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Abstract

Learning is a fundamental biological adaptation that is widespread throughout the

animal kingdom. According to previous research, two conditions are necessary for

learning to be adaptive: between-generation environmental variability and within-

generation environmental predictability. In this paper, we show that between-generation

variability is not necessary, and that instrumental learning can provide a selective ad-

vantage in complex environments, where an individual is exposed to a large num-

ber of different challenges during its lifespan. We construct an evolutionary model

where individuals have a memory with limited storage capacity, and an evolving trait

determines the fraction of that memory that should be allocated to innate responses

to the environment versus learning these responses. The evolutionarily stable level

of learning depends critically on the environmental process, but generally increases

with environmental complexity. Overall, our work sheds light on the importance of

global structural properties of the environment in shaping the evolution of learning.
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Introduction

Learning allows an individual to use experience and thereby express payoff-relevant ac-

tions in novel environments. In particular, instrumental learning permits to build simple

associations between newly encountered stimuli and appropriate actions (Pearce, 2008). It

is important to understand the adaptive value of this form of learning as it permeates the

animal kingdom and underlies the ecological success of the hominin lineage (Johnston,

1982; Boyd and Richerson, 1988; Shettleworth, 2009; Fawcett et al., 2013). In previous

work, the selective advantage of learning has been proposed to crucially rely on between-

generation environmental variability (Boyd and Richerson, 1988; Stephens, 1991; Feldman

et al., 1996; Kerr and Feldman, 2003; Wakano et al., 2004; Dunlap and Stephens, 2009). The

argument is that if offspring live in environments where the consequences of actions are

totally different from that of parents, and were never experienced in the history of the

population, then offspring can express novel appropriate actions only through learning.

It has also been emphasized that the environment should not change too fast within an in-

dividual’s lifespan for learning to evolve (Stephens, 1991; Dunlap and Stephens, 2009); in

other words the environment should be predictable enough for information to be useful.

The general consensus in the literature on the evolution of learning is thus that two con-

ditions are necessary for learning to be adaptive: between-generation environmental vari-

ability and within-generation predictability (Boyd and Richerson, 1988; Stephens, 1991;

Feldman et al., 1996; Kerr and Feldman, 2003; Wakano et al., 2004; Dunlap and Stephens,

2009). The requirement of predictability seems unavoidable, because learning can be ef-

fective only if there is a certain amount of temporal autocorrelation (Fawcett et al., 2014),

i.e. if information is reliable over time. The importance of between-generation variability

is less clear, however, and we will show in this paper that the occurrence of such variability

is not a necessary condition for learning to evolve.

Though learning has indeed been shown to evolve under between-generation environ-

mental variability (e.g. the infinite-environmental state model of Feldman et al., 1996;

Wakano et al., 2004), the conditions under which general phenotypic plasticity evolve
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are very similar (i.e. variable environments, Gomulkiewicz and Kirkpatrick, 1992; Pigli-

ucci, 2001). This blurs the specific advantages of learning over other forms of behavioral

plasticity, such as innate behavioral plasticity (Mery and Burns, 2010; Hollis and Guil-

lette, 2011; Snell-Rood, 2013), which is exemplified by fearful reactions to predators, or

preference for tasty food (Mery and Kawecki, 2004; Riffell et al., 2008; Gong, 2012). Be-

cause innate behavioral plasticity and learning both refer to labile traits, i.e., to phenotypes

that can change multiple times during an individual’s lifetime (in opposition to nonlabile

traits, or developmental plasticity), they should in principle both provide an advantage in

within-generation varying environments (Gomulkiewicz and Kirkpatrick, 1992). Thus,

more work is needed to disentangle the effects of environmental patterns on the evolution

of the different forms of plasticity. In particular, we need another discriminating factor

than environmental variability to understand the specific advantage of learning over innate

behavioral plasticity. Such a distinction has not been made possible in previous theoreti-

cal work because in most models for the evolution of learning, learners are pitted against

individuals that can only express one given genetically determined action (Boyd and Rich-

erson, 1988; Stephens, 1991; Feldman et al., 1996; Kerr and Feldman, 2003; Wakano et al.,

2004; Dunlap and Stephens, 2009). But this is not a very likely evolutionary transition.

Learning is more likely to evolve on top of innate behavioral plasticity (Kerr, 2007) and

it is indeed common to observe the coexistence within individuals of these two forms of

plastic responses (Mery and Burns, 2010; Snell-Rood, 2013).

In this paper, our aim is to investigate the evolutionary transition from innate behav-

ioral plasticity to learning, and show that learning is adaptive under conditions of envi-

ronmental complexity. By environmental complexity, we mean the number of distinct

challenges or stimuli that an individual encounters within its lifespan. These may be, for

instance, an encounter with a predator or with a food item of some nutritional value. The

reason why environmental complexity may select for learning can be verbally explained as

follows. Because the range of challenges encountered during an individual’s lifepsan can be

extremely large, and each of these situations generates a particular combination of sensory

perceptions in the animal’s brain, it seems unlikely that an animal is capable of storing the
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interactions with all these challenges and the associated responses (even with the abstract

representation provided by neural networks, Enquist and Ghirlanda, 2005).

The discrepancy between the complexity of the environment and the capacity of an

individual’s memory to process information thus imposes a computational constraint on

its decision system. Having a dynamic memory, which allows to forget obsolete stimulus-

response associations and learn new ones may be useful to deal with environmental com-

plexity, as it makes feasible to react to an arbitrarily large number of situations. The contri-

bution of forgetting to the adaptive value of learning has already been investigated (Krae-

mer and Golding, 1997; Kerr and Feldman, 2003), but only in situations where forgetting

allows one to face the same challenge at distinct instants and if the optimal behavior for that

challenge has changed (i.e. environmental variability). We rather propose that forgetting

contributes to the benefits provided by learning through the ability to encode different

stimuli, because different stimuli may be encountered at distinct instants of time. This

is consistent with the functioning of short-term memory: animate or inanimate features

with which an animal interacts first enter the working memory and are transferred to the

long-term memory only through a consolidation phase, which does not necessarily oc-

cur (Dudai, 2004; Shettleworth, 2009). When supplemented with forgetting, learning is

thus likely to provide a powerful mean to cope with environmental complexity, because

it can scatter complexity over time; only a small portion of the environment’s complexity

is dealt with per unit time.

In the rest of the article, we formalize in an evolutionary model the above verbal argu-

ment that instrumental learning is adaptive under conditions of environmental complex-

ity. In order to capture the limitations of an individual in terms of information processing,

we assume that it is constrained by a maximum amount of memory. An evolving trait pre-

scribes the allocation of this memory either to an innate memory or to a dynamic memory,

which allows the individual to learn and forget associations between stimuli and actions.

The environment consists of a finite (but possibly very large) number of challenges (or

stimuli), each of which is characterized by its own optimal action(s). We will show that
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environmental complexity (operationalized as the number of potential stimuli in the en-

vironment) can generate a selection pressure in favor of a greater allocation of memory to

learning.

Model

The individual and its environment

Consider an individual that interacts with its environment for successive discrete time

steps. At each time step, the individual has to choose an action to respond to an envi-

ronmentally determined challenge or stimulus, which is drawn from a set of Ns stimuli.

Following previous formalizations (Feldman et al., 1996; Wakano et al., 2004), we assume

that the chosen action is either the “correct” (or appropriate) response to the stimulus and

gives payoff πC , or is a “wrong” response and gives payoff πW .

Because stimuli may depend on location, task to be performed, or time of the day, the

individual is unlikely to meet all of them at once and we assume the following environ-

mental process, where only a subset of the entire set of stimuli can be encountered per

time step. Namely, any time step of an individual’s lifepsan consists of three events. (1)

With probability γ a block of stimuli of size Nb ≤ Ns is randomly drawn from the set

of environmental stimuli, while with probability 1− γ the invidual faces the same block

met at the previous time step. (2) A stimulus is uniformly drawn from the block (hence a

given stimulus in the block is sampled with probability 1/Ns). (3) The individual chooses

an action in response to this stimulus.

An important property of this environmental process is that the stationary distribution

of stimuli is uniform, so that every stimulus has probability 1/Ns of being encountered

in the stationary state (see the Electronic supplementary file 1 (ESM1) for a proof and

a detailed mathematical description of the environmental process). We take Ns to be a

measure of environmental complexity: large values of Ns correspond to the case where an

individual will encounter many different stimuli. However, the environment itself is not
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uniform and the parameter Nb (1 ≤ Nb ≤ Ns) captures local complexity: low values of

Nb correspond to a low number of stimuli possibly experienced per interaction period,

while high Nb corresponds to a locally complex environment. Finally, the parameter γ

(0≤ γ ≤ 1) is the environmental switching rate: low values of γ correspond to small block

turnover. In this environment, predictability, a feature that has been shown to critically

affect the evolution of learning (Stephens, 1991), is captured by the interaction between

Nb and γ . When γ is close to 1, there is high block turnover, so the environment is not

very predictable for any block size Nb. When γ is smaller, predictability depends on local

complexity, Nb. A large value of Nb means that a lot of stimuli are being encountered

in a given block so the probability to encounter the same stimulus repeatedly is low, and

hence the environment is less predictable. A small value of Nb corresponds to a more

predictable environment where the individual only deals with a small number of stimuli

during a period of interaction with a block.

In order to be able to store information about how to respond to stimuli, we assume

that the individual has a memory that can store m associations between stimulus and ac-

tion. These m memory “slots” could either be filled with fixed associations present at

birth, which hold templates of stimuli together with the innate response to these stimuli,

or with such associations that are learned during the individual’s lifespan. We denote by

g the number of associations that are innately determined. Hence, if g < m, a part of the

memory, m− g slots, is dynamic, and the individual can encode new stimuli encountered

during its interactions with the environment. If g = 0, the individual is born with a “blank

slate”, with absolutely no innate tendency to respond to environmental stimuli. Our goal

is to understand the selection pressure on the evolving trait g , given a fixed memory ca-

pacity m, and how this depends on environmental complexity (Ns), local complexity (Nb),

and switching rate (γ ).
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Fitness

In order to evaluate the selection pressure on g , we need a measure of expected payoff (or

fitness) accruing to an individual expressing this trait value. To obtain this, we note that

an encountered stimulus at a given time step can be in three possible states with regard to

the individual’s memory. First, the stimulus can be innately encoded, in which case we

denote by πI the average payoff obtained from the response to it. Second, the stimulus

encountered can be present in the dynamic memory, in which case the response results

in average payoff πL. Third, the stimulus may not be present at all in the memory of

the individual (it is “unknown”), in which case the individual’s response results in average

payoff πU .

Because our main interest is in understanding the environmental conditions that fa-

vor learning, we assume (conservatively) that expressing a genetically determined action

always leads to the “correct” payoff: πI = πC . When an individual encounters a stimu-

lus that is not in its memory, we assume it samples an action at random. The expected

payoff obtained by choosing an action randomly is denoted πU , and is assumed to satisfy

πW ≤ πU ≤ πC . Finally, we assume that πL, the payoff for learned responses to stimuli,

is a constant satisfyingπU ≤πL ≤πC , so that an action for a stimulus present in dynamic

memory leads to a higher payoff than if it was tried out randomly, because learning allows

to sample the environment. A distinctive simplifying feature of our model, which gives

analytical traction, is that we do not model explicitly the learning dynamics of such asso-

ciation between actions and stimuli (for instance by way of reinforcement learning). But

by enforcing πU ≤πL ≤πC , we implicitly capture any learning mechanism, from a very

crude one where essentially no information is gathered if πL ≈πU to a very sophisticated

one if πL ≈πC .

Owing to the assumption that the stimuli are met by the individual in a stationary uni-

form distribution, the probability PI (g ) that a currently encountered stimulus is innately

encoded is independent of time; namely PI (g ) = g/Ns. Assuming that the individual in-

teracts a very long time with its environment, we have that the asymptotic probability,
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PL(g ) that an encountered stimulus is in the dynamic memory is also independent of the

time (this assumption can indeed be justified for the environmental process we consider in

this paper, see the ESM1). With this, we can then write the average payoff to an individual

with genetic memory of size g as

f (g ) = PI (g )πC +[1− PI (g )] (PL(g )πL+[1− PL(g )]πU ) . (1)

This equation captures the trade-off faced by the individual: should it allocate memory to

innate responses and respond optimally to only a limited number of stimuli (first term of

eq. 1), or should it allocate memory to learning, and potentially learn to respond to many

stimuli (second term of eq. 1)? Importantly, if the stimulus recall probability, PL(g ), is a

constant, independent of g , then the optimal number of innate memory slots, g ∗, which

maximizes payoff, is just g ∗ = m. Hence learning does not evolve in this case (the same

holds if PL(g ) is increasing in g ). This function thus requires that PL(g ) is decreasing in g ,

at least on some subset of [0, m], for learning to evolve. But the exact form of PL(g ) will

depend on how memory works, i.e. for how long a stimulus is stored in memory before

it is forgotten.

Memory

We endorse a simplified implementation of memory that is based on the functioning of the

short-term memory in humans and animals (Baddeley, 2003). Namely, we assume that,

when the individual has a dynamic memory (g < m) and meets an unknown stimulus,

it always wants to store it. Since the dynamic memory is initially empty, the first m− g

encounters with non-innately encoded stimuli will simply result in the stimuli taking free

slots until the dynamic memory is full. For subsequent decision steps, new stimuli will

have to replace other ones in the dynamic memory. This is done via a replacement rule.

We use the following replacement rule, which is taken from Kerr and Feldman (2003).

A stimulus has a lifespan in memory of m − g time steps (i.e. the size of the dynamic

memory), starting from the last encounter with the stimulus. This means that if a stimulus

is not met more than once in m − g steps, it is forgotten. Otherwise, the stimulus stays
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in memory. With this rule, the dynamic memory will never contain more than m − g

stimuli.

Importantly, we assume that when a stimulus is replaced in memory, all the associ-

ated information is lost (note that this is another very conservative assumption, because

this means that we ignore the potential benefits of long-term memory). If this stimulus is

encountered later, then the individual will have to re-learn to interact with it (if the indi-

vidual has the capacity to do so, i.e. if g < m). With this replacement rule, we can now

evaluate PL(g ) explicitly. We are then able to ascertain the evolutionarily stable value of g

by taking the expected payoff (eq. 1) as our measure of fitness (Parker and Maynard-Smith,

1990).

Results

Stimulus recall probability

In the ESM1, we derive an expression for the stimulus recall probability, PL(g ) (eq. S7).

It turns out that this expression is cumbersome (see ESM1, section “Stimulus recall prob-

ability”, to observe the full expression), but in Fig. 1, we plot PL(g ), which shows that

it is decreasing in g , and when g = m we have PL(m) = 0. This decreasing pattern ob-

tains because having a higher g means having less slots for the dynamic memory, which

in turn implies that an individual will recall less steps of interaction with a given stimulus.

The stimulus recall probability depends not only on the memory characteristics of the

individual (m and g ), but also on the three key environmental parameters of the model:

environmental complexity (Ns), local complexity (Nb), and switching rate (γ ).

As can be seen from Fig. 1, PL(g ) is decreasing in γ , which stems from the fact that

when the block of stimuli changes more frequently, the probability to encounter multiple

times the same given stimulus decreases (lower predictability). We also have that PL(g )

is smaller in locally complex than in locally simple environments, because greater local

complexity corresponds to more stimuli in a block. Finally, PL(g ) is slowly decreasing
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with increasing Ns and eventually stabilizes for large Ns. This is mainly due to the fact that

when the environment is complex, there is a very small probability that a given stimulus

is in two different blocks of stimuli, so an individual will recall mainly interactions with

stimuli within blocks, not across blocks.

The stimulus recall probability thus has two main properties, one related to the mem-

ory of the individual, and the other one related to the environment: it is an increasing

function of the allocation of memory to learning, and also generally increases in the pre-

dictability of the environment.

Invasion of learners

When will learning be initially favored by selection? To answer this question, we consider

a monomorphic population of “innates” with g = m and ask when they will be invaded by

mutant learners with only one memory slot allocated to the dynamic memory (g = m−1);

that is, when f (m)< f (m− 1) is satisfied. This occurs when

Nb < N̂b and γ <
Ns

Ns−Nb

�

1−
Nb

N̂b

�

, (2)

where

N̂b = [Ns− (m− 1)]
πL−πU

πC −πU
(3)

(see the ESM1 for a proof). This can be thought as the total gain from having a dynamic

memory for an individual characterized by only one memory slot dedicated to learning

(g = m − 1). Indeed, Ns− (m − 1) is the total number of environmental stimuli that are

not innately recognized by the individual (and thus that can be learned about). The ratio

(πL −πU )/(πC −πU ) varies between 0 and 1 (because πU ≤ πL ≤ πC ) and represents

a normalized gain from learning to interact with an unknown stimulus. Making the en-

vironment more complex (increasing Ns) widens the range of parameters where learning

invades, because this makes larger the threshold N̂b below which learning evolves (Fig. 2).

It is important to emphasize that even when the payoff due to learning,πL, is only slightly
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higher than the random payoff, πU , environmental complexity still has a positive effect

on the evolution of learning; one just needs to make the environment complex enough for

ineq. 2 to be satisfied. Hence, the model captures well the evolutionary transition from

optimal innate behavioral plasticity to an imperfect learning system, which is in theory

the possible first state of a learning ability.

Ineq. 2 also shows that the environment should be predictable enough for learning to

be favored by selection. In terms of our model parameters, this translates as a maximal

amount of environmental switching rate (γ small enough), and as a maximal local com-

plexity (Nb smaller enough than Ns). Indeed, if Nb =Ns, there is only one block of stimuli

of size Ns, and the individual must cope with the total amount of complexity at once; a

learner with a limited memory size cannot cope with such a task. Also, γ should be small

enough so that the average period of interaction with a block, 1/γ is large enough com-

pared to the local complexity, Nb. The threshold value of γ in ineq. 2 is decreasing when

Nb increases, which indicates that locally complex environments require longer interac-

tion periods with blocks. This will allow a learner to interact many times with the same

stimulus and learn the best response to it.

Optimal memory allocation

We now turn to investigate numerically the optimal value g ∗ that maximizes fitness (eq. 1);

that is, the evolutionarily stable allocation of memory to innate behavioral plasticity. First

and foremost, we find that increasing the complexity of the environment increases the

optimal size of the dynamic memory: g ∗ is decreasing with increasing Ns. This is because

in complex environments, where Ns is much larger than the memory size m, allocating

one more slot to the innate memory has only a small effect on fitness (first term of eq. 1);

by contrast, allocating this slot to the dynamic memory always results in an increase of the

stimulus recall probability, even for large Ns (second term of eq. 1 and Fig. 1). Likewise,

increasing the efficiency of the learning system,πL, also decreases the value of g ∗ (Fig. 3A)

because increasing πL means having a higher benefit of learning (i.e. this increases the
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value of the second term of eq. 1) for an individual with a given g .

The environmental switching rate, γ , has a simple effect on optimal memory alloca-

tion. In agreement with the invasion condition (ineq. 2) and the above fact that the prob-

ability to recall a stimulus is decreasing in γ , the optimal number of innate responses, g ∗,

is increasing in γ . This makes sense since in an environment changing more frequently,

it is less beneficial to recall events farther in the past. However, there is a threshold effect

when we have no environmental change at all (γ = 0), and the individual is faced with only

a random sample from the environment for its entire lifespan. This leads to a null model

where the environment is totally random and learning is helpless.

Local complexity, Nb, has a non-monotonic effect on g ∗ (see in particular Fig. 3B,C,D).

For locally complex environments, g ∗ is increasing, while for locally simple environments

it is decreasing. Hence, the maximum allocation of memory to learning occurs at moder-

ate levels of local complexity. This pattern is explained in terms of the marginal gains of

allocating memory slots to either part of the memory. When Nb is high, the gains from

allocating a memory slot to the innate memory are higher than the gains from allocating

it to the dynamic memory because there is only a small probability to recall interactions

with stimuli (low predictability). When Nb is low, the converse is true: it is more bene-

ficial to allocate a slot to the dynamic memory because the stimulus recall probability is

high (high predictability).

We also looked at various two-way interactions between parameters. First, it is interest-

ing to investigate the interaction between the switching rate and local complexity (Fig. 3B)

because together they determine the predictability of the environment. We find that the

environmental switching rate sharpens the non-monotonic effect of Nb described above.

This is because in fast changing environments, there is very low predictability irrespective

of local complexity, since there is only a small probability to encounter twice the same

stimulus (in this case, PL(g ) is flat, Fig. 1). In slowly changing environments where in-

teraction periods are longer, the stimulus recall probability is now highly dependent on

Nb and g . Hence for slowly changing environments (low γ ), high Nb corresponds to low
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predictability and low Nb to high predictability, and we recover the non-monotonic effect

of Nb found above.

Strikingly, there is no interaction effect between local complexity and memory size on

g ∗, provided Ns−m is kept constant (Fig. 3C). This is intriguing because one would think

that if the environment is locally complex (Nb large), then there is a very small probability

to interact many times with a given stimulus in a short period of time, thereby rendering

learning more difficult for an individual with a given memory m. However, making Nb

large means making Ns at least as large, so the interaction between Nb and m is already

captured by the main effect of Ns−m, which explains why there is no interaction effect

between Nb and Ns−m on g ∗. The payoff for learned responses to stimuli,πL, finally, has

the role of making the effect of the other parameters more abrupt. For instance, when πL

increases, we observe that below the threshold value N̂b of block size favoring the invasion

of learners (ineq. 2) all memory slots are dedicated to learning (g ∗ = 0, Fig. 3D).

Discussion

In this study, we investigated the evolutionary transition from innate behavioral plasticity

to learning, and showed with an analytical model that environmental complexity (opera-

tionalized as the number of stimuli in the environment, Ns) favors the evolution of learn-

ing. Because we considered an environment that is constant across generations, yet where

learning can invade, our results demonstrate that between-generation environmental vari-

ability is not necessary for learning to evolve. Further, we found broad conditions where

learning coexists with innate behavioral plasticity (i.e. 0< g ∗ < m).

Summary of results

Our results are twofold. First, we provide conditions for learners to invade a population of

individuals relying on innate behavioral plasticity. We find that increasing the complexity

of the environment widens the range of conditions under which learners can invade. This
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is due to the fact that with innate behavioral plasticity in a complex environment, an in-

dividual cannot form new stimulus-response associations during its lifespan, and thus can

respond to only a limited number of stimuli. We also find that environmental complexity

is not a sufficient condition for learning to evolve. Namely, we confirm previous results

showing that the environment needs to display predictability within an individual’s lifes-

pan (Stephens, 1991; Dunlap and Stephens, 2009, 2014). In locally complex environments,

where an individual interacts with blocks consisting of many stimuli at the same time, pre-

dictability is very low, i.e. there is a small probability to encounter the same stimulus in a

short period of time. In this case, learning cannot invade because the limited memory of

the individual is unable to deal with the entire environmental complexity at once.

Our second types of results are related to the optimal allocation of memory between in-

nateness and learning. In our model, this optimal allocation is determined by the trade-off

between using memory to respond optimally and innately to only a few stimuli, versus us-

ing this memory to learn to respond sub-optimally to potentially many stimuli. As could

be anticipated from the invasion results, we find that the optimal allocation of memory to

learning increases with the complexity and the predictability of the environment. More-

over, we find that the maximum allocation to learning occurs in moderately predictable en-

vironments. These are the environments where block turnover is small (i.e. small switch-

ing rate) but where local complexity (or block size) is intermediate. In these cases, we

even find conditions where it is optimal that individuals are born with a “blank slate” (all

memory slots allocated to the dynamic memory). Overall, the results show that learning

supplemented with forgetting represents an efficient way to deal with environments that

are complex on the global scale but are relatively simple on a local scale. But how can we

measure complexity in the real world, and what phenotypes are affected by it?

Empirical predictions

The expression “environmental complexity” used in this article refers to the number of

fitness-relevant stimuli a given individual is likely to encounter and distinguish in the
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course of its lifespan. There are at least three measurable ecological and psychological fac-

tors that directly or indirectly influence complexity. First, the complexity of an organism’s

environment should be positively correlated with the habitat range of that organism. Indi-

viduals from species exploring vast areas in order to forage, migrate, or reproduce should

encounter more types of biotic and abiotic stimuli than individuals from other species.

Second, the level of detail that an organism’s sensory system can perceive is also likely to

allow an individual to distinguish between many stimuli (typically, species with a visual

ability that are color-blind “miss” one dimension of the world’s complexity). Third, lifes-

pan is a factor that will affect the number distinct stimuli or challenges encountered by

a given individual: species with longer lifespan should be exposed to a greater variety of

stimuli.

Our results thus predict that these factors should be positively correlated with learning

ability. Mainly, we expect that species scoring very low on the three dimensions of com-

plexity highlighted above should be those species that have a scant ability to learn, and

rely on simpler forms of plasticity (that we termed “innate behavioral plasticity”). More

marginally, our results suggest that the capacity (or size) of individuals’ working memory

is likely to increase with complexity. This number corresponds to the number of stim-

uli (or chunks of information) an individual can hold in short-term memory for further

processing and use (Carruthers, 2013).

Model realism

Our model is obviously a simplification, but we argue that the environment we considered

is representative of those faced by many animals. To give a concrete example of the range

of settings where our model applies, we can take daily routines (Houston and McNamara,

1999). In each part of its routine, an animal interacts with a given subset of stimuli that are

present at a given location and time, because of statistical regularities in the environment.

For example, when an individual visits a particular food patch in the course of foraging, it

may encounter different types of food items, but also individuals from other species that
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have overlapping diet, as well as predators awaiting for their preys. All of these constitute

the block of stimuli met by the individual on this particular food patch; upon visiting

other food patches and performing other tasks, the individual will encounter other blocks

of stimuli (that may or may not contain the stimuli previously encountered).

While our model is general enough to capture features of real environments, our im-

plementation of memory is relatively specific. In order to ground our results on the most

possible conservative assumptions, we made two notable simplifications. First, we focused

on instrumental rather than associative learning. In artificial selection experiments where

the evolution of learning was shown to be favored by between-generation environmental

variability (Mery and Kawecki, 2004; Dunlap and Stephens, 2009, 2014), it was associa-

tive rather than instrumental learning that was considered. It is likely that the conditions

favoring associative learning are different than the ones favoring instrumental learning.

However, in most models of the evolution of learning, the modeling approach is so ab-

stract that it may encompass both forms of learning (Boyd and Richerson, 1988; Stephens,

1991; Feldman et al., 1996; Wakano et al., 2004). These mechanistic considerations need

further evolutionary investigation and clarification.

Our second simplification is that we considered only features of the short-term (or

working) memory (Shettleworth, 2009; Banai et al., 2010). In contrast with long-term

memory, the events stored in working memory follow a dynamic process such that they

enter memory when an individual starts interacting with a given stimulus, but such inter-

actions are replaced by other ones as the individual interacts with different stimuli. Indeed,

animals and humans can hold only a given, small number of items or stimuli in working

memory (Miller, 1956; Dudai, 2004). This is captured by the dynamic part of the memory

in our model, where stimulus-action associations are totally removed from memory once

they are replaced by other ones.

The “innate” part of the memory, on the other hand, captures many of the examples

in nature showing that animals tend to have innate, hard-wired responses to stimuli (Mery

and Kawecki, 2004; Riffell et al., 2008; Gong, 2012). For instance, certain ants have in-
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nate templates of enemies in memory (Dorosheva et al., 2011) and human infants innately

distinguish between face-like stimuli and other stimuli, indicating that the neuronal net-

works responsible for visual perception have a particular innate wiring structure (Slater

and Kirby, 1998; see also Perin et al., 2011 on a generalization of this idea to the innate

structure of the whole neocortex of mice).

In conclusion, this study provides a new perspective on the role of environmental com-

plexity in the evolution of learning mechanisms (Jones and Blackwell, 2011; Fawcett et al.,

2014). This work also provides a clarification on the role of predictability in this process,

and show that these elements generate environmental dynamics within a individual’s lifep-

san that are useful to take into account in order to understand the evolution of learning

and memory.
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Figure 1. Stimulus recall probability, PL(g ), as a function of number of innate responses, g , and environ-
mental parameters. Parameter values: m = 20,Ns = 1000.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2016. ; https://doi.org/10.1101/019968doi: bioRxiv preprint 

https://doi.org/10.1101/019968
http://creativecommons.org/licenses/by-nc-nd/4.0/


22

A B C

Figure 2. Increasing volumeswhere learning invades as a function of environmental complexity. In each
subfigure (A,B,C), the green volume corresponds to the region of the (γ ,Nb,πL)-parameter spacewhere
amutant learner invades amonomorphic population of individuals relying on innate behavioral plastic-
ity (i.e. ineq. 2 is satisfied). Parameter values: m = 20, πC = 10, πU = 1. A: Ns = 40. B: Ns = 400. C:
Ns = 4000.
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Figure 3. Optimal number of innate responses, g ∗, that maximizes eq. 1, as a function of environmental
parameters and efficiency of learningmechanism. A: Concomitant effects of environmental complexity
(Ns, columns), efficiency of learning mechanism (πL, rows), local complexity (Nb, x-axis), and environ-
mental switching rate (γ , y-axis) (parameter values: m = 20, πC = 10, πU = 1). B: Interaction between
Nb and γ (parameter values: same as in A, plus Ns = 150, πL = 5.5). C: Interaction between Nb and m

(parameter values: same as in A, plusNs = m+ 100, πL = 5.5, γ = 1/12). D: Interaction betweenNb and
πL (parameter values: same as in A, plus m = 20,Ns = 150, γ = 1/12).
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Supporting Information for “Environmental complexity favors

the evolution of learning” by Slimane Dridi and Laurent Lehmann

Here, we derive an expression for the probability to recall a stimulus PL(g ). At each time

step t (t = 1,2, . . . ) of the environmental process, a stimulus st is drawn from the set of

environmental stimuli, S, according to the procedure described in the main text (i.e. st is

a random variable). Now, given our implementation of memory, where a given stimulus

stays in dynamic memory m− g time steps, PL(g ) is the probability that, conditional on

being met once, this stimulus is met a second time in a period of length less or equal than

m− g time steps. Let us denote by Rs ∈ {1,2, . . .} the number of time steps occurring be-

tween two encounters with a given stimulus (this is a random variable that is independent

of time at stationarity). Then

PL(g ) = P{Rs ≤ m− g}. (S1)

We will compute this expression by letting Rs be the return (or recurrence) time of a

backward Markov chain (Grimmett and Stirzaker, 2001) that can be constructed from our

assumptions on the environment.

To that end, let Bt ⊂ S be the block of stimuli (|Bt | = Nb) encountered at time t ,

st ∈ Bt the stimulus encountered at t , and sf ∈ S a given focal stimulus. We can then

define the three mutually exclusive events

s = {st = sf},

i = {st 6= sf, sf ∈Bt },

o = {sf 6=Bt }, (S2)

where s is the event that the stimulus encountered at time t is the focal one, i is the event

that the focal stimulus is in the current block but is not the currently encountered stimulus,

and o is the event that the focal stimulus is not in the current block.

We can now define a Markov chain on these three states: s , i , and o and compute from

it the recurrence time to s . From our assumptions, the forward transition probabilities
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ρ j k of this chain are

ρs s = γ
Nb

Ns

1
Nb
+(1− γ ) 1

Nb
,

ρs i = γ
Nb

Ns

Nb− 1
Nb

+(1− γ )
Nb− 1

Nb
,

ρs o = γ
Ns−Nb

Ns
,

ρi s = γ
Nb

Ns

1
Nb
+(1− γ ) 1

Nb
,

ρi i = γ
Nb

Ns

Nb− 1
Nb

+(1− γ )
Nb− 1

Nb
,

ρi o = γ
Ns−Nb

Ns
,

ρos = γ
Nb

Ns

1
Nb

,

ρoi = γ
Nb

Ns

Nb− 1
Nb

,

ρoo = γ
Ns−Nb

Ns
+ 1− γ . (S3)

For instance, the probabilityρs s to move from state s to itself takes this form because a new

block is drawn with probability γ , in which case the focal stimulus sf makes part of the new

block with probability Nb/Ns, and is drawn from within the block with probability 1/Nb.

If one does not change block, which happens with probability 1− γ , the probability to

draw sf from the current block is 1/Nb, because sf already makes part of the current block.

From the above transition probabilities, we can define the backward transition proba-

bilities ρ̂k j , and owing to our stationarity assumption, this is given by

ρ̂k j =
µ j

µk
ρ j k (S4)

(see e.g. Theorem 1.9.1 of Norris, 1998), which defines a backward Markov chain. Since

the stationary probabilities are given by µs = 1/Ns, µi = (Nb − 1)/Ns, and µo = (Ns −

Nb)/Ns, we find using eq. S3 that

ρ̂ j k = ρ j k , ∀ j , k ∈ {s , i , o}. (S5)
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Now, we can compute the distribution of return times Rs . To do so, denote v h
j k the prob-

ability that, starting from state j , the first visit to state k occurs h steps in the past. With

this, we have that P{Rs = h}= v h
s s . In order to find v h

s s , we note that the probabilities of

first visit obey the recursions

v h
s s = ρ̂s o v h−1

os + ρ̂s i v h−1
i s ,

v h
i s = ρ̂i o v h−1

os + ρ̂i i v h−1
i s ,

v h
os = ρ̂oo v h−1

os + ρ̂oi v h−1
i s . (S6)

Solving this linear system of difference equations provides the probabilities of first visit on

the left-hand side, including v h
s s = P{Rs = h} (we display this long expression at the end

of this Supplementary file, section “Distribution of return times”). The probability that

Rs ≤ m − g (m − g > 0) can then be computed by summing all the possible cases up to

m− g , namely

PL(g ) = P{Rs ≤ m− g}=
m−g
∑

h=1

P{Rs = h}. (S7)

It turns out that, substituting the explicit expression of P{Rs = h} = v h
s s , we obtain a

closed-form expression, but that is unfortunately too long to provide direct insight (see

the section “Stimulus recall probability” at the end of this Supplementary material).

Invasion and stimulus recall probabilities

In this section, we show how to derive the invasion condition in ineq. 2. Applying the

derived probability found above (eq. S7 and section “Stimulus recall proabability” below),

we have that PL(m) = 0 and

PL(m− 1) =
Ns(1− γ )+Nbγ

NsNb
. (S8)

Substituting these in f (m− 1)> f (m) gives ineq. 2 of the main text.
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Distribution of return times (eq. S6)

v ss
h

=

2 - h
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γ Nb

NS
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Stimulus recall probability (eq. S7)

PL ( g ) =

2 -m -1
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