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ABSTRACT
Motivation: The correction of sequencing errors contained in Illumina
reads derived from genomic DNA is a common pre-processing step
in many de novo genome assembly pipelines, and has been shown
to improved the quality of resultant assemblies. In contrast, the
correction of errors in transcriptome sequence data is much less
common, but can potentially yield similar improvements in mapping
and assembly quality. This manuscript evaluates several popular
read-correction tool’s ability to correct sequence errors commonplace
to transcriptome derived Illumina reads.

Results: I evaluated the efficacy of correction of transcriptome
derived sequencing reads using using several metrics across a
variety of sequencing depths. This evaluation demonstrates a
complex relationship between the quality of the correction, depth
of sequencing, and hardware availability which results in variable
recommendations depending on the goals of the experiment,
tolerance for false positives, and depth of coverage. Overall, read
error correction is an important step in read quality control, and should
become a standard part of analytical pipelines.

Availability: Results are non-deterministically repeatable using
AMI:ami-3dae4956 (MacManes EC 2015) and the Makefile available
here: https://goo.gl/oVIuE0
Contact: matthew.macmanes@unh.edu and
@PeroMHC

1 INTRODUCTION
Genome-enabled biology – the study of biological phenomenon
empowered by the use of high throughput sequencing of
transcriptomes [MacManes and Eisen, 2014, Ferreira et al., 2013,
Balakrishnan et al., 2014], genomes [Castoe et al., 2013, Bactrian
Camels Genome Sequencing and Analysis Consortium et al., 2012],
and epigenomes [Lyko et al., 2010, Lin et al., 2014] has grown in
popularity over the past several years. Much of this growth has been
driven by relatively cheap sequencing generated on the Illumina
platform. Unlike the previous generation of sequence data (e.g.,
Sanger) where error rates were far below 1%, the rate of error
typical of the Illumina platform is between 1% and 3% [Wang
et al., 2012]. This higher error rate is often considered mitigated
by high sequencing coverage, which may often result in each
nucleotide being sequenced more than 100 times (100x coverage).
When depth of coverage � the number or expected sequencing
errors, these errors may be efficiently detected by assemblers and
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eliminated from the assembly, often early during the creation of
the assembly graph [Compeau et al., 2011, Pevzner et al., 2001].
Though shotgun sequencing is expected produce uniform coverage,
certain genomic features (e.g., biased GC content) may inhibit the
library construction or sequencing process, resulting in coverage
valleys. The reconstruction of these regions may be significantly
improved by read-error correction.

Concomitant with rapid improvement in quality and quantity of
genomic data, and release of genome assemblers has been the
development of novel algorithms for the correction of genomic data.
These tools (reviewed in [Yang et al., 2013, Molnar and Ilie, 2014])
typically cluster identical and nearly-identical subreads of length k
(kmers) then, in a probabilistic framework, attempt to minimize the
Hamming (edit) distance of the reads to a consensus kmer. These
algorithms can be brown down into four general classes (kmer-
spectra, suffix array, multiple sequence alignment and Hidden
Markov Model based methods) [Heo et al., 2014]. These algorithms
assume uniform sequence coverage, and therefore have been applied
most successfully to genomic data, where the have been shown to
improve the quality of genome assembly [Salzberg et al., 2012].

In contrast to DNA sequencing of genomes, RNA sequencing
of the expressed parts of the genome (e.g., the transcriptome)
offers unique challenges. Chief amongst these challenges include
coverage that is variable with patterns of expression and the
reconstruction of splice-isoforms, each of which may erode error
correction algorithm’s ability to accurately distinguish sequencing
error from meaningful variation. This complexity may result in
higher than expected false-positive rate, or lower than expected rate
of error correction. In the face of these challenges, error correction
of transcriptome reads has been shown to improve transcriptome
assembly [MacManes and Eisen, 2013]. Since it’s publication,
new correction algorithms have been developed (e.g., BLESS [Heo
et al., 2014], and older methods have benefitted from new software
implementations. In addition, newer evaluation algorithms had been
developed (for example, see evaluation in Li, 2015). Given this,
the current work aims to extend on previous work to additional
error correction tools and newer analytics, while providing concrete
recommendations to researchers interested in selecting an optimal
software package for the correction of RNA sequencing reads.

2 METHODS
To evaluate the efficacy of read-based error correction of transcriptome
data, I used a well characterized [Han et al., 2013] publicly available
(SRR797058) Mus RNAseq dataset. Because the efficacy of error correction
may vary with depth of sequencing, I randomly subsampled the full dataset
to 10, 20, 50, 100 million paired end reads using the subsampler.py
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Table 1. 10 million paired end reads. bfc offers the best overall correction.

RAM kmer perfect better worse gain perf

raw 7.17E+05
bless

<16Gb 33 9.88E+05 1.08E+06 8.20E+04 1.26E+06
<16Gb 55 9.40E+05 8.76E+05 4.59E+04 1.05E+06

lighter
<16Gb 31 9.74E+05 1.17E+06 4.27E+04 1.39E+06

SGA
<16Gb 33 7.65E+05 3.92E+06 3.81E+06 1.56E+05
<16Gb 55 7.73E+05 3.90E+06 3.82E+06 1.43E+05

SEECER
<16Gb 31 1.07E+06 1.24E+06 5.99E+04 1.54E+06

bfc
<16Gb 33 1.07E+06 1.48E+06 5.24E+04 1.78E+06
<16Gb 55 1.02E+06 1.22E+06 4.43E+04 1.48E+06

RAM= the approximate amount of RAM required to complete error correction. len-
kmer is the length of the kmer. Perfect is the number of reads that map perfectly
(e.g., nm:0). Better is the number of reads whose nm flag is decreased after error
correction relative to raw read mapping. Worse is the number of reads whose nm flag
is increased after error correction relative to raw read mapping. Gain perf is equal to
(perfect - better) + better - worse. The error correction software / kmer length that
maximizes (or minimizes in the case of worse) a given metric is indicated by bold-red
type.

script available here (https://goo.gl/IfI3zm). The resultant subsets were
trimmed with the software package Trimmomatic version 0.32 [Bolger
et al., 2014] using recommendations from [MacManes, 2014]. Reads were
then subjected to error correction using the following software packages:
SEECER version 0.1.3 [Le et al., 2013], Lighter version 1.0.5 [Song
et al., 2014], SGA version 0.10.13 [Simpson and Durbin, 2012], bfc version
r177 [Li, 2015], and BLESS version 0.24 [Heo et al., 2014]. In correction
algorithms (SGA, BLESS, bfc) that allowed for the use of larger kmer

lengths, I elected to error correct with a small (k = 33) and a long (k = 55)
kmer, while for the other software (SEECER and Lighter) that does not
allow for longer kmer values, I set k = 31. bfc requires interleaved reads,
which was accomplished using khmer version 1.3 [Brown et al., 2014].

After error correction, reads were mapped to chromosome 1 from
the Mus genome (version GRCm38, available on Ensembl) using default
settings of the software package bwa mem version 0.7.12-r1039 [Li, 2013].
The number of nucleotide mismatches between read and reference were
calculated via the nm tag from the resultant SAM file. The difference
in the number of mismatches between identically mapped reads between
raw and error corrected reads was calculated using the errstat.js
script contained in bfc and K8, contained in bwakit version 0.7.12
(https://github.com/lh3/bwa/tree/master/bwakit).

The required software has been installed on an Amazon EC2 machine
image (AMI:ami-3dae4956). A makefile for recreating the analysis is
located on GitHub (https://goo.gl/oVIuE0). Note the RAM requirements for
determination of the appropriate size of instance.

3 RESULTS
Error correction of RNA sequencing resulted in a dramatic
improvement in the number of error contains in sequence reads. This
effect is highly variable depending on the specific error correction
algorithm and kmer used as well as the depth of sequencing
coverage. When reflecting on the different metrics, it becomes
clear they vary with respect to the aggressiveness of correction.

Table 2. 20 million paired end reads. bfc offers the best overall correction.

RAM kmer perfect better worse gain perf

raw 1.43E+06
bless

<16Gb 33 2.01E+06 2.31E+06 1.98E+05 2.70E+06
<16Gb 55 1.90E+06 1.86E+06 9.99E+04 2.24E+06

lighter
<16Gb 31 1.88E+06 2.17E+06 8.31E+04 2.53E+06

SGA
<16Gb 33 1.49E+06 7.83E+06 7.63E+06 2.59E+05
<16Gb 55 1.54E+06 7.81E+06 7.63E+06 2.87E+05

SEECER
≈45Gb 31 2.15E+06 2.52E+06 1.28E+05 3.12E+06

bfc
<16Gb 33 2.11E+06 2.86E+06 1.03E+05 3.44E+06
<16Gb 55 2.03E+06 2.44E+06 9.00E+04 2.96E+06

Same description as Table 1

Researchers interested in selecting a tool may choose based on
different metrics. For instance, some researchers may choose based
on the corrector that makes the fewest mistakes while others may
decide on a different optimality criteria. Despite the fact that the
correctors are variable in efficacy, several patterns emerge. First,
SGA is very aggressive when applied to transcriptome data. It
makes, often by an order of magnitude, more reads better. This
improvement however, if buffered by the fact that it makes the most
reads worse and therefore is generally not an appropriate choice
for the correction of transcriptome data. Next, the correction tool
Lighter makes, in all of the tests conducted, the fewest number
of reads worse (e.g., increases the nm tag value infrequently). For
researchers concerned about erroneous correction, this appears to be
an optimal choice. Lastly, both correctors bfc and Seecer appear
to preform well for a variety of metrics and all tested sequencing
depths.

For low coverage transcriptome sequencing, the data presented in
Tables 1 and 2 suggest that bfc may optimize error correction; this
finding is constant in all of the tests involving lower coverage data.
As the amount of sequencing coverage increases past 50 million
paired end reads (Tables 3 and 4), the correction tool Seecer
becomes more favorable, though this recommendation comes with
the cautionary note on RAM usage. Seecer uses in excess of 1Gb
of RAM per 1 million paired end reads. This reasonably large RAM
requirement may be limiting for some researchers.

4 DISCUSSION
Lighter, bfc, SGA and BLESS were all developed for genomic
data – that many of them performed quite well was somewhat
surprising, given the unique characteristics of transcriptome data.
In contrast to these, Seecer was developed specifically for
transcriptome sequence data. While it was most efficacious when
applied to high coverage data (though with high RAM requirement),
it also performed well for lower coverage datasets. bfc was most
efficacious at low coverages, and was slightly worse than Seecer
at higher coverage.
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Table 3. 50 million paired end reads. SEECER offers the best overall
correction, with bfc close behind.

RAM kmer perfect better worse gain perf

raw 3.58E+06
bless

<16Gb 33 5.15E+06 6.00E+06 6.30E+05 6.94E+06
<16Gb 55 4.89E+06 4.99E+06 3.12E+05 5.98E+06

lighter
<16Gb 31 4.64E+06 5.21E+06 2.03E+05 6.06E+06

SGA
<16Gb 33 3.62E+06 1.95E+07 1.91E+07 4.96E+05
<16Gb 55 3.74E+06 1.95E+07 1.91E+07 5.70E+05

SEECER
≈69Gb 31 5.43E+06 6.44E+06 3.37E+05 7.95E+06

bfc
<16Gb 33 5.12E+06 6.63E+06 2.43E+05 7.93E+06
<16Gb 55 5.02E+06 5.96E+06 2.21E+05 7.18E+06

Same description as Table 1

Table 4. 100 million paired end reads. SEECER offers the best overall
correction.

RAM kmer perfect better worse gain perf

raw 7.15E+06
bless

<16Gb 33 1.04E+07 1.20E+07 1.66E+06 1.36E+07
<16Gb 55 9.92E+06 1.03E+07 7.71E+05 1.23E+07

lighter
<16Gb 31 9.35E+06 1.06E+07 4.03E+05 1.24E+07

SGA
<16Gb 33 7.08E+06 3.90E+07 3.82E+07 7.25E+05

<16Gb 55 7.17E+06 3.89E+07 3.82E+07 7.25E+05
SEECER

≈126Gb 31 1.09E+07 1.31E+07 6.78E+05 1.61E+07
bfc

<16Gb 33 9.88E+06 1.22E+07 4.61E+05 1.45E+07
<16Gb 55 9.81E+06 1.15E+07 4.33E+05 1.37E+07

Same description as Table 1

5 CONCLUSION
In conclusion, I offer the following recommendations for
researchers interested in selecting an optimal tool for error
correction.

1. For sequencing experiments where less than 50 million paired
end reads are collected, the software bfc appears to offer an
optimal solution, with SEECER running a close second.

2. For sequencing experiments where more than 50 million paired
end reads are collected, the software Seecer is best, though
at the cost of high RAM requirement. Bfc runs a close second.

3. In higher coverage data where a large amount of RAM is not
available, bfc should be chosen.

4. If the research is sensitive to erroneous correction, even in
the face of overall poorer performance, the Lighter package
should be optimal.

ACKNOWLEDGEMENT
Funding: This work was supported by start up funds provided by
the College of Life Science and Agriculture at the University of New
Hampshire.

REFERENCES
Bactrian Camels Genome Sequencing and Analysis Consortium, Jirimutu, Zhen Wang,

Guohui Ding, Gangliang Chen, Yamin Sun, Zhihong Sun, Heping Zhang, Lei Wang,
Surong Hasi, Yan Zhang, Jianmei Li, Yixiang Shi, Ze Xu, Chuan He, Siriguleng
Yu, Shengdi Li, Wenbin Zhang, Mijiddorj Batmunkh, Batsukh Ts, Narenbatu,
Unierhu, Shirzana Bat-Ireedui, Hongwei Gao, Banzragch Baysgalan, Qing Li,
Zhiling Jia, Turigenbayila, Subudenggerile, Narenmanduhu, Zhaoxia Wang, Juan
Wang, Lei Pan, Yongcan Chen, Yaichil Ganerdene, Dabxilt, Erdemt, Altansha,
Altansukh, Tuya Liu, Minhui Cao, Aruuntsever, Bayart, Hosblig, Fei He, A Zha-
ti, Guangyong Zheng, Feng Qiu, Zikui Sun, Lele Zhao, Wenjing Zhao, Baohong
Liu, Chao Li, Yunqin Chen, Xiaoyan Tang, Chunyan Guo, Wei Liu, Liang Ming,
Temuulen, Aiying Cui, Yi Li, Junhui Gao, Jing Li, Wurentaodi, Shen Niu, Tao Sun,
Zhengxiao Zhai, Min Zhang, Chen Chen, Tunteg Baldan, Tuman Bayaer, Yixue Li,
and He Meng. Genome sequences of wild and domestic bactrian camels. Nature
communications, 3:1202, 2012.

Christopher N Balakrishnan, Motoko Mukai, Rusty A Gonser, John C Wingfield,
Sarah E London, Elaina M Tuttle, and David F Clayton. Brain transcriptome
sequencing and assembly of three songbird model systems for the study of social
behavior. PeerJ, 2(34):e396–17, 2014.

Anthony M Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexible trimmer
for Illumina sequence data. Bioinformatics, 30(15):2114–2120, August 2014.

C Titus Brown, Michael R Crusoe, Greg Edvenson, Jordan Fish, Adina Howe, Eric
McDonald, Joshua Nahum, Kaben Nanlohy, Humberto Ortiz-Zuazaga, Jason Pell,
Jared Simpson, Camille Scott, Ramakrishnan Rajaram Srinivasan, and Qingpeng
Zhang. The khmer software package: enabling efficient sequence analysis. Figshare,
pages 1–3, April 2014.

Todd A Castoe, A P Jason de Koning, Kathryn T Hall, Daren C Card, Drew R Schield,
Matthew K Fujita, Robert P Ruggiero, Jack F Degner, Juan M Daza, Wanjun Gu,
Jacobo Reyes-Velasco, Kyle J Shaney, Jill M Castoe, Samuel E Fox, Alex W
Poole, Daniel Polanco, Jason Dobry, Michael W Vandewege, Qing Li, Ryan K
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