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Abstract—The paleontological record chronicles numerous episodes of mass extinction that
severely culled the Tree of Life. Biologists have long sought to assess the extent to which
these events may have impacted particular groups. We present a novel method for
detecting mass-extinction events from phylogenies estimated from molecular sequence data.
We develop our approach in a Bayesian statistical framework, which enables us to harness
prior information on the frequency and magnitude of mass-extinction events. The approach
is based on an episodic stochastic-branching process model in which rates of speciation and
extinction are constant between rate-shift events. We model three types of events: (1)
instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide shifts in
extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each of the events
is described by a separate compound Poisson process (CPP) model, where the waiting
times between each event are exponentially distributed with event-specific rate parameters.
The magnitude of each event is drawn from an event-type specific prior distribution.
Parameters of the model are then estimated using a reversible-jump Markov chain Monte
Carlo (rjMCMC) algorithm. We demonstrate via simulation that this method has
substantial power to detect the number of mass-extinction events, provides unbiased
estimates of the timing of mass-extinction events, while exhibiting an appropriate (i.e.,
below 5%) false discovery rate even in the case of background diversification rate variation.
Finally, we provide an empirical application of this approach to conifers, which reveals that
this group has experienced two major episodes of mass extinction. This new approach—the
CPP on Mass Extinction Times (CoMET) model—provides an effective tool for identifying
mass-extinction events from molecular phylogenies, even when the history of those groups

includes more prosaic temporal variation in diversification rate.

(Keywords: Birth-Death Stochastic-Branching Process, Speciation, Lineage Diversification,

Mass Extinction, Bayesian Inference, Phylogeny, Compound Poisson Process Model)
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The paleontological record documents numerous episodes of mass extinction that
severely culled the Tree of Life. As biologists, we often wish to assess whether these events
may have impacted particular groups. To this end, several statistical phylogenetic
approaches have been proposed to identify mass-extinction events from estimated
molecular phylogenies with divergence times, e.g., Nee et al. (1994) and Harvey et al.
(1994). These methods generally assume that the dated phylogeny is known without error,
and decompose the tree into a vector of waiting times between speciation events. Various
models of lineage diversification are then fit to these phylogenetic ‘observations’ using
maximum likelihood to estimate the speciation, b, and extinction, d, rates, and to identify

tree-wide shifts in diversification rate, including episodes of mass extinction.

This research program was initially derailed when it was demonstrated that it is not
possible to distinguish among different histories of temporal variation in diversification
rates within a maximum-likelihood framework (Kubo and Iwasa 1995): an infinite number
of unique diversification histories may give rise to an identical vector of waiting times
between speciation events in this tree. For this reason, recent developments of inferring
diversification process parameters have focused on speciation and extinction rates only
(e.g., Rabosky 2006; Paradis 2011; Stadler 2011a; Morlon et al. 2011; Etienne and
Haegeman 2012; Hohna 2014). Unfortunately, more realistic diversification models—such
as a birth-death process with speciation- and extinction-rate shifts and mass-extinction
events—are non-identifiable when parameters are estimated in a maximume-likelihood
framework (Stadler 2009; 2011a).

In order to distinguish more prosaic temporal variation in diversification rate from
bona fide mass-extinction events, we adopt a Bayesian statistical framework that enables us
to leverage prior information on the frequency and magnitude of mass-extinction events.
Specifically, we develop an episodic stochastic-branching process model where rates of
speciation and extinction are constant between rate-shift events. The events are of three
types: (1) instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide
shifts in extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each
event type is described by a separate compound Poisson process (CPP) model, where the
waiting times between events are exponentially distributed with event-specific Poisson-rate
parameters. These rate parameters—A\g, Ap, and A\yy—therefore control the frequency of
speciation-rate shifts, extinction-rate shifts, and mass-extinction events, respectively. When
an event occurs, its magnitude is described by the corresponding prior probability density.
Specifically, when an event entails a shift in speciation or extinction rate, we draw a new

rate from a lognormal prior distribution with hyperpriors p and o specifying the mean and
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standard deviation, respectively, of the lognormal diversification-rate priors. Similarly,
when an event involves an episode of mass extinction, the number of surviving lineages is
drawn from a beta prior to describe the survival probability, with hyperpriors a and
specifying the shape of the beta prior. Between events, the tree evolves under a
(piece-wise) constant birth-death stochastic-branching process, motivating its description

as an episodic birth-death process.

In principle, all of the free parameters of the CPP on Mass Extinction Time (CoMET)
model could be estimated, including: (1) the number and timing of tree-wide shifts in
speciation rate; (2) the number and timing of tree-wide shifts in extinction rate; (3) the
rate of speciation and extinction between each rate-shift event, and; (4) the number, timing
and severity of tree-wide mass-extinction events. In practice, however, it may not be
possible to reliably estimate all of the CoMET model parameters. This limitation stems from
the tendency of the CPP model to be non-(or weakly) identifiable (Rannala 2002). For
example, when used as a model describing shifts in substitution rate across branches of a
phylogeny (the ‘CPP relaxed-molecular clock model’; Huelsenbeck et al. 2000; Blanquart
and Lartillot 2008), the CPP model can explain the substitution-rate variation in a given
dataset equally well by specifying relatively frequent substitution-rate shifts of small
magnitude, or by specifying less frequent substitution-rate shifts of greater magnitude. In
fact, there are an infinite number of CPP model parameterizations for which the data have
an identical likelihood (i.e., for which the model is non-identifiable). Accordingly, this
model is known to be very sensitive to the choice of priors that specify the frequency and

magnitude of substitution-rate shifts (e.g., Rannala 2002; Ronquist et al. 2012).

Our use of the CPP model to describe mass-extinction events, however, benefits
from the ability to impose strongly informative, empirically grounded priors on the
magnitude (survival probability) and frequency (expected number) of mass-extinction
events. The former prior derives from the definition of a mass-extinction event as the loss
of a specified fraction of species diversity, and the latter can be guided by paleontological
information regarding the likely number of mass-extinction events in the relevant period.
By contrast, it is difficult to justify strongly informative priors related to the frequency and
magnitude of temporal shifts in rates of speciation and extinction. Accordingly, estimates
of the corresponding CoMET parameters (model components 1 — 3, above) are expected to
be extremely sensitive to the choice of prior, and therefore difficult to estimate reliably.
Nevertheless, it is well established that temporal variation in diversification rates is a
pervasive feature of empirical phylogenies (e.g., Moen and Morlon 2014), which may

impact our ability to accurately identify mass-extinction events. Accordingly, several
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components (1 — 3) of the CoMET model are included as nuisance parameters intended to

improve estimation of the focal parameters: the number and timing mass-extinction events.

In this paper, we first provide a detailed description of the CoMET model and the
numerical algorithms used to estimate the parameters of this model. We then perform a
comprehensive simulation study to explore the statistical behavior of the CoMET model,
including its liability to detect spurious mass-extinction events (the false discovery rate),
the ability of the method to detect actual mass-extinction events (the power), and the
accuracy of the method to estimate the timing of mass-extinction events (the bias).
Finally, we apply our approach to an empirical dataset to reveal the impact of

mass-extinction events in coniferous land plants.

METHODS

The episodic reconstructed process with explicit mass-extinction events

Our approach is based on the reconstructed evolutionary process described by Nee
et al. (1994); a birth-death process in which only surviving lineages are observed. Let N (t)
denote the number of species at time ¢. Assume the process starts at time ¢; (the ‘crown’
age of the most recent common ancestor of the study group, tyrca) when there are two
species. Thus, the process is initiated with two species, N(¢;) = 2. We condition the
process on sampling at least one descendant from each of these initial two lineages;
otherwise t; would not correspond to the tyrca of our study group. Each lineage evolves
independently of all other lineages, giving rise to exactly one new lineage with rate b(t) and
losing one existing lineage with rate d(t) (Figure 1A). Note that although each lineage
evolves independently, all lineages share both a common (tree-wide) speciation rate b(t)
and a common extinction rate d(t) (Nee et al. 1994; Stadler 2011a; Hohna 2013; 2014;
2015). Additionally, at certain times, ¢y, a mass-extinction event occurs and each species
existing at that time has the same probability, p, of surviving the mass-extinction event.

Finally, all extinct lineages are pruned and only the reconstructed tree remains.

Our derivation of the CoMET model assumes piecewise-constant speciation and
extinction rates that shift instantaneously at rate-change events (see Figure 1B). Therefore,
we specify the times of the kp speciation-rate shifts in the vector Ty = {tg[1], ..., tp[ks]}.
We specify the speciation rate within each of the k intervals in the vector B = {by, ..., by},
and define the speciation-rate function as b(t) = b; for the interval tg[i] <t < tg[i + 1].

5
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Similarly, we specify the times of the kp extinction-rate shifts in the vector

Tp = {tp[1], ..., tp[kp]}. We specify the extinction rates in the vector D = {dy, ..., dx, },
and the extinction-rate function is defined as d(t) = d; for the interval tp[i] <t < tp[i + 1].
Finally, we specify the times of the ky mass-extinction events in the vector

Twm = {tm[1], - . ., tm[km]}, where the survival probability for each event is specified in the
vector P = {p1,..., pr,}. We note that mass-extinction events might be modeled implicitly,
where a shift to a relatively high extinction rate is followed—after a short interval—by a
return to a relatively low extinction rate. By contrast, we model episodes of mass
extinction explicitly—as instantaneous events—so that we can estimate the probability

that such events have occurred.
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Figure 1: The piecewise-constant birth-death process with mass extinction. A)
A realization of the process involves one speciation-rate shift, three extinction-rate shifts,
and one mass-extinction event. B) Corresponding plots of the episodic (piecewise constant)
speciation and extinction rates, with the times of the five events (see Table 1 for notation).
The survival probability for the single mass-extinction event is p = 0.05.

We present a graphical model description of the CoMET model (Figure S1), and

summarize the notation and interpretation of the model parameters in Table 1.
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Table 1: CoMET model parameters and their interpretation

Parameter

Interpretation

Labeled history with divergence times.

Tree topology.

Vector of divergence times.

Vector of speciation rates per interval.

Speciation rate in the interval tg[i — 1] to tg]i].
Vector of times of the speciation-rate changes.

Time of the i"* speciation-rate change.

Number of speciation-rate changes.

Vector of extinction rates per interval.

Extinction rate in the interval tp[i — 1] to tpi].
Vector of times of the extinction-rate changes.

Time of the i** extinction-rate change.

Number of extinction rate changes.

Vector of the survival probabilities per mass-extinction event.
Survival probability of the i** mass-extinction event.
Vector of times of the mass-extinction events.

Time of the i** mass-extinction event.

Number of mass-extinction events.

Likelihood function.—Let W denote a reconstructed evolutionary tree relating n species,

comprising a tree topology, 7, and the set of branching times, T. For a birth-death process

where the rates of speciation and extinction are the same for all branches at any instant in

time, the probabilities of the tree topology and the branching times are independent. Thus,

we can compute the probability of the reconstructed evolutionary tree as the product of
the independent probabilities: P(V) = P(1) x P(T).

For a tree with n species, there are n!(n — 1)!/2""! unique labeled histories (we use

labeled histories and tree topologies interchangeably). Under a birth-death process, all
labeled histories are equally likely (Edwards 1970; Rannala and Yang 1996), so
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We call a lineage that begins with a single species at time ¢ and ends with a single
sampled species at time T' (the present) a singleton lineage. We proceed by recognizing
that a reconstructed evolutionary tree is composed of a set of independently evolving
singleton lineages: a tree with a single node (the root) has two singleton lineages, and each
additional node generates an additional singleton lineage (Figure 2A). Under a birth-death
process, the probability density of a singleton lineage is just the probability of starting with
a single species at time ¢t and ending with a single sampled lineage at the present T,
P(N(T)=1]| N(t) =1) (Figure 2B).

We must also incorporate the probability density that each new singleton lineage
arises in the first place (i.e., that there is a speciation event at time ¢). Each singleton
lineage gives rise to new species at rate b(t); therefore, in general, the probability density
that a speciation event occurs at time ¢ is simply b(¢) multiplied by the number of singleton
lineages that exist at t. For the episodic model we have described, b(t) = b; for the interval
tpli] <t <tpli+1].

We condition the probability density of observing the branching times on the
survival of both lineages that descend from the root (otherwise, the root would not exist).
To do so, we divide by P(N(T) > 0|N(0) = 1)

The probability density of the branching times, T, becomes

both initial lineages have one descendant

speciation rate  singleton lineage has one descendant

PINT) 1| NO) = 1P e ) S e
P(N(T)> 0| N(0)=1)> 11 ixb(ts) x PIN(T)=1[N(t:) =1),

~
both initial lineages survive

P(T) =

and the probability density of the reconstructed tree (topology and branching times) is then

P(V) = P(r) x P(T)

on-1 P(N(T)=1| N 1))’
aln— 1~ (P(N(T) > 0| N(0) = 1))

x 1:[@ % b(t;) x P(N(T) = 1| N(t;) = 1) (1)

We can simplify Equation (1) by substituting P(N(T) > 0| N(t) = 1)?exp(r(t,T))
for P(N(T) =1 | N(t) = 1), where r(u,v) = [ d(t) — b(t)dt (for a detailed description of
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this substitution, see Hohna 2015); the above equation becomes

e P(N(T) > 0] N(0) = 1)2exp(r(0,7))
P(\II)_n!(n_l)!X< P(N(T)>0|N(0)=1) )

x Hz % b(t;) x P(N(T) > 0| N(t;) = 1)2exp(r(t;, T))

_ 2;!1 x (P(N(T) > 0| N(0) = 1)eXp(T(O,T)))2
< [T bt x PIN(T) > 0] N(t) = 17 explr(t:. 7)) 2)

This probability density was originally derived by Thompson (Thompson 1975; Equation
(3.4.6)) for constant rates (see also Equation 20 in Nee et al. 1994) and later extended to
arbitrary rate functions (Lambert 2010; Héhna 2013; 2014; 2015).

The probability density of a reconstructed phylogeny ¥ in Equation (2) is given for
any time-dependent birth-death process. Analytical solutions to this equation can be
obtained if the following quantities can be computed analytically: b(¢;),
P(N(T)>0|N(t;)=1), and r(¢;,T). Given the speciation and extinction rate and the
mass-extinction survival probabilities, we can compute the probability of no extinction (see
Equation 16 in Hohna 2015)

_ 1+ Z dz ' % ejgo(dj bj)(t]+1 t]) 1 (pj) y (e(di_bi)(ti+1_ti) B 1)

-1

1
pi — 1 " ejgo(drbj)(tjﬂftj) | 3)
Hj:l Pj

Inserting Equation (3) into Equation (2) yields the probability density of an observed (i.e.,
reconstructed) tree under the episodic birth-death process with explicit mass-extinction

events. We provide this expanded equation in the Appendix; see Equation (4).
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Figure 2: Computing the likelihood of a phylogeny under the birth-death process.
We first identify lineages within the phylogeny that begin and end with a single species (panel
A, colored branches). Then, for each of those lineages, we compute the probability that the
lineage ended with a single extant species at time 7T given that it began with a single species
at time t, P(N(T)=1| N(t) =1) (panel B). We then multiply those probabilities by the
number of labeled histories, as well as the probability that there were speciation events
at each non-root node in the tree, b(t); finally, we condition on survival of the process by
dividing by the probability that each lineage descending from the root left at least one extant
descendant, P(N(T)>0 | N(0)=1)? (panel C, see also Equation (1)).

Bayesian Inference

Parameterization and prior distributions.—In the previous section we described the
episodic birth-death process with mass-extinction events and gave the probability density
of an observed tree given the parameters, i.e., the likelihood function for the CoMET model.
The likelihood function allows us to estimate parameters of the model using different
statistical approaches, including maximum-likelihood estimation and Bayesian inference.
Previously, the study of temporal variation in diversification rates has largely been pursued
in a maximum-likelihood framework (e.g., Rabosky 2006; Stadler 2011a; Hohna 2014).

However, Kubo and Iwasa (1995) demonstrated that stochastic-branching process models

10
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are non-identifiable when parameters are estimated using maximum likelihood. That is, the
phylogenetic observations (the vector of waiting times between speciation events) are
equally likely to be the outcome of an infinite number of distinct diversification processes.
For example, a diversification process in which a low initial speciation rate later shifts to a
higher speciation rate produces the same phylogenetic observations as a constant-rate

process with a mass-extinction event (Stadler 2011b).

These considerations motivated our adoption of a Bayesian solution to this problem.
Pursuing the detection of mass-extinction events within a Bayesian statistical framework
both allows us to specify a prior distribution on the number of events—thereby
automatically penalizing more complex histories—and also to leverage biologically relevant
information (as informative priors) on the survival probability of mass-extinction events.
Specifically, we draw the number of speciation and extinction rate-shifts from a Poisson
prior with rate Ag and Ap, respectively. Following a shift in speciation or extinction rate,
we draw a new rate from a lognormal prior with parameters pug and oy or up and op.
Similarly, we draw the number of mass-extinction events from a Poisson prior with rate Ay,
and draw the survival probability from a Beta prior with parameters o and 3. By default,
we assume that a = 2 and § = 18; this corresponds to a prior belief that a mass-extinction
event will on average result in the loss 90% of the contemporaneous species diversity.

Accordingly, the parameters and prior densities of the CoMET model are as follows:

kg ~ Poisson(\g)
kp ~ Poisson(Ap)
ky ~  Poisson(Ay)
b; ~ Lognormal(up,op)
d; ~ Lognormal(up,op)

pi ~ Beta(a,B)

tgli] ~ Uniform(0,7)
tp[i] ~ Uniform(0,7)
tm[i] ~ Uniform(0,7)

Empirical Bayesian hyperpriors.—Our use of lognormal priors for the speciation and
extinction rates raises the issue of how we should parameterize these distributions.
Specifically, we need to specify the mean and standard deviation of these prior densities.

Were we to specify a lognormal prior that is too narrow (i.e., where the standard deviation

11
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is too small), the rates would be close to the mean and the model would disfavor large rate
shifts. Conversely, if we were to specify a lognormal prior that is too diffuse (i.e., where the
standard deviation is too large), the rates would be overly dispersed and the model would

tend to overfit patterns of rate variation the data.

It is therefore crucial to carefully select the parameters of these prior distributions.
We might pursue one of three possible approaches for specifying the prior mean and
standard deviation of the lognormal priors: (1) we could adopt an ‘empirical prior’
approach that treats the mean and standard deviation as fixed values, perhaps guided by
biological information on these parameters; (2) we could adopt a ‘hierarchical Bayesian’
approach that treats the mean and standard deviation as random variables, allowing these
parameters to be estimated from the data (Holder and Lewis 2003), or; (3) we could adopt
an ‘empirical Bayesian’ approach, where the values of these parameters are guided by the
data at hand (c.f., Huelsenbeck and Bollback 2001; Yang et al. 2005).

Use of empirical priors is not viable because we typically lack information regarding
reasonable values for the mean and standard deviation of speciation and extinction rates.
The development of a hierarchical Bayesian model would provide an elegant solution, but
defers rather than solves the problem. That is, we avoid specifying values for the mean and
standard deviation of the lognormal priors by treating them as random variables, but this
necessitates that we specify both the type of second-order hyperpriors (beta, gamma, etc.)
and the associated second-order hyperparameters (shape, scale, etc.) for these variables.
There are also some immediate practical concerns with a hierarchical Bayesian solution.
First, this solution involves adding an extra level of complexity to the CoMET model, which
may complicate our characterization of the statistical behavior of this new method.
Additionally, a hierarchical Bayesian solution is more computationally demanding,
which—although not an issue for empirical applications of the CoMET model—is of more

concern for our simulation study that involves a large number of analyses.

Accordingly, we have adopted an empirical Bayesian approach for parameterizing
the lognormal priors for the speciation- and extinction-rate parameters. This involves
performing a preliminary MCMC simulation for the data at hand under a constrained
CoMET model—where rates of speciation and extinction are assumed to be constant—to
estimate the posterior probability densities for the speciation and extinction rates. We
then center the lognormal prior on the inferred posterior mean for each parameter.
Similarly, we specify the standard deviation of the lognormal prior such that the variance

of the prior density is ten-fold that of the inferred posterior density.

12
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Markov chain Monte Carlo implementation.—We approximate the posterior probability

distribution of the CoMET model parameters using a Metropolis-Hastings algorithm

(Metropolis et al. 1953; Hastings 1970; Gelman et al. 2003). Specifically, we employ a

Markov chain Monte Carlo (MCMC) simulation where we propose updates for all numeric

parameters using normally distributed proposal densities centered on the current values

(Gelman et al. 2003; Yang and Rodriguez 2013), and propose updates for the number of
events using reversible-jump MCMC (rjMCMC; Green 1995; 2003). We implemented two

rjMCMC proposals to add or remove an event—the ‘birth move’ and ‘death move’,

respectively—following Huelsenbeck et al. (2000).

Birth move

1. Simulate the time of the new event: tx.; ~ unif(0,7")

SR BRSNS

Simulate the parameter value for the new event from the corresponding prior:
O+1 ~ Prior, such that 0’ = {0 U 0y}

Compute the posterior probability for the proposed value:

f(0'") o Likelihood(6") x Prior(¢’)

Compute the posterior probability for the current value:

f(0) x Likelihood(6) x Prior(6)

Compute the forward proposal probability: ¢(¢'|0) = 1/T x Prior(6y41)
Compute the reverse proposal probability: ¢(0|¢’) = 1/(k + 1)

Compute the Jacobian: J =1

Compute the acceptance probability:

a = [f(0')/f(0) x q(016")/q(010) x J = f(0')/f(0) x 1/(k + 1) x (1/T" x Prior(fx41))~"

Death move

N Ot

Select an event to delete: idz ~ unif(1, k) so that ¢ = {0\0;4. }
Compute the posterior probability for the proposed value:

f(0") o Likelihood(#") x Prior(¢’)

Compute the posterior probability for the current value:

f(0) « Likelihood(#) x Prior ()

Compute the forward proposal probability: ¢(6'|0) = 1/(k + 1)
Compute the reverse proposal probability: ¢(0|0") = 1/T x Prior(6;4.)
Compute the Jacobian: J =1

Compute the acceptance probability:

a = f(6")/f(0) x q(0]6')/q('|0) x J = f(0')/ f(0) x (k+1)/T x Prior(ia)

13
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Both birth and death proposals are used to update the number of speciation
rate-shifts, extinction rate-shifts, and mass-extinction events. When the number of events
is being updated, a birth move or a death move will be applied with equal probability
during an iteration of the MCMC simulation. We validated the algorithms and our
implementation by sampling from the prior distribution. When the rjMCMC simulation is
run without data, it will target the joint prior probability density of the model parameters.
This allows us to compare the inferred marginal prior probability density to the
corresponding known prior probability density for each model parameter: if the rfyjMCMC
algorithm and implementation are correct, we will recover the known prior densities. These

experiments confirmed the validity of the CoMET algorithms.

The CoMET model and the rjMCMC algorithm are implemented in the R package
TESS and are available from http://cran.r-project.org/.

Hypothesis Testing

Testing hypotheses regarding the timing of significant mass-extinction events.— Explicitly
modeling mass-extinction events enables us to perform robust Bayesian hypothesis testing
using Bayes factors. The Bayes factor compares the relative performance of two models
(denoted My and M) by comparing their marginal likelihoods:

marginal likelihood of M;  P(X | M)

BF — =
MuMo ™ harginal likelihood of My P(X | M)’

where the marginal likelihood, P(X | M;) = [, P(X | 0)P(0 | M;)df, is the likelihood of the
data, X, integrated over the entire joint prior distribution of the model parameters (i.e.,
the average probability of observing the data under the model). Values of BF,, y, greater
than 1 indicate a preference for M;, whereas values of BFy, a, less than one indicates a
preference for My (Kass and Raftery 1995).

Normally, the marginal likelihood is an intractable quantity to compute; however,

the Bayes factor can be re-written as:

posterior probability of M; _ prior probability of M;

MuMo = sterior probability of M, — prior probability of M,

For example, we may be interested in testing the hypothesis that mass extinction ¢
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occurred at time ¢:

_ P(tulil=t]|X) . P(tuli]=1)
BFy =t tuli4t = 1— P(tw[i] =t | X) 1 P(tyli] = 1)

Unfortunately, because we must approximate the posterior probability density of
mass-extinction times with MCMC, the (estimated) posterior probability P(tp[i| =t | X)
will always be 0 (i.e., the probability that a numerical sample takes some real value ¢ is 0).
We can, however, test the hypothesis that at least one mass extinction occurred in the
interval I = (¢,t + At):

1-P(Mel|l=0|X) 1-P(Mel|l=0)

BF meriz0,merj=0 = +

P(Mel|=0]X) P(M € I| = 0)

Conveniently, we can calculate the prior probability of no mass extinction under the CPP

model:

At

P(MelI|=0)= e T,

where % is the duration of the interval relative to the height of the tree. The posterior

probability can be approximated directly from the MCMC samples:

1 1 if[Miel]=0
P(|M€I|:0|X):NZ _ :
i—1 | 0 otherwise

where N is the number of MCMC samples and M is the vector of mass-extinction times in

the it" sample.

Our procedure for identifying the timing of mass-extinction events is as follows:
(1) discretize the interval (0,7) into n intervals of duration At = L; (2) for each interval,
compute the Bayes factor for at least one mass extinction in the interval; (3) identify
intervals with significant Bayes factor support for the specified significance threshold,
BF i, as containing a mass-extinction event, and; (4) merge contiguous runs of intervals
with mass-extinction events into a single mass extinction whose time corresponds to the

interval with the highest support. This procedure is depicted in Figure 3.

There are several practical considerations for this approach. Intervals that are too
large relative to T" will provide imprecise estimates of the mass-extinction times, and may

in fact include multiple well-supported mass extinctions, confounding the interpretation of
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0.7 — second mass extinction time

posterior probability
2 In BF

interval

Figure 3: Identifying significant mass-extinction events using Bayes factors. An
example of the procedure for estimating the timing of significant mass-extinction events.
Each bar represents the posterior probability of at least one mass extinction in that interval.
Bars that exceed the significance threshold (in this case, 2 In BF > 6) indicate significant mass
extinction events. When multiple adjacent bars are greater than the significance threshold,
only the bar with the greatest support is considered a mass extinction. In this example, the
Bayes factors are computed assuming Ay = In2, and we infer significant mass-extinction
events in intervals 48 and 93.

the Bayes factor test. Conversely, intervals that are very small will lead to more precise
estimates of mass-extinction times, but will also decrease the number of sampled mass
extinctions in the interval, resulting in unstable estimates of the posterior probability. We
have found that At = 1% provides a good compromise between precision and stability. The
identification of well-supported mass extinctions relies on a significance threshold, BF ;.
By convention, we use a significance threshold that corresponds to “strong” support

(2In BF . > 6, Kass and Raftery 1995). A well-supported mass extinction may also
appear in multiple consecutive intervals, which motivates step 4, the merger of contiguous
mass extinctions. We note that setting At = T' is equivalent to testing the hypothesis
regarding the occurrence of any significant mass-extinction events over the entire tree;
however, we can also test hypotheses about the exact number of mass-extinction events,

which we describe in the next section.

Testing hypotheses regarding the number of significant mass-extinction events.—Bayes
factors can also be used to test hypotheses related to the number of mass-extinction events.

By treating the number of mass extinctions as the model, we can assess the support for

16


https://doi.org/10.1101/020149

bioRxiv preprint doi: https://doi.org/10.1101/020149; this version posted May 31, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

exactly k£ mass-extinction events:

. _ Plhu=k|X) . Plu=k)
ku=k btk = 7 " P =k X)) 1—Plkm=k)

where, under the CPP model, the prior probability is simply calculated as:

A k
P(kM:k):(;:ﬁ) e,

and the posterior probability is directly estimated from the MCMC samples:

Pl = k | X) 1% b=
M — = X7 P
N i—1 | 0 otherwise

where ki, is the number of mass-extinction events in the i*" MCMC sample.
Simulation Study

The complex nature of both the CoMET model and the algorithms used to estimate
parameters of the model demand a comprehensive simulation study to characterize the
statistical behavior of this new method. We designed our simulation study to understand:
(1) the rate at which mass-extinction events are incorrectly inferred (the false discovery
rate); (2) the rate at which mass-extinction events are correctly inferred (the power);

(3) the accuracy of the inferred timing of mass-extinction events (the bias); (4) the ability
to distinguish multiple mass-extinction events, and; (5) the influence of shifts in
background diversification rates on the false discovery rate, power and bias of our approach.

All simulations and analyses were performed in the R package TESS (Hohna 2013).

False discovery rate.—We first assessed the liability of the CoMET model to detect spurious
mass-extinction events in trees simulated under constant speciation and extinction rates.
For each tree, we sampled the speciation rate, b, from a lognormal distribution with mean
pup = 1 and standard deviation op = exp(0.2). Similarly, we sampled the extinction rate, d,
from a lognormal distribution with mean up = 0.5 and standard deviation op = exp(0.2).
We ran each simulation for 7' = 10 time units, generating trees with

N = {100, 200,400, 800} species. For each tree size, we simulated 100 trees (400 trees in
total; c.f., Figure 4A).

We also assessed the liability of the CoMET model to detect spurious mass-extinction
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events in trees simulated under episodically shifting speciation and extinction rates. For
each tree, we sampled the number of speciation- and extinction-rate shifts, kg and kp, from
a Poisson distribution with rate parameters \zg = A\p = 2. We sampled the times of the
speciation- and extinction-rate shifts, Ty = {tg[1],...,ts[ks|} and Tp = {tp[1],. .., tplkp]},
from a uniform distribution on (0,77). We sampled the speciation rates, B = {by, ..., by, },
from a lognormal distribution with mean g = 1 and standard deviation op = exp(0.2).
Similarly, we sampled the extinction rates, D = {dp, ..., d, }, from a lognormal
distribution with mean pp = 0.5 and standard deviation op = exp(0.2). We ran each
simulation for 7" = 10 time units, simulating 100 trees of each size, with

N = {100, 200,400, 800} species (400 trees in total; c.f., Figure 4B).

In order to explore the impact of the chosen priors on our ability to detect
mass-extinction events, we analyzed each simulated tree under a variety of prior settings.
We considered cases where the prior expected relative-extinction rate (d + b) was either too
low, centered on the correct value, or too high. We achieved this by varying the hyperprior
on the mean extinction rate, up = {0.1,0.5,0.9}, while fixing the other hyperpriors to the
generating values. Specifically, we set the mean and standard deviation of the lognormal
speciation-rate prior to ugp = 1 and op = exp(0.2), respectively, and set the standard
deviation of the lognormal extinction-rate prior to op = exp(0.2). In addition to analyses
using fixed hyperprior values, we also performed analyses where the values of the
hyperpriors for the speciation and extinction rates were estimated using the empirical
Bayesian approach described above. We also varied the priors on the frequency of
diversification-rate shifts, Ag = Ap = {0.1,In2,2,5}, and the frequency of mass-extinction
events, Ay = {0.1,In2,2,5}. We set the hyperpriors on the mass-extinction survival
probability to a = 2, § = 18. We analyzed each simulated tree under every combination of
prior settings, resulting in 4 x 4 x 4 = 64 analyses per tree, for a total of 64 x 800 = 51,200
MCMC analyses.

We ran each MCMC simulation until one of two stopping conditions was reached:
(1) the effective sample size (ESS, computed with the R package coda) for all of the
event-rate parameters—*kp, kp and ky—exceeded 500, or; (2) the maximum number of
cycles (one million) was reached. We thinned the chains by sampling every 100" state.
Occasionally, one or more parameters were found to have low ESS values (< 200) after the
MCMC simulation reached the maximum length. In such cases, we repeated the analysis.
We discarded the first 25% of the samples for each MCMC simulation as burnin. We then
classified any analyses that identified strong support for at least one mass-extinction event

as a false positive, and computed the false discovery rate for a particular combination of
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prior settings as the fraction of analyses that contained false positives.
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Figure 4: Simulation study design. Panels A and B depict simulations that explore the
false discovery rate (where trees are simulated without mass-extinction events); panels C and
D depict simulations that explore the power and bias (where trees are simulated with mass-
extinction events). Panels A and C entail simulations where the speciation and extinction
rates are constant; panels B and D entail simulations where the speciation and extinction
rates shifted episoodically. Each panel shows an actual tree (above) from the simulations
with N = 100 species, as well as the parameters of the stochastic-branching-process model
used in those simulations (below).

Power.—We first assessed the power of the CoMET model to correctly detect mass-extinction
events against a background of constant speciation and extinction rates. We sampled
speciation and extinction rates as described above for the false discovery rate experiments.
For each tree, we sampled the number of mass-extinction events, ky, from a Poisson
distribution with a rate parameter A\yy = 1. We sampled the times of the mass-extinction
events, Ty = {tm[1], ..., tm[km]}, from a uniform distribution on the interval (0,7°). For
each mass-extinction event, we sampled the survival probabilities, P, from a beta
distribution with shape parameters a = 2 and § = 18, so that the expected survival
probability E[p] = 2= = 0.1. We ran each simulation for 7' = 10 time units, simulating 100

]

trees of each size, with N = {100, 200, 400,800} species (400 trees in total; c.f., Figure 4C).

We also assessed the power of the CoMET model to correctly identify mass-extinction
events against a background of episodically shifting speciation and extinction rates. For
this experiment, we simulated trees exactly as in the initial power experiment, except that

we simulated diversification-rate shifts as described in the false discovery rate experiment.
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We ran each simulation for 7' = 10 time units, simulating 100 trees of each size, with
N = {100, 200,400, 800} species (400 trees in total; c.f., Figure 4D).

We analyzed each simulated tree under the same variety of prior settings, and
performed and diagnosed the MCMC simulations as described in the false discovery rate
experiments (51,800 analyses in total). We classified an analysis as having correctly
inferred a mass-extinction event if it indicated strong support for one mass-extinction event
when the tree actually experienced one mass-extinction event. We computed the power for
a particular combination of prior settings as the fraction of analyses that correctly

identified a mass-extinction event.

Bias.—We assessed the ability of the CoMET model to accurately estimate the timing of
mass-extinction events using the analyses from the previous section. When an analysis
correctly inferred a single mass-extinction event, we computed the bias of the estimated

event time as (fsimulated — Lestimated)/tree height x 100%.

Multiple mass-extinction events—Motivated by our empirical conifer analysis (see below),
we investigated the behavior of the CoMET model under sequential mass-extinction events.
In particular, we were interested in the ability of the method to successfully detect the
older of two mass-extinction events, and the ability to distinguish the two mass extinctions

as a function of their relative age.

To approximate the conifer dataset (see below), we simulated trees with N = 492
species and a tree height of T" = 340.43 million years. We simulated the trees under
constant background speciation and extinction rates, which were sampled from the
posterior distributions estimated from our empirical analyses. We simulated one ancient
mass-extinction event at t, = 250 Ma to mimic the Permo-Triassic mass-extinction event.
We then simulated a second, more recent mass extinction at t, = {200, 150, 100,50} Ma.
Both mass-extinction events had a survival probability of p = 0.1. We simulated 100 trees

for each value of t,, for a total of 400 simulated trees.

We analyzed each tree using empirical Bayesian estimates of the diversification-rate
hyperpriors—pup, og and pp, op—and assumed a constant background diversification rate
(A = Ap = 0). We analyzed each simulated tree under a variety of prior settings for the
frequency of mass-extinction events, Ay = {0.1,In2, 2,5}, for a total of 4 x 400 = 1, 600

analyses. We performed MCMC analyses and diagnostics as described previously.
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For each analysis, we then estimated the time of inferred mass-extinction events as
described previously in the hypothesis-testing section. We considered CoMET to have
provided a correct result if the inferred mass-extinction event was within four intervals
[4% = (340.43 + 100) x 4 = £13.6 million years| of the simulated mass-extinction event.
We then calculated the fraction of analyses under each set of priors that identified the more

recent, the more ancient, or both mass-extinction events.

An Empirical Example: Mass Extinction in Conifers

To demonstrate the application of the CoMET model to an empirical dataset, we
present an analysis exploring mass-extinction events in conifers. Our analysis is based on a
recent study of the phylogeny and divergence times of conifers (Leslie et al. 2012), which
included 492 of 630 (78%) described species and inferred a crown age of 340.43 Ma.
Accordingly, this conifer tree spans three major mass-extinction events; the Permo-Triassic
(252 Ma), the Triassic-Jurassic (201.3 Ma), and the Cretaceous-Paleogene (66 Ma)
mass-extinction events. Each event is estimated to have caused the loss of ~ 70 — 75% of
contemporaneous terrestrial species (e.g., Raup and Sepkoski 1982; Labandeira and
Sepkoski 1993; Rees 2002; McElwain and Punyasena 2007; Cascales-Minana and Cleal
2014).

We conditioned our conifer analyses on the maximum-clade credibility consensus
tree from the Leslie et al. (2012) study, with the three cycad (outgroup) species removed.
We first performed a series of preliminary analyses on this tree to estimate the marginal
posterior probability densities for the diversification-rate hyperpriors, ug, og, up, and op.
We performed these analyses under a constrained CoMET model, where background
diversification rates were held constant and mass-extinction events were precluded
(specified by setting Ag = Ap = Ay = 0). We approximated the joint posterior probability
density under this constrained model by running four independent MCMC simulations, and
thinned each chain by sampling every 1,000" state. The chains were terminated when the
ESS values for every parameter reached 500. We discarded the first 25% of samples from
each chain as burnin, and combined the stationary samples from the four independent
chains. We then used the inferred composite marginal posterior probability densities to
specify values for the diversification-rate hyperpriors; that is, for the mean and standard
deviation of the lognormal priors on the speciation and extinction rates, ug, op, up, and op.
Specifically, we centered each of the lognormal priors on the corresponding estimate of the

posterior mean, and specified the standard deviation such that the variance of the prior

21


https://doi.org/10.1101/020149

bioRxiv preprint doi: https://doi.org/10.1101/020149; this version posted May 31, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

density was ten-fold that of the corresponding inferred marginal posterior density. The
inferred marginal posterior densities for the diversification rate hyperparameters—and the

marginal hyperprior densities elicited from them—are depicted in Figure S8.

We then performed a second series of analyses under the full CoMET model to infer
the history of mass extinction in conifers. For these analyses, we used the previously
specified empirical Bayesian diversification-rate hyperpriors (i.e., ug, op, i, and op), and
assumed phylogenetically uniform species sampling (e.g., Hohna et al. 2011; Hohna 2014).
We specified the prior probability of surviving mass-extinction events using a beta prior
with shape parameters o = 2.5 and [ = 7.5; this specifies an expected survival probability
of 25%, which is consistent with prior knowledge (McElwain and Punyasena 2007;
Cascales-Minana and Cleal 2014). As in our analyses of the simulated datasets, we assessed
the prior sensitivity of our inferences by performing analyses under a variety of priors.
Specifically, we performed analyses under a range of values for the prior on the frequency of
mass-extinction events, Ay = {0.1,In2,2,5}, and also for the priors on the frequency of
shifts in diversification rate, Ay = Ap = {0.1,In2,2,5}. For each unique combination of
prior settings, we approximated the joint posterior probability density by running four
independent MCMC simulations, and thinned each chain by sampling every 1,000" state.
We terminated terminated an MCMC simulation when the ESS values for every parameter
reached 500, discarded the first 25% of samples from each chain as burnin, and then
combined the stationary samples from the four independent chains. Our estimates of the
number and timing of mass-extinction events were based on the resulting composite

marginal posterior probability density for each of the unique prior settings.

Data availability statement.—The authors confirm that all data supporting the results of
this study are fully available without restriction. We have made these data available as an
archive—including all of the empirical and simulated datasets, as well as the scripts used to
simulate and analyze those data—that has been deposited in the Dryad digital repository.
The Dryad data identifier for this archive is: doi:XX.XXXX/dryad XXXXX.

RESULTS

Stmulation Study

False discovery rates—We evaluated the false discovery rate (FDR) of the CoMET model by

computing the fraction of cases where it identified strong support for one or more spurious
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mass-extinction events in trees that were simulated without episodes of mass extinction.
Figure 5 depicts the FDR for analyses of trees with N = 400 species, where the extinction
rate was centered on the true value (up = 0.5, left column), or where the
diversification-rate hyperpriors were specified using the empirical Bayesian approach (right

column). Results were qualitatively similar across all analyses (see Figures S2 and S3).
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Figure 5: False discovery rates. Frequency of detecting spurious mass-extinction events.
Rows of panels correspond to the absence (top panels) or presence (bottom panels) of back-
ground diversification-rate shifts, and columns of panels correspond to relative-extinction
rate priors centered on the true values (left panels) or estimated from the data (right panels).
Within each panel, the rows correspond to false discovery rates under various priors on the
expected number of diversification-rate shifts (rows) and mass-extinction events (columns).

Our simulation study implies that the CoMET model has a slightly elevated FDR
(relative to the conventional 5% threshold): the overall FDR was inferred to be 8.1% or
9.9% for trees simulated under constant or episodically shifting background diversification
rates, respectively. However, a more careful examination of the results reveals that spurious
mass-extinction events are far more likely under specific combinations of prior settings.
Specifically, the false discovery rate was substantially inflated when the prior rate of
mass-extinction events was very low (FDR for Ay = 0.1: 18.9% without diversification-rate
shifts, 21.2% with diversification-rate shifts), compared to the remainder of the analyses
(FDR for Ay # 0.1: 4.4% without diversification-rate shifts, 6.1% with diversification-rate

shifts). The prior mean on the extinction rate, up, had a less pronounced effect on the false
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discovery rate (FDR for up = {0.1,0.5,0.9}: 10.8%, 5.3%, 13.5% without
diversification-rate shifts; 12.6%, 7.4%, 15.3% with diversification-rate shifts). Importantly,
the false discovery rate was much lower for analyses using empirical Bayesian approach to
specify hyperpriors (FDR for empirical hyperprior analyses: 2.8% without

diversification-rate shifts, 4.1% with diversification-rate shifts).

Power.—We evaluated the power of the CoMET model by computing the fraction of cases
where it identified strong support for a known (i.e., simulated) mass-extinction event.
Moreover, we assessed power as a function of the relative timing of mass-extinction events;
we placed each analysis into one of six bins corresponding to the simulated mass-extinction
time and computed the power for each of the bins under each combination of prior settings.
Figure 6 depicts the statistical power of the CoMET model for trees with N = 400 species,
where the extinction rate was centered on the true value (up = 0.5, left column), or where
the diversification-rate hyperpriors were specified using the empirical Bayesian approach
(right column). Results were qualitatively similar across all analyses (see Figures S4 and
S5).

Our ability to correctly infer mass-extinction events depended critically on the
timing of the event. Detection rates were much higher in the more recent half of the tree
(power in the recent half: 51.5% without diversification-rate shifts, 53.7% with
diversification rate shifts) compared to the more ancient half (power in the ancient half:

8.8% without diversification-rate shifts, 11.6% with diversification rate shifts). Indeed,

AT
6

and 2L (power: 64.0% without diversification-rate shifts, 58.8% with diversification-rate

power was the greatest when the mass-extinction event occurred somewhere between

shifts). The prior on mass-extinction rate had a small influence on the power, with smaller
values having greater power (power in the more recent half of the tree for

Av = {2,In2,2,5}: 60.1%, 65.3%, 47.7%, 32.4% without diversification-rate shifts, 59.7%,
65.7%, 49.9%, 39.6% with diversification-rate shifts). Importantly, the empirical Bayes
approach did not markedly reduce overall power (power in the more recent half of the tree
for empirical hyperpriors: 50.4% without diversification rate-shifts, 54.3% with
diversification-rate shifts; compared to a priori hyperpriors: 51.7% without
diversification-rate shifts, 53.5% with diversification rate-shifts). As expected, overall
power increased with the size tree, especially in the face of diversification-rate shifts (power
in the more recent half of the tree for N = {100, 200, 400,800}: 47.1%, 54.5%, 48.8%,
55.6% without diversification-rate shifts, 40.6%, 56.2%, 55.9%, 62.1% with diversification
rate-shifts).
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Figure 6: Power as a function of the relative time of mass-extinction events.
Frequency of detecting true mass-extinction events. Rows of panels correspond to the ab-
sence (top panels) or presence (bottom panels) of background diversification-rate shifts, and
columns of panels correspond to relative-extinction rate priors centered on the true values
(left panels) or estimated from the data (right panels). Within each panel, the rows corre-
spond to the power under various priors on the expected number of diversification-rate shifts
(rows) and mass-extinction events (columns). Within each cell, we plot power as a function
of time by binning simulated trees by the relative time of the detected mass-extinction event,
and compute the fraction of those trees where a mass-extinction event was correctly inferred.

Bias.—We evaluated the bias of inferred mass-extinction times under the CoMET model as
follows: for all cases in which a mass-extinction event was correctly inferred, we compared
the actual event time to the estimated event time as (factual — festimated)/tree height x 100%.
Figure 7 depicts the bias of the CoMET model for analyses of trees with N = 400 species,
where the extinction rate was centered on the true value (up = 0.5, left column), or where
the diversification-rate hyperpriors were specified using the empirical Bayesian approach
(right column). Results were similar for the entire simulation (see Figures S6 and S7).
Across all analyses, the estimated mass-extinction times were approximately unbiased;
overall, the inferred event times were biased by —0.5% or —3.2% of the true event times for
trees simulated under constant or episodically shifting background diversification rates,

respectively.
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Figure 7: Bias in the estimated timing of mass-extinction events. Rows of pan-
els correspond to the absence (top panels) or presence (bottom panels) of background
diversification-rate shifts, and columns of panels correspond to relative-extinction rate priors
centered on the true values (left panels) or estimated from the data (right panels). Within
each panel, rows correspond to the bias under various priors on the expected number of
diversification-rate shifts (rows) and mass-extinction events (columns). We computed the
bias as (tsimulated event — testimated event)/tree helght X 100%

Multiple mass-extinction events.—Figure 8 summarizes results of our empirically motivated
investigation of sequential mass-extinction events. The ability of the CoMET model to detect
the more recent mass extinction depends on the relative age of the event: we detected

~ 90% of the events that occurred 50 Ma, but only ~ 15% of those that occurred 200 Ma.

These findings are consistent with our results based on the single-event simulations, which

indicate that power increases with the recency of the mass-extinction event (c.f., Figure 6).
Similarly, our ability to detect the more ancient event depends on the interval between the
sequential mass-extinction events: the more recent event casts a shadow backward in time

that can completely eclipse an older event if they are spaced too close together in time.
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Figure 8: Power to detect sequential mass-extinction events. We plot the frequency
of correctly detecting relatively recent (open circles) and ancient (open triangles) mass-
extinction events as a function of the age of the more recent event. We plot the age of the
more recent mass-extinction event along the x-axis, and the probability of correctly detecting
mass-extinction events along the y-axis.

Mass Extinction in Conifers

Our analysis of the conifer phylogeny identified two mass-extinction events: the first
event was inferred to have occurred approximately 173 Ma with positive support, and the
second event to have occurred approximately 23 Ma with very strong support (Figure 9).
Based on the results of our simulation study, we suspect that the “shadow effect” of the
more recent event has diminished the signal of the earlier mass-extinction event. Curiously,
the inferred times of the two events do not coincide with the established ages of major
mass-extinction events. The closest known events to the inferred mass-extinction times are
the Eocene-Oligocene event (34 Ma) and the Toarcian-turnover event (183 Ma); however,
these mass-extinction events are not thought to have strongly impacted terrestrial flora
(McElwain and Punyasena 2007; Cascales-Minana and Cleal 2014).

Our estimates of the mass-extinction times in conifers are, of course, based on
divergence-time estimates for this group. Accordingly, any bias in the inferred divergence
times will cause a corresponding bias in the inferred timing of the mass-extinction events.
If, for example, conifer divergence times are slightly underestimated, then the timing of the

more recent event could conceivably correspond to the Cretaceous-Paleogene
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mass-extinction event (66 Ma), and the age of the earlier event could easily correspond to
the Triassic-Jurassic (201.3 Ma) or the Permo-Triassic mass-extinction events (252 Ma).
We note, however, that our method is unlikely to detect both the Triassic-Jurassic and the

Permo-Triassic mass-extinction events, given their close temporal proximity (c.f., Figure 8).
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Figure 9: Mass-extinction events in conifers. We inferred two mass-extinction events:
a recent event at 23 Ma (with very strong support), and an earlier event at 173 Ma (with
positive support).
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DISCUSSION

We present a novel Bayesian approach for detecting mass-extinction events from
trees inferred from molecular sequence data—the CPP on mass-extinction time (CoMET)
model—and describe the behavior of our method via a comprehensive simulation study.
Simulation studies are critical both for validating statistical methods—to ensure that the
algorithms and implementation provide reliable estimates under controlled conditions—and
also for providing practical advice for the application of these methods to empirical data.
Overall, our simulation study reveals that the CoMET model is statistically well behaved:
the method has substantial power to detect the number of mass-extinction events, provides
precise and unbiased estimates of the timing of mass-extinction events, and exhibits an
appropriate false discovery rate even when background diversification rates may vary.
Below, we first consider the implications of our simulation study for the practical
application of the CoMET model, and then discuss various avenues for usefully extending the

model.

Practical Application of the CoMET Model

Specifying (hyper)priors of the CoMET model.—The perennial issue of prior specification is
particularly acute for the CoMET model for two reasons. First, our approach relies on the
CPP model to infer the history of episodic events—tree-wide shifts in diversification rate
and mass-extinction events—and this model is known to be sensitive to the choice of priors.
Second, there is typically little biological basis for specifying priors for some of the CoMET
model parameters, particularly those describing the frequency and magnitude of shifts in
speciation and extinction rates. We should therefore be concerned that the choice of poorly
specified (hyper)priors may cause inflated false discovery rates (where the method identifies
spurious mass-extinction events) and/or biased parameter estimates (where the method
systematically over- or under-estimates the timing of inferred mass-extinction events).

Fortunately, the results of our simulation study provide clear guidance on this issue.

Our simulation study demonstrates that the CoMET model is relatively robust to
(mis)specification of the hyperpriors describing the frequency of events—i.e., the specified
values for the Poisson-rate parameters g, A\p, and Ay (c.f., Figures 5, S2, S3).
Nevertheless, we recommend performing analyses under a range of event-rate priors to

assess their potential impact (as demonstrated in our conifer analyses; c.f., Figure 59).
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Although the CoMET model appears quite robust to the specified hyperpriors on event
frequencies, our simulation reveals that it is somewhat sensitive to the hyperpriors on event
magnitudes. This is unproblematic for the focal parameter, as we will typically have ample
evidence regarding the expected magnitude of mass-extinction events (i.e., to specify values
for the @ and S hyperpriors describing the shape of the beta prior on survival probability).
By contrast, we will typically lack information regarding the expected magnitude of
diversification-rate shifts—u.e., to specify values of the hyperpriors describing the shape of

the lognormal speciation- and extinction-rate priors (ug, op, and up, op, respectively).

Under simulation, very poorly specified diversification-rate hyperpriors caused the
overall false discovery rate of the CoMET model to become slightly elevated: we detected
spurious mass-extinction events in 8.1% or 9.9% of the trees simulated under constant or
episodically shifting background diversification rates, respectively (Figures 52 and S3).
Fortunately, our simulation study indicates that the empirical Bayesian procedure provides
a reliable means for specifying appropriate values for the diversification-rate hyperpriors.
Under this approach, the false discovery rate of the CoMET model was slightly conservative
(we detected spurious mass-extinction events in 2.8% or 4.1% of the trees simulated under
constant or episodically shifting background diversification rates, respectively).
Accordingly, we strongly recommend use of the empirical Bayesian approach for specifying
diversification-rate hyperpriors of the CoMET model (in fact, we have automated this

procedure and made it the default setting in our TESS software package).

Size and relative age of empirical trees.— Our simulation provides guidance on key aspects
of study trees that render them appropriate candidates for analysis using the CoMET model.
The power of the CoMET model to detect mass-extinction events increases with tree size: all
else being equal, it will therefore be easier to detect mass-extinction events in larger trees.
Nevertheless, detection rates were quite high even for the smallest trees in our simulation
(with N = 100 species). Although size is clearly an important factor, the age of the tree
relative to the mass-extinction time has a much greater impact on the detection
probability. In order for a mass-extinction event to leave a detectable phylogenetic signal,
the study tree must both contain a sufficient number of lineages at the time of the event,
and must also be afforded a sufficient recovery period following a mass-extinction event.
Therefore, a mass-extinction event that occurs too close to the root of the study tree will
be difficult to detect because too few lineages will have participated in that event (see
Figure 6). Similarly, a mass-extinction event that occurs too close to the tips of a study

tree will be difficult to detect because too little time has elapsed for the tree to recover
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from the event. Accordingly, there is a ‘sweet spot’ where our ability to detect a
mass-extinction event will be greatest: a candidate study tree should ideally be ~ 2 — 3
times the age of the putative mass-extinction event, but the event should not occur in the
last ~ 15% of the tree height. This same reasoning explains the power of the CoMET model
to detect sequential mass-extinction events. An earlier mass-extinction event has to occur
sufficiently far from the root of the tree to ensure that an adequate number of lineages are
exposed to the event, but it must also have sufficient time to recover from that event before

a subsequent mass-extinction event occurs.
Future Extensions of the CoMET Model

The CoMET model describes the history of three types of events: tree-wide shifts in
speciation rate, tree-wide shifts in extinction rate, and mass-extinction events. Our focus
here, however, is restricted to inferring the number and timing of mass-extinction events.
Accordingly, we have explicitly adopted the perspective that episodic changes in
diversification rate are merely ‘nuisance’ parameters of the CoMET model. These events are
primarily included because diversification-rate shifts are thought to be a common feature of
empirical trees that, if ignored, might impact our estimates of the focal model parameters.
Of course, it might also be possible to use the CoMET model to infer the number, timing,
and magnitude of tree-wide shifts in diversification rate. However, we have not investigated
the ability of the CoMET model to provide reliable estimates of tree-wide diversification-rate

shifts, and so caution users against over-interpreting estimates of these parameters.

The CoMET model is currently restricted to the analysis of trees that have a
complete—or if incomplete, a random sample—of species. Given that most empirical trees
include a non-random subsample of species, this may limit the application of our method.
Of course, it is possible to apply the CoMET model to trees with non-random species
sampling, although the statistical behavior of the method is unknown for these datasets.
Instead, it would be preferable to provide greater flexibility for accommodating incomplete
and non-uniform taxon sampling. For example, we could explicitly incorporate various
departures from random species sampling—such as diversified species sampling (c.f., Hohna
et al. 2011; Cusimano et al. 2012; Hohna 2014)—in the CoMET model. In fact, the presented
likelihood equations of the episodic birth-death process with explicit mass-extinction events
and the Bayesian inference framework can readily be applied to diversified species sampling

(Hohna 2014; 2015). This is an area of current work (Hohna, May, and Moore, in prep.).
Currently, the CoMET model assumes that a mass-extinction event is equally likely to
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occur at any time over the interval spanned by the study tree. Our use of a uniform prior
on mass-extinction times is therefore somewhat naive, as this expectation effectively
ignores relevant information regarding the probable timing of mass-extinction events.
Fortunately, a straightforward extension of the CoMET model would allow the use of
informative priors that reflect our knowledge regarding probable mass-extinction times.
Similarly, the CoMET model presently assumes that a mass-extinction event is equally likely
to impact all contemporaneous lineages in the study tree. Our use of a uniform prior on
the survival probability across lineages may also be somewhat naive. Imagine, for example,
that other variables might render species more or less susceptible to mass-extinction events.
This possibility could be addressed by extending the CoMET model to allow the survival
probability of a lineage to depend on the inferred state of a continuous (e.g., body size,
metabolic rate, range size) or a discrete (e.g., marine/terrestrial, endothermic/ectothermic)

variable.

As currently implemented, the CoMET model effectively treats the study tree as an
observation. Phylogenies are, of course, inferences from data, and so entail (sometimes
considerable) uncertainty. Ignoring this phylogenetic uncertainty will therefore tend to
make us overly confident in our conclusions regarding mass-extinction events. We could
accommodate phylogenetic uncertainty by extending the CoMET model in one of two ways.
A sequential Bayesian approach provides a simple (albeit computationally intensive)
solution: mass-extinction events could simply be inferred by integrating over a posterior
distribution of trees that has previously been estimated using some other program.
Alternatively, a hierarchical Bayesian approach involves jointly inferring the phylogeny,
divergence times, and history of mass-extinction events. This solution would require
considerably more effort, as it would require implementation of the CoMET model within an
existing Bayesian phylogenetic inference program, such as RevBayes (Hohna et al. 2015).
Although more involved, this would provide an elegant solution for accommodating
phylogenetic uncertainty that would permit more robust inferences regarding

mass-extinction events.

Currently, the CoMET model is limited to the analysis of a single study phylogeny.
However, we may also want to explore the impact of mass-extinction events on a set of
trees. We might, for example, wish to study the effect of mass extinction on the flora of a
particular geographic region that is comprised of several distantly related plant groups.
This inference scenario could be addressed by extending our approach by allowing the
parameters of the CoMET model to be inferred from a composite vector of waiting times for

a set of trees. Moreover, we could either assume that the survival probability is identical for
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all groups, or allow each group to have a unique response to episodes of mass extinction.
This extension is relatively straightforward, and would simultaneously extend the range of
questions that can be addressed using the CoMET model, and also increase the power of the

method to detect mass-extinction events by virtue of increasing the effective tree size.

SUMMARY

We present a novel Bayesian approach—the CoMET model—that provides an effective tool
for identifying mass-extinction events in molecular phylogenies, even when those groups
have experienced more prosaic temporal variation in diversification rates. We performed a
thorough simulation study to characterize the statistical behavior of this new approach,
which reveals that the CoMET model has substantial power to detect the number of
mass-extinction events, provides precise and unbiased estimates of the timing of
mass-extinction events, and exhibits an appropriate false discovery rate. Based on the
results of our simulation study, we offer some practical advice for applying the method to
empirical datasets—including guidance regarding the choice of (hyper)priors, and insights
on the properties of study trees that will impact detection probabilities using our method.
We also demonstrate the empirical application of the CoMET model to a recent phylogeny of
conifers, which reveals that this group experienced two major episodes of mass extinction.
We are optimistic that the development of a robust and powerful statistical approach for
detecting mass-extinction events will provide an important tool for advancing our

understanding of how events in Earth history have shaped the Tree of Life.
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APPENDIX

Here we provide a single equation to calculate the probability of an observed tree.
For convenience of notation, we construct a unique vector, X, that contains all of the
divergence times and event times (for shifts in speciation and extinction rates, and
mass-extinction events) sorted in increasing order (see Fig. 1.b). It is convenient to expand
the vectors for all of the other parameters so that they have the same number of elements
as X. We use the notation S(2,¢,=0,T") to represent the survival of two lineages in the
interval [t1,T], which is the condition we enforce on the reconstructed evolutionary process.
This allows us to write the more convenient equation for the probability density of a

reconstructed tree

fUIN(t1=0)=2,5(2,6,=0,T))
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Additional details regarding the derivation of this probability density and its relation to
other birth-death models are discussed by Hohna (2015).
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Supporting Information

CoMET: A Graphical Model Description

Below, we provide a graphical-model representation of the CoMET model (Figure S1).
The phylogenetic application of graphical models is described by Hohna et al. (2014).

Speciation Extinction Mass Extinction
0 T UB OB B 0 T AD 0 T « 153 AM
(=) 1 e (&) (w) (1)
uniform g Iognormal" Poisson uniform lognormal 4% Poisson uniform - beta 7 Poisson
ie{\1,2,...,kﬁ+‘1}i \ i €{1,2,..., ket

Figure S1: The CoMET model graph. By convention, constant parameters—such as the
rate of the Poisson process, \;—are enclosed in solid squares, whereas random variables—
such as the number of speciation-rate shifts, kg, or the number of mass-extinction events,
ky—are enclosed in solid circles, and the observations—the vector of waiting times in the
tree, U—are enclosed in a shaded circle to indicate that these variables have been observed.
Here the choice of prior distribution and the hierarchical structure of the model is explicit;
the number of speciation-rate shifts, extinction-rate shifts, and mass-extinction events are
Poisson distributed variables—kg, kp, and kyg, respectively—where lognormal distributions
are used for the speciation and extinction rates and a beta distribution is used for the sur-
vival probability. Arrows indicate the dependence between parameters, where the direction
specifies the conditional relation (e.g., an arrow from the constant parameters 0 and 7" to
the random variable ¢g[i] indicates that tg[i| is conditional on 0 and T'). Dashed squares
(‘plates’) indicate repetition; here the number of replicates depends on the variables kg, kp,
and ky.
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Figure S2: False discovery rates. Frequency of detecting spurious mass-extinction events
in the absence of background shifts in diversification rates. Rows of panels correspond to
different tree sizes (N = {100, 200, 400,800}), and columns of panels correspond to different
priors on the relative extinction rate (up = {0.1,0.5,0.9, empirical}). Within each panel, the
rows correspond to false discovery rates under various priors on the number of diversification
rate shifts (rows) and mass extinction events (columns).
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Figure S3: False discovery rates. Frequency of detecting spurious mass-extinction events
in the presence of background shifts in diversification rates. Rows of panels correspond to
different tree sizes (N = {100, 200, 400,800}), and columns of panels correspond to different
priors on the relative extinction rate (up = {0.1,0.5,0.9, empirical}). Within each panel, the
rows correspond to false discovery rates under various priors on the number of diversification
rate shifts (rows) and mass extinction events (columns).
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Figure S4: Power as a function of time. Frequency of correctly identifying mass-
extinction events in the absence of background shifts in diversification rates. Rows of panels
correspond to different tree sizes (N = {100, 200,400,800}), and columns of panels cor-
respond to different priors on the relative extinction rate (up = {0.1,0.5,0.9, empirical}).
Within each panel, the rows correspond to the power under various priors on the number
of diversification rate shifts (rows) and mass extinction events (columns). In each cell, we
compute the power as a function of time by binning simulated trees into the interval corre-
sponding to their mass-extinction time, and computing the fraction of those trees where a
mass-extinction event was correctly inferred.
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Figure S5: Power as a function of time. Frequency of correctly identifying mass-
extinction events in the presence of background shifts in diversification rates. Rows of
panels correspond to different tree sizes (N = {100, 200,400, 800}), and columns of panels
correspond to different priors on the relative extinction rate (up = {0.1,0.5,0.9, empirical}).
Within each panel, the rows correspond to the power under various priors on the number
of diversification rate shifts (rows) and mass extinction events (columns). In each cell,
we compute the power as a function of time by binning simulated trees into the interval
corresponding to their mass-extinction time, and computing the fraction of those trees where
a mass-extinction event was correctly inferred.
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Figure S6: Bias in estimates of mass-extinction time. The distribution of bias
in estimated mass-extinction times in the absence of background shifts in diversification
rates. Rows of panels correspond to different tree sizes (N = {100,200, 400,800}), and
columns of panels correspond to different priors on the relative extinction rate (up =
{0.1,0.5,0.9, empirical}). Within each panel, the rows correspond to the bias under var-
ious priors on the number of diversification rate shifts (rows) and mass extinction events
(columns). The bias is computed as (fsimulated event — testimated event ) /tree height x 100%.
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Figure S7: Bias in estimates of mass extinction time. The distribution of bias
in estimated mass-extinction times in the presence of background shifts in diversification
rates. Rows of panels correspond to different tree sizes (N = {100,200, 400,800}), and
columns of panels correspond to different priors on the relative extinction rate (up =
{0.1,0.5,0.9, empirical}). Within each panel, the rows correspond to the bias under var-
ious priors on the number of diversification rate shifts (rows) and mass extinction events
(columns). The bias is computed as (fsimulated event — testimated event )/ tree height x 100%.

45


https://doi.org/10.1101/020149

bioRxiv preprint doi: https://doi.org/10.1101/020149; this version posted May 31, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20

posterior probability
15

10

[ I I I I |
0.00 0.05 0.10 0.15 0.20 0.25

parameter value

marginal distribution of speciation rate marginal distribution of extinction rate
—— empirical prior distribution on speciation rate —— empirical prior distribution on extinction rate
- — mean of empirical distribution on speciation rate = — mean of empirical distribution on extinction rate

Figure S8: Empirical hyperpior analysis of the conifers. Histograms are the marginal
posterior densities of the speciation (purple) and extinction (red) rates for the constant-rate
birth-death-sampling process applied to the conifer data. Solid lines are the corresponding
marginal prior densities of the speciation and extinction rates used for the subsequent CoMET
analyses, dashed vertical lines are means of the empirical prior densities.
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Figure S9: Bayes factors for conifer analyses under various priors. We divided the
time period (0,340.43) into 100 discrete intervals and computed the Bayes factor support
for there being at least one mass-extinction event in each interval. Point types and colors
correspond to different combinations of prior settings on Ag, Ap, and Ay (see legend). Bayes
factor support is fairly consistent across all the prior settings; in particular, there is always at
least strong support for a mass-extinction event about 23 Ma, and consitently high positive
support for another mass-extinction event at approximately 173 Ma.
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