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Abstract

Mixed models are an effective statistical method for increasing power and avoiding con-
founding in genetic association studies. Existing mixed model methods have been designed for
“pooled” studies where all individual-level genotype and phenotype data are simultaneously vis-
ible to a single analyst. Many studies follow a “meta-analysis” design, wherein a large number
of independent cohorts share only summary statistics with a central meta-analysis group, and
no one person can view individual-level data for more than a small fraction of the total sample.
When using linear regression for GWAS, there is no difference in power between pooled studies
and meta-analyses [1]; however, we show that when using mixed models, standard meta-analysis
is much less powerful than mixed model association on a pooled study of equal size. We describe
a method that allows meta-analyses to capture almost all of the power available to mixed model
association on a pooled study without sharing individual-level genotype data. The added com-
putational cost and analytical complexity of this method is minimal, but the increase in power
can be large: based on the predictive performance of polygenic scoring reported in [2] and [3],
we estimate that the next height and BMI studies could see increases in effective sample size of
≈15% and ≈8%, respectively. Last, we describe how a related technique can be used to increase
power in sequencing, targeted sequencing and exome array studies.

Note that these techniques are presently only applicable to randomly ascertained studies
and will sometimes result in loss of power in ascertained case/control studies. We are developing
similar methods for case/control studies, but this is more complicated.

Notation

We use the following notation throughout:

• N ∈ N: sample size.

• y ∈ RN : centered and standardized phenotype.

• Xj ∈ RN : centered and standardized vector of genotypes at the test variant j.

• βj ∈ R: effect size of the test variant j.

• X−j : M ×N matrix of centered standardized genotypes excluding a region around j.

As in [4], we assume that all fixed effects (e.g., age, sex, batch, study indicators, principal compo-
nents of the genotype matrix etc) have already been projected out of the data. The meta-analysis
method proposed here achieves protection from population stratification and proper calibration
with related samples using BOLT-LMM. In order to simplify notation, we omit most discussion of
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population stratification and family structure; these issues have already been addressed with regard
to BOLT-LMM in ref [4].

Our goal is to test the null hypothesis H0 : βj = 0.

Association Testing with Linear Regression

The simplest approach to testing genetic variants for association with a quantitative phenotype is
to fit the model

y︸︷︷︸
Phenotype

= Xjβj︸ ︷︷ ︸
Test Variant

+ ε︸︷︷︸
Noise

. (1)

using linear regression (typically we would also include the top several principal components of
the genotype matrix as covariates; as previously noted, we assume without loss of generality that
these have already been projected out). Linear regression yields an effect-size estimate βj,lin and a
variance estimate σ̂2j,lin We can construct χ2 statistics

χ2
lin :=

β̂2j,lin
σ̂2j,lin

. (2)

This test statistic is called the Armitage Trend Test (ATT) statistic. The choice of linear regression
statistic is not particularly important; all of the standard linear regression test statistics are asymp-
totically equivalent. The ATT statistic asymptotically follows a one degree-of-freedom noncentral
χ2 distribution. For small βj (typical in GWAS), σ2j,lin := Var[β̂j,lin] ≈ 1/N , so the noncentrality
parameter is

NCPlin = Nβ2j . (3)

Note that since βj is the standardized effect size of variant j, β2j is variance explained.

Association Testing with Mixed Models

The linear regression model from Equation 1 treats the effects of all variants other than the test
variant as noise. We can increase the power of the test for association by explicitly modeling the
effects of the other variants. The model then becomes

y︸︷︷︸
Phenotype

= Xjβj︸ ︷︷ ︸
Test Variant

+ f(X−j)︸ ︷︷ ︸
Other Variants

+ ε′︸︷︷︸
Noise

. (4)

Note that the noise term ε′ in Equation 4 has smaller variance than the noise term ε in Equation
1, because ε = ε′ + f(X−j). If we allow f to take arbitrary functional form, then this is additive
mixed model; a linear mixed model is the special case where we constrain f to be a linear function.
This model is fit using a two-step procedure [4]:

1. Generate predictions f̂(X−j) and prediction residuals yresid := y − f̂(X−j).

2. Obtain an effect-size estimate and variance β̂j and σ̂2j by fitting the model yresid = Xjβj + ε
using linear regression.
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Refs [4, 5] refer to step 1 as ‘de-noising’ the phenotype. It is important to use predictions gen-
erated with the test variant and variants in LD with the test variant left out. By including the
effect of the test variant in the predictions, we remove most of the effect of the test variant from
the residual phenotype, which results in loss of power in step 2. Ref [6] coined the term ‘proximal
contamination’ to describe this problem. We can avoid proximal contamination by generating pre-
dictions with the test variant and its LD partners removed (for example, ref [4] train 22 predictors,
leaving out one chromosome at a time).

The mixed model fitting algorithm can be used with arbitrary choice of predictor f̂ . A large
number of different mixed model association methods have been published in the statistical genetics
literature, and the distinctions between most of these methods can be understood as different
statistical and algorithmic choices for fitting f̂ (at least in the special case where individuals in the
study are unrelated). For example, GCTA generates predictions using BLUP [5], which is equivalent
to ridge regression with the shrinkage parameter set via maximum-likelihood. FAST-LMM [7] uses
faster algorithms to fit the same model (GEMMA [8] and EMMAX [9] also fit the same model,
but without avoiding proximal contamination and so suffer from loss of power [5]). FAST-LMM-
Select [6] uses ridge regression with a feature selection step. LMM-LASSO [10] uses a Lasso with
shrinkage parameter selected via cross-validation. BOLT-LMM [4] uses Bayesian linear regression
with a mixture-of-Gaussians prior with hyperparameters selected via a combination of (stochastic)
maximum-likelihood and cross-validation. This list of examples is not intended to be exhaustive,
but illustrates the general principle.

The variance of the standardized effect size estimate β̂j,lmm from the mixed model applied to a

single (pooled) study is σ2j,lmm := Var[β̂j,lmm] = (1−R2
−j)/N , where R2

−j := Cor[f(X−j), f̂(X−j)]
2

is the prediction R2 achieved by the mixed model predictor (leaving out a region around variant j
in order to avoid proximal contamination). Thus, we can construct mixed-model χ2 statistics

χ2
lmm :=

β̂2j,lmm

σ̂2j,lmm

, (5)

which asymptotically follow a noncentral one degree-of-freedom χ2 distribution with noncentrality
parameter

NCPlmm =
Nβ2j

1−R2
−j

=
NCPlin

1−R2
−j
. (6)

Note that the power increase depends on the true prediction R2, i.e., the squared correlation
between f̂(X−j) and f(X−j) (which is not observable) [4]. The training sample prediction R2, i.e.,

Ĉor[y, f̂(X−j)]
2, will typically over-estimate the true prediction R2, because error metrics on the

training set are optimistic. For power calculations, one can obtain a better estimate of R2
−j using

cross-validation, as in [4].
The χ2 statistic from Equation 5 is equivalent to the retrospective quasilikelihood score statistic

from BOLT-LMM in the case where Var[Xj ] = I, i.e., for GWAS that sample unrelated individuals
(ref [4], Supplementary Equation 22). Association testing in GWAS datasets with family relatedness
is more difficult; in particular, residualizing on predictions generated from typed SNPs (equivalently,
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using the genetic relatedness matrix estimated from typed SNPs) achieves suboptimal power and
suffers from inflated type I error due to residual non-independence of family members (e.g., from
correlated environmental effects, or the effects of untyped rare variants). For an overview of mixed
model methods applied to family data, see ref [11].

Meta-Analysis Terminology and Study Design

For readers unfamiliar with the analysis procedure used by consortia such as GIANT, we provide
a brief review of GWAS meta-analysis.

Gathering large samples of genotype-phenotype data is difficult, time-consuming and expensive.
As a result, most GWAS datasets are generated not by a single lab, but rather by large consortia
that pool the efforts of many research groups working in parallel. We refer to the data generated
by an individual research group as a ‘cohort’.

One approach to GWAS is to aggregate the genotype and phenotype data from all cohorts onto a
single computer, then to run regressions on the combined dataset. We refer to this as a ‘pooled’ study
design. Some examples of consortia that use the pooled design include the Psychiatric Genomics
Consortium [12–16] and the International Inflammatory Bowel Disease Consortium [17].

Studies that use the pooled design represent a minority of all GWAS, because there are often
restrictions (imposed by national law, IRB regulations, etc) that prohibit researchers from sharing
individual-level genotype data with other groups. When researchers cannot share individual-level
genotype data, an alternative approach is for each research group to run regressions within their own
cohort, then for the research groups to share summary statistics (effect size estimates and variances,
or equivalent) with a central meta-analysis group, who then meta-analyze the summary statistics
using the methods described in the next section. We refer to this study design as a ‘meta-analysis’.

Inverse-Variance Meta-Analysis

Suppose we have summary-level association results from S non-overlapping studies of the same
phenotype, where the summary data consist of a (standardized) effect-size estimate β̂jk and a

variance estimate σ̂2jk for k = 1, . . . , S. We suppose that the β̂jk are consistent estimates of a single

underlying parameter βj , and that the σ̂2jk are consistent estimates of the true sampling variances

σ2jk. For asymptotically normal estimators (a class which includes all both the linear regression and

mixed model estimators described here), the sampling distribution is β̂jk ∼ N (βj , σ
2
jk). In GWAS,

the standard approach for combining these data is inverse-variance meta-analysis [18], which is the
minimum-variance unbiased estimator of the true effect βj The inverse variance meta-analysis effect
size and variance estimates are

β̂j,meta :=

∑S
k=1 β̂jk/σ̂

2
jk∑S

k=1 1/σ̂2jk
; (7)

σ̂2j,meta :=
1∑S

k=1 1/σ̂2jk
. (8)
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The asymptotic sampling distribution is therefore βj,meta ∼ N (βj , σ
2
j,meta). The meta-analysis χ2

statistic is

χ2
j,meta :=

β̂2j,meta

σ̂2j,meta

,

which follows a one degree-of-freedom noncentral χ2 distribution with noncentrality parameter

NCPmeta =
β2j

σ2j,meta

.

Here, σ2j,meta :=
(∑S

k=1 1/σ2jk

)−1
is the true (rather than estimated) meta-analysis variance.

Meta-Analysis Noncentrality Parameters

The noncentrality parameter of an inverse-variance weighted meta-analysis of linear regression
association tests is

NCPlin,meta = β2j

S∑
k=1

Nk

= Nmetaβ
2
j

= NCPlin,pool, (9)

where Nmeta :=
∑

kNk, and NCPlin,pool denotes the noncentrality parameter of linear regression
applied to a pooled study with sample size Nmeta. Hence, when using linear regression for association
testing, there is no difference in power between a pooled study and a meta-analysis of equal size [?].

The noncentrality parameter of an inverse-variance weighted meta-analysis of mixed model
association tests is

NCPlmm,meta = β2j

S∑
k=1

Nk

1−R2
−j,k

,

where R2
−j,k denotes the prediction R2 achieved by the mixed model predictor leaving a region

around variant j out trained using only the samples from study k. The previous expression is
exact, and should be preferred for power calculations. In order to obtain a simpler expression for
intuition, we make the approximation 1/(1−R2) ≈ R2 + 1 (which holds for small R2). This allows
us to (approximately) simplify the previous expression to

NCPlmm,meta ≈ β2j
S∑

k=1

Nk(R2
−j,k + 1)

= Nmeta(R̄
2
−j + 1), (10)

where

R̄2
−j :=

1

Nmeta

S∑
k=1

NkR
2
−j,k
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is the sample-size weighted average prediction R2 achieved by mixed model predictors trained
using data from one cohort at a time (leaving out a region around the test variant j in order to
avoid proximal contamination). In contrast, the noncentrality parameter of mixed model association
applied to a pooled study of equal size is

NCPlmm,pool =
NCPlin

1−R2
−j,pool

,

where R2
−j,pool denotes the prediction R2 achieved by the mixed model predictor trained on the

pooled sample (again, leaving out the region around variant j). In a typical application, Nmeta

might be on the order of hundreds of thousands, while Ni will be one to two orders of magnitude
smaller. Since a predictor trained on hundreds of thousands of individuals will perform much better
than a predictor trained on tens of thousands of individuals, R2

pool > R̄2. Thus, the relationship
between the four noncentrality parameters described above is

NCPlmm,pool > NCPlmm,meta > NCPlin,meta = NCPlin,pool. (11)

More Powerful Strategies for Mixed Model Meta-Analysis

The origin of the loss of power in mixed model meta-analysis compared to pooled mixed model
association is the poor performance of predictors trained only on individual cohorts. Therefore, what
is required is a method for training a predictor on the whole dataset without sharing genotype data;
that is, a method for training a predictor using the summary statistics. Conveniently, such methods
have already been described [19–21]. At the time of writing, the most sophisticated general-purpose
method in this class appears to be LDpred [19]; though we emphasize that this meta-analysis
procedure is modular with regard to choice of predictor, so we can substitute more sophisticated
predictors as they become available or as is appropriate for particular phenotypes.

In order to achieve maximum power gain without sharing genotype data, a meta-analysis con-
sortium would need to employ a iterative computational scheme1, which would require multiple
exchanges of summary data between the cohorts and the meta-analysis group. Coordinating the
submission of summary statistics to the central meta-analysis group is typically a bottleneck, so
iterative approaches that require multiple rounds of data exchange will take much longer than
a standard meta-analysis. Therefore, in this section we describe a simple one-step approach that
provides an attractive compromise between speed and power.

The idea behind the fast, one-step design is that the meta-analysis consortium could construct
a predictor using the summary statistics from the last meta-analysis. For example, the 2014 height
study [2] could have used a predictor trained on the summary statistics from the 2010 height
study [22], and the next height GWAS could use a predictor constructed from the 2014 height
summary statistics. Similarly, the 2015 BMI study [3] could have used a predictor trained on the
2010 BMI study [23], and so forth.

The noncentrality parameter for this strategy is

NCPsummary =
NCPlin

1−R2
−j,summary

, (12)

1There are algorithms from machine learning that allow one to train a predictor by computing on only a subset of
the data at any given time (e.g., stochastic gradient descent and its more sophisticated parallel cousins). In machine
learning, the barrier to holding all data in memory is typically data size, rather than privacy concerns, but the
algorithms could nevertheless be adapted to GWAS consortia.
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where R2
−j,summary denotes the prediction R2 achieved by the predictor trained on summary statis-

tics (leaving out the region around j).
There is no firm relationship between R2

−j,summary and R2
−j,pool. Our intuition is that when

comparing equally sophisticated prediction algorithms, R2
−j,summary will typically be slightly lower

than R2
−j,pool, (which implies NCPsummary < NCPpool) because some information is lost when

working with summary data instead and reference LD matrices instead of individual-level data and
sample LD matrices [19].

Nevertheless, in typical scenarios where each Ni is one to two orders of magnitude smaller
than Nmeta, we expect that the difference between R2

−j,pool and R2
−j,summary will be much less

than the difference between R2
−j,summary and R̄2, because both R2

−j,pool and R2
−j,summary reflect the

performance of predictors trained on a training set much larger than the training sets available to
the predictors whose performance is measured by R̄2

−j .
Thus, the relationship between the noncentrality parameters is

NCPlmm,pool & NCPsummary > NCPlmm,meta > NCPlin,meta = NCPlin,pool. (13)

Mixed Models for Sequencing Studies

The key idea behind the procedure in the previous section can be summarized in the following way:
the predictions used in mixed model association testing do not need to be trained on the same sample
used for testing. We should use the best genetic predictor (or combination of predictors) available,
no matter how it is trained. This idea is also applicable to sequencing studies. At the time of writing,
sequencing is roughly an order of magnitude more expensive than array genotyping; consequently,
sequenced datasets tend to be roughly an order of magnitude smaller than genotyped datasets for
the same trait. If we simply applied a mixed model (e.g., BOLT-LMM) to the smaller sequenced
datasets, the prediction R2 achieved by the mixed model predictor would be poor compared to what
we could achieve by training a predictor on the larger genotyped datasets. Thus, we can increase
power by using a predictor trained on the largest available genotyped dataset when running mixed-
model association testing in the sequence data. Precisely,

1. Train a predictor on the SNP-array GWAS data. If individual-level genotype data are avail-
able, we can use the --predBetasFile flag in bolt to export prediction weights. If not, we
can use LDpred to convert summary statistics into valid prediction weights.

2. Evaluate this predictor on the sequenced individuals (e.g., using the --score flag in plink

[24, 25]).

3. Perform association testing on the sequenced dataset using bolt with the predictions from
the previous step as covariates e.g., using the --covarFile and --qCovarCol flags (again,
leaving one chromosome out at a time in order to avoid proximal contamination).

The noncentrality parameter for this test is the same as in Equation 12; the gain in power vs
standard in-sample mixed model association depends on the increase in prediction R2 gained by
training a predictor on the SNP-array GWAS data. Note that the p-values reported by bolt are
only asymptotically valid, so the calibration may be poor for variants with very low minor allele
count.
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