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Abstract 

 Though powerful, short-read high throughput RNA sequencing is limited in its ability to directly 

measure exon connectivity in mRNAs containing multiple alternative exons located farther apart than 

the maximum read lengths. Here, we use the Oxford Nanopore MinION™ sequencer to identify 7,899 

‘full-length’ isoforms expressed from four Drosophila genes, Dscam1, MRP, Mhc, and Rdl. These 

results demonstrate that nanopore sequencing can be used to deconvolute individual isoforms and 

that it has the potential to be an important method for comprehensive transcriptome characterization.   

Background 

 High throughput RNA sequencing has revolutionized genomics and our understanding of the 

transcriptomes of many organisms. Most eukaryotic genes encode pre-mRNAs that are alternatively spliced 

(Nilsen and Graveley, 2010). In many genes, alternative splicing occurs at multiple places in the transcribed 

pre-mRNAs that are often located farther apart than the read lengths of most current high throughput 

sequencing platforms. As a result, several transcript assembly and quantitation software tools have been 

developed to address this (Grabherr et al., 2011; Trapnell et al., 2010). While these computational approaches 

do well with many transcripts, they generally have difficulty assembling and quantitating transcripts that have 

many isoforms, and for genes with distantly located alternatively spliced regions, they can only infer, and not 

directly measure, which isoforms may have been present in the original RNA sample (Garber et al., 2011). For 

example, consider a gene containing two alternatively spliced exons located 2 kbp away from one another in 

the mRNA. If each exon is observed to be included at a frequency of 50% from short read sequence data, it is 

impossible to determine whether there are two equally abundant isoforms that each contain or lack both exons, 

or four equally abundant isoforms that contain both, neither, or only one or the other exon.  

 Pacific Bioscience sequencing can generate read lengths sufficient to sequence full length cDNA 

isoforms and several groups have recently reported the use of this approach to characterize the transcriptome 

(Sharon et al., 2013). However, the large capital expense of this platform can be a prohibitive barrier for some 

users. Thus, it remains difficult to accurately and directly determine the connectivity of exons within the same 

transcript. The MinION™ nanopore sequencer from Oxford Nanopore requires a small initial financial 
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investment, can generate extremely long reads, and has the potential to revolutionize transcriptome 

characterization, as well as other areas of genomics.  

 Several eukaryotic genes can encode hundreds to thousands of isoforms. For example, in Drosophila, 

47 genes encode over 1,000 isoforms each (Brown et al., 2014). Of these, Dscam1 is the most extensively 

alternatively spliced gene known and contains 115 exons, 95 of which are alternatively spliced and organized 

into four clusters (Schmucker et al., 2000). The exon 4, 6, 9, and 17 clusters contain 12, 48, 33, and 2 exons, 

respectively. The exons within each cluster are spliced in a mutually exclusive manner and Dscam1 therefore 

has the potential to generate 38,016 different mRNA and protein isoforms. The variable exon clusters are also 

located far from one another in the mRNA and the exons within each cluster are up to 80% identical to one 

another at the nucleotide level. Together, these characteristics present numerous challenges to characterize 

exon connectivity within full-length Dscam1 transcripts for any sequencing platform. Furthermore, though no 

other gene is as complex as Dscam1, many other genes have similar issues that confound the determination 

of exon connectivity.  

 We are interested in developing methods to perform simple and robust long-read sequencing of 

individual isoforms of Dscam1 and other complex alternatively spliced genes. Here, we use the Oxford 

Nanopore MinION™ to sequence ‘full-length’ cDNAs from four Drosophila genes – Rdl, MRP, Mhc, and 

Dscam1 – and identify a total of 7,899 distinct isoforms expressed by these four genes.   

Results and Discussion 

Similarity between alternative exons 

 We were interested in determining the feasibility of using the MinION™ nanopore sequencer to 

characterize the connectivity of distantly located exons in the mRNAs expressed from genes with complex 

splicing patterns. For the purposes of these experiments, we have focused on four Drosophila genes with 

increasingly complex patterns of alternative splicing (Figure 1). Resistant to dieldrin (Rdl) contains two clusters 

each containing two mutually exclusive exons and therefore has the potential to generate 4 different isoforms 

(Figure 1A). Multidrug-Resistance like Protein 1 (MRP) contains two mutually exclusive exons in cluster 1 and 

eight mutually exclusive exons in cluster 2, and can generate 16 possible isoforms (Figure 1B). Myosin heavy 

chain (Mhc) can potentially generate 180 isoforms due to five clusters of mutually exclusive exons – clusters 1 
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and 5 contain two exons, clusters 2 and 3 each contain 3 exons, and cluster 4 contains 5 exons. Finally, 

Dscam1 contains 12 exon 4 variants, 48 exon 6 variants, 33 exon 9 variants (Figure 1D) and 2 exon 17 

variants (not shown) and can potentially express 38,016 isoforms. For this study, however, we have focused 

only on the exon 3 through exon 10 region of Dscam1, which encompasses the 93 exon 4, 6, and 9 variants, 

and 19,008 potential isoforms (Figure 1D). 

     Because our nanopore sequence analysis pipeline uses LAST to perform alignments (Frith et al., 2010), we 

aligned all of the Rdl, MRP, Mhc, and Dscam1 exons within each cluster to one another using LAST to 

determine the extent of discrimination needed to accurately assign nanopore reads to a specific exon variant. 

For Rdl, each variable exon was only aligned to itself, and not to the other exon in the same cluster (data not 

shown). For MRP, the two exons within cluster 1 only align to themselves, and though the 8 variable exons in 

cluster 2 do align to other exons, there is sufficient specificity to accurately assign nanopore reads to individual 

exons (Figure 2a). For Mhc, the variable exons in the cluster 1 and cluster 5 do not align to other exons, and 

the variable exons in cluster 2, cluster 3 and cluster 4 again align with sufficient discrimination to identify the 

precise exon present in the nanopore reads (Figure 2b). Finally, for Dscam1, the difference in the LAST 

alignment scores between the best alignment (each exon to itself) and the second, third and fourth best 

alignments are sufficient to identify the Dscam1 exon variant (Figure 2c). This analysis indicates that for each 

gene in this study, LAST alignment scores are sufficiently distinct to identify the variable exons present in each 

nanopore read. 

Optimizing Template Switching in Dscam1 cDNA libraries 

Template switching can occur frequently when libraries are prepared by PCR and can confound the 

interpretation of results (McManus et al., 2010; Plocik and Graveley, 2013). For example, CAM-Seq (Sun et al., 

2013) and a similar method we independently developed called Triple-Read sequencing (Roy et al., 2015) to 

characterize Dscam1 isoforms, were found to have excessive template switching due to amplification during 

the library prep protocols. To assess template switching in our current study, we generated a spike-in mixture 

of in vitro transcribed RNAs representing six unique Dscam1 isoforms – Dscam14.2,6.32,9.31,  Dscam14.1,6.46,9.30, 

Dscam14.3,6.33,9.9, Dscam14.12,6.44,9.32, Dscam14.7,6.8,9.15, and Dscam14.5,6.4,9.4. We used 10 pg of this control 

spike-in mixture and prepared libraries for MinION™ sequencing by amplifying the exon 3 through exon 10 

region for 20, 25 or 30 cycles of RT-PCR. We then end-repaired and dA-tailed the fragments, ligated adapters, 
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and sequenced the samples on a MinION™ (7.3) for 12 hours each. We obtained 33,736, 8,961 and 7,511 

base-called reads from the 20, 25, and 30 cycle libraries, respectively. Consistent with the size of the exon 3 to 

10 cDNA fragment being 1,806 -1,860 bp in length, depending on the precise combination of exons it contains, 

most reads we observed were in this size range (Figure 3A). We used Poretools (Loman and Quinlan, 2014) to 

convert the raw output files into fasta format and then used LAST to align the reads to a LAST database 

containing each variable exon. From these alignments, we identified reads that mapped to all three exon 

clusters, as well as the exon with the best alignment score within each cluster. When examining the alignments 

to each cluster independently, we found that for these spike-in libraries, all reads mapped uniquely to the 

exons present in the input isoforms. Therefore, any observed isoforms that were not present in the input pool 

were a result of template-switching during the RT-PCR and library prep protocol and not due to false 

alignments or sequencing errors.  

 When comparing the combinations of exons within each read to the input isoforms, we observed that 

32% of the reads from the 30 cycle library corresponded to isoforms generated by template switching (Figure 

3B). The template switched isoforms observed by the greatest number of reads in the 30 cycle library were due 

to template switching between the two most frequently sequenced input isoforms. In most cases, template 

switching occurred somewhere within exon 7 or 8 and resulted in a change in exon 9. However, the extent of 

template switching was reduced to only 1% in the libraries prepared using 25 cycles, and to 0.2% in the 

libraries prepared using 20 cycles of PCR (Figure 3B). Again, for these two libraries the most frequently 

sequenced template switched isoforms involved the input isoforms that were also the most frequently 

sequenced. These experiments demonstrate that the MinION™ nanopore sequencer can be used to sequence 

‘full length’ Dscam1 cDNAs with sufficient accuracy to identify isoforms and that the cDNA libraries can be 

prepared in a manner that results in a very small amount of template-switching.  

Dscam1 isoforms observed in adult heads  

To explore the diversity of Dscam1 isoforms expressed in a biological sample, we prepared a Dscam1 library 

from RNA isolated from D. melanogaster heads prepared from mixed male and female adults using 25 cycles 

of PCR and sequenced it for 12 h on the MinION™ nanopore sequencer obtaining a total of 159,948 reads of 

which 78,097 were template reads, 48,474 were complement reads and 33,377 were 2D reads (Figure 4A). 

We aligned the reads individually to the exon 4, 6, and 9 variants using LAST. A total of 28,971 reads could be 
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uniquely or preferentially aligned to a single variant in all three clusters. For further analysis, we used all 2D 

read alignments (16,419) and only 1D reads when both template and complement aligned to same variant 

exons (31). We observed 92 of the 93 potential exon 4, 6 or 9 variants – only exon 6.11 was not observed in 

any read (Figure 4D). Over their entire lengths, the 2D reads that map specifically to one exon 4, 6 and 9 

variants map with an average 90.37% identity and an average LAST score of ~1200 (Supplemental Figure 1). 

The 16,450 full length reads correspond to 7,874 unique isoforms, or 42% of the 18,612 possible isoforms 

given the exon 4, 6 and 9 variants observed. We note, however, that while 4,385 isoforms were represented by 

more than one read, 3,516 of isoforms were represented by only 1 read indicating that the depth of sequencing 

has not reached saturation (Figure 4B and 4C). The most frequently observed isoforms were Dscam14.1,6.12,9.30 

and Dscam14.1,6.1,9.30 which were observed with 35 and 25 reads respectively (Figure 4D).  

Nanopore sequencing of ‘full-length’ Rdl, MRP, and Mhc isoforms 

 To extend this approach to other genes with complex splicing patterns, we focused on Rdl, MRP, and 

Mhc which have the potential to generate 4, 16, and 180 isoforms, respectively. We prepared libraries for each 

of these genes by RT-PCR using primers in the constitutive exons flanking the most distal alternative exons 

using 20 cycles of PCR, pooled the three libraries and sequenced them together on the MinION™ nanopore 

sequencer for 12 hours obtaining a total of 22,962 reads. The input libraries for Rdl, MRP and Mhc were 567 

bp, 1,769-1,772 bp, and 3,824 bp, respectively. The raw reads were aligned independently to LAST indexes of 

each cluster of variable exons. The alignment results were then used to assign reads to their respective 

libraries, identify reads that mapped to all variable exon clusters for each gene, and the exon with the best 

alignment score within each cluster (Figure 5). In total, we obtained 301, 337 and 112 full length reads for Rdl, 

MRP, and Mhc, respectively. From these reads, we observed a total of 4 Rdl isoforms, 9 MRP isoforms and 12 

Mhc isoforms.  

Conclusions 

 Here we have demonstrated that nanopore sequencing can be used to easily determine the 

connectivity of exons in a single transcript, even for the most complicated alternatively spliced genes. This is 

an important advance because short-read sequence data cannot be used to conclusively determine which 

exons are present in the same RNA molecule, especially for complex alternatively spliced genes. We anticipate 
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that nanopore sequencing of whole transcriptomes, rather than targeted genes as we have performed here, 

will be a rapid and powerful approach for characterizing isoforms, especially with improvements in the 

throughput and accuracy of the technology, and the simplification and/or elimination of the time-consuming 

library preparations.  

Materials and Methods 

Drosophila strains. Drosophila melanogaster y; cn b sp (stock: 2057, Bloomington) were maintained and raised 

at room temperature.  

Spike-in preparation. Total RNA from about 30 heads was extracted using Trizol reagent. 1 µg of total RNA was 

used to synthesize cDNA using random hexamers with SuperScript II (Invitrogen, Cat No: 18064) in a 20 µl 

reaction. 2 µl of cDNA reaction was used to amplify Dscam1 exons 4 through 9 using the primers exon 3 and 

exon 10 with LongAmp (New England Biolabs, Cat No: M0323) in a 50 µl reaction volume with the following 

PCR condition: initial denaturation at 94˚C for 30S, denaturation at 94˚C for 15S, annealing at 58˚C for 15S, 

extension at 65˚C for 100S (40X cycle), final extension at 65˚C for 10 mins. The PCR amplicons were purified 

using MinElute PCR purification kit (Qiagen) and eluted in 20 µl ultrapure water. The eluted amplicons were 

then cloned into a vector with both T7 and SP6 dual promoters (Life Technologies, Cat No: K4600) and 

transformed into Top10 shot cells. A total of 96 colonies were sequenced to identify exon variant sequences in 

individual clones. Six individual colonies containing a single, non-overlapping, unique exon variants were used 

to make spike-in RNAs. The vector containing the Dscam1 insert and the T7, SP6 promoter sequences were 

amplified using M13F and M13R primers. The SP6 oriented clones were individually amplified using T7 

overhang primers to facilitate in vitro transcription of all clones from T7 promoter using transcription kit. 

Following transcription, 1 µl RNA (1 µg/µl) of each of the six clones were mixed and a 10 fold serial dilution was 

made with concentration ranging from 100 ng/µl to 1 pg/µl. cDNA was synthesized using SuperScript II 

(Invitrogen, Cat No: 18064) and a 2.5 µl cDNA from 10 pg/µl  reaction was used in the 25 µl Phusion PCR with 

the following conditions: initial denaturation at 95˚C for 30S, denaturation at 95˚C for 10S, annealing at 64.7˚C 

for 12S, extension at 72˚C for 40S (20X, 25X, and 30X cycles), final extension at 72˚C for 5 mins, using 
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primers CGGATCCATTATCTCCCGGGACG (Dscam1 exon 3) and CGGATCCCTGGGCGAAGGCC (Dscam1 

exon 10 reverse).  

Amplicon library preparation and Oxford Nanopore Sequencing. The library preparation for amplicon 

sequencing was done using SQK-MAP003 following manufacturers protocol (ONT). Briefly, a total of 850 ng 

(spike-in) and 1 µg (mix heads) in 80 µl was end repaired using NEBNext End Repair Module (New England 

Biolabs, Cat No: E6050) and followed by dA tailing using NEBNext dA Tailing Module (New England Biolabs, 

Cat No: E6053). The dA tailed amplicons were then adapter ligated in a total of 100 µl reaction volume and 

incubated at room temperature for 10 mins. This reaction mixture was then purified using Agencourt AMPure 

XP (Beckman Coulter Inc., cat. no. A63880) beads and washed and eluted in Nanopore supplied reagents in 

25 µl ultrapure water. This pre-sequencing mix was added with the fuel mix and EP buffer and loaded on the 

R7.3 flow cell and sequenced. 

Data analysis. Poretools (version 0.3.0) was used to extract fasta reads from Basecalled fast5 files. Exon 

cluster specific LAST indices were made using lastdb with default parameters. The reads were then aligned 

using lastal independently to these LAST indices using following parameters: -s 2 -T 0 -Q 0 -a 1. Reads that 

aligned to all 3 clusters were parsed from all alignments and used for further processing. The top scoring 

alignment was used for reads that aligned to multiple variants. iPython notebooks containing all the analysis 

and code are available at github/mohanbolisetty/dscam_nanopore. MAF files from LAST alignments were 

converted to SAM or PSL formats using maf-convert.py.  

Accession codes. Sequence reads are currently being submitted to a public archive and will be made available 

as soon as possible.  
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Figure Legends 

Figure 1. Schematic of the exon-intron structures of the genes examined in this study. A. The Rdl gene 

contains two clusters (cluster one and two) which each contain two mutually exclusive exons. B. The MRP 

gene contains contains two and eight mutually exclusive exons in clusters one and two, respectively. C. Mhc 

contains two mutually exclusive exons in clusters one and five, three mutually exclusive exons in clusters two 

and three, and five mutually exclusive exons in cluster four. D. The Dscam1 gene contains 12, 48, and 33 

mutually exclusive exons in the exon four, six and nine clusters, respectively. For each gene, the constitutive 

exons are colored blue, while the variable exons are colored yellow, red, orange, green or light blue. 

Figure 2. Similarity distance between the variable alternative exons of MRP, Mhc, and Dscam1. A. 

Schematic of the organization of the exon 3 through exon 10 region of Dscam1. B. Violin plots of the LAST 

alignment scores of each variable exon within each cluster to themselves (1st), and to the exons with the 

second (2nd), third (3rd) and fourth (4th) best alignments.  

Figure 3. Optimized RT-PCR minimizes template-switching for MinION sequencing. A. Histogram of read 

lengths from MinION sequencing of Dscam1 spike-ins from the library generated using 25 cycles of PCR. B.  

Bar plot indicating the extent of template-switching in Dscam1 spike-ins at different PCR cycles. The blue 

portions indicate the fraction of reads corresponding to input isoforms while the red portions correspond to the 

fraction of reads corresponding to template-switched isoforms. C. Plots of the rank order versus number of 

reads (log10) for the 20, 25 and 30 cycle libraries. The blue dots indicate input isoforms while the red portions 

correspond to template-switched isoforms. 

Figure 4. MinION sequencing of Dscam1 identifies 6,516 isoforms. A. Histogram of read length distribution 

for Drosophila head samples. B. The total number of Dscam1 isoforms identified from MinION sequencing.  C. 

Cumulative distribution of Dscam1 isoforms with respect to expression. D. Deconvoluted expression of 

Dscam1 exon cluster variants. E. Isoform connectivity of two highly expressed Dscam1 isoforms. 
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Figure 5. MinION sequencing of Rdl, MRP and Mhc Isoforms. Histogram of read lengths, number of reads 

per isoform, cumulative distribution of isoforms with respect to expression, and number of reads per alternative 

exon for Rdl (A), MRP (B), and Mhc (C). 

Supplementary Figure 1. Percent identities of Dscam1 reads from MinION sequencer. A. Percent 

identities of MinION reads mapping to individual exon variants in 4, 6, and 9 clusters. B. Percent identities of 

alignments with respect to template, complement and two directions (sequencing both template and 

complements). 
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