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Abstract 

The identification of gene-gene and gene-environment interaction in human traits and diseases is an 

active area of research that generates high expectation, and most often lead to high disappointment.  

This is partly explained by a misunderstanding of some of the inherent characteristics of interaction 

effects. Here, I untangle several theoretical aspects of standard regression-based interaction tests in 

genetic association studies. In particular, I discuss variables coding scheme, interpretation of effect 

estimate, power, and estimation of variance explained in regard of various hypothetical interaction 

patterns. I show first that the simplest biological interaction models—in which the magnitude of a 

genetic effect depends on a common exposure—are among the most difficult to identify. Then, I 

demonstrate the demerits of the current strategy to evaluate the contribution of interaction effects to 

the variance of quantitative outcomes and argue for the use of new approaches to overcome these 

issues. Finally I explore the advantages and limitations of multivariate models when testing for 

interaction between multiple SNPs and/or multiple exposures, using either a joint test, or a test of 

interaction based on risk score. Theoretical and simulated examples presented along the manuscript 

demonstrate that the application of these methods can provide a new perspective on the role of 

interaction in multifactorial traits. 
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Introduction 

Hundreds of studies have searched for gene-gene and gene-environment interaction effects in 

human data with the underlying motivation of identifying or at least accounting for potential biological 

interaction. So far, this quest has been quite unsuccessful and the large number of methods that have 

been developed to improve detection1-5 have not qualitatively changed this situation. This lack of 

discovery in the face of a large research investment has been discussed in several review papers that 

have pointed out a number of issues specific to interaction tests, including exposure assessment, time-

dependent effect, confounding effect and multiple comparisons2; 6; 7. While these factors are obvious 

barriers to the identification of interaction effects, it appears that some of the limitations of standard 

regression-based interaction tests that pertain to the nature of interaction effects are greatly 

underestimated. Previous work showed the detection of some biologically meaningful interaction 

effects requires larger sample sizes than marginal effects for a similar effect size8; 9, however it is not an 

absolute rule. Understanding the theoretical basis of this lack of power can help us optimizing study 

design to improve detection of interaction effect in human traits and diseases, and open the path for 

new methods development. Moreover the interpretation of effect estimates from interaction models 

often suffer from various imprecisions. Compared to marginal models, the coding scheme for interacting 

variables can impact effect estimates and association signals for the main effects9. Also, the current 

strategy to derive the contribution of interaction effects to the variance of an outcome greatly 

disadvantages interaction effects and are inappropriate when the goal of a study is not prediction but to 

assess the relative importance of an interaction term from a biological perspective. While alternative 

approaches exist, they have not so far been considered in genetic association studies. Finally, the 

development of new pairwise gene-gene and gene-environment interaction tests is reaching some 

limits, because the number of assumption that can be leveraged to improve power is limited when only 

two predictors are considered. With the exponential increase of available genetic and non-genetic data, 

the development and application of multivariate interaction tests offer new opportunities to building 

powerful approaches and moving the field forward.  

 

Methods and Results 

Coding scheme and effect estimates 
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Consider an interaction effect between a single nucleotide polymorphism (SNP) 𝐺 and an 

exposure 𝐸 (which can be an environmental exposure or another genetic variant) on a quantitative 

outcome 𝑌. For simplicity I assume in all further derivation that 𝐸 is normally distributed with variance 

1, and 𝐺 and 𝐸 are independents. The simplest and most commonly assumed underlying model for 𝑌 

(i.e. the model used to generate the values of 𝑌) when testing for an interaction effect between 𝐺 and 𝐸 

is defined as follows: 

𝑌 = 𝛽𝐺 × 𝐺 + 𝛽𝐸 × 𝐸 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀 

where 𝛽𝐺 is the main effect of 𝐺, 𝛽𝐸 is the main effect of 𝐸, GE is a linear interaction between 𝐺 and 𝐸, 

and 𝜀, the residual, is normally distributed with mean 0 and variance 𝜎2 sets so that the variance of Y 

equals 1. One can then evaluate the impact of applying linear transformation of the genotype and/or 

the exposure when testing for main and interaction effects. For example, assuming 𝐸 has a mean > 0 

and 𝐺 is defined as the number of coded allele in the generative model, 𝑌 can be rewritten as a function 

of 𝐺𝑠𝑡𝑑 and 𝐸𝑠𝑡𝑑, the standardized 𝐺 and 𝐸: 

𝑌 = 𝛽𝐺
′ × 𝐺𝑠𝑡𝑑 + 𝛽𝐸

′ × 𝐸𝑠𝑡𝑑 + 𝛽𝐺𝐸
′ × 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑 + 𝜀′ 

where 𝛽𝐺
′ 𝛽𝐸

′  and 𝛽𝐺𝐸
′  are the main effects of 𝐺𝑠𝑡𝑑 and 𝐸𝑠𝑡𝑑 and their interaction. Relating the 

standardized and unstandardized equations, we obtain (Appendix A): 

𝛽𝐺
′ = (𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸) × 𝜎𝐺   

𝛽𝐸
′ = (𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺) × 𝜎𝐸 

𝛽𝐺𝐸
′ = 𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺  

where 𝜇𝐺 , 𝜎𝐺, 𝜇𝐸 and 𝜎𝐸 are the mean and variance of 𝐺 and 𝐸, respectively. Hence, the estimated main 

effects of 𝐺𝑠𝑡𝑑 and 𝐸𝑠𝑡𝑑 not only scale with the variance of 𝐺 and 𝐸 but can also change qualitatively if 

there is an interaction effect. In comparison, the interaction effect 𝛽𝐺𝐸
′  only scales with the predictors 

variance, however, because 𝛽𝐺𝐸
′  does not depend on 𝜎𝐺𝐸 the variance of the interaction term but on the 

variance of 𝐺 and 𝐸, the magnitude of the interaction effect can change.  

Which coding scheme for 𝐺 and 𝐸 has the most biological sense can only be discussed on a case 

by case basis and is therefore out of the scope of this paper. The important point here, is that coding 

scheme should be chosen carefully when testing an interaction as it can correspond to profoundly 

different patterns on the outcome. This is illustrated in Figure 1, which shows the contribution of a pure 

interaction effect (𝛽𝐺 = 𝛽𝐸 = 0 and 𝛽𝐺𝐸 ≠ 0) to 𝑌. When 𝐺 and 𝐸 are centered, the joint effect of 𝐺 

and 𝐸 is similar across the most extreme sub-groups (low exposure and homozygote for the protective 
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allele vs high exposure and homozygote for the risk allele) and opposite effect otherwise (Figure 1a). 

Conversely, when 𝐺 and 𝐸 are positive or null, the interaction term simply corresponds to an increase 

(or decrease if the interaction term is negative) of the magnitude of a genetic effect when the exposure 

increases (Figure 1b). Hence, assuming 𝐺 and/or 𝐸 have a negative range in the generative model – 

besides it might have limited biological meaning – implies interaction effects of different nature as 

compared to model using positive predictors only. Furthermore, when the mean of the exposure 

increases while its variance is fixed, a realistic interaction effect for genetic data (i.e. explaining a small 

amount of the outcome variance) will appear more and more as a sole genetic effect (see Figure S1). 

While estimates for a specific coding scheme can be derived from estimates obtained from 

another coding scheme, questions arise on which final coding to choose and how to interpret estimates 

when modeling an interaction. This point, and the motivation for adding non-linear terms in general 

have been already debated and several general guidelines have been proposed (see for example the 

review by Robert J. Friedrich10).  The consensus was that, if the range of the independent variables do 

naturally includes zero (e.g. smoking status, genetic variants) there is no problem in interpreting the 

estimated main and interaction effect. For an interaction effect between A and B, the main effect of A 

corresponds to the effect of A when B is null and conversely. Conversely, if the range of the variables do 

not naturally encompass zero, then the observed estimates “will be an extrapolations beyond the 

observed range of experience"10. Centering the variables can be an option to address this concern. In 

that case, the main effect of A and B would represent the effect of A among individuals having the mean 

value of B and conversely. However, as mentioned previously, using centered variables induces a less 

interpretable interaction term. A reasonable alternative consists in shifting the exposure values so that it 

has a minimum value close to 0, or alternatively to use ordinal categories of the exposure (e.g. high 

versus low BMI as done to define obesity), so that the main effect of A would correspond to the effect 

among the lowest observed value of B and conversely.  

 

Power considerations 

The power of the tests from the interaction model and from a marginal genetic model defined 

as 𝑌 = 𝛽𝑚𝐺 × 𝐺 + 𝜀𝑚, can be compared when deriving the non-centrality parameters (ncp) of the 

predictors of interest. Assuming all effects are small, so that 𝜎2 the residual variance is close to 1, these 

ncp can be approximated by (see Appendix B): 

𝑛𝑐𝑝𝐺 ≈ 𝑁 × 𝜎𝐺
2 × 𝛽𝐺

2 ×
𝜎𝐸

2

𝜇𝐸
2 + 𝜎𝐸

2 
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𝑛𝑐𝑝𝐸 ≈ 𝑁 × 𝜎𝐸
2 × 𝛽𝐸

2 ×
𝜎𝐺

2

𝜇𝐺
2 + 𝜎𝐺

2 

𝑛𝑐𝑝𝐺𝐸 ≈ 𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 × 𝛽𝐺𝐸
2 = 𝑁 × 𝛽𝐺𝐸

′2  

𝑛𝑐𝑝𝑚𝐺 ≈ 𝑁 × 𝜎𝐺
2 × (𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸)2 = 𝑁 × 𝛽𝐺

′2 

Note that in such scenario adjusting for the effect of 𝐸 in the marginal genetic model has a minor impact 

on 𝑛𝑐𝑝𝑚𝐺. It would only be important in the presence of a strong exposure effect, such an effect would 

reduce 𝜎2, the residual variance in the interaction model, and increase the ncps from the interaction 

model but not 𝑛𝑐𝑝𝑚𝐺. 

The above equations indicate first that the significance of the marginal test of 𝐺 and the 

interaction test are invariant with the coding used in the model tested, while the significance of the test 

of the main genetic and exposure effects can change dramatically when shifting the mean of 𝐺 and 𝐸. 

Second, as illustrated in Figure 2, depending on the parameters of the distribution of the exposure and 

the genetic variants in the generative model, the relative power of each test can be dramatically 

different. For example if the genetic variant has only a main linear effect but is not interacting with the 

exposure, we obtain 𝑛𝑐𝑝𝐺 = 𝑛𝑐𝑝𝑚𝐺 × 𝜎𝐸
2 (𝜇𝐸

2 + 𝜎𝐸
2)⁄ , so that testing for 𝛽𝑚𝐺 will be much more 

powerful that testing for 𝛽𝐺  if the mean of 𝐸 is large, although there is no interaction effect here. When 

the generative model includes an interaction effect only (𝛽𝐺 = 𝛽𝐸 = 0 and 𝛽𝐺𝐸 ≠ 0), we obtain 

𝑛𝑐𝑝𝑚𝐺 = 𝑛𝑐𝑝𝐺𝐸 × 𝜇𝐸
2 𝜎𝐸

2⁄ . Again, the marginal test of the genetic effect can be dramatically more 

powerful than the test of interaction effect although the underlying model includes only an interaction 

term but no main effect. 

More generally it follows that the power to detect an interaction effect explaining for example 

1% of the variance of 𝑌 but inducing no marginal genetic effect (i.e. when 𝐸 is centered as in Figure 1a) 

is much higher than for an interaction explaining the same amount of variance but whose effect can be 

capture by a marginal term (i.e. when 𝐸 is not centered as in Figure 1b-d). This result is a direct 

consequence of the covariance between 𝛽𝐺 and 𝛽𝐺𝐸 that arise when having non-centered exposure in 

the generative model (Figure 2e). This covariance equals 𝜇𝐸 × 𝜎𝐺
2 (Appendix C). It induces uncertainty 

on the estimation of the predictor effects, which decreases the significance of the estimates in the 

interaction model. With increasing inter-correlations between predictors it becomes impossible to 

disentangle the effects of one predictor from another, the standard errors of the effect estimates 

becoming infinitely large and the power decreases to the null11. As showed in the simulation study from 

Figure S2-S3 these results are consistent for both linear and logistic regression and when assuming non-

normal distribution of the exposure.  
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This lead to the non-intuitive situation where the power to detect a relatively simple and 

parsimonious interaction effect from a biological perspective – defined as the product of a genetic 

variant and an exposure both coded to be positive or null – is very small; and in most scenarios where 

the main genetic and interaction effects do not canceled each other (see e.g. 12) the marginal association 

test of 𝐺 would be more powerful. In comparison a more exotic interaction effect as defined in Figure 

1a and Figure S1e, would be both much easier to detect in a genome-wide interaction screening and not 

captured in a GWAS of marginal genetic effect. 

 

Proportion of variance explained 

In genetic association studies the proportion of variance explained by an interaction term is 

commonly evaluated as the amount of variance of the outcome it can explain on top of the marginal 

linear effect of the interacting factors13. Following the aforementioned principle, one can derive the 

contribution of 𝐺 (𝑟𝐺
2), 𝐸 (𝑟𝐸

2) and 𝐺 × 𝐸 (𝑟𝐺𝐸
2 ) to the variance of the outcome using the estimates from 

the standardize model, in which the interaction term is independent from 𝐺 and 𝐸: 

𝑟𝐺
2 = 𝛽𝐺

′2 = (𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2 

𝑟𝐸
2 = 𝛽𝐸

′2 = (𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 

𝑟𝐺𝐸
2 = 𝛽𝐺𝐸

′2 = (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 

The total variance explained by the predictors in the interaction model equals 𝑟𝑚𝑜𝑑𝑒𝑙
2 = 𝑟𝐺

2 + 𝑟𝐸
2 + 𝑟𝐺𝐸

2  

(Appendix D). It follows that one can draw various scenarios where the estimated main effect of 𝐸 and 

𝐺 can be equal to zero but have a non-zero contribution to the variance of 𝑌 because of the interaction 

effect. Indeed, the Figure 3 shows that depending on the frequencies of the causal allele and the 

distribution of the exposure in the generative model, the vast majority of the contribution of the 

interaction term to the variance of 𝑌 will be attributed to either the genetic variant or the exposure. This 

is in agreement with recent work showing that even if a large proportion of the genetic effect on a given 

trait is induced by interaction effects, the observed contribution of interaction terms to the heritability 

can still be very small13. Because such interaction effects have small contribution to 𝑟𝑚𝑜𝑑𝑒𝑙
2  on top of the 

marginal effects of 𝐸 and 𝐺, they have a very limited utility for prediction purposes in the general 

population14; 15. 

This is a strong limitation when the goal is not prediction but to understand the underlying 

architecture of the trait under study and to evaluate the relative importance of main and interaction 
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effects from a public health perspective. Lewontin16 highlighted this issue a few decades ago, showing 

that the analysis of causes and the analysis of variance are not necessarily overlapping concepts. His 

work presents various scenarios where “the analysis of variance will give a completely erroneous picture 

of the causative relations between genotype, environment, and phenotype because the particular 

distribution of genotypes and environments in a given population”. Since then, a number of theoretical 

studies have explored the issue of assigning importance to correlated predictors17-20 and several 

alternatives measures have been proposed. To my knowledge, none of these measures has been 

considered so far in human genetic association studies. The advantages and limitation of these 

alternatives have been debated for years and no clear consensus arose, however Pratt axiomatic 

justification21 for one of these measures – further presented in the literature as the Product Measure22, 

Pratt index or Pratt’s measure23 – has various interesting properties that makes it a relevant substitute. 

For a predictor 𝑋𝑖, the Pratt’s index that we refer further as 𝑟2∗, is defined as the product of 𝛽𝑋𝑖
, the 

standardized coefficient from the multivariate model (where all predictors are scaled to have mean 0 

and variance 1, including the interaction term), times its marginal (or zero-order) correlation with the 

outcome 𝑐𝑜𝑟(𝑌, 𝑋𝑖), i.e. 𝑟𝑋𝑖

2∗ = 𝛽𝑋𝑖
× 𝑐𝑜𝑟(𝑌, 𝑋𝑖).  

By definition, 𝑟𝑋𝑖

2∗ attributes a predictor’s importance as a direct function of its estimated effect 

and therefore addresses the concern previously raised. Among other relevant properties, it depends 

only on regression coefficients, multiple correlation and residual variance but not higher moments, and 

it does not change with (non-constant) linear transformation of predictors other than 𝑋𝑖. It also has 

convenient additivity properties as it satisfies the condition 𝑟𝐺
2∗ + 𝑟𝐸

2∗ + 𝑟𝐺𝐸
2∗ = 𝑟𝑚𝑜𝑑𝑒𝑙

2  (Appendix D), so 

that the overall contribution of the predictors is the sum of their individual contribution, and for 

example the cumulated contribution of multiple interaction effects can easily be evaluated by summing 

𝑟𝑋𝑖

2∗. The Pratt’s index also received criticisms20; 22, in particular for allowing 𝑟𝑋
2∗ being negative23. Pratt’s 

answer to this concern is that 𝑟𝑋𝑖

2∗ only describes the average contribution of a predictor to the outcome 

variance in one dimension and is therefore, as any one-dimension measure, a sub-optimal 

representation of the complexity of the underlying model. For example, a negative 𝑟𝑋𝑖

2∗ means that if we 

were able to remove the effect of 𝑋𝑖, the variance of the outcome would increase because of the 

correlation of 𝑋𝑖  with other predictors. 

From a practical perspective, 𝑟𝑋𝑖

2∗ can be expressed as a function of the estimated effects, the 

means and the variances of 𝐸 and 𝐺 (Appendix D), and can therefore be derived from summary 

statistics of standard GWAS:  

𝑟𝐺
2∗ = 𝛽𝐺

2 × 𝜎𝐺
2 + 𝛽𝐺 × 𝛽𝐺𝐸 × 𝜎𝐺

2 × 𝜇𝐸 
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𝑟𝐸
2∗ = 𝛽𝐸

2 × 𝜎𝐸
2 + 𝛽𝐸 × 𝛽𝐺𝐸 × 𝜎𝐸

2 × 𝜇𝐺 

𝑟𝐺𝐸
2∗ = 𝛽𝐺𝐸

2 × 𝜎𝐺𝐸
2 + 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺

2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸
2) 

As showed in Figure 4 and Figure S4, the Pratt index can recover the pattern of the causal model in 

situations where the standard approach would dramatically underestimate the contribution of the 

interaction effects. It can therefore be of great use in future studies to evaluate the importance of 

potentially modifiable exposures that influence the genetic component of multifactorial traits. 

 

Improving detection through multivariate interaction tests 

Using statistical technics such as the Pratt index can provide clues on the importance of 

interaction effects; however it does not help in mapping interaction. Increasing power mostly relies on 

two principles: increasing sample size, and leveraging assumptions on the underlying model. The case-

only test, which assumes independence between the genetic variant and the exposure, and a two steps 

strategy which select candidate variants for interaction test based on their marginal linear effects or 

other parameters, are good examples of the later principle4; 24; 25. However, only a limited number of 

assumptions can be made for a single variant by a single exposure interaction test. With the 

overwhelming wave of genomic and environmental data, I suggest that a major path to move the field 

forward is to extend this principle while considering jointly more parameters. 

This principle has first been applied over the past few years with the joint test of main genetic 

and interaction effects26. The ncp of such a joint test can be expressed as a function of main and 

interaction estimates (𝛽𝐺 and 𝛽𝐺𝐸), their variances (𝜎𝛽𝐺

2  and 𝜎𝛽𝐺𝐸

2 ) and their covariance 𝛾 (Appendix E). 

By accounting for 𝛾 the joint test recovers most of the power lost by the univariate test of the main 

genetic and interaction effect (so the situation where neither the interaction effect nor the main genetic 

effect are significant, while the joint test is, e.g. SNP rs11654749 in27). More importantly, in the presence 

of both main and interaction effects, it can outperform the marginal test of 𝐺. Although this is at the 

cost of decreased precision, i.e. if the test is significant, one cannot conclude whether association signal 

is driven by the main or the interaction effect. Moreover this would be true only if the contribution of 

the interaction effect on top of the marginal effect is large enough so that it balanced the increase in 

number of degree of freedom28; 29 (Figure 2). 

Application of the joint test of main genetic effect and a single gene by exposure interaction 

term is now relatively common in GWAS setting27; 30; 31. However, exploring further multivariate 

interactions with multiple exposures is limited by practical considerations. Existing software to perform 
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the joint test in a meta-analysis context29; 32 only allow the analysis of a single interaction term mostly 

because it requires the variance-covariance matrix between estimates, which is not provided by popular 

GWAS software. Leveraging the results from the previous sections on can show that the ncp of the joint 

test of main genetic effect and interactions with 𝑙 independent exposures can be expressed as the sum 

of ncp from the test of 𝐺 and the 𝐺 × 𝐸𝑐𝑒𝑛𝑡.𝑖  where 𝐸𝑐𝑒𝑛𝑡.𝑖  is the centered exposure 𝑖 (Appendix E): 

𝑛𝑐𝑝𝐺+𝐺𝐸 = 𝑁 × 𝜎𝐺
2 × 𝛽𝐺

′′2 + ∑ [𝑁 × 𝜎𝐺
2 × 𝜎𝐸

2 × 𝛽𝐺𝐸𝑐𝑒𝑛𝑡.𝑖

′′2 ]

𝑖=1…𝑙

 

where 𝛽𝐺
′′ and 𝛽𝐺𝐸𝑐𝑒𝑛𝑡.𝑖

′′  are the effects of 𝐺 and 𝐺 × 𝐸𝑐𝑒𝑛𝑡.𝑖. Such a test is robust to non-normal 

distribution of the exposure, and realistic correlation (<0.1) between the genetic variant and the 

exposures, but sensitive to the relatively high correlation (>0.1) that could be observed between 

exposures (Figure S5-S6). Hence, one can perform meta-analysis of a joint test including multiple 

interaction effects using existing software simply by centering exposures. In brief one would have to 

perform first a standard inverse-variance meta-analysis to derive chi-squares for the 𝑙 + 1 terms from 

the model considered, and then to sum all chi-squares to form a chi-square with 𝑙 + 1 df. Importantly, 

centering the exposures will be of interest only when testing jointly multiple interactions and the main 

genetic effect. In comparison, the combined test of multiple interaction effects can be simply performed 

by summing chi-squares from each independent interaction test or from interaction test derived in a 

joint model. As previously, the validity of this approach relies on independence between the genetic 

variant and the exposures, and between the exposures. Finally, a more general solutions that should be 

explored in future studies would consists, as proposed for the analysis of multiple phenotypes (e.g.33), in 

estimating the correlation between all tests considered (main genetic effect and/or multiple interaction 

effects) using genome-wide summary statistics in order to form a multivariate test.  

A second major direction for the development of multivariate test is to assume the effects of 

multiple genetic variants depend on a single “scaling” variable 𝐸. Various powerful tests can be built 

under such an assumption. A rising approach consists in testing for interaction between the scaling 

variable and a genetic risk score (GRS), derived as the weighted sum of the risk alleles. Several 

interaction effects have been identified using this strategy34-39, some being replicated in independent 

studies36; 37. This relative success, as compared to other univariate analysis, has generated discussion 

regarding potential underlying mechanisms15; 40-43.  Overall, testing for an interaction effect between a 

GRS and a single exposure consists in expanding the principle of a joint test of multiple interactions 

while leveraging the assumption that, for a given choice of coded alleles, most interaction effects are 

going in the same direction. It is similar in essence to the burden test that has been widely used for rare 

variant analysis44. In its simplest form it can be expressed as the sum of all interaction effects and it 
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captures therefore deviation of the mean of interaction effects from 0. When interaction effects are null 

on average, the joint test of all interaction tests (as previously described) will likely be the most powerful 

approach as it allows interaction effects to be heterogeneous. Conversely, if interactions tend to go in 

the same direction, the GRS-based test can outperform other approaches (Figure 5). Of course, in a 

realistic scenario, a number of non-interacting SNPs would be included in the GRS, diluting the overall 

interaction signal and therefore decreasing power. However, the gain in power for the multivariate 

approaches can remain substantial even when a large proportion of the SNPs tested (e.g. 95% in the 

example from Figure 5) is not interacting with the exposure. 

As showed in Appendix F, assuming the SNPs in the GRS are independents, the GRS by 𝐸 

interaction test can be derived from individual interaction effect estimates. More precisely, consider 

testing the effect of a weighted GRS on 𝑌:  

𝑌 ~ 𝛾𝐺𝑅𝑆 × 𝐺𝑅𝑆 + 𝛾𝐸 × 𝐸 + 𝛾𝐼𝑁𝑇 × 𝐺𝑅𝑆 × 𝐸 

where 𝛾𝐺𝑅𝑆𝑚, 𝛾𝐸 and 𝛾𝐼𝑁𝑇 are the main effect of the weighted GRS, the main effect of 𝐸 and the 

interaction effect between 𝐸 and the GRS, respectively. The test of 𝛾𝐼𝑁𝑇 is asymptotically equivalent to 

the meta-analysis of 𝛾𝐺𝑖×𝐸, the interaction effects between 𝐺𝑖  and 𝐸, using an inverse-variance 

weighted sum to derive a 1 df chi-square, i.e. (see Appendix F, Figure S7-S8, and 45): 

(
𝛾𝐼𝑁𝑇

𝜎̂𝛾𝐼𝑁𝑇

)

2

=

(∑
𝑤𝑖 × 𝛾𝐺𝑖×𝐸

𝜎̂𝛾𝐺𝑖×𝐸
2𝑚 )

2

∑
𝑤𝑖

2

𝜎̂𝛾𝐺𝑖×𝐸
2𝑚

  

where 𝑤𝑖 is the weight given to SNP 𝑖. A number of strategies can be used for the weighting scheme. In 

an agnostic search, assuming the interaction effects are independents of the SNPs characteristics, one 

should weight each SNP by the inverse of their standard deviation (𝑤𝑖 = 1 𝜎𝐺𝑖
⁄ ). Alternatively, others 

have use weights proportional to the marginal genetic effect of the SNPs, assuming the magnitude of 

the marginal and interaction effects are correlated. The relative power of each of these weighting 

schemes depends on their relevance in regard to the true underlying model. Finally, applying GRS-based 

interaction tests implicitly supposed a set of candidate genetic variants have been identified. The 

current rationale consists in assuming that most interacting variants also display a marginal linear effect 

and therefore have focused on GWAS hits, however other screening methods can be used46; 47. 

Moreover existing knowledge, such as functional annotation48 or existing pathway database49 can be 

leverage to refine the sets of SNPs to be aggregated into a GRS. 
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Discussion 

Advancing knowledge of how genetic and environmental factors combine to influence human traits and 

diseases remains a key objective of research in human genetics. Ironically, the simplest and most 

parsimonious biological interaction models—those in which the effect of a genetic variant is either 

enhanced or decreased depending on a common exposure—are among the most difficult to identify. 

Furthermore, the contribution of such interaction effects can be dramatically underestimated when 

measured as the drop in 𝑟2 if the interaction term was removed from the model. Here, I argue for the 

use of new approaches and analytical strategies to address these concerns. This includes first using 

methods such as the Pratt index to evaluate the relative importance of interaction effects in genetic 

association studies. These methods can highlight important modifiable exposures influencing genetic 

mechanisms, which could be missed with the existing approach. Second, besides increasing sample size, 

increasing power to detect interaction effects in future studies will mostly rely on leveraging additional 

assumptions on the underlying model. In the big data era, where millions of genetic variants are 

measured on behalf of multiple environmental exposures and endo-phenotypes, this means using 

multivariate models. A variety of powerful statistical tests can be devised assuming multiple 

environmental exposures interact with multiple genetic variants. As showed in this study, the 

application of such approaches can dramatically improve power to detect interaction than standard 

univariate tests. While these methods comes at the cost of decreased precision—i.e. a significant signal 

would point out multiple potential culprit—they can identify interaction effects that would potentially 

be of greater clinical relevance that univariate pairwise interaction14; 15. The application of these 

methods in genetic association studies offers great opportunities for moving the field forward and 

providing a new perspective on interaction effects in human traits and diseases. 
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Appendices 

Appendix A: Effect estimates from standardized and unstandardized predictors 

Following the notation defined from the main text, the outcome 𝑌 can be expressed as: 

𝑌 = 𝛽𝐺 × 𝐺 + 𝛽𝐸 × 𝐸 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀 

    = 𝛽𝐺 × (𝐺𝑠𝑡𝑑𝜎𝐺 + 𝜇𝐺) + 𝛽𝐸 × (𝐸𝑠𝑡𝑑𝜎𝐸 + 𝜇𝐸) + 𝛽𝐺𝐸 × (𝐺𝑠𝑡𝑑𝜎𝐺 + 𝜇𝐺) × (𝐸𝑠𝑡𝑑𝜎𝐸 + 𝜇𝐸) + 𝜀  

    = (𝛽𝐺𝜎𝐺 + 𝛽𝐺𝐸𝜇𝐸𝜎𝐺) × 𝐺𝑠𝑡𝑑 + (𝛽𝐸𝜎𝐸 + 𝛽𝐺𝐸𝜇𝐺𝜎𝐸) × 𝐸𝑠𝑡𝑑 + (𝛽𝐺𝐸𝜎𝐺𝜎𝐸) × 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑 + 𝜀′  

where 𝜀′ is a term that depends neither on 𝐺𝑠𝑡𝑑 nor 𝐸𝑠𝑡𝑑. This leads to the following relationship 

between the standardized and unstandardized estimates: 

𝛽𝐺
′ = 𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺      ⇔       𝛽𝐺 = 

𝛽𝐺
′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
  

𝛽𝐸
′ = 𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸      ⇔        𝛽𝐸 =

𝛽𝐸
′

𝜎𝐸
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
 

𝛽𝐺𝐸
′ = 𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺                         ⇔        𝛽𝐺𝐸 =

𝛽𝐺𝐸
′

𝜎𝐸 × 𝜎𝐺
 

The variances of the unstandardized estimates equal: 

𝜎𝛽𝐺

2 = 𝑣𝑎𝑟 ( 
𝛽𝐺

′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
) =

𝜎
𝛽𝐺

′
2

𝜎𝐺
2 +

𝜎
𝛽𝐺𝐸

′
2 × 𝜇𝐸

2

𝜎𝐸
2 × 𝜎𝐺

2 + 𝐶1 ∗ 𝑐𝑜𝑣(𝛽𝐺
′ , 𝛽𝐺𝐸

′ ) 

𝜎𝛽𝐸

2 = 𝑣𝑎𝑟 ( 
𝛽𝐸

′

𝜎𝐸
−

𝛽𝐺𝐸
′ × 𝜇𝐺

𝜎𝐸 × 𝜎𝐺
) =

𝜎
𝛽𝐸

′
2

𝜎𝐸
2 +

𝜎
𝛽𝐺𝐸

′
2 × 𝜇𝐺

2

𝜎𝐸
2 × 𝜎𝐺

2 + 𝐶2 ∗ 𝑐𝑜𝑣(𝛽𝐸
′ , 𝛽𝐺𝐸

′ ) 

𝜎𝛽𝐺𝐸

2 = 𝑣𝑎𝑟 (
𝛽𝐺𝐸

′

𝜎𝐸 × 𝜎𝐺
) =

𝜎
𝛽𝐺𝐸

′
2

𝜎𝐸
2 × 𝜎𝐺

2 

Where 𝐶1 and 𝐶2 are constants that depend on the mean and variance of 𝐺 and 𝐸.  Appendix C shows 

that 𝑐𝑜𝑣(𝛽𝐺
′ , 𝛽𝐺𝐸

′ ) = 𝑐𝑜𝑣(𝛽𝐸
′ , 𝛽𝐺𝐸

′ ) = 0 when 𝐺 and 𝐸 are independents. Moreover, when 𝐺 and 𝐸 are 

standardized, 𝜎
𝛽𝐺

′
2 = 𝜎

𝛽𝐸
′

2 = 𝜎
𝛽𝐺𝐸

′
2 =

𝜎2

𝑁 
, where 𝜎2 is the residual variance of 𝑌. Assuming the main effects 

of 𝐺 and 𝐸 and their interaction is small, so that 𝜎2 ≈ 1, the variance of the estimates simplify: 
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𝜎𝛽𝐺

2 =
𝜇𝐸

2 + 𝜎𝐸
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

𝜎𝛽𝐸

2 =
𝜇𝐺

2 + 𝜎𝐺
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

𝜎𝛽𝐺𝐸

2 =
1

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

 

Appendix B: Non-centrality parameters for marginal and interaction models 

Using the estimates and variances from Appendix A one can derive 𝑛𝑐𝑝𝐺, 𝑛𝑐𝑝𝐸, and 𝑛𝑐𝑝𝐺𝐸, the non-

centrality parameters (ncp) of the genetic main effect, the exposure main effect and the interaction 

effect under the assumptions of small effect sizes and 𝐺 − 𝐸 independence: 

𝑛𝑐𝑝𝐺 =
𝛽𝐺

2

𝜎𝛽𝐺

2 =
𝛽𝐺

2

𝜇𝐸
2 + 𝜎𝐸

2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2

 = 𝑁 × 𝜎𝐺
2 × 𝛽𝐺

2 ×
𝜎𝐸

2

𝜇𝐸
2 + 𝜎𝐸

2 

𝑛𝑐𝑝𝐸 =
𝛽𝐸

2

𝜎𝛽𝐸

2 =
𝛽𝐸

2

𝜇𝐺
2 + 𝜎𝐺

2

𝑁 × 𝜎𝐺
2 × 𝜎𝐸

2

 = 𝑁 × 𝜎𝐸
2 × 𝛽𝐸

2 ×
𝜎𝐺

2

𝜇𝐺
2 + 𝜎𝐺

2 

𝑛𝑐𝑝𝐺𝐸 =
𝛽𝐺𝐸

2

𝜎𝛽𝐺𝐸

2 =
𝛽𝐺𝐸

2

1
𝑁 × 𝜎𝐸

2 × 𝜎𝐺
2

 = 𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 × 𝛽𝐺𝐸
2  

These 𝑛𝑐𝑝 can be compared with 𝑛𝑐𝑝𝑚𝐺, the non-centrality parameter from the test of 𝐺 in a marginal 

model. The marginal effect of 𝐺, 𝛽𝑚𝐺 is by definition the sum of the main effect of 𝐺 plus the marginal 

contribution from interaction terms involving 𝐺. It can be approximate by: 

𝛽𝑚𝐺 =
𝑐𝑜𝑣(𝑌, 𝐺)

𝜎𝐺
2  =

𝛽𝐺
′ × 𝜎𝐺

𝜎𝐺
2 = 𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 

The marginal estimated effect of 𝐸 can be derived similarly and equals: 

𝛽𝑚𝐸 = 𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺  

so that 𝑛𝑐𝑝𝑚𝐺 and 𝑛𝑐𝑝𝑚𝐸 (the ncp of the marginal test of 𝐸) can be expressed as follows: 

𝑛𝑐𝑝𝑚𝐺 = 𝑁 × 𝜎𝐺
2 × (𝛽𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸)2 
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𝑛𝑐𝑝𝑚𝐸 = 𝑁 × 𝜎𝐸
2 × (𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺)2 

 

Appendix C: Variance-covariance for the GxE term and its estimated effect 

To derive the covariance and the correlation parameter between 𝐺 and 𝐺 × 𝐸 we first calculate 𝜎𝐺𝐸
2 , the 

variance of the interaction term 𝐺 × 𝐸 under the assumption of independence between 𝐺 and 𝐸. 

Assuming the standard coding for 𝐺 [0,1,2], and the frequency of the coded allele is 𝑝, and 𝐸 is normally 

distributed so that 𝐸2 follows a non-central chi-square distribution with one degree of freedom, it can 

be express as: 

𝜎𝐺𝐸
2 =  Ε[𝐺2] × Ε[𝐸2] − Ε[𝐺]2 × Ε[𝐸]2 = ∑ (𝐺2 × 𝑝𝑟(𝐺))

𝐺∈𝑅𝑎𝑛𝑔𝑒(𝐺)

× ∫ 𝐸2𝑑𝑃
ℝ

− (2 × 𝑝)2 × 𝜇𝐸
2  

         =  ( (2 × 𝑝 × (1 − 𝑝)) + 𝑝2 × 4) × 𝜎𝐸
2 × (1 +

𝜇𝐸
2

𝜎𝐸
2) − (2 × 𝑝)2 × 𝜇𝐸

2  

         =  2 × (𝑝 + 𝑝2) × (𝜎𝐸
2 + 𝜇𝐸

2) − 4 × 𝑝2 × 𝜇𝐸
2  

         =  𝜎𝐺
2 × 𝜎𝐸

2 + 𝜇𝐺
2 × 𝜎𝐸

2 + 𝜇𝐸
2 × 𝜎𝐺

2 

Under the same assumption, one can derive 𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸), the covariance between 𝐺 and 𝐺 × 𝐸: 

 𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸) = Ε[𝐺2] × Ε[𝐸] − Ε[𝐺] × Ε[𝐺] × Ε[𝐸] 

                             = (2 × 𝑝 × (1 − 𝑝) + 𝑝2 × 4) × 𝜇𝐸 − (2 × 𝑝)2 × 𝜇𝐸 

                             = 𝜇𝐸 × 𝜎𝐺
2 

Similarly, one can derive the covariance between the exposure and the interaction and show that 

𝑐𝑜𝑣(𝐸, 𝐺 × 𝐸) = 𝜇𝐺 × 𝜎𝐸
2. From this it appears that 𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸𝑠𝑡𝑑) = 𝑐𝑜𝑣(𝐸, 𝐺𝑠𝑡𝑑 × 𝐸) =

𝑐𝑜𝑣(𝐺𝑠𝑡𝑑 , 𝐺𝑠𝑡𝑑 × 𝐸𝑠𝑡𝑑) = 0.  

The correlation between  𝐺 and 𝐺 × 𝐸 equals then: 

𝑐𝑜𝑟(𝐺, 𝐺 × 𝐸) =
𝑐𝑜𝑣(𝐺, 𝐺 × 𝐸)

𝜎𝐺 × 𝜎𝐺𝐸
 =

𝜇𝐸 × 𝜎𝐺
2

𝜎𝐺 × 𝜎𝐺𝐸
=

𝜇𝐸

√𝜎𝐸
2 × (1 +

𝜇𝐺
2

𝜎𝐺
2) + 𝜇𝐸

2
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We derive then the covariance and correlation between the estimated effect of 𝐺 and 𝐺 × 𝐸. In its 

general form the variance-covariance matrix of estimates from the interaction model can be obtained 

using its matrix formulation: 𝜎𝛃 = (𝐗T𝐗)
−1

𝜎2, where 𝐗, the matrix of predictor variables, equals 

[1, 𝐺, 𝐸, 𝐺 × 𝐸] and 𝜎2 is the variance of the residual of 𝑌. 

𝜎𝛃 =

(

 
 

𝑁 ×

[
 
 
 
 

E[12] E[𝐺]

E[𝐺] E[𝐺2]

E[𝐸] E[𝐺 × 𝐸]

E[𝐺 × 𝐸] E[𝐺2 × E]

E[𝐸] E[𝐺 × 𝐸]

E[𝐺 × 𝐸] E[𝐺2 × E]

E[𝐸2] E[𝐺 × 𝐸2]

E[𝐺 × 𝐸2] E[𝐺2 × 𝐸2]]
 
 
 
 

)

 
 

−1

× 𝜎2 

This is a relatively complex form, however when the predictors are standardized E[𝐸] = E[𝐺] = 0, and 

assuming 𝐺 and 𝐸 are independents, the formulation of 𝜎𝛃 greatly simplify, as all the off-diagonal 

elements of the matrix are null, so that: 

𝜎𝛃  =
𝜎2

𝑁

[
 
 
 
 
 
 
 
1 0

0
1

E[𝐺2]

0                0        
0                0        

0    0    
0    0    

1

E[𝐸2]
0

0
1

E[𝐺2] × E[𝐸2]]
 
 
 
 
 
 
 

 

which implies that 𝑐𝑜𝑣(𝛽𝐺
′ , 𝛽𝐺𝐸

′ ) = 0. Building on this, and using the equations from Appendix A, we can 

derive 𝛾, the covariance between 𝛽𝐺 and 𝛽𝐺𝐸: 

𝛾 = 𝑐𝑜𝑣(𝛽𝐺 , 𝛽𝐺𝐸)  = 𝑐𝑜𝑣 (
𝛽𝐺

′

𝜎𝐺
− 𝛽𝐺𝐸 × 𝜇𝐸 , 𝛽𝐺𝐸) =

𝑐𝑜𝑣(𝛽𝐺
′ , 𝛽𝐺𝐸

′ )

𝜎𝐸 × 𝜎𝐺
2 − 𝜇𝐸 × 𝜎𝛽𝐺𝐸 

2 = 
−𝜇𝐸

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2 

The correlation follows: 

𝑐𝑜𝑟(𝛽𝐺 , 𝛽𝐺𝐸) =
𝑐𝑜𝑣(𝛽𝐺 , 𝛽𝐺𝐸)

𝜎𝛽𝐺
× 𝜎𝛽𝐺𝐸

=

−𝜇𝐸 × √
1

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2

√
𝜇𝐸

2 + 𝜎𝐸
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2

=
−𝜇𝐸

√𝜇𝐸
2 + 𝜎𝐸

2
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Appendix D: Derivation of the Pratt index 

To estimate the variance explained by predictors or other related measures, we first derive the expected 

variance of the outcome for a given generative model. For a single interaction term and assuming 𝐺 − 𝐸 

independence, it equals: 

𝑣𝑎𝑟(𝑌) = 𝑣𝑎𝑟(𝛽𝐸 × 𝐸 + 𝛽𝐺 × 𝐺 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀) 

               = 𝛽𝐸
2 × 𝜎𝐸

2 + 𝛽𝐺
2 × 𝜎𝐺

2 + 𝛽𝐺𝐸
2 × 𝜎𝐺𝐸

2 + 2 × 𝛽𝐺𝐸 × (𝛽𝐺 × 𝑐𝑜𝑣(𝐺, 𝐺𝐸) + 𝛽𝐸 × 𝑐𝑜𝑣(𝐸, 𝐺𝐸)) + 𝜎2 

               = (𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2 + (𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 + (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 + 𝜎2 

               = 𝛽𝐺
′2 + 𝛽𝐸

′2 + 𝛽𝐺𝐸
′2 + 𝜎2 

When more interaction terms are included, the outcome variance becomes a little more complex as 

additional covariance terms are added. For example assuming 𝑘 interactions between 𝐸 and 𝐺𝑖, 

𝑖 = 1…𝑘, the variance of 𝑌 becomes: 

𝑣𝑎𝑟(𝑌) = 𝛽𝐸
2 × 𝜎𝐸

2 + ∑[𝛽𝐺𝑖

2 × 𝜎𝐺𝑖

2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸
2 × 𝜎𝐺𝑖𝐸

2 ]

𝑖

+ 2 × ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑖
× 𝜇𝐸 × 𝜎𝐺𝑖

2 ]

𝑖

+ 2

× ∑𝛽𝐺𝑖𝐸 × 𝛽𝐸 × 𝜇𝐺𝑖
× 𝜎𝐸

2

𝑖

+ ∑∑[𝑐𝑜𝑣(𝐺𝑖 × 𝐸, 𝐺𝑗 × 𝐸)]

𝑗≠𝑖𝑖

+ 𝜎2 

              = 𝛽𝐸
2 × 𝜎𝐸

2 + ∑[𝛽𝐺𝑖

2 × 𝜎𝐺𝑖

2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸
2 × 𝜎𝐺𝑖𝐸

2 ]

𝑖

+ 2 × ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑖
× 𝜇𝐸 × 𝜎𝐺𝑖

2 ]

𝑖

+ 2

× ∑𝛽𝐺𝑖𝐸 × 𝛽𝐸 × 𝜇𝐺𝑖
× 𝜎𝐸

2

𝑖

+ ∑∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑗𝐸 × 𝜇𝐺𝑖
× 𝜇𝐺𝑗

× 𝜎𝐸
2]

𝑗≠𝑖𝑖

+ 𝜎2 

For simplicity let us assume 𝜎2 is set so that 𝑣𝑎𝑟(𝑌) = 1 in all further derivation. When testing a single 

interaction term and using the equivalences from Appendix A-B one can show that the Pratt index can 

be expressed as a function of the estimates from the interaction model and the mean and variance of 

the genetic variant and the exposures considered: 

𝑟𝐺
2∗ = (𝛽𝐺 × 𝜎𝐺) × 𝑐𝑜𝑟(𝑌, 𝐺) = (𝛽𝐺 × 𝜎𝐺) × 𝛽𝑚𝐺  × 𝜎𝐺 = 𝛽𝐺

2 × 𝜎𝐺
2 + 𝛽𝐺 × 𝛽𝐺𝐸 × 𝜎𝐺

2 × 𝜇𝐸   

𝑟𝐸
2∗ = (𝛽𝐸 × 𝜎𝐸) × 𝑐𝑜𝑟(𝑌, 𝐸) = (𝛽𝐸 × 𝜎𝐸) × (𝛽𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺) × 𝜎𝐸 = 𝛽𝐸

2 × 𝜎𝐸
2 + 𝛽𝐸 × 𝛽𝐺𝐸 × 𝜎𝐸

2 × 𝜇𝐺 

𝑟𝐺𝐸
2∗ = (𝛽𝐺𝐸 × 𝜎𝐺𝐸) × 𝑐𝑜𝑟(𝑌, 𝐺 × 𝐸) 

       = (𝛽𝐺𝐸 × 𝜎𝐺𝐸) ×
𝑐𝑜𝑣(𝛽𝐺 × 𝐺 + 𝛽𝐸 × 𝐸 + 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀, 𝐺 × 𝐸)

𝜎𝐺𝐸
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       = 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺
2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸

2 + 𝛽𝐺𝐸 × 𝜎𝐺𝐸
2 ) 

       = 𝛽𝐺𝐸
2 × (𝜇𝐺

2 × 𝜎𝐸
2 + 𝜇𝐸

2 × 𝜎𝐺
2 + 𝜎𝐸

2 × 𝜎𝐺
2) + 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺

2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸
2) 

When summing the above Pratt index we obtain: 

𝑟𝐺
2∗ + 𝑟𝐸

2∗ + 𝑟𝐺𝐸
2∗ = 𝛽𝐺

2 × 𝜎𝐺
2 + 𝛽𝐺 × 𝛽𝐺𝐸 × 𝜎𝐺

2 × 𝜇𝐸 + 𝛽𝐸
2 × 𝜎𝐸

2 + 𝛽𝐸 × 𝛽𝐺𝐸 × 𝜎𝐸
2 × 𝜇𝐺 + 𝛽𝐺𝐸

2 × 𝜇𝐺
2 × 𝜎𝐸

2

+ 𝛽𝐺𝐸
2 × 𝜇𝐸

2 × 𝜎𝐺
2 + 𝛽𝐺𝐸

2 × 𝜎𝐸
2 × 𝜎𝐺

2 + 𝛽𝐺𝐸 × (𝛽𝐺 × 𝜇𝐸 × 𝜎𝐺
2 + 𝛽𝐸 × 𝜇𝐺 × 𝜎𝐸

2) 

                            = 𝛽𝐺
2 × 𝜎𝐺

2 + 2 × (𝛽𝐺 × 𝜎𝐺) × (𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺) + (𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2 + 𝛽𝐸
2 × 𝜎𝐸

2 + 2

× (𝛽𝐸 × 𝜎𝐸) × (𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸) + (𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 + (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 

                            = (𝛽𝐺 × 𝜎𝐺 + 𝛽𝐺𝐸 × 𝜇𝐸 × 𝜎𝐺)2   + (𝛽𝐸 × 𝜎𝐸 + 𝛽𝐺𝐸 × 𝜇𝐺 × 𝜎𝐸)2 + (𝛽𝐺𝐸 × 𝜎𝐸 × 𝜎𝐺)2 

                            = 𝑟𝐺
2 + 𝑟𝐸

2 + 𝑟𝐺𝐸
2  

The cumulative contribution of multiple interactions involving independent SNPS can also be derived 

from summary statistics, although the derivation is a little less friendly because of additional covariance 

terms. For example assuming 𝑘 interactions between 𝐸 and 𝐺𝑖, 𝑖 = 1…𝑘, we obtain (Figure S4) : 

𝑟𝐺
2∗ = ∑[𝛽𝐺𝑖

2 × 𝜎𝐺𝑖

2 + 𝛽𝐺𝑖
× 𝛽𝐺𝑖𝐸 × 𝜎𝐺𝑖

2 × 𝜇𝐸]

𝑖

 

𝑟𝐸
2∗ = 𝛽𝐸

2 × 𝜎𝐸
2 + ∑[𝛽𝐸 × 𝛽𝐺𝑖𝐸 × 𝜎𝐸

2 × 𝜇𝐺𝑖
]

𝑖

 

𝑟𝐺𝐸
2∗ = ∑[𝛽𝐺𝑖𝐸

2 × 𝜎𝐺𝑖𝐸
2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐺𝑖
× 𝜇𝐸 × 𝜎𝐺𝑖

2 ]

𝑖

+ ∑[𝛽𝐺𝑖𝐸 × 𝛽𝐸 × 𝜇𝐺𝑖
× 𝜎𝐸

2]

𝑖

+ ∑[𝛽𝐺𝑖𝐸 × ∑[𝛽𝐺𝑗𝐸 × 𝜇𝐺𝑖
× 𝜇𝐺𝑗

× 𝜎𝐸
2]

𝑗≠𝑖

]

𝑖

 

On should note that estimating the Pratt index for the exposure can be difficult in practice when the 

number of interaction is large, as it would require the estimated main exposure effect from a joint 

model including all SNPs main effect and all interactions term with the exposure. Also, because of the 

correlation between main and interaction terms, 𝑟𝑋𝑖

2∗, as the standard 𝑟𝑋𝑖

2 , only approximate the amount 

the variance will change if 𝑋𝑖  was held constant. For the latter measure, one can refer to21. 
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Appendix E: Joint test of main and interaction effects 

The multiple regression least square provides the estimated effect of the genetic main effect and 

interaction effects 𝛃 = (𝛽𝐺 , 𝛽𝐺𝐸) and their variance-covariance matrix 𝚺. The multivariate Wald test of 

the two parameters, which follow a 2 df chi-square can be expressed as: 

𝛃𝑇𝚺−1𝛃 = [𝛽𝐺 𝛽𝐺𝐸] [
𝜎𝛽𝐺

2 𝛾

𝛾 𝜎𝛽𝐺𝐸

2 ]

−1

[
𝛽𝐺

𝛽𝐺𝐸
], 

where 𝛾 is the covariance between 𝛽𝐺 and 𝛽𝐺𝐸. It can be further developed as: 

𝛃𝑇𝚺−1𝛃 = [𝛽𝐺 𝛽𝐺𝐸] ×
1

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
[
𝜎𝛽𝐺𝐸

2 −𝛾

−𝛾 𝜎𝛽𝐺

2 ] [
𝛽𝐺

𝛽𝐺𝐸
] 

                 =
1

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
× [𝜎𝛽𝐺𝐸

2 × 𝛽𝐺 − 𝛾 × 𝛽𝐺𝐸 −𝛾 × 𝛽𝐺 + 𝜎𝛽𝐺

2 × 𝛽𝐺𝐸] [
𝛽𝐺

𝛽𝐺𝐸
] 

                 =
(𝜎𝛽𝐺𝐸

2 × 𝛽𝐺 − 𝛾 × 𝛽𝐺𝐸) × 𝛽𝐺 + (𝜎𝛽𝐺

2 × 𝛽𝐺𝐸 − 𝛾 × 𝛽𝐺) × 𝛽𝐺𝐸

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
 

                 =
𝜎𝛽𝐺𝐸

2 × 𝛽𝐺
2 + 𝜎𝛽𝐺

2 × 𝛽𝐺𝐸
2 − 2 × 𝛾 × 𝛽𝐺 × 𝛽𝐺𝐸

𝜎𝛽𝐺

2 × 𝜎𝛽𝐺𝐸

2 − 𝛾2
 

For clarity we derived the nominator and the denominator separately, so that 𝛃𝑇𝚺−1𝛃 = 𝐴 𝐵⁄  

𝐴 = 𝜎̂𝛽𝐺𝐸

2 × (
𝛽𝐺

′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
)

2

+ 𝜎̂𝛽𝐺

2 × (
𝛽𝐺𝐸

′

𝜎𝐸 × 𝜎𝐺
)

2

+ 2 × 𝜇𝐸𝜎𝛽𝐺𝐸 
2 × (

𝛽𝐺
′

𝜎𝐺
−

𝛽𝐺𝐸
′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
) × (

𝛽𝐺𝐸
′

𝜎𝐸 × 𝜎𝐺
) 

     = 𝜎̂𝛽𝐺𝐸

2 × ((
𝛽𝐺

′

𝜎𝐺
)

2

− (
𝛽𝐺𝐸

′ × 𝜇𝐸

𝜎𝐸 × 𝜎𝐺
)

2

) + 𝜎̂𝛽𝐺

2 × (
𝛽𝐺𝐸

′

𝜎𝐸 × 𝜎𝐺
)

2

 

     =
(
𝛽𝐺

′

𝜎𝐺
)
2

− (
𝛽𝐺𝐸

′ × 𝜇𝐸
𝜎𝐸 × 𝜎𝐺

)
2

+ (
𝛽𝐺𝐸

′ × 𝜇𝐸
𝜎𝐸 × 𝜎𝐺

)
2

+ (
𝛽𝐺𝐸

′ × 𝜎𝐸
𝜎𝐸 × 𝜎𝐺

)
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2  

     =
(
𝛽𝐺

′

𝜎𝐺
)
2

+ (
𝛽𝐺𝐸

′

𝜎𝐺
)
2

𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2  

The denominator B equals: 
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 𝐵 = 𝜎̂𝛽𝐺

2 × 𝜎̂𝛽𝐺𝐸

2 − (−𝜇𝐸 × 𝜎𝛽𝐺𝐸 
2 )

2
=

𝜎𝐸
2

(𝑁 × 𝜎𝐸
2 × 𝜎𝐺

2)2
 

So that the joint test of 𝐺 and 𝐺 × 𝐸 effects equals:  

𝛃𝑇𝚺−1𝛃 = 𝑁 × 𝜎𝐸
2 ×

(
𝛽𝐺

′

𝜎𝐺
)
2

+ (
𝛽𝐺𝐸

′

𝜎𝐺
)
2

𝜎𝐸
2 × 𝜎𝐺

2 = 𝑁 × 𝛽𝐺
′2 + 𝑁 × 𝛽𝐺𝐸

′2  

which is the sum of the individuals Wald test for the main effect and the interaction effect when 𝐺 and 

𝐸 are standardized. Moreover, leveraging previous equivalences, we can express the joint test as a 

function of 𝛽𝐺
′′ and 𝛽𝐺𝐸

′′2, the estimated main and interaction effects from the model where 𝐸 has been 

centered, so the test can be further expressed as: 

𝛃𝑇𝚺−1𝛃 = 𝑁 × 𝛽𝐺
′′2 × 𝜎𝐺

2 + 𝑁 × 𝛽𝐺𝐸
′′2 × 𝜎𝐺

2 × 𝜎𝐸
2  

 

Appendix F: GRS-based test, joint test and univariate test of multiple interaction effects  

We denote 𝛃 = (𝛽𝐺1
, 𝛽𝐺2

, …𝛽𝐺𝑚
) a vector of effects from 𝑚 independent SNP, and 𝜎𝛽𝐺𝑖

2  and 𝑤𝑖 are the 

variance of each estimate and weight of each SNP 𝑖 in the genetic risk score (GRS), respectively. The 

effect of the weighted GRS on the outcome, 𝛾𝐺𝑅𝑆, equals: 

𝛾𝐺𝑅𝑆 =
𝑐𝑜𝑣(𝑌, GRS)

𝜎𝐺𝑅𝑆
2 =

𝑐𝑜𝑣(𝑌, ∑ [𝑤𝑖 × 𝐺𝑖]𝑚 )

𝜎∑ [𝑤𝑖×𝐺𝑖]𝑚

2 =
∑ (𝑤𝑖 × 𝛽𝐺𝑖

× 𝜎𝐺𝑖

2 )𝑚

∑ [𝑤𝑖
2 × 𝜎𝐺𝑖

2 ]𝑚

=

∑
𝑤𝑖 × 𝛽𝐺𝑖

𝜎𝛽𝐺𝑖

2𝑚

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

 

Consecutively, 𝜎𝛾𝐺𝑅𝑆
 the variance of 𝛾𝐺𝑅𝑆 can be derived as follows: 

𝜎𝛾𝐺𝑅𝑆
2 = 𝑣𝑎𝑟

(

 
 

∑
𝑤𝑖 × 𝛽𝐺𝑖

𝜎𝛽𝐺𝑖

2𝑚

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

)

 
 

= ∑

(

 
 

(

 
 

𝑤𝑖

𝜎𝛽𝐺𝑖

2

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

)

 
 

2

× 𝑣𝑎𝑟(𝛽𝐺𝑖
)

)

 
 

𝑚
=

∑ (
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2 )𝑚

(∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚 )

2 =
1

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

 

So that the chi-square of the marginal effect of the test of GRS equals: 
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(
𝛾𝐺𝑅𝑆

𝜎𝛾𝐺𝑅𝑆

)

2

=

(∑
𝑤𝑖 × 𝛽𝐺𝑖

𝜎𝛽𝐺𝑖

2𝑚 )

2

∑
𝑤𝑖

2

𝜎𝛽𝐺𝑖

2𝑚

 

which corresponds to the inverse-variance weighted sum meta-analysis of each individual genetic 

variant. Similarly, one can derive the expected chi-square of the GRS by exposure interaction effect 

using 𝛾𝐺𝑖×𝐸, the interaction effect between each SNP 𝑖 and the exposure. Under the assumption of 

independence of the m interaction terms we obtain: 

(
𝛾𝐼𝑁𝑇

𝜎𝛾𝐼𝑁𝑇

)

2

=

(∑
𝛾𝐺𝑖×𝐸

𝜎𝛾𝐺𝑖×𝐸
2𝑚 )

2

∑
1

𝜎𝛾𝐺𝑖×𝐸
2𝑚

 

Hence for standardized 𝐺 and 𝐸 the ncp of the 𝐺𝑅𝑆 by 𝐸 interaction test equals ncpGRS×E = 𝑁 ×

(∑ 𝛾𝐺𝑖×𝐸
′

i=1…m )
2

𝑚⁄ , where N is the sample size and 𝛾𝐺𝑖×𝐸
′  is the interaction effect from the 

standardized model, and follows a chi-square with one degree of freedom. In comparison, the ncp for 

the test of the strongest pairwise interaction, i.e. the interaction that explained the largest amount of 

variance, equals ncppairwise = max(𝑁 × 𝛾𝐺𝑖×𝐸
′ ).  
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Supplemental Data 

Supplemental Data include eight figures. 
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Figure 1. Examples of interaction patterns for a gene by exposure effect on height  

Pattern of contribution of an interaction term to human height when shifting the location of the genetic 

variant and the exposure. In a) the interaction is defined as the product of centered genetic variant and 

exposure, while in b) genetic variant and exposure are positive or null. 
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Figure 2. Relative power of the joint test of main genetic and interaction effects. 

Power comparison for the tests of the main genetic effect (main.G), the interaction effect (int.GxE) and 

the joint effect (Joint G.GxE) from the interaction model, and the test of the marginal genetic effect 

(mar.G). The outcome 𝑌 is define as a function of a genetic variant 𝐺 coded as [0,1,2] with a minor allele 

frequency of 0.3, and the interaction of 𝐺 with an exposure 𝐸 normally distributed with variance 1 and 

mean 𝐸̅. The genetic and interaction effects vary so that they explain 0% and 0.04% (a), 0.1% and 0.1% 

(b), 0.6% and 0.1% with effect in opposite direction, and 0.4% and 0% (d) of the variance of 𝑌, 

respectively. Power and 𝜌𝐺,𝐺×𝐸, the correlation between 𝐺 and the 𝐺 × 𝐸 interaction term (e) were 

plotted for a sample size of 10,000 individuals and increasing 𝐸̅ from 0 to 5.  
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Figure 3: Examples of attribution of phenotypic variance explained by an interaction effect.  

Proportion of variance of an outcome Y explained by a genetic variant G, an exposure E and their 

interaction GxE in a model harboring a pure interaction effect only (𝑌 = 𝛽𝐺𝐸 × 𝐺 × 𝐸 + 𝜀). The 

exposure E follows a normal distribution with a standard deviation of 1 and mean of 0 (a), 2 (b) and 4 (c). 

The genetic variant is biallelic with a risk allele frequency increasing from 0.01 to 0.99. The interaction 

effect is set so that the maximum of the variance explained by the model equals 1%. 
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Figure 4. Importance of an interaction term as defined by the Pratt index. 

Contribution of a genetic variant G with minor allele frequency of 0.5, a normally distributed exposure E 

with mean of 4 and variance of 1 and their interaction GxE, to the variance of a normally distributed 

outcome Y, based on the standard approach –the marginal contribution of E and G and the increase in 

𝑟2 when adding the interaction term– (grey boxes), and based on the Pratt index (blue boxes), across 

10,000 replicates of 5,000 subjects. For illustration purposes the predictors explain jointly 10% of the 

variance of Y. In scenario a) all G, E and GxE have equals contribution, while in scenario b), c) and d) 

there was no interaction effect, no exposure effect, and no genetic effect, respectively. 
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Figure 5. Advantages and limitation of testing interaction effect with a genetic risk score. 

Examples of power comparison for the combined analysis of interaction effects between 20 SNPs and a 

single exposure. Power was derived for three scenarios: the interaction effects are normally distributed 

(upper panels) and (a) centered, (b) slightly positive so that 25% of the interactions are negative, and (c) 

positive only. Three tests are compared while increasing sample size from 0 to 10,000: the joint test of 

all interaction terms, the genetic risk score by exposure interaction test, and the test of the strongest 

interaction effect after correction for the 20 tests performed (middle panels). The lower panels show 

power of the three tests for a sample size of 5,000, when including 1 to 400 non-interacting SNPs on top 

of the 20 causal SNPs in the analysis. 
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