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Abstract1

When facing recalcitrant pollutants, soil bacteria2

exploit noise of catabolic promoters for deploy-3

ing environmentally beneficial phenotypes such4

as metabolic bet-hedging an/or division of bio-5

chemical labor. While the origin of such noise6

in terms of upstream promoter-regulator inter-7

play is hardly understood, its dynamics has to8

be somehow encrypted in the patterns of flow-9

cytometry data delivered by transcriptional re-10

porter fusions. On this background, we have11

examined the behaviour of the Pm promoter of12

the environmental bacterium Pseudomonas putida13

and its cognate 3-methylbenzoate-responsive reg-14

ulator XylS under different conditions by follow-15

ing expression of Pm-GFP fusions in single cells.16

Using mathematical modeling and computational17

simulations we elucidated the kinetic properties18

of the system and use them as a baseline code19

to interpret the observed fluorescence output in20

terms of upstream regulator variability. Tran-21

scriptional noise was predicted to depend on the22

intracellular physical distance between the regula-23

tor source (where the e.g. XylS is being produced24

in the cells) and the target promoter. Experi-25

ments with engineered bacteria where this dis-26

tance is either minimized or enlarged proved the27

effects of proximity on noise patterns as predicted28

by the model. This approach not only allowed29

deconvolution of cytometry data into mechanis-30

tic information on the gene expression flow. But31

it also provided a mechanistic basis for selecting32

a given level of noise in engineered regulatory33

nodes e.g. in Synthetic Biology constructs.34

Introduction35

The processing of information inside bacterial cells in36

response to physicochemical stimuli requires the func-37

tioning of regulatory cascades to effectively propagate 1

cognate input/output signals. This typically involves 2

multiple steps in which upstream produced transcription 3

factors (TFs) have to interact with downstream promoters, 4

triggering gene expression responses. These interaction 5

events occur stochastically in time rather than determin- 6

istically [1–5], leading to very specific and variable noisy 7

signals. The customary view considers this effect as the 8

necessary consequence of random fluctuations of regula- 9

tory elements present in short supply in individual cells [6]. 10

However, the range and intensity of expression noise of 11

given promoters appears in some cases as an adaptive 12

trait that frames the dynamic properties of promoter acti- 13

vation [7–9]. The onset of single-cell technologies [10–12] 14

has shed some light on the various mechanisms behind 15

noise generation. A major source of noise in virtually 16

every prokaryotic promoter is the so-called bursting ef- 17

fect [13, 14], a pulse-like activity that largely results from 18

discontinuous topological changes of DNA caused by the 19

progression of RNA polymerase (RNAP) through tran- 20

scribed DNA [15, 16]. But this default pulsing scenario 21

then intersects with the interplay between of the promoter 22

at stake and its specific regulators in response to particu- 23

lar conditions. The outcome of different noise generators 24

in vivo is a distribution of fluorescence in single cells that 25

can be followed through cytometry of bacteria bearing 26

e.g. transcriptional GFP fusions [17]. In other words, cell 27

cytometry profiles embody information on the mechanis- 28

tic origin of the observed gene expression noise. But how 29

to retrace such data to the physical TF-promoter scenario 30

that produces the distribution of fluorescent signals in a 31

population? 32

The Gram-negative soil bacterium Pseudomonas putida 33

mt-2 provides an exceptional model for tackling the ques- 34

tions above. This microorganism is able to thrive in sites 35

polluted with aromatic chemicals [18] e.g. m-xylene (m- 36

xyl), because of a complex metabolic and regulatory net- 37

work encoded in its single-copy TOL plasmid pWW0 [19] 38

(Figure 1). One conspicuous feature of this system is that 39

noise of each of the four promoters of the network seems 40
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to be exquisitely controlled for deploying a metabolic bet-1

hedging strategy [20]. This allows a fraction of the cells2

in a population (but not all) to explore new nutritional3

landscapes without risking a communal collapse should4

such reconnoitre fail [20, 21]. The noise of the Pu and5

Ps promoters of the network can easily be explained by6

the very low number of molecules of their cognate regu-7

latory protein XylR [22]. However, that of Pm (which8

runs the lower operon of the pathway in response to 3-9

methylbenzoate 3MBz; [23]) is quite puzzling. As shown10

in Figure 1, this promoter can be activated through two11

separate mechanisms i.e. either [i] a low intracellular12

concentration of the cognate regulator XylS bound to13

its effector, 3MBz or [ii] overproduction of XylS-alone,14

with no concourse of 3MBz. Logically, when the two15

circumstances co-occur (i.e. high XylS levels and pres-16

ence of 3MBz), Pm activity can reach very high activity17

levels [24,25]. Yet, the revealing feature of this regulatory18

node is that the noise pattern displayed by Pm varies19

dramatically depending on either mechanism, as will be20

seen in the Results section. On this background we won-21

dered whether the cell cytometry data of transcriptional22

Pm-GFP fusions could be decoded into information on23

the physical dynamics of promoter activation, including24

hints on the arrangement of the XylS/Pm regulatory node25

in the cell.26

The combination of modeling and experimental work27

presented below shows not only that the noise regimes28

observed in the Pm promoter are the consequence of an29

specific and steady set of kinetic rates with low XylS-Pm30

affinity dynamics and high gene expression values. Also,31

that noise regimes can be changed as needed by changing32

regulator numbers which, in the non-homogeneous intra-33

cellular milieu, ease or not the TFs to reach its target34

sequence in Pm. These predictions were validated in cells35

engineered to minimize the distance between the source36

site of XylS and the location of Pm. In that sense, the37

modelling-wet validation pipeline adopted in this work38

not only allowed deconvolution of flow cytometry data39

into kinetic details. It also exposed an added biological40

functionality to the genomic distance between regulatory41

genes and their target promoters in terms of setting the42

corresponding output noise, which can thereby be fixed43

on-demand.44

Results45

Two distinct noise regimes rule Pm output. As men-46

tioned above, the activity of the inducible promoter Pm47

of the TOL plasmid (Figure 1) can be triggered by ex-48

posing P.putida mt-2 to either one of these two inputs:49

[i] addition to the medium of the XylS effector 3MBz,50

in which case the activating agent is solely the complex51

XylS-3MBz, or [ii] supplementing the same medium with52

m-xylene, which is metabolically converted inside cells to53

3MBz (the bona fide intracellular agonist of XylS) by the54

Figure 1: The TOL metabolic and regulatory net-
work borne by plasmid pWW0 of Pseudomonas
putida mt-2. As shown in the sketch, m-xylene is first
converted to 3-methylbenzoate (3MBz) through the ac-
tion of the enzymes encoded by the upper TOL pathway,
and this intermediate compound is further metabolized
into the TCA cycle by the activity of the lower pathway.
XylR and XylS are transcriptional regulators while Pu,
Pm, Ps and Pr are promoters. The master regulatory
gene xylR controls expression of both the upper pathway
and the second transcriptional factor, XylS, which is
encoded in a location adjacent to the end of the lower
operon. In the absence of m-xylene, this second regulator
XylS is produced at low levels, and it changes from an
inactive form to a transcriptionally proficient TF able
to induce lower pathway expression by activating Pm.
This regulatory architecture plays a decisive role in the
dynamics of Pm activation due to the fact that the levels
of its cognate activator (XylS), vary depending on the
inducer used. In one case, 3MBz activates XylS molecules
that are present in low numbers in the cell owing to the
leaky expression of the Ps promoter. This results in the
active form of the protein that we have called XylSa,
which is able to bind and activate Pm. In the second
case, m-xylene (m-xyl) both causes over-expression of
XylS (due to activation of Ps by XylR) and intracellular
production of metabolic 3MBz (because of the activity
of the upper pathway operon driven by Pu). Therefore,
m-xyl leads to a higher concentration of XylSa than ex-
ternally added 3MBz. This difference is the key feature
for decoding Pm output, as explained in the text.

action of the upper TOL pathway enzymes (Figure 1). In 1

this last scenario, Pm is activated by XylS-3MBz as well 2

as by overproduction of the same TF (m-xyl triggers the 3

Ps promoter for XylS expression, Figure 1). Although the 4

Pm/XylS node of the TOL network is often abstracted 5

as a binary switch with only ON/OFF states, the unique 6

noisy nature of its output dashes this ideal vision and 7

highlights the role of signal variability [26]. Figures 2A 8

and 2B show flow cytometry results of promoter activity 9

as measured in a variant of the natural TOL plasmid- 10

bearing strain P. putida mt-2 called P. putida mt-2-Pm. 11
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This strain (Table 1) derives from the natural P. putida1

mt-2 isolate bearing the TOL plasmid pWW0, but it has2

been engineered to bear in its chromosome a transcrip-3

tional Pm-GFP fusion. P. putida mt-2-Pm thus it has [i]4

the sole source of XylS in the cognate pWW0-encoded5

gene, which is expressed through the Ps promoter borne6

by the TOL plasmid (see Figure 1 and Materials and7

Methods for details) and [ii] the encoded Pm-GFP in8

the chromosome. Because of this arrangement, the DNA9

region that encodes and supplies XylS transcriptional10

regulators is non-adjacent to the target promoter, from11

which it is physically separated in trans. The data of Fig-12

ure 2 expose how different the expression regimes of Pm13

are depending on whether the XylS/Pm regulatory node14

is induced with m-xyl or 3MBz in this strain. Specifically,15

induction with m-xyl (and thus XylS overproduction and16

intracellular production of 3MBz) leads to an expression17

scenario where the noise range of the output signal allows18

a null overlap between the ON and the OFF states. In19

contrast, induction with externally added 3MBz (and low20

XylS) produces a remarkably different ON state while21

leaving the OFF state unaffected. Moreover, the noise22

regime brought about by added 3MBz consisted of a23

long flat-like distribution that went from the lowest in-24

tensity value to the highest. Output ON signals are thus25

patently different in either case, suggesting they origi-26

nate in a different type of TF-promoter interplay beyond27

mere randomness. The ensuing question is whether we28

can interpret the noise patterns of Figure 2 on the back-29

ground of the TOL network (Figure 1) and the two ways30

of activating Pm mentioned above. As shown below, this31

issue can be addressed by combining various modeling32

approaches with ad hoc experimentation.33

Noise deconvolution and rate optimization. The34

functioning of the regulatory node under inspection i.e.35

the regulator-promoter pair XylS-Pm, can be modelled36

following the kinetic rates shown in Figure 3A. The regu-37

lator in its active form, XylSa, binds (k1) Pm to fire its38

activity and unbinds (k−1) it back to the default, silent39

state. When bound, mRNA molecules are transcribed40

(k2) from the downstream gene, GFP, which produce pro-41

teins through translation (k3). Even when the regulator42

is not bound, there is some leak of basal Pm transcription43

(k6). To complete the model we include degradation rates44

for both mRNA (k4) and GFP (k5). Our goal here is to45

find those values for the rates that allow Pm to handle46

different noise regimes depending on the inducer used.47

To this end, we consider a training vector θ with the48

rates that are mainly responsible for Pm dynamics de-49

fined as follows: θ = (k1, k−1, k2, k3, [XylS
a]), where [x]50

denotes concentration of molecule x. Basal activity and51

degradations are specified within standard ranges found52

in the literature for mathematical analysis [27–31] (see53

Materials and Methods). In order to look for the set54

of values that best simulate the experimental output we55

Figure 2: Variable noise patterns depending on
input signal in P. putida mt-2-Pm strain. A. When
the cells are subject to the presence or absence of m-xyl
(m-xylene), the Pm promoter activity recorded (based on
green fluorescent protein intensity) can be abstracted as
binary switch with a 1 or ON state and a 0 or OFF state.
Flow cytometry results show this behaviour, where the
noise range allows a null overlap between the 0 and the
1 (called 1a to make a difference with the following). B.
Using 3MBz (3-Methylbenzoate) as the inducer provokes
again a switch-like behaviour in Pm, with 1/ON and
0/OFF states. In this occasion, as seen in the cytometry
results, the noise range is much wider, going from the
maximum expression to the minimum (ON state therefore
called 1b). C. In this set of experiments, XylS molecules
are produced by the TOL plasmid borne by the P. putida
mt-2-Pm while the target Pm-GFP reporter fusion is
inserted in the chromosome (see Materials and Methods),
i.e. the source of the transcriptional factor and its target
promoter are non-adjacent and encoded in separate mono-
copy (i.e. TOL plasmid and chromosome) replicons.

describe two fitness parameters based on the ON state 1

produced by 3MBz (Figure 2B): wide-range signal (f1) 2

and flat-like surface (f2). When the first condition is 3

applied to a series of simulations the optimized vector 4

corresponds to θf1 = (0.001, 0.2, 1000, 120, 400), whose 5

output is shown in Figure 3B. We can observe in the time- 6

course plot that expression is either high or low with fast 7

transitions in-between leading to a bimodal probability 8

distribution. We then add the second fitness parameter 9

to θf1: the probability distribution must have a flat-like 10

surface. As this new condition has priority over the pre- 11

vious one, the optimization will output the vector that 12

produces the widest range signal possible while assuring 13

flatness. Figure 3C shows the simulation with the out- 14
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Figure 3: Rate optimization according to output-
state fitness. A. Promoter (Pm) being studied in this
work and the rates involved in the model. XylSa is the
activator of the inducible promoter in its active form.
The complex Pma makes reference to the promoter with
the regulator bound. Rates k1 and k−1 correspond to
binding and unbinding events respectively. Transcrip-
tion: k2. Translation: k3. Degradation rates: k4 and
k5. Basal transcription rate is represented by k6. B.
Rate optimization if terms of maximizing the distance
between the maximum and minimum output level results
in a bimodal distribution, where most cells are in either
ON or OFF states and very few in-between at a given
time. Bar-plot shows the optimization outcome for rate
values. A very low binding rate guarantees a persistent
OFF state while low unbinding value allows the high
expression, as the regulator stay bound for longer pe-
riods. C. By forcing flatness (as well as amplitude) in
the distribution, the noise profile has a smaller output
range, marked by red arrows in the time-course graph. As
seen in resulting rates, binding and unbinding values are
increased to promote exploring intermediate expression
values by boosting affinity instability. Most importantly,
regulator numbers are drastically lowered, placing this
value at the core of promoter activation. In both A.
and B., yellow markers in bar-plots highlight the most
influential rates responsible for each behaviour. Red lines
denote standard values (often used in the literature for
computational analysis, see Materials and Methods.)

put vector θf2 = (0.004, 1.5, 900, 80, 200) after the last1

optimization.2

These results shed some light on the mechanics respon-3

sible for the ON state after induction with 3MBz. On4

the one hand, strong expression kinetics (transcription +5

translation) are needed to produce higher output values6

Figure 4: Effects of changes in bind-
ing/unbinding rates on Pm activity. Different
time-course simulations are shown, where Pm promoter
is exposed to three different concentrations of its
regulator, XylSa: 10 (null induction, thus basal, yellow
line), 200 (low induction, green line) and 3000 (high
induction, purple line) molecules. The graph in the
middle corresponds to the rates established in Figure 3C,
with k1=0.004 and k−1=1.5. Top: k1 reduced to 40% its
original value. Bottom: k1 increased to 250%. Left: k−1

at 40%. Right: k−1 at 250%. Top-left graph shows the
behaviour of a theoretical standard promoter with k1=5
and k−1=60, where the noise is proportional while the
input increases.

while a weak binding rate guarantees reaching the lower 1

ones as the promoter remains empty for longer periods. 2

On the other hand, it is the increment in the unbinding 3

rate what helps generating the final flat-like distribu- 4

tion because it promotes affinity instability. Remarkably, 5

the optimized number for the concentration of regulator 6

molecules is rather low ([XylSa] = 200), matching our 7

initial expectations since we are simulating a 3MBz in- 8

duction case which should lead to fewer TF numbers than 9

m-xyl. 10

In a further step, in order to check whether the noise 11

regime observed in the ON state during m-xyl induction 12

could be reproduced we increased the concentration of 13

XylSa molecules while leaving the rates of vector θf2 14

untouched. Importantly, the simulations were successful 15

at this stage and, as a result, this concentration is fixed 16

at [XylSa] = 3000 molecules. These numbers produce the 17

graph shown in Figure 4 (centre) in which the time-course 18

lines at low and high induction correspond to the presence 19

of 3MBz and m-xyl respectively. In supplementary Text 20

S1 we detail the dynamics of the full TOL network and 21

specify which kinetic values output the aforementioned 22

XylSa concentrations in each induction pathway. The 23

Page 4 of 15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2015. ; https://doi.org/10.1101/019927doi: bioRxiv preprint 

https://doi.org/10.1101/019927
http://creativecommons.org/licenses/by-nc-nd/4.0/


balanced relationship of the two quantities, 200 and 3000,1

is based on previous qualitative observations [32].2

During the course of this optimization process we ob-3

served that Pm, or its in-in-silico counterpart θf2, is very4

specific. In other words: changes in certain rates can5

make the promoter to stop working correctly. Figure 46

tests the stability of the system under variable binding7

and unbinding rates. The graphs aligned vertically in8

Figure 4 share the value for k−1 while the value for k1 is9

increased to 250% its original value -upper graph- and10

decreased to 40% at the bottom. Equal ratios are applied11

to the changes in k1 within the horizontally lined up simu-12

lations. We clearly observe how the ideal behaviour is no13

longer maintained when those key rates are altered. We14

can then represent that scenario quantitatively by means15

of the differential variability (DV) of signals, a parameter16

that calculates changes in variance of expression. The17

middle scenario produces a DV= 11.7 while a standard18

promoter (up-left graph) has DV = 0.8 and any other19

scenarios show intermediate values between these two.20

Although these results allowed decoding the kinetic rates21

of Pm, they say nothing on the role played by the physical22

dynamics of the regulator-promoter interplay. To this23

end we adopted a separate approach as explained below.24

Dilution and extrinsic noise effects. Prior to decod-25

ing the information on regulator dynamics we tested the26

values of θf2 in a more computationally complex, although27

more realistic, scenario. As a result of simulating pro-28

tein dilution dynamics and extrinsic noise, the previous29

optimized unbinding rate was decreased to maintain Pm30

functioning. For this we used our platform for simulating31

bacterial growth and population dynamics (DiSCUS, see32

Materials and Methods for details). In this agent-based33

simulation, each cell is a rod-shaped object that shows34

asynchronous growth and embodies its own copy of the35

mathematical model (reactions for Pm-GFP activity).36

Furthermore, this simulation incorporates creation and37

degradation rates for the regulator, which generates ad-38

ditional fluctuations. While intrinsic noise was modelled39

(as previously) by applying variability to the molecular40

species at stake, the streamlined simulation makes ex-41

trinsic stochasticity to affect the rates directly. In such42

spatial simulation, both kinds of noises are accumulated43

with time [33], but we introduced extrinsic fluctuations44

only when the cell divides into two newborn bacteria.45

This setup assumes a sort of idealized growth condition in46

which changes in the status of the cells are mostly due to47

division. On this basis, the fluctuations of a specific rate,48

r, are calculated according to its initial definition r0 by49

assigning a new value after each division that is randomly50

chosen within the range r ∈ [−a · r0, a · r0] where a =51

0.2 (a 20% increase/decrease of the original rate value).52

Furthermore, molecular levels are lowered to half its value53

after division in order to simulate dilution [34]. With54

this setup we could then inspect the ON state produced55

by 3MBz induction, which is more sensitive to fluctua- 1

tions in the number of regulators as these are present in 2

fewer numbers (analysis output Shown in Supplementary 3

Figure S1). In fact, Fig. S1 shows that due to the high 4

variability in the concentration of XylSa, promoter output 5

drops and the plateau behaviour is no longer maintained. 6

The question that arises on the basis of the above is 7

what to change in θf2 to restore normal functioning as 8

observed in the experiments. The answer is given by 9

the images of Figure 4: when the time-course line drops, 10

a reduction of k−1 could help raising the levels of gene 11

expression. We therefore changed unbinding rate to k−1 12

= 0.8. This single change gives equilibrium back to the 13

system and the probability distribution moves drastically 14

towards the sought flat-like shape. The explanation is that 15

when we lower the unbinding rate we force the regulators 16

to stay bound for longer to the promoter region. This 17

then compensates the system for the strong fluctuations 18

in XylSa, specially the inherent reduction in TF levels 19

after division. 20

System sensitivity to alterations in the concentra- 21

tion of the transcription factor. Simulations of the 22

Pm response to gradual changes in regulator numbers 23

reveals that previous estimated XylSa figures for both ON 24

states (200 and 3000 under 3MBz and m-xyl, respectively) 25

are optimal to maximize differences between the two ex- 26

pression noise regimes. The simulated transfer function of 27

Pm, shown in Figure 5A, indicates the range of the signal 28

and its mean value at a given regulator concentration. 29

Unlike other promoter transfer functions found in the lit- 30

erature [16,35–37] where transcriptional activity produces 31

similar noise (error bars in graphs) regardless the input 32

concentration, here the middle sector of the curve displays 33

a very unique and wider noise profile. Taking a look in 34

depth, it is indeed around 200 and 3000 XylSa molecules 35

where the noise ranges reach maximum and minimum 36

levels respectively. The simulation of Figure 5B shows 37

the system tested in continuous functioning where the 38

inducer is changed sequentially. As observed, the output 39

produced by Pm suggests a trinary (rather than binary) 40

signal where there are three states, one OFF and two 41

ON, each of them having a different shape that unequiv- 42

ocally recall their input. Population-based simulations 43

(Supplementary Figure S2) with heterogeneous distribu- 44

tion of inducers over the surface where the cells grow 45

on, emphasize the correlation between input compound 46

and output signal in a visual fashion. It is also notewor- 47

thy this output corresponds to an amplitude-modulated 48

(AM) signal that is produced from a frequency modulated 49

(FM) promoter [38]. Therefore, there is a direct correla- 50

tion between the time intervals of the bursting effect and 51

the max-min distance (amplitude) of the resulting gene 52

expression levels. 53

Two further analyses than link regulator dynamics with 54

output noise are shown in Figure 5C. They must be inter- 55
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Figure 5: Analysis of Pm activity noise regarding regulator dynamics. Study of simulation sets where regulator
concentration is the only parameter changed. A. Transfer function of Pm, which measures the output level resulting
from different input concentrations. While the average value (red line) shows no relevant information but the usual, the
noise produced by the signal (blue error bars, which denote max-min signal values) displays different behaviour according
to input numbers, having wider range at middle concentrations. B. Concentration of GFP molecules over time while
the input changes (3MBz, m-xyl or none). The three values of the logic displayed by the signal (called 0, 1a and 1b in
Figure 2A-B) are: wide-range noise (times 0-20h and 40-60h), small-range high-level noise (times 20-40h, 60-80h) and
small-range low-level noise (time 80h onwards). C 24h simulations with different XylSa concentration each (from 0 to
3000 molecules) are use to measure: 1) the cumulative pulse duration, which corresponds to the length of time that Pm
promoter is in the ON state (thus, its regulator is bound to the DNA) and 2) the amplitude of the signal, that is defined
here as the distance (in molecules) from the highest value reached during the simulation to the minimum (measured in
steady-state).

preted on the background of the pulsing transcriptional1

bursts that frame activity of prokaryotic promoters as2

mentioned above. As shown in Figure 5C, two measure-3

ments, cumulative pulse duration and signal amplitude,4

were monitored in 24h simulations of the system at differ-5

ent XylSa concentrations. The cumulative pulse makes6

reference to the core of the bursting effect, meaning the7

total time that Pm is in its active state, i.e. when XylSa8

is bound to it. As a common trend, the total time of9

residence of XylSa associated to Pm increases as the num-10

ber of regulator molecules are higher. This points out11

the ON state produced during m-xyl induction to corre-12

spond to high numbers of XylSa. On the other hand, the13

amplitude of the signal (difference between the highest14

and the lowest values during each simulation) decreases15

except during the interval in which the number of XylSa16

molecules is within the range ∈ [0..' 150], where the17

distance uppermost/lowermost signal increases. The cog-18

nate inflexion point thus can be explained as the number19

of XylSa molecules that bring about the ON state during20

induction with 3MBz. This state of affairs is key to in-21

terpret noise in terms of physical TF-promoter dynamics,22

as explained below.23

Influence of intracellular regulator-promoter proxim-24

ity on transcriptional output. On the basis of the25

above, we wondered whether the low-noise regime pro-26

duced by m-xyl induction could be generated if 3MBz 1

were the only input. When the model is interrogated 2

with this question, the answer is positive when and only 3

when 3MBz co-occurs with high numbers (3000) of the 4

regulator XylSa. At a first glance this condition seems 5

impossible to accomplish since the compound needed to 6

stimulate production of more XylSa molecules is m-xyl, 7

not 3MBz (see Figure 1). But the situation changes if 8

we rethink the possible effects of the number of XylSa 9

molecules produced in the physical matrix of a real bacte- 10

rial cell. In the simulation scenario mentioned above it is 11

assumed that each of the regulators is capable of binding 12

the target promoter with a given, fixed rate as if it were 13

a pure chemical reaction. In a real cellular setup (as the 14

one adopted in Figure 2), one has to consider that due 15

to imperfect diffusion caused by molecular crowding and 16

non-homogenous micro-viscosity [39, 40] not all regula- 17

tors are equally effective in reaching and binding cognate 18

target DNA sequences. In reality, accessing the target 19

promoter will be limited by the ease of diffusion towards 20

the physical location where Pm is located in individual 21

cells. To examine this possibility, we simulated individ- 22

ual protein trajectories [41–43] inside a cell, following a 23

random Brownian motion [40,44,45]. 24

Figures 6A-B record the trajectories of individual reg- 25

ulator molecules (XylSa) that are being expressed from 26

what we call the source region. This location, that cor- 27
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Figure 6: Pm promoter activity influenced by its distance from regulator source. A and B. Spatial
distribution of simulated proteins following Brownian movement in a cell-like compartment. Each colour line inside the
cell represents a trajectory of a protein from its source (placed at the middle of the space and labeled with the letter
A) to its finally position at a given time. Density of trajectory positions at each section (longitudinal and transversal)
is shown in sideways graphs; and two zoom-in regions (labeled A, B) with different trajectory points occupation are
displayed in detail. A. Low frequency of protein production. B. High frequency of protein production. Picture on the
right shows final protein position and highlights homogeneous distribution in sideways plots. C. Probability density per
sub-compartment of the cells area according to a simulation with low frequency production reveals a strong negative
correlation between distance from source and density of regulators. Binding rate k1, results in a combination of these two
variables in a spatial scenario like the one considered. D. Physically re-arranged XylS/Pm regulatory node engineered
in strain P. putida KT-BGS (Table 1) to maximize proximity between source (XylS production via Ps promoter) and
target (Pm). Both promoters were inserted next to each other into the chromosome of strain KT2440, from where the
TOL plasmid was removed (see Materials and Methods). E. Flow cytometry results with P. putida KT-BGS cells. As
predicted by the model, using 3MBz as the inducer with minimal distance between source and target (upper graph, in
green) gives the same results than using m-xyl with the reference P. putida mt-2-Pm strain (Figure 2A). Lower plot
shows, as control, the 3MBz scenario in P. putida mt-2-Pm cells where source of the TF and the target promoter are not
adjacent.

responds to the physical location of the Ps promoter1

from which xylS is expressed, can be abstracted as a de-2

fined, bounded site from which the XylS protein stems.3

Given the coupling of transcription and translation in4

the prokaryotic gene expression flow [46–48], it is safe to5

assume that the TF protein is produced in close proximity6

to the Ps promoter and the downstream xylS gene (Figure7

1). But once produced, XylSa must reach a physically8

separated target region where Pm is located in order to 1

trigger transcription. This raises the different scenarios 2

shown in Figures 6A-B, which diverge only in the num- 3

ber of proteins stemming from the source region. For 4

a productive XylSa-promoter interaction to occur, the 5

regulator must migrate from the place it is created to- 6

wards the site where Pm is located. If the number of 7

regulator molecules is low, there are necessarily empty 8
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locations inside the cell that XylSa may not come across1

easily (at any one time). Should Pm be located in one of2

such regulator-empty sectors, it is physically impossible3

to materialize a productive contact, thus leading to an4

OFF promoter state. Scaling up this scenario to several5

thousand bacteria results in a situation such that each6

individual target region could accommodate a different7

number of regulators ranging from all to none, thus lead-8

ing to a pronounced cell-to-cell variability. In contrast,9

when the regulatory proteins originated in the source10

region are abundant, there are hardly any empty areas11

inside the intracellular space and the variability range12

narrows. Note that the allocation of proteins at any13

given time does not necessarily match the distribution of14

trajectories (Figure 6B), meaning that the trails of the15

regulators are more space-dependent than their spread-16

ing. Due to the fact that regulators can bind and unbind17

several times their target promoter, it is their trajectories18

and not their final position that tell us which spatial19

regions are more likely to host TFs. As a result, the20

apparent binding rate of Figure 3, k1, in reality merges21

promoter-TF affinity proper (i.e. the physical interaction22

ability of the two molecular partners) with the occurrence23

of the regulator in the neighborhood of the promoter24

in vivo. Figure 6C shows the probability density of a25

simulated low-frequency regulator source placed at the26

middle of the cell compartment and the negative correla-27

tion between the distance d to this source and the density28

ρ of transcription factors. Therefore, the rate k1 of the29

original model can be replaced by a new function that is30

proportional to both parameters: intrinsic affinity and31

intracellular concurrence.32

Physical closeness between Pm and XylS de-33

creases transcriptional noise. The experimental set-34

ting that reveals the differences in Pm noise caused by35

3MBz -either added or generated metabolically from m-36

xyl- is one in which the promoter and the regulator are37

placed in somehow distant locations of the cell’s volume.38

This was brought about by placing the Ps promoter for39

xylS expression and the reporter Pm-GFP fusion in differ-40

ent replicons i.e., the TOL plasmid and the chromosome41

in P. putida mt-2-Pm, respectively (see Materials and42

Methods). One key projection of the model presented43

above is that physical proximity between the genomic44

sites bearing the Ps-xylS and Pm-GFP DNA segments45

should result in better occupation of Pm at lower XylS46

concentrations and therefore in a reduced GFP expres-47

sion noise. To test this prediction we arrayed the Ps-xylS48

and Pm-GFP sequences within the frame of a mini-Tn749

transposon vector as explained in Materials and Methods.50

Delivery of such construct to the single attTn7 site of the51

strain P. putida KT2440 (i.e. same than P. putida mt-252

but free of the TOL plasmid) resulted in strain named P.53

putida KT-BGS (Table 1). In these engineered bacteria,54

the two components of the regulatory device under study55

(Ps→xylS/Pm→GFP) are thereby designed adjacent to 1

each other, in monocopy and in a fixed chromosomal 2

site. For the sake of the model, this means that distance 3

between the TF source region and the promoter target 4

region is artificially minimized (Figure 6D). In order to en- 5

sure that the modifications entered in P. putida KT-BGS 6

do not distort the physical structure of the bacteria [49] 7

we compared the apparent size and complexity of individ- 8

ual cells to those of its counterpart P. putida mt-2-Pm 9

where Ps-xylS and Pm-GFP are separated. The data 10

shown in Supplemental Figure S3 indicated that both 11

strains are virtually indistinguishable as no significant dif- 12

ferences were noticed in either physical quality. Once this 13

was clarified, we repeated with strain P. putida KT-BGS 14

the same induction experiment with 3MBz that was done 15

previously with the reference P. putida mt-2-Pm. The 16

flow cytometry results of this experiment are plotted in 17

Figure 6E(up). For the sake of comparison, the lower plot 18

of Figure 6E shows the same information of Figure 2 with 19

strain P. putida mt-2-Pm added with 3MBz. Inspection 20

of the data reveals that the proximity between Ps-xylS 21

and Pm-GFP in P. putida KT-BGS results in a type of 22

response to 3MBz that delivers a much narrower noise 23

regime at high GFP intensity values. In this respect, the 24

fluorescent signals of P. putida KT-BGS induced with 25

3MBz (where xylS expression is low but spatially proximal 26

to Pm, Figure 6D) were indistinguishable to those of P. 27

putida mt-2-Pm under m-xyl induction (TF expression 28

high but distal to the target promoter). Moreover, the 29

noise resulting from these two conditions diverge from 30

the pattern observed in P. putida mt-2-Pm with 3MBz 31

(low xylS expression from a source site separated from 32

Pm). The mechanistic basis of the expression noise of 33

each case is suggested by the model above (Figure 3), in 34

particular our interpretation of rate k1. Under this frame 35

(k1 = ρ*d), as the distance Ps-xylS to Pm-GFP decreases 36

the density of the TF must be higher in order to keep the 37

value of k1 constant as in the 1-dimensional simulations 38

of Figure 5. In the case of strain P. putida KT-BGS, the 39

proximity of Ps-xylS to Pm-GFP yields higher regulator 40

numbers in the local molecular environment of Pm, what 41

causes the same number of TFs to be available to its 42

target promoter. 43

When the TFs were counted in the simulated target 44

region we observed that a non-homogeneous intracellular 45

space was needed in order to reach the optimized regula- 46

tor numbers of Figure 5, highlighting the importance of 47

different mobility areas in the cell [40]. Figure 7 shows the 48

distribution of regulators within a cell-like compartment 49

that is firstly empty, thus homogeneous (Figure 7A); and 50

then compartmentalized by adding low mobility regions 51

(Figure 7B) in which the Brownian motion is slowed down 52

(see Materials and Methods). As observed, the difference 53

in TF concentration caused by the proximity effect in the 54

homogeneous space scenario (' 400 vs. 130 in Figure 7A) 55

is not enough to reproduce the noise patterns in-silico. 56
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However, the addition of low mobility areas produces the1

accumulation of TFs within those regions and regulator2

numbers increase to reach the optimal proportion ('3

3112 vs. 200 in Figure 7B). This latter scenario matches4

our experimental setup as the target region is inserted5

in the nucleoide, that corresponds to a highly condensed6

space. The noise-dependence of promoter-to-regulator7

distance is likely to be exacerbated if the TF at stake8

is very unstable, as seems to be the case with XylS [50].9

Taken together, these data expose a new functionality to10

the intricate architecture of the regulatory network that11

governs biodegradation of m-xylene in P. putida mt-2.12

Figure 7: Local TF concentration affected by het-
erogeneous diffusion areas within the cell. Simu-
lated regulators follow Brownian movement from a source
region (circle) within a cell-like compartment. During
the simulation, the number of regulators per iteration
(scale bars) are monitored in squared sectors, with spe-
cial attention to the target region (rectangle). A. In an
homogeneous-space cell, the number of XylSa molecules
(trajectory points at a given time) within the target re-
gion corresponds to ' 130 when the source is not close
(left) and ' 400 when both regions share the same local
area (right). B. When running the simulation including
low mobility areas (polygons), where TFs move slower,
the number of XylSa elements is ' 200 and ' 3000 in dis-
tant (left) and close (right) setups, respectively, matching
the numbers optimized in the 1-dimensional analysis of
Figure 5.

Discussion13

Intracellular signals are transmitted according to specific14

dynamics of the components involved in their transfer.15

Therefore, these communications are endowed with pre-16

cise information, whose decodification promises valuable17

insights into cellular kinetic and structural properties [9].18

It is signal variability, commonly referred to as gene ex-19

pression noise [4, 5], that constitutes the fingerprint of 1

such a transmission, and thus the target data to interpret. 2

In the case documented in this paper, the expression sig- 3

nals displayed initially by Pm promoter [19,22,23] activity 4

in P. putida lead to highly-specific and stable noise pat- 5

terns depending on what stimulus the cells were exposed 6

to. Using mathematical modelling and computational 7

analysis, we deconvoluted the flow cytometry data of each 8

scenario to describe the kinetics that could reproduced 9

that behaviour. As a result, the kinetic values that fits 10

the experimental observations highlight the importance 11

of the bursting-specific rates [13–16], binding and unbind- 12

ing, where each of those values has its own influence in 13

final promoter activity. Furthermore, and once the set 14

of rates is established, we pinpointed how the dynamics 15

of the Pm-regulator interplay determines gene expression 16

output by entering spatial effects, in particular protein 17

distribution within a cell. Our model, validated by the 18

experiments shown above, accredits that the physical dis- 19

tance between the source of the regulator and the target 20

promoter is translated into given noise patterns change 21

drastically depending on promoter-TF proximity. This is 22

due to the fact that regulators, or rather their trajectories 23

(Figure 6) are not homogeneously distributed [60] and 24

TFs are thus more likely to meet the promoters they 25

regulate if located near the source [61]. This scenario 26

was hypothesized by ten Wolde to explain the frequent 27

genomic association of TFs and target promoters as an 28

evolutionary remedy to an excess of noise [62, 63]. In 29

contrast, our analyses raise questions on whether gene 30

expression noise caused by a non-homogeneous intracel- 31

lular matrix s an adaptive trait in earnest which endows 32

regulatory networks with emergent properties. In our 33

case, we show that noise patterns of Pm can be altered by 34

either changing the relative spatial positioning of the reg- 35

ulatory components (Figure 6) or their upstream kinetics 36

(Supplementary Figure S4). As one of activity regimes of 37

Pm is much more variable than the other, it may well hap- 38

pen that the noise-generating scenarios thereby described 39

have been co-opted evolutionarily to create phenotypic 40

heterogeneity within a population in order to increase its 41

metabolic or else fitness [64, 65]. This opens good oppor- 42

tunities to redesign heterologous expression systems for 43

biotechnological purposes e.g. by decreasing phenotypic 44

diversity of in a clonal population of producing cells [66]. 45

Or just select the appropriate noise regime depending 46

on the gene that is being expressed. For instance, if the 47

gene of interest is a repressor (supplementary Figure S5) 48

it is likely that we would want to reduce the noise. The 49

data above also enter a new challenge in the engineering 50

of non-native regulatory circuits or in, general, synthetic 51

genetic implants in the genomic and biochemical chassis 52

of a bacterial cell [36, 67, 68]. Every gene sequence and 53

every protein (including TFs) may need a specific physical 54

address in the 3D frame of a cell for an optimal perfor- 55

mance, an issue that is hardly considered in contemporary 56
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Table 1: Bacterial strains and plasmids used in this work

Bacterial strain or plasmid Relevant characteristics Reference or source

Strains
Escherichia coli

CC118λpir Cloning host; ∆(ara-leu araD ∆lacX174 galE galK phoA thiE1 rpsE
rpoB(Rif) agrE(Am) recA1 λpir lysogen

[51]

HB101 Helper strain; F− λ− hsdS20(rB
− mB

−) recA13 leuB6(Am) araC14
∆(gpt-proA)62 lacY1 galK2(Oc) xyl-5 mtl-1 thiE1 rpsL20(Smr) glnX44(AS)

[52]

Pseudomonas putida
KT2440 Wild-type strain; mt2 derivative cured of the TOL

plasmid pWWO
[53,54]

mt-2 Wild-type strain bearing pWWO plasmid [55]
mt-2-Pm Gmr. P.putida KT2440 inserted in its genomic attTn7 with the hybrid mini-Tn7

delivered by plasmid pBG-Pm (Supplementary Figure S6)
This work

KT-BGS Gmr. P.putida KT2440 inserted in its genomic attTn7 with the hybrid mini-Tn7
delivered by plasmid pBGS (Supplementary Figure S6)

This work

Plasmids
pRK600 Cmr. Helper plasmid used for conjugation; oriV ColE1,

RK2(mob+ tra+)
[56,57]

pTnS-1 Apr, oriR6K, TnSABC+D (Tn7 transposase) operon [58]

pBG
Kmr, Gmr, oriR6K, mini-Tn7 delivery vector; Tn7L and TnR bracketting
a mobile DNA segment for engineering standardized BCD2-msf GFP
reporter fusions (Supplementary Figure S6)

Zoebel et. al.
(submitted)

pBG-Pm Kmr, Gmr, oriR6K. pBG inserted with Pm promoter and thus bearing
a standardized Pm-GFP fusion

This work

pSEVA228 Kmr, oriRK2, xylS/Pm expression system [59]
pBGS Kmr, Gmr, oriR6K, pBG inserted with the xylS/Pm module of pSEVA228 and

thus bearing the TF adjacent to the same standardized Pm-GFP fusion as in pBG-Pm
This work

Synthetic Biology and which surely deserves more atten-1

tion. Finally, our results above put a new perspective on2

the much debated generality of transcription/translation3

coupling in prokaryotes [46–48], as the noise regime of4

given promoters is surely influenced by whether cognate5

TFs are generated close to the very genes which encode6

them or they have to migrate to other sites of the cell.7

These are all exciting questions that will be the subject8

of future studies.9

Materials and Methods10

Bacterial strains, growth conditions and genetic11

constructs. The bacterial strains and the plasmids12

used in this study are listed in Table 1. Escherichia13

coli cells were grown at 37◦ C in Luria Bertani (LB)14

medium and they were used as host for cloning proce-15

dures. P. putida cells were incubated at 30◦C in M916

minimal medium supplemented with 2mM MgSO4 and17

20 mM citrate as the sole carbon source [69]. When re-18

quired, gentamycin (Gm 10 g mL−1), kanamycin (Km 50 g19

mL−1), ampicillin (Ap 150 g mL−1) and chloramphenicol20

(Cm 30 g mL−1) were added to growth media. Reporter21

strain P. putida mt-2-Pm is the original TOL plasmid22

pWW0-containing P. putida mt-2 which has been inserted23

in the single attTn7 site of its genome with a Pm-GFP24

transcriptional fusion as follows. First, the Pm promoter25

sequence was amplified from plasmid pSEVA228 [59] as26

a 122 bp PacI/AvrII fragment with primers 5’TTAAT-27

TAAGGTTTGATAGGGATAAGTCC3’ and 5’CCTAG-28

GTCTGT TGCATAAAGCCTAA3’; and cloned into 1

mini-Tn7 promoter-calibrating vector pBG (Zoebel et 2

al., submitted). The organization of this vector (Sup- 3

plementary Figure S6A) is such that inserting promoter- 4

bearing PacI/AvrII originate an standardized transla- 5

tion/transcription fusion that minimizes any effect of the 6

non-translated 5’ end of the reporter transcript in the final 7

GFP readout. Cloning thereby the Pm promoter in pBG 8

created mini-Tn7 delivery vector pBG-Pm (Supplemen- 9

tary Figure S6B). Second, this construct was mobilized to 10

pWW0-containing P. putida mt-2 strain by tetra-parental 11

mating as described in [57]. Finally, GmR exconjugants 12

were verified for insertion of the hybrid mini-Tn7 transpo- 13

son (carrying the Pm-GFP fusion) in an specific orienta- 14

tion at the attTn7 site by amplifying the genomic region 15

of interest with diagnostic PCR using primer pairs 5- 16

Pput-glmS UP 5’AGTCAGAGTTACGGAATTGTAGG3’ 17

/ 3-Tn7L (5’ATTAGCTTACGACGCTACACCC3’ and 5- 18

PpuglmS DOWN 5’TTACGTGGCCGTGCTAAAGGG3’ 19

/ 3- Tn7R 5’- CACAGCATAACTGGACTGATTTC3’. 20

One of these clones yielding DNA products of 400 bp and 21

200 bp respectively [70,71] was designated as P. putida 22

mt-2-Pm and used for the experiments discussed above. 23

To obtain an entirely equivalent P. putida strain with a 24

physically re-arranged XylS/Pm regulatory node, a 1088 25

bp DNA segment containing the array of regulatory parts 26

— xylS ← Ps — Pm → — was excised from plasmid 27

pSEVA228 [59] as PacI/AvrII fragment and cloned in 28

the corresponding sites of pBG vector (Supplementary 29

Figure S6C). The resulting construct (pBGS) was mobi- 30
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lized to the genome of the pWW0-less strain P. putida1

KT2440 and GmR exconjugants tested for insertion of2

the mini-Tn7 transposon (with the Pm-GFP fusion ad-3

jacent to the xylS gene) in the same genomic site and4

orientation as before. One of these clones was named P.5

putida KT-BGS and picked for the tests of the effects of6

XylS/Pm closeness described in this paper. Note that this7

genetic strategy allowed a faithful comparison between8

the expression noise delivered by the Pm-GFP fusion9

borne by either P. putida mt-2-Pm (Ps→ xylS and Pm in10

non-adjacent, separate replicons) and P. putida KT-BGS11

(Ps → xylS and Pm in close genomic proximity).12

Single cell analysis by flow cytometry. Single-cell ex-13

periments were performed with a Gallios (Perkin Elmer)14

flow cytometer. GFP was excited at 488 nm, and the15

fluorescence signal was recovered with a 525(40) BP filter.16

Strains grown overnight were diluted 1/100 and allowed17

to grow at 30◦C in pre-filtered M9 citrate medium and18

incubated for 3-4 hours. After this pre-incubation, at the19

late-exponential phase (OD600nm=0.4), cells were treated20

with the inducer 3MBz at 1mM; cultures were then incu-21

bated with aeration at the temperature of 30◦C, and at22

3-hour induction, an aliquot of each sample was analyzed23

by flow cytometry. For every sample 20,000 events were24

analyzed.25

Biochemical reactions. The biochemical reactions26

that fully describe the model depicted in Figure 1 are the27

next:28

Activation/deactivation : Pm +XylSa
k1−−⇀↽−−
k−1

Pma(1)

Transcription : Pma k2−→ Pma +mRNA (2)

Translation : mRNA
k3−→ mRNA+GFP (3)

Degradation : mRNA
k4−→ φ (4)

Degradation : GFP
k5−→ φ (5)

Basal Transcription : Pm
k6−→ Pm +mRNA (6)

where Pma and Pm are the promoter with and without29

XylSa bound -respectively-, XylSa denotes the regula-30

tor in its active form, mRNA is the output of the tran-31

scription process and GFP is the final green fluorescent32

protein. The description of the rates is as follows: k1 is33

the binding rate of XylSa to Pm (molecules−1hour−1),34

k−1 the unbinding rate of XylSa from the promoter35

(hour−1), k2 and k3 the transcription and translation36

rates (hour−1), k4 and k5 are the degradation rates of37

the mRNA and GFP (hour−1) and k6 the basal tran-38

scription of the promoter, which is the activity of Pm39

without regulator bound (hour−1). The full set of reac-40

tions and rates corresponding to the TOL network are41

shown in supplementary Text S1. The standard promoter42

referred to in the text corresponds to the following val-43

ues: θ = (k1, k−1, k2, k3) ⇒ θ = (5, 60, 150, 50). The44

values of Figure 3 where optimized within the ranges: 1

k1 ∈ [0.001 − 1.2], k−1 ∈ [0.2 − 80], k2 ∈ [100 − 1000], 2

k3 ∈ [10− 120] and XylSa ∈ [20− 1500]. 3

Stochastic modelling of the biochemical network. 4

Stochastic simulations are performed via Gillespie al- 5

gorithm [72]. In this approach, unlike in a deterministic 6

scenario, both chemical species and time are handled 7

in a discrete fashion as well as the kinetic rates change 8

their meaning to probabilities (of rates to be run). In or- 9

der to represent the probability distribution correspond- 10

ing to a time-course line of the expression level of a 11

reporter, we consider each time point to be a single cell 12

with its own molecule concentration. The Gillespie’s al- 13

gorithm calculates that trajectory in asymmetric time 14

lapses, τ = −log(r)/a0, were r ∈ [0..1] is a random num- 15

ber and a0 the sum of reactions at that iteration. As 16

a result the time intervals are variable in size and spe- 17

cially long when molecular levels are small, which means 18

that during τ the system remains still. Thus, what the 19

Gillespie’s algorithm returns needs to be converted into 20

a time-course array where the time intervals are fixed, 21

τα, and are small enough to have cells (each time point) 22

representing properly -in terms of frequency- all possible 23

molecular levels. We use τα = 0.01h in this work (Figure 24

S7). Differential variability (DV) is the relation between 25

the variance of the noise under two different conditions. 26

We measure it, as defined in [73], based on the expression 27

f = σ2
1/σ

2
2 where σ2

1 and σ2
2 are the variances of the signal 28

at low induction (3MBz) and high induction (m-xyl). 29

The inadequacy of deterministic approaches for the 30

characterization of expression noise is shown in supple- 31

mentary Figure S8. 32

Population dynamics. We make use of our in-house 33

software to simulate bacterial populations: DiSCUS 34

(Discrete Simulation of Conjugation Using Springs - 35

http://code.google.com/p/discus/) [74,75]. For the pur- 36

pose of the present work, we include the management 37

of extrinsic noise and protein dilution for an accurate 38

simulation of the genetic noise. Furthermore, the next 39

two extra rates are included in the model in order to force 40

stochasticity in the formation of XylSa: 41

Creation : φ
k7−→ XylSa (7)

Degradation : XylSa
k8−→ φ (8)

Extrinsic noise is simulated by changing the vector of 42

rates after division. Thus, it reflects the fluctuations in 43

the physical conditions of a newborn cell according to the 44

initial set of rates. Being θi the vector of initial kinetic 45

rates, every new vector affected by extrinsic noise (θn) is 46

described as, 47

θnj = N(µ, σ), µ = θij , σ = 0.2 · θij , j = 1 · · · p (9)
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with µ being the mean, σ the standard deviation and1

p the dimension of the rate vector θ. For the standard2

deviation of the Gaussian noise we defined a 20% of the3

original value for every rate.4

The simulated cells increase their dimension iteration-5

wise unless a threshold of pressure is reached (see DiSCUS6

website for details). That means that the stop condition7

determines the time during which the genetic circuit inside8

each cell will run for with the same rate vector. The9

doubling time is set initially to 450 iterations, where the10

rates inside each object run during 14 simulated seconds11

per iteration; so the in-silico gene is expressed during 10512

minutes during the lifetime of the cell, according to the13

rates of Figure 3. The number of proteins is halved after14

division.15

Spatial protein movement. For the spatial intra-16

cellular simulation of regulators shown in Figures 6 and17

7 we implemented a two-dimensional Brownian motion18

instance, written as an iteration scheme as follows:19

X(t+ dt) = X(t) +N(0, δ2 ∗ dt; t, t+ dt) (10)

where t identifies the last time event, dt is the time step20

(dt = T/N with T the total time per iteration and N the21

number of steps, 15.0 and 1.0 respectively in our case)22

and δ the so called Wiener process parameter (0.25 for23

this study). Each protein runs during 400 iterations and24

the slow mobility regions change dt to 1.0 to simulate25

high density areas. All parameters are dimensionless and26

are set so that a simulated protein could cover the whole27

cell’s area ('60x20 integer coordinates 2D lattice, where28

movement covers float numbers in between) during its29

lifetime. The scale-bars of Figure 7 measure the number30

of trajectory points (several for each protein) within the31

cell. Due to the fact that a regulator can bind and unbind32

different times its target promoter, it is trajectory points33

and not final protein numbers that are being monitored to34

match the 1-dimensional mathematical analysis. There-35

fore, there is a direct correlation between the number of36

TFs of Figure 5 and the trajectory points of Figure 7.37

All computational simulation programs used (includ-38

ing the stochastic/deterministic algorithms/equations39

for network study, the population-based simulation soft-40

ware and the spatial motion functions) were written in41

Python (www.python.org) and run on a PC with debian42

(www.debian.org).43
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