by sampling every 100th state.

Occasionally, one or more parameters were found to have low ESS values (≤ 200) after the

MCMC simulation reached the maximum length. In such cases, we repeated the analysis.

We discarded the first 25% of the samples for each MCMC simulation as burnin. We then

classified any analyses that identified strong support for at least one mass-extinction event

as a false positive, and computed the false discovery rate for a particular combination of
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prior settings as the fraction of analyses that contained false positives.
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Figure 4: Simulation study design. Panels A and B depict simulations that explore the
false discovery rate (where trees are simulated without mass-extinction events); panels C and
D depict simulations that explore the power and bias (where trees are simulated with mass-
extinction events). Panels A and C entail simulations where the speciation and extinction
rates are constant; panels B and D entail simulations where the speciation and extinction
rates shifted episoodically. Each panel shows an actual tree (above) from the simulations
with N = 100 species, as well as the parameters of the stochastic-branching-process model
used in those simulations (below).

Power.—We first assessed the power of the CoMET model to correctly detect mass-extinction

events against a background of constant speciation and extinction rates. We sampled

speciation and extinction rates as described above for the false discovery rate experiments.

For each tree, we sampled the number of mass-extinction events, kM, from a Poisson

distribution with a rate parameter λM = 1. We sampled the times of the mass-extinction

events, TM = {tM[1], . . . , tM[kM]}, from a uniform distribution on the interval (0, T ). For

each mass-extinction event, we sampled the survival probabilities, P, from a beta

distribution with shape parameters α = 2 and β = 18, so that the expected survival

probability E[ρ] = α
α+β

= 0.1. We ran each simulation for T = 10 time units, simulating 100

trees of each size, with N = {100, 200, 400, 800} species (400 trees in total; c.f., Figure 4C).

We also assessed the power of the CoMET model to correctly identify mass-extinction

events against a background of episodically shifting speciation and extinction rates. For

this experiment, we simulated trees exactly as in the initial power experiment, except that

we simulated diversification-rate shifts as described in the false discovery rate experiment.
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We ran each simulation for T = 10 time units, simulating 100 trees of each size, with

N = {100, 200, 400, 800} species (400 trees in total; c.f., Figure 4D).

We analyzed each simulated tree under the same variety of prior settings, and

performed and diagnosed the MCMC simulations as described in the false discovery rate

experiments (51, 800 analyses in total). We classified an analysis as having correctly

inferred a mass-extinction event if it indicated strong support for one mass-extinction event

when the tree actually experienced one mass-extinction event. We computed the power for

a particular combination of prior settings as the fraction of analyses that correctly

identified a mass-extinction event.

Bias.—We assessed the ability of the CoMET model to accurately estimate the timing of

mass-extinction events using the analyses from the previous section. When an analysis

correctly inferred a single mass-extinction event, we computed the bias of the estimated

event time as (tsimulated − testimated)/tree height× 100%.

Multiple mass-extinction events.—Motivated by our empirical conifer analysis (see below),

we investigated the behavior of the CoMET model under sequential mass-extinction events.

In particular, we were interested in the ability of the method to successfully detect the

older of two mass-extinction events, and the ability to distinguish the two mass extinctions

as a function of their relative age.

To approximate the conifer dataset (see below), we simulated trees with N = 492

species and a tree height of T = 340.43 million years. We simulated the trees under

constant background speciation and extinction rates, which were sampled from the

posterior distributions estimated from our empirical analyses. We simulated one ancient

mass-extinction event at ta = 250 Ma to mimic the Permo-Triassic mass-extinction event.

We then simulated a second, more recent mass extinction at tr = {200, 150, 100, 50} Ma.

Both mass-extinction events had a survival probability of ρ = 0.1. We simulated 100 trees

for each value of tr, for a total of 400 simulated trees.

We analyzed each tree using empirical Bayesian estimates of the diversification-rate

hyperpriors—µB, σB and µD, σD—and assumed a constant background diversification rate

(λB = λD = 0). We analyzed each simulated tree under a variety of prior settings for the

frequency of mass-extinction events, λM = {0.1, ln 2, 2, 5}, for a total of 4× 400 = 1, 600

analyses. We performed MCMC analyses and diagnostics as described previously.
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For each analysis, we then estimated the time of inferred mass-extinction events as

described previously in the hypothesis-testing section. We considered CoMET to have

provided a correct result if the inferred mass-extinction event was within four intervals

[4% = (340.43÷ 100)× 4 = ±13.6 million years] of the simulated mass-extinction event.

We then calculated the fraction of analyses under each set of priors that identified the more

recent, the more ancient, or both mass-extinction events.

An Empirical Example: Mass Extinction in Conifers

To demonstrate the application of the CoMET model to an empirical dataset, we

present an analysis exploring mass-extinction events in conifers. Our analysis is based on a

recent study of the phylogeny and divergence times of conifers (Leslie et al. 2012), which

included 492 of 630 (78%) described species and inferred a crown age of 340.43 Ma.

Accordingly, this conifer tree spans three major mass-extinction events; the Permo-Triassic

(252 Ma), the Triassic-Jurassic (201.3 Ma), and the Cretaceous-Paleogene (66 Ma)

mass-extinction events. Each event is estimated to have caused the loss of ∼ 70− 75% of

contemporaneous terrestrial species (e.g., Raup and Sepkoski 1982; Labandeira and

Sepkoski 1993; Rees 2002; McElwain and Punyasena 2007; Cascales-Miñana and Cleal

2014).

We conditioned our conifer analyses on the maximum-clade credibility consensus

tree from the Leslie et al. (2012) study, with the three cycad (outgroup) species removed.

We first performed a series of preliminary analyses on this tree to estimate the marginal

posterior probability densities for the diversification-rate hyperpriors, µB, σB, µD, and σD.

We performed these analyses under a constrained CoMET model, where background

diversification rates were held constant and mass-extinction events were precluded

(specified by setting λB = λD = λM = 0). We approximated the joint posterior probability

density under this constrained model by running four independent MCMC simulations, and

thinned each chain by sampling every 1,000th state. The chains were terminated when the

ESS values for every parameter reached 500. We discarded the first 25% of samples from

each chain as burnin, and combined the stationary samples from the four independent

chains. We then used the inferred composite marginal posterior probability densities to

specify values for the diversification-rate hyperpriors; that is, for the mean and standard

deviation of the lognormal priors on the speciation and extinction rates, µB, σB, µD, and σD.

Specifically, we centered each of the lognormal priors on the corresponding estimate of the

posterior mean, and specified the standard deviation such that the variance of the prior
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density was ten-fold that of the corresponding inferred marginal posterior density. The

inferred marginal posterior densities for the diversification rate hyperparameters—and the

marginal hyperprior densities elicited from them—are depicted in Figure S8.

We then performed a second series of analyses under the full CoMET model to infer

the history of mass extinction in conifers. For these analyses, we used the previously

specified empirical Bayesian diversification-rate hyperpriors (i.e., µB, σB, µD, and σD), and

assumed phylogenetically uniform species sampling (e.g., Höhna et al. 2011; Höhna 2014).

We specified the prior probability of surviving mass-extinction events using a beta prior

with shape parameters α = 2.5 and β = 7.5; this specifies an expected survival probability

of 25%, which is consistent with prior knowledge (McElwain and Punyasena 2007;

Cascales-Miñana and Cleal 2014). As in our analyses of the simulated datasets, we assessed

the prior sensitivity of our inferences by performing analyses under a variety of priors.

Specifically, we performed analyses under a range of values for the prior on the frequency of

mass-extinction events, λM = {0.1, ln 2, 2, 5}, and also for the priors on the frequency of

shifts in diversification rate, λB = λD = {0.1, ln 2, 2, 5}. For each unique combination of

prior settings, we approximated the joint posterior probability density by running four

independent MCMC simulations, and thinned each chain by sampling every 1,000th state.

We terminated terminated an MCMC simulation when the ESS values for every parameter

reached 500, discarded the first 25% of samples from each chain as burnin, and then

combined the stationary samples from the four independent chains. Our estimates of the

number and timing of mass-extinction events were based on the resulting composite

marginal posterior probability density for each of the unique prior settings.

Data availability statement.—The authors confirm that all data supporting the results of

this study are fully available without restriction. We have made these data available as an

archive—including all of the empirical and simulated datasets, as well as the scripts used to

simulate and analyze those data—that has been deposited in the Dryad digital repository.

The Dryad data identifier for this archive is: doi:XX.XXXX/dryad.XXXXX.

Results

Simulation Study

False discovery rates.—We evaluated the false discovery rate (FDR) of the CoMET model by

computing the fraction of cases where it identified strong support for one or more spurious
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mass-extinction events in trees that were simulated without episodes of mass extinction.

Figure 5 depicts the FDR for analyses of trees with N = 400 species, where the extinction

rate was centered on the true value (µD = 0.5, left column), or where the

diversification-rate hyperpriors were specified using the empirical Bayesian approach (right

column). Results were qualitatively similar across all analyses (see Figures S2 and S3).
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Figure 5: False discovery rates. Frequency of detecting spurious mass-extinction events.
Rows of panels correspond to the absence (top panels) or presence (bottom panels) of back-
ground diversification-rate shifts, and columns of panels correspond to relative-extinction
rate priors centered on the true values (left panels) or estimated from the data (right panels).
Within each panel, the rows correspond to false discovery rates under various priors on the
expected number of diversification-rate shifts (rows) and mass-extinction events (columns).

Our simulation study implies that the CoMET model has a slightly elevated FDR

(relative to the conventional 5% threshold): the overall FDR was inferred to be 8.1% or

9.9% for trees simulated under constant or episodically shifting background diversification

rates, respectively. However, a more careful examination of the results reveals that spurious

mass-extinction events are far more likely under specific combinations of prior settings.

Specifically, the false discovery rate was substantially inflated when the prior rate of

mass-extinction events was very low (FDR for λM = 0.1: 18.9% without diversification-rate

shifts, 21.2% with diversification-rate shifts), compared to the remainder of the analyses

(FDR for λM ̸= 0.1: 4.4% without diversification-rate shifts, 6.1% with diversification-rate

shifts). The prior mean on the extinction rate, µD, had a less pronounced effect on the false
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discovery rate (FDR for µD = {0.1, 0.5, 0.9}: 10.8%, 5.3%, 13.5% without

diversification-rate shifts; 12.6%, 7.4%, 15.3% with diversification-rate shifts). Importantly,

the false discovery rate was much lower for analyses using empirical Bayesian approach to

specify hyperpriors (FDR for empirical hyperprior analyses: 2.8% without

diversification-rate shifts, 4.1% with diversification-rate shifts).

Power.—We evaluated the power of the CoMET model by computing the fraction of cases

where it identified strong support for a known (i.e., simulated) mass-extinction event.

Moreover, we assessed power as a function of the relative timing of mass-extinction events;

we placed each analysis into one of six bins corresponding to the simulated mass-extinction

time and computed the power for each of the bins under each combination of prior settings.

Figure 6 depicts the statistical power of the CoMET model for trees with N = 400 species,

where the extinction rate was centered on the true value (µD = 0.5, left column), or where

the diversification-rate hyperpriors were specified using the empirical Bayesian approach

(right column). Results were qualitatively similar across all analyses (see Figures S4 and

S5).

Our ability to correctly infer mass-extinction events depended critically on the

timing of the event. Detection rates were much higher in the more recent half of the tree

(power in the recent half: 51.5% without diversification-rate shifts, 53.7% with

diversification rate shifts) compared to the more ancient half (power in the ancient half:

8.8% without diversification-rate shifts, 11.6% with diversification rate shifts). Indeed,

power was the greatest when the mass-extinction event occurred somewhere between 4T
6

and 5T
6

(power: 64.0% without diversification-rate shifts, 58.8% with diversification-rate

shifts). The prior on mass-extinction rate had a small influence on the power, with smaller

values having greater power (power in the more recent half of the tree for

λM = {2, ln 2, 2, 5}: 60.1%, 65.3%, 47.7%, 32.4% without diversification-rate shifts, 59.7%,

65.7%, 49.9%, 39.6% with diversification-rate shifts). Importantly, the empirical Bayes

approach did not markedly reduce overall power (power in the more recent half of the tree

for empirical hyperpriors: 50.4% without diversification rate-shifts, 54.3% with

diversification-rate shifts; compared to a priori hyperpriors: 51.7% without

diversification-rate shifts, 53.5% with diversification rate-shifts). As expected, overall

power increased with the size tree, especially in the face of diversification-rate shifts (power

in the more recent half of the tree for N = {100, 200, 400, 800}: 47.1%, 54.5%, 48.8%,

55.6% without diversification-rate shifts, 40.6%, 56.2%, 55.9%, 62.1% with diversification

rate-shifts).
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Figure 6: Power as a function of the relative time of mass-extinction events.
Frequency of detecting true mass-extinction events. Rows of panels correspond to the ab-
sence (top panels) or presence (bottom panels) of background diversification-rate shifts, and
columns of panels correspond to relative-extinction rate priors centered on the true values
(left panels) or estimated from the data (right panels). Within each panel, the rows corre-
spond to the power under various priors on the expected number of diversification-rate shifts
(rows) and mass-extinction events (columns). Within each cell, we plot power as a function
of time by binning simulated trees by the relative time of the detected mass-extinction event,
and compute the fraction of those trees where a mass-extinction event was correctly inferred.

Bias.—We evaluated the bias of inferred mass-extinction times under the CoMET model as

follows: for all cases in which a mass-extinction event was correctly inferred, we compared

the actual event time to the estimated event time as (tactual − testimated)/tree height× 100%.

Figure 7 depicts the bias of the CoMET model for analyses of trees with N = 400 species,

where the extinction rate was centered on the true value (µD = 0.5, left column), or where

the diversification-rate hyperpriors were specified using the empirical Bayesian approach

(right column). Results were similar for the entire simulation (see Figures S6 and S7).

Across all analyses, the estimated mass-extinction times were approximately unbiased;

overall, the inferred event times were biased by −0.5% or −3.2% of the true event times for

trees simulated under constant or episodically shifting background diversification rates,

respectively.
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Figure 7: Bias in the estimated timing of mass-extinction events. Rows of pan-
els correspond to the absence (top panels) or presence (bottom panels) of background
diversification-rate shifts, and columns of panels correspond to relative-extinction rate priors
centered on the true values (left panels) or estimated from the data (right panels). Within
each panel, rows correspond to the bias under various priors on the expected number of
diversification-rate shifts (rows) and mass-extinction events (columns). We computed the
bias as (tsimulated event − testimated event)/tree height× 100%.

Multiple mass-extinction events.—Figure 8 summarizes results of our empirically motivated

investigation of sequential mass-extinction events. The ability of the CoMET model to detect

the more recent mass extinction depends on the relative age of the event: we detected

≈ 90% of the events that occurred 50 Ma, but only ≈ 15% of those that occurred 200 Ma.

These findings are consistent with our results based on the single-event simulations, which

indicate that power increases with the recency of the mass-extinction event (c.f., Figure 6).

Similarly, our ability to detect the more ancient event depends on the interval between the

sequential mass-extinction events: the more recent event casts a shadow backward in time

that can completely eclipse an older event if they are spaced too close together in time.

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


200 150 100 50

age of more recent event (Ma)

de
te

ct
io

n 
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0
inferred recent event
inferred both events

Figure 8: Power to detect sequential mass-extinction events. We plot the frequency
of correctly detecting relatively recent (open circles) and ancient (open triangles) mass-
extinction events as a function of the age of the more recent event. We plot the age of the
more recent mass-extinction event along the x-axis, and the probability of correctly detecting
mass-extinction events along the y-axis.

Mass Extinction in Conifers

Our analysis of the conifer phylogeny identified two mass-extinction events: the first

event was inferred to have occurred approximately 173 Ma with positive support, and the

second event to have occurred approximately 23 Ma with very strong support (Figure 9).

Based on the results of our simulation study, we suspect that the “shadow effect” of the

more recent event has diminished the signal of the earlier mass-extinction event. Curiously,

the inferred times of the two events do not coincide with the established ages of major

mass-extinction events. The closest known events to the inferred mass-extinction times are

the Eocene-Oligocene event (34 Ma) and the Toarcian-turnover event (183 Ma); however,

these mass-extinction events are not thought to have strongly impacted terrestrial flora

(McElwain and Punyasena 2007; Cascales-Miñana and Cleal 2014).

Our estimates of the mass-extinction times in conifers are, of course, based on

divergence-time estimates for this group. Accordingly, any bias in the inferred divergence

times will cause a corresponding bias in the inferred timing of the mass-extinction events.

If, for example, conifer divergence times are slightly underestimated, then the timing of the

more recent event could conceivably correspond to the Cretaceous-Paleogene
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mass-extinction event (66 Ma), and the age of the earlier event could easily correspond to

the Triassic-Jurassic (201.3 Ma) or the Permo-Triassic mass-extinction events (252 Ma).

We note, however, that our method is unlikely to detect both the Triassic-Jurassic and the

Permo-Triassic mass-extinction events, given their close temporal proximity (c.f., Figure 8).
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Figure 9: Mass-extinction events in conifers. We inferred two mass-extinction events:
a recent event at 23 Ma (with very strong support), and an earlier event at 173 Ma (with
positive support).
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Discussion

We present a novel Bayesian approach for detecting mass-extinction events from

trees inferred from molecular sequence data—the CPP on mass-extinction time (CoMET)

model—and describe the behavior of our method via a comprehensive simulation study.

Simulation studies are critical both for validating statistical methods—to ensure that the

algorithms and implementation provide reliable estimates under controlled conditions—and

also for providing practical advice for the application of these methods to empirical data.

Overall, our simulation study reveals that the CoMET model is statistically well behaved:

the method has substantial power to detect the number of mass-extinction events, provides

precise and unbiased estimates of the timing of mass-extinction events, and exhibits an

appropriate false discovery rate even when background diversification rates may vary.

Below, we first consider the implications of our simulation study for the practical

application of the CoMET model, and then discuss various avenues for usefully extending the

model.

Practical Application of the CoMET Model

Specifying (hyper)priors of the CoMET model.—The perennial issue of prior specification is

particularly acute for the CoMET model for two reasons. First, our approach relies on the

CPP model to infer the history of episodic events—tree-wide shifts in diversification rate

and mass-extinction events—and this model is known to be sensitive to the choice of priors.

Second, there is typically little biological basis for specifying priors for some of the CoMET

model parameters, particularly those describing the frequency and magnitude of shifts in

speciation and extinction rates. We should therefore be concerned that the choice of poorly

specified (hyper)priors may cause inflated false discovery rates (where the method identifies

spurious mass-extinction events) and/or biased parameter estimates (where the method

systematically over- or under-estimates the timing of inferred mass-extinction events).

Fortunately, the results of our simulation study provide clear guidance on this issue.

Our simulation study demonstrates that the CoMET model is relatively robust to

(mis)specification of the hyperpriors describing the frequency of events—i.e., the specified

values for the Poisson-rate parameters λB, λD, and λM (c.f., Figures 5, S2, S3).

Nevertheless, we recommend performing analyses under a range of event-rate priors to

assess their potential impact (as demonstrated in our conifer analyses; c.f., Figure S9).
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Although the CoMET model appears quite robust to the specified hyperpriors on event

frequencies, our simulation reveals that it is somewhat sensitive to the hyperpriors on event

magnitudes. This is unproblematic for the focal parameter, as we will typically have ample

evidence regarding the expected magnitude of mass-extinction events (i.e., to specify values

for the α and β hyperpriors describing the shape of the beta prior on survival probability).

By contrast, we will typically lack information regarding the expected magnitude of

diversification-rate shifts—i.e., to specify values of the hyperpriors describing the shape of

the lognormal speciation- and extinction-rate priors (µB, σB, and µB, σB, respectively).

Under simulation, very poorly specified diversification-rate hyperpriors caused the

overall false discovery rate of the CoMET model to become slightly elevated: we detected

spurious mass-extinction events in 8.1% or 9.9% of the trees simulated under constant or

episodically shifting background diversification rates, respectively (Figures S2 and S3).

Fortunately, our simulation study indicates that the empirical Bayesian procedure provides

a reliable means for specifying appropriate values for the diversification-rate hyperpriors.

Under this approach, the false discovery rate of the CoMET model was slightly conservative

(we detected spurious mass-extinction events in 2.8% or 4.1% of the trees simulated under

constant or episodically shifting background diversification rates, respectively).

Accordingly, we strongly recommend use of the empirical Bayesian approach for specifying

diversification-rate hyperpriors of the CoMET model (in fact, we have automated this

procedure and made it the default setting in our TESS software package).

Size and relative age of empirical trees.— Our simulation provides guidance on key aspects

of study trees that render them appropriate candidates for analysis using the CoMET model.

The power of the CoMET model to detect mass-extinction events increases with tree size: all

else being equal, it will therefore be easier to detect mass-extinction events in larger trees.

Nevertheless, detection rates were quite high even for the smallest trees in our simulation

(with N = 100 species). Although size is clearly an important factor, the age of the tree

relative to the mass-extinction time has a much greater impact on the detection

probability. In order for a mass-extinction event to leave a detectable phylogenetic signal,

the study tree must both contain a sufficient number of lineages at the time of the event,

and must also be afforded a sufficient recovery period following a mass-extinction event.

Therefore, a mass-extinction event that occurs too close to the root of the study tree will

be difficult to detect because too few lineages will have participated in that event (see

Figure 6). Similarly, a mass-extinction event that occurs too close to the tips of a study

tree will be difficult to detect because too little time has elapsed for the tree to recover
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from the event. Accordingly, there is a ‘sweet spot’ where our ability to detect a

mass-extinction event will be greatest: a candidate study tree should ideally be ∼ 2− 3

times the age of the putative mass-extinction event, but the event should not occur in the

last ∼ 15% of the tree height. This same reasoning explains the power of the CoMET model

to detect sequential mass-extinction events. An earlier mass-extinction event has to occur

sufficiently far from the root of the tree to ensure that an adequate number of lineages are

exposed to the event, but it must also have sufficient time to recover from that event before

a subsequent mass-extinction event occurs.

Future Extensions of the CoMET Model

The CoMET model describes the history of three types of events: tree-wide shifts in

speciation rate, tree-wide shifts in extinction rate, and mass-extinction events. Our focus

here, however, is restricted to inferring the number and timing of mass-extinction events.

Accordingly, we have explicitly adopted the perspective that episodic changes in

diversification rate are merely ‘nuisance’ parameters of the CoMET model. These events are

primarily included because diversification-rate shifts are thought to be a common feature of

empirical trees that, if ignored, might impact our estimates of the focal model parameters.

Of course, it might also be possible to use the CoMET model to infer the number, timing,

and magnitude of tree-wide shifts in diversification rate. However, we have not investigated

the ability of the CoMET model to provide reliable estimates of tree-wide diversification-rate

shifts, and so caution users against over-interpreting estimates of these parameters.

The CoMET model is currently restricted to the analysis of trees that have a

complete—or if incomplete, a random sample—of species. Given that most empirical trees

include a non-random subsample of species, this may limit the application of our method.

Of course, it is possible to apply the CoMET model to trees with non-random species

sampling, although the statistical behavior of the method is unknown for these datasets.

Instead, it would be preferable to provide greater flexibility for accommodating incomplete

and non-uniform taxon sampling. For example, we could explicitly incorporate various

departures from random species sampling—such as diversified species sampling (c.f., Höhna

et al. 2011; Cusimano et al. 2012; Höhna 2014)—in the CoMET model. In fact, the presented

likelihood equations of the episodic birth-death process with explicit mass-extinction events

and the Bayesian inference framework can readily be applied to diversified species sampling

(Höhna 2014; 2015). This is an area of current work (Höhna, May, and Moore, in prep.).

Currently, the CoMET model assumes that a mass-extinction event is equally likely to
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occur at any time over the interval spanned by the study tree. Our use of a uniform prior

on mass-extinction times is therefore somewhat naive, as this expectation effectively

ignores relevant information regarding the probable timing of mass-extinction events.

Fortunately, a straightforward extension of the CoMET model would allow the use of

informative priors that reflect our knowledge regarding probable mass-extinction times.

Similarly, the CoMET model presently assumes that a mass-extinction event is equally likely

to impact all contemporaneous lineages in the study tree. Our use of a uniform prior on

the survival probability across lineages may also be somewhat naive. Imagine, for example,

that other variables might render species more or less susceptible to mass-extinction events.

This possibility could be addressed by extending the CoMET model to allow the survival

probability of a lineage to depend on the inferred state of a continuous (e.g., body size,

metabolic rate, range size) or a discrete (e.g., marine/terrestrial, endothermic/ectothermic)

variable.

As currently implemented, the CoMET model effectively treats the study tree as an

observation. Phylogenies are, of course, inferences from data, and so entail (sometimes

considerable) uncertainty. Ignoring this phylogenetic uncertainty will therefore tend to

make us overly confident in our conclusions regarding mass-extinction events. We could

accommodate phylogenetic uncertainty by extending the CoMET model in one of two ways.

A sequential Bayesian approach provides a simple (albeit computationally intensive)

solution: mass-extinction events could simply be inferred by integrating over a posterior

distribution of trees that has previously been estimated using some other program.

Alternatively, a hierarchical Bayesian approach involves jointly inferring the phylogeny,

divergence times, and history of mass-extinction events. This solution would require

considerably more effort, as it would require implementation of the CoMET model within an

existing Bayesian phylogenetic inference program, such as RevBayes (Höhna et al. 2015).

Although more involved, this would provide an elegant solution for accommodating

phylogenetic uncertainty that would permit more robust inferences regarding

mass-extinction events.

Currently, the CoMET model is limited to the analysis of a single study phylogeny.

However, we may also want to explore the impact of mass-extinction events on a set of

trees. We might, for example, wish to study the effect of mass extinction on the flora of a

particular geographic region that is comprised of several distantly related plant groups.

This inference scenario could be addressed by extending our approach by allowing the

parameters of the CoMET model to be inferred from a composite vector of waiting times for

a set of trees. Moreover, we could either assume that the survival probability is identical for
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all groups, or allow each group to have a unique response to episodes of mass extinction.

This extension is relatively straightforward, and would simultaneously extend the range of

questions that can be addressed using the CoMET model, and also increase the power of the

method to detect mass-extinction events by virtue of increasing the effective tree size.

Summary

We present a novel Bayesian approach—the CoMET model—that provides an effective tool

for identifying mass-extinction events in molecular phylogenies, even when those groups

have experienced more prosaic temporal variation in diversification rates. We performed a

thorough simulation study to characterize the statistical behavior of this new approach,

which reveals that the CoMET model has substantial power to detect the number of

mass-extinction events, provides precise and unbiased estimates of the timing of

mass-extinction events, and exhibits an appropriate false discovery rate. Based on the

results of our simulation study, we offer some practical advice for applying the method to

empirical datasets—including guidance regarding the choice of (hyper)priors, and insights

on the properties of study trees that will impact detection probabilities using our method.

We also demonstrate the empirical application of the CoMET model to a recent phylogeny of

conifers, which reveals that this group experienced two major episodes of mass extinction.

We are optimistic that the development of a robust and powerful statistical approach for

detecting mass-extinction events will provide an important tool for advancing our

understanding of how events in Earth history have shaped the Tree of Life.
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Appendix

Here we provide a single equation to calculate the probability of an observed tree.

For convenience of notation, we construct a unique vector, X, that contains all of the
divergence times and event times (for shifts in speciation and extinction rates, and

mass-extinction events) sorted in increasing order (see Fig. 1.b). It is convenient to expand

the vectors for all of the other parameters so that they have the same number of elements

as X. We use the notation S(2, t1=0, T ) to represent the survival of two lineages in the

interval [t1, T ], which is the condition we enforce on the reconstructed evolutionary process.

This allows us to write the more convenient equation for the probability density of a

reconstructed tree

f(Ψ|N(t1=0)=2, S(2, t1=0, T ))

=
2n−1

n!
×

1 +
k∑

i=0

 di
di − bi

× e

i−1∑
j=0

(dj−bj)(xj+1−xj)−ln(ρj)

×
(
e(di−bi)(xi+1−xi) − 1

)

− ρi − 1∏i
j=1 ρj

× e

i−1∑
j=0

(dj−bj)(xj+1−xj)




−2

×

e

k∑
j=0

(dj−bj)(xj+1−xj)−ln(ρj)

2

×
∏
i∈IT

bi ×
1 +

k∑
l=i

 dl
dl − bl

× e

l−1∑
j=0

(dj−bj)(xj+1−xj)−ln(ρj)

×
(
e(dl−bl)(xl+1−xl) − 1

)

− ρl − 1∏l
j=1 ρj

× e

i−1∑
j=0

(dj−bj)(xj+1−xj)




−2

× e

k∑
j=i

(dj−bj)(xj+1−xj)−ln(ρj)

 . (4)

Additional details regarding the derivation of this probability density and its relation to

other birth-death models are discussed by Höhna (2015).
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Supporting Information

CoMET: A Graphical Model Description

Below, we provide a graphical-model representation of the CoMET model (Figure S1).

The phylogenetic application of graphical models is described by Höhna et al. (2014).

uniform lognormal Poisson

0 T

Speciation

uniform lognormal Poisson

0 T

Extinction

uniform beta Poisson

0 T

Mass Extinction

Figure S1: The CoMET model graph. By convention, constant parameters—such as the
rate of the Poisson process, λi—are enclosed in solid squares, whereas random variables—
such as the number of speciation-rate shifts, kB, or the number of mass-extinction events,
kM—are enclosed in solid circles, and the observations—the vector of waiting times in the
tree, Ψ—are enclosed in a shaded circle to indicate that these variables have been observed.
Here the choice of prior distribution and the hierarchical structure of the model is explicit;
the number of speciation-rate shifts, extinction-rate shifts, and mass-extinction events are
Poisson distributed variables—kB, kD, and kM, respectively—where lognormal distributions
are used for the speciation and extinction rates and a beta distribution is used for the sur-
vival probability. Arrows indicate the dependence between parameters, where the direction
specifies the conditional relation (e.g., an arrow from the constant parameters 0 and T to
the random variable tB[i] indicates that tB[i] is conditional on 0 and T ). Dashed squares
(‘plates’) indicate repetition; here the number of replicates depends on the variables kB, kD,
and kM.
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Figure S2: False discovery rates. Frequency of detecting spurious mass-extinction events
in the absence of background shifts in diversification rates. Rows of panels correspond to
different tree sizes (N = {100, 200, 400, 800}), and columns of panels correspond to different
priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}). Within each panel, the
rows correspond to false discovery rates under various priors on the number of diversification
rate shifts (rows) and mass extinction events (columns).
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Figure S3: False discovery rates. Frequency of detecting spurious mass-extinction events
in the presence of background shifts in diversification rates. Rows of panels correspond to
different tree sizes (N = {100, 200, 400, 800}), and columns of panels correspond to different
priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}). Within each panel, the
rows correspond to false discovery rates under various priors on the number of diversification
rate shifts (rows) and mass extinction events (columns).
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Figure S4: Power as a function of time. Frequency of correctly identifying mass-
extinction events in the absence of background shifts in diversification rates. Rows of panels
correspond to different tree sizes (N = {100, 200, 400, 800}), and columns of panels cor-
respond to different priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}).
Within each panel, the rows correspond to the power under various priors on the number
of diversification rate shifts (rows) and mass extinction events (columns). In each cell, we
compute the power as a function of time by binning simulated trees into the interval corre-
sponding to their mass-extinction time, and computing the fraction of those trees where a
mass-extinction event was correctly inferred.
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Figure S5: Power as a function of time. Frequency of correctly identifying mass-
extinction events in the presence of background shifts in diversification rates. Rows of
panels correspond to different tree sizes (N = {100, 200, 400, 800}), and columns of panels
correspond to different priors on the relative extinction rate (µD = {0.1, 0.5, 0.9, empirical}).
Within each panel, the rows correspond to the power under various priors on the number
of diversification rate shifts (rows) and mass extinction events (columns). In each cell,
we compute the power as a function of time by binning simulated trees into the interval
corresponding to their mass-extinction time, and computing the fraction of those trees where
a mass-extinction event was correctly inferred.
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Figure S6: Bias in estimates of mass-extinction time. The distribution of bias
in estimated mass-extinction times in the absence of background shifts in diversification
rates. Rows of panels correspond to different tree sizes (N = {100, 200, 400, 800}), and
columns of panels correspond to different priors on the relative extinction rate (µD =
{0.1, 0.5, 0.9, empirical}). Within each panel, the rows correspond to the bias under var-
ious priors on the number of diversification rate shifts (rows) and mass extinction events
(columns). The bias is computed as (tsimulated event − testimated event)/tree height× 100%.
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Figure S7: Bias in estimates of mass extinction time. The distribution of bias
in estimated mass-extinction times in the presence of background shifts in diversification
rates. Rows of panels correspond to different tree sizes (N = {100, 200, 400, 800}), and
columns of panels correspond to different priors on the relative extinction rate (µD =
{0.1, 0.5, 0.9, empirical}). Within each panel, the rows correspond to the bias under var-
ious priors on the number of diversification rate shifts (rows) and mass extinction events
(columns). The bias is computed as (tsimulated event − testimated event)/tree height× 100%.

45

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2015. ; https://doi.org/10.1101/020149doi: bioRxiv preprint 

https://doi.org/10.1101/020149


parameter value

po
st

er
io

r p
ro

ba
bi

lit
y

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

20
25

30
35

marginal distribution of extinction rate
empirical prior distribution on extinction rate
mean of empirical distribution on extinction rate

marginal distribution of speciation rate
empirical prior distribution on speciation rate
mean of empirical distribution on speciation rate

Figure S8: Empirical hyperpior analysis of the conifers. Histograms are the marginal
posterior densities of the speciation (purple) and extinction (red) rates for the constant-rate
birth-death-sampling process applied to the conifer data. Solid lines are the corresponding
marginal prior densities of the speciation and extinction rates used for the subsequent CoMET
analyses, dashed vertical lines are means of the empirical prior densities.
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Figure S9: Bayes factors for conifer analyses under various priors. We divided the
time period (0, 340.43) into 100 discrete intervals and computed the Bayes factor support
for there being at least one mass-extinction event in each interval. Point types and colors
correspond to different combinations of prior settings on λB, λD, and λM (see legend). Bayes
factor support is fairly consistent across all the prior settings; in particular, there is always at
least strong support for a mass-extinction event about 23 Ma, and consitently high positive
support for another mass-extinction event at approximately 173 Ma.
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