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Abstract

Gene expression is intrinsically stochastic due to the small number of molecules involved in some

of the underlying biochemical reactions. The resulting molecule-count random fluctuations are

known as biochemical noise. The dynamic effects of intrinsic noise (that originated within the

system) have been widely studied. However, the effects of the noise coming from other sources the

system is in contact with, or extrinsic noise, is not so well understood. In this work we introduce an

electronic model for a simple gene oscillatory network, with delayed negative-feedback regulation.

Notably, this model accounts for the intrinsic biochemical noise due to the slow promoter switching

between the active and inactive states; but dismisses biochemical noise due to mRNA and protein

production and degradation. We characterize the oscillatory behavior of this gene network by vary-

ing all the relevant parameter values within biologically meaningful ranges. Finally, we investigate

how different sources of extrinsic noise affect the system dynamic behavior. To simulate extrinsic

noise we consider stochastic time series coming from another circuit simulating a gene network.

Our results indicate that, depending on the parameter affected by extrinsic noise and the power

spectra of the stochastic time series, the system quasi-periodic behavior is affected in different

ways.

∗msantillan@cinvestav.mx; http://www.msantillan.org.mx

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2015. ; https://doi.org/10.1101/019638doi: bioRxiv preprint 

https://doi.org/10.1101/019638
http://creativecommons.org/licenses/by-nd/4.0/


I. INTRODUCTION

Periodic phenomena are ubiquitous in biology [1]. They can be observed from the single

cell to the ecological levels. Genetic oscillators are of particular interest because they are

the basis of biological phenomena like the circadian clock [2] and the segmentation clock of

somitogenesis [3].

Genetic oscillators have also been a subject of interest in synthetic biology [4, 5]. However,

the extremely regular behavior of natural genetic oscillators contrasts with the irregularity of

oscillations observed in most synthetic oscillators. From a theoretical point of view, the fact

that synthetic genetic oscillators are irregular is not surprising because of the ever present

biochemical noise [6, 7].

Given that some of the molecules involved in gene expression and gene regulation occur

in low numbers (less than ten in some cases), the stochastic nature of the corresponding bio-

chemical reactions becomes evident. Thus, the plots of molecular counts vs. time present

stochastic fluctuations around the curves predicted by the corresponding deterministic de-

scriptions, and these fluctuations are known as biochemical noise [6, 7]. In particular, if a

deterministic description of the system predicts that a particular molecule count oscillates

periodically in time, biochemical noise will make the oscillation period and amplitude irreg-

ular. Typically, these irregularities increase as the noise amplitude increases, to the point

that the system periodic behavior can get masked. The question is then, how come natural

genetic oscillators can be so regular despite biochemical noise. To the best of our knowledge,

this is still an open question.

For a given system, biochemical noise can be either intrinsic or extrinsic. Noise originated

by biochemical reactions within the system is termed intrinsic noise. On the contrary,

biochemical noise affecting the system dynamics but originated within other systems is

known as extrinsic noise. In a recent work [8], the authors proved that, depending on

their time scale, extrinsic fluctuations can affect the performance of biochemical networks

in many different ways. This suggests that interaction mechanisms between gene regulatory

networks may have been fine tunned by evolution in such a way that the associated extrinsic

noise improves, or at least does no affect, the gene networks’ performance. Taking this into

consideration, it is interesting to study how extrinsic noise with different characteristics

affects the performance of genetic oscillators.
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Inspired on the previous paragraphs discussion, the present work is advocated to studying

the influence of different sources of extrinsic noise on the dynamics of a simple gene regulatory

network, known to have a periodic behavior: a single gene subject to delayed negative-

feedback regulation. To achieve this objective, we designed and built an electronic circuit

that simulates the gene network stochastic behavior, and studied its dynamics. To account

for extrinsic noise, we interconnected in different ways two of such circuits, assuming that

one of them is the source of extrinsic noise for the other. Given that we make use of both

analog and digital electronics to mimic the dynamic behavior of a natural phenomena, the

present work is related to the long tradition of analog and hybrid computing [18].

II. MODEL DEVELOPMENT

A. Gene Regulatory Network

Consider the hypothetic gene regulatory pathway schematically represented in Fig. 1 and

described in detail below. When active, a promoter is transcribed, and so mRNA molecules

are synthesized, at a rate kM . The resulting mRNA molecules are randomly degraded, with

a degradation rate constant γM . Before being degraded, mRNA molecules are translated

and proteins are synthesized at a rate kP . The translated proteins catalyze the synthesis

of metabolites W , and they are randomly degraded with a degradation rate constant γP .

Furthermore, metabolites W bind activator molecules A, to inhibit them. Uninhibited

activators can bind an inactive promoter, activating it. When the activator detaches from

the promoter, it turns inactive.

A

I

M P

FIG. 1: Schematic representation of the gene regulatory network here studied.
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Under the assumption that the metabolite production rate is proportional to the protein

molecule count, and that metabolite degradation occurs randomly, the differential equation

governing metabolite dynamics is

dnW
dt

= kWnP − γWnW ,

where nP and nW respectively denote the protein and metabolite molecule counts, kW is the

metabolite synthesis rate per protein, and γW is the metabolite degradation rate constant.

If the metabolite synthesis and degradation processes are much faster than the mRNA

and protein dynamics, a quasi-steady state approximation can be made for the metabolite

dynamics (dnW/dt = 0), and so the number of metabolites is given in terms of the protein

count by the following expression:

nW =
kW
γW

nP . (1)

As previously asserted, we assume that activator molecules are inhibited when they are

bound by W metabolites and that the corresponding chemical reaction is

A+W
k+W−−⇀↽−−
k−W

AW ,

in which A and AW respectively represent uninhibited and inhibited activators, while k+W

and k−W are the forward and backward reaction rate constants. Under the supposition that

this reaction rapidly equilibrates with the rest of the system dynamics, and assuming that

the total activator count is constant,

nA + nAW = nAT ,

the number of uninhibited activators comes out to be

nA = nT
KW

KW + nW
,

with KW = k−W/k
+
W . By substituting Eq. (1) into this last expression we obtain

nA = nT
KD

KD + nP
, (2)

where KD = KWγW/kW .

Let us represent the promoter activation-inactivation process by means of the following

reaction

DI + A
kA−⇀↽−
kI

DA,

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2015. ; https://doi.org/10.1101/019638doi: bioRxiv preprint 

https://doi.org/10.1101/019638
http://creativecommons.org/licenses/by-nd/4.0/


where DI and DA respectively represent inactive and active promoters, while kA and kI are

the activation and deactivation reaction rate constants. Recall that A denotes an uninhibited

activator. The corresponding forward and backward reaction rates are respectively given by

ν+ = kAnDInA, ν− = kInDA,

where nDI and nDA respectively represent the numbers of inactive and active promoters. If

we now substitute Eq. (2), the forward reaction rate transforms into

ν+ = kAnT
KD

KD + nP
nDI ,

Hence, we can alternatively represent the promoter activation-inactivation process by means

of the following reaction

DI

α
KD

KD+nP−−−−−⇀↽−−−−−
β

DA, (3)

with

α = kAnT , β = kI .

From the above discussion we can see that gene expression can be modeled in general as a

set of chemical reactions. On the other hand, chemical reactions are intrinsically stochastic

and their stochastic nature becomes apparent in the low molecular-count limit. Since this is

the case for many of the reactions involved in gene expression, the concomitant stochastic

fluctuations (also known as intrinsic noise) cannot be ignored. Several works have studied

the consequences of having stochastic synthesis and degradation of mRNA and protein

molecules. Interestingly, only a few of them have dealt with the stochasticity of promoter

gating between the active and inactive states [9]. In the present work we are interested

in studying the dynamics of a gene regulatory network with negative feedback, in which

promoter gating is the only source of intrinsic noise, and in which the time delays due to

transcription and translation are accounted for. Therefore, the previously discussed gene

regulatory scheme can be modeled as follows.

A telegraph stochastic process can be employed to simulate promoter dynamics, taking

into consideration that the transition probabilities per unit time (propensities) between the

inactive and active states are respectively given by:

PIA = α
KD

KD + nP
, PAIβ,
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where PIA and PAI respectively denote the propensities for the transitions from and inactive

to the active, and from the active to the inactive states. Furthermore, since we decided to

disregard the intrinsic noise associated to the mRNA and protein dynamics, they can be

modeled by means of the following differential equations:

dnM
dt

= kMnDA(t− TM)− γMnM(t),

dnP
dt

= kPnM(t− TP )− γPnP (t),

where TM and TP are the time delays due to transcription and translation.

As previously discussed, the model just developed corresponds to a single gene network

subject to delayed negatve-feedback regulation. This is a very simple system which, due

to its simplicity can be thoroughly analyzed. On the other hand, despite its simplicity, the

present model is biologically sound because it shares the architecture of the gene network

behind the segmentation clock of somitogenesis [3].

B. Electronic analog for the gene network

As we have seen, the equations governing the mRNA and protein dynamics are of the

form
dn

dt
= k(t)− γn. (4)

where n represents the molecule count, k(t) is the molecule synthesis rate, and γ is the

corresponding degradation rate constant. Let us assume that function k(t) is upper-bounded:

k(t) ≤ kmax. Then, by defining the dimensionless variable

ξ =
γ

kmax
n,

Eq. (4) can be rewritten as follows:

dξ

dt
= γ

(
k(t)

kmax
− ξ

)
. (5)

Consider now the RC circuit depicted in Fig. 2. If the ground voltage is set equal to 0 V,

one can easily prove—by equating the currents through the resistance and the capacitor—

that voltage VC satisfies the following differential equation,

dVC
dt

=
1

RC
(VS(t)− VC) . (6)
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FIG. 2: Schematic representation of a typical RC circuit

Assume that VS(t) is upper bounded: VS(t) ≤ Vmax and define ζ = VC/Vmax. Then, from

Eq. (6), variable ζ satisfies the following differential equation:

dζ

dt
=

1

RC

(
VS(t)

Vmax
− ζ

)
. (7)

Note that Eqs. (5) and (7) are identical, allowing us to conclude that an RC circuit

can be used to model the dynamics of molecule synthesis and degradation, whenever the

intrinsic noise inherent to molecule synthesis and degradation can be disregarded. Observe

that the time constant RC is analog to the inverse of the degradation rate constant γ, while

the normalized voltage VS(t)/Vmax is analog to the normalized synthesis rate k/kmax.

From the discussion in the former paragraphs, the gene regulatory network schematically

represented in Fig. 1 can be modeled by the electronic circuit represented in Fig. 3.

The different circuit elements depicted in Fig. 3 play the following roles:

• Resistance RM and capacitor CM account for the dynamics of mRNA molecules. The

mRNA degradation rate is given by γM = R−1
M C−1

M , while the voltage VD(t) is pro-

portional to the mRNA transcription initiation rate. In accordance to the promoter

dynamics, VD(t) randomly shifts between zero (inactive Promoter) and the maximum

(active promoter) voltage value. The corresponding propensities (transition probabil-

ities per unit time) are those of promoter activation and deactivation.

• Resistance RP and capacitor CP account for the dynamics of proteins. The protein

degradation rate is given by γP = R−1
P C−1

P , while the voltage VM(t) is proportional

to both the mRNA molecule count and the translation initiation rate. On the other

hand, voltage VP (t) is proportional to the protein count.
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Micro-controller Delayer

Unit-gain
Amplifier

FIG. 3: Schematic representation of an electronic circuit that models the gene regulatory network

in Fig. 1. See the main text for details.

• The unit-gain amplifier separating the mRNA and protein RC circuits ensures that

the protein RC circuit does not affect the dynamics of the mRNA RC circuit.

• The micro-controller plays the role of the promoter. It employs one pin to measure

voltage VP (t) and uses this information to randomly compute the voltage (either zero

or high) at the output pin. Below we describe in detail the algorithm the micro-

controller uses to perform this task.

• In order to account for the delays due to transcription, translation, post-translational

protein modifications, etc., we include a shift-register integrated circuit (IC) between

the micro-controller and the mRNA RC circuit. This IC delays the digital signal com-

ing out from the micro-controller a given amount of time (the corresponding mech-

anisms will be explained below). As previously asserted, time delays originate at

various stages in a real gene network. However, we are interested in the effects these

delays have on the negative feedback regulatory loops. It can be demonstrated that,

concerning the fixed point stability, since the various delays occur in sequential pro-

cesses, they can be lumped together in a single delay taking place anywhere in the

loop [10]. Concomitantly, we decided to include a single lumped delay at the level of

transcription.

Before analyzing the micro-controller algorithm, consider that this device performs iter-

atively, repeating its program in short duration loops. In our case, we decided to employ
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the popular Arduino Uno [19]. According to our measurements, this micro-controller loops

last 0.28 ms in average. Taking all this into account, the micro-controller algorithm is as

follows:

1. Voltage VP is measured at the input pin.

2. The probabilities of flipping from the active to the inactive (PAI), and from the inactive

to the active (PIA) states in a micro-controller cycle are respectively computed as

PAI = β and PIA = α ∗ KD/(KD + VP ), where β, α, and KD are parameters whose

values are estimated below.

3. A random number r is generated from a uniform random distribution to determine

whether the promoter changes its state, given the previously computed transition

probabilities.

4. If the promoter is active and r ≤ PAI the promoter state is changed to inactive and

the voltage at the output pin is set to 0 V. Otherwise, the promoter remains active

and the output voltage is set to its maximum value (5 V in our case).

5. Conversely, if the promoter is inactive and r ≤ PIA, the promoter is set to active and

the output voltage is set to its maximum value. Otherwise, the promoter remains

inactive and the output voltage is set to 0 V.

6. The voltage at a given digital output pin, that sends a clock pulse to the shift register

(the delayer), is set to its maximum value and immediately it is set back to 0 V.

The shift register (SR) consists of a series of memory devices that can be set to either 0 V

or the maximum voltage (which in this case is 5 V). Each time the SR gets a clock pulse, every

one of its memory devices assumes the state of the previous device, and the first memory

device assumes the value of the input voltage. In our case, this input voltage corresponds

to state of the promoter. Given that a clock pulse arrives each time the micro-controller

completes a cycle, the voltage corresponding to the current promoter state reaches the last

SR memory device after n micro-controller cycles, were n is the number of SR memory

devices. Thus, by modifying the value of n one can control the time delay between the

change of state at the micro-controller output pin and the moment this change is felt by the

RC circuit corresponding to the mRNA dynamics.
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C. Parameter values

As previously mentioned, the average cycle duration of the micro-controller is

τ ≈ 0.28ms.

This is important because, from the way the electronic circuit is built, this parameter plays

the role of time unit for the whole system.

The maximum probability rates from the inactive to the active, and from the active to

the inactive states are respectively given by:

α = 0.01 τ−1, β = 0.1 τ−1.

This values imply that, in the long term, the promoter spends only about 10% of the time

in the active state, and that, in the absence of regulation, the average promoter residence

times in the active the inactive states are 10 and 100 microcontroler cycles, respectively.

The resistance and the capacitor corresponding to the mRNA dynamics have the following

values:

RM ≈ 1kΩ, CM ≈ 0.5µF.

This corresponds to a degradation rate constant of

γM =
1

RMCM
≈ 2× 103s−1 ≈ 0.56τ−1.

The resistance and capacitor values corresponding to the protein dynamics are

RP ≈ 100kΩ, CP ≈ 0.5µF.

This implies a degradation rate constant of

γP =
1

RPCP
≈ 2× 101s−1 ≈ 5.6× 10−3τ−1.

After implementing the electronic circuit with the above parameter values, with no time

delay and with no feedback (KD →∞), we measured the voltage time series corresponding

to protein dynamics and computed an average value of V P ≈ 0.43V . We are interested

in sustained oscillations generated by a delayed negative feedback, and it is known that a

strong feedback loop (small KD value) is necessary for that purpose [11–13]. Therefore, we

chose the following values for parameter KD:

KD = [0.025, 0.05, 0.1]V.
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Finally, large delay values are necessary for an oscillatory behavior [11–13]. Thus, taking

into consideration that the protein half life is about 125τ , we assumed the following time

delay values

T ∈ {0, 48τ, 64τ, 80τ, 96τ}.

These parameter values guaranty the following behavior.

• The promoter becomes active sporadically and it remains active for a short time (a

few times τ), in agreement with the experimentally observed transcriptional bursting

[9, 14].

• mRNA molecules have a half-life (t1/2 = ln 2/γM ≈ 1.23τ) comparable to the system

time unit. It has been observed in vivo that mRNA molecules have short half lives in

general, but in particular their half life is of the order of a minute for some prokaryotic

genes [15].

• The protein degradation rate is about 100 times smaller than the mRNA degradation

rate, in agreement with the fact that, in general, proteins have much longer half-lives

than mRNA molecules [15].

• The time delay and the value of parameter KD were chosen so that the system shows

an oscillatory behavior. It has been reported in deterministic systems that KD needs to

be small, as compared with the maximum possible molecule count, and that the time

delays has to be long, in terms of the mRNA half life, in order to observe sustained

oscillations [11–13]. Hence, taking this into consideration, assumed that T values are

of the order of the protein half life, and took small KD values as compared with the

average protein voltage in the open loop configuration (see the Results for further

details).

III. RESULTS

A. Characterization of system dynamic behavior

Data, in the form of voltage time series measured at point VP of the circuit (see Fig.

3) were acquired by means of a BitScope BS10 (manufactured by BitScope[20]), controlled
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from Python 2.7 via the public library BitScope Library 2.0. Recall that, according to

our model, voltage VP reports the amount of protein, so the recorded time series allow us to

see how the protein level evolves in time. Unless stated otherwise, we employed a sampling

frequency of 500 samples per second which, as we shall see, is more than enough for the

purposes of the present work. In Fig. 4 we plot two examples of such time series, which

correspond to a network with no feedback (or open loop, KD → ∞), and to a network

with delayed negative feedback in which the relevant parameter values are KD = 0.05 V and

T = 80τ .
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FIG. 4: Recordings of the voltage reporting protein levels in the circuit designed to simulate a

simple gene network with delayed negative feedback. A) Gene network without feedback (or open

loop, KD →∞). B) Gene network with KD = 0.05 V and T = 80τ .

As previously discussed, we expect the negative feedback and the time delay to induce

some sort of oscillatory behavior. Indeed, both time series in Fig. 4 are notoriously different,

and some regularity can be observed in the delayed-feedback case. However, at first sight

it is impossible to judge whether the system behaves periodically or not. To elucidate this

point and to further understand the influence of parameters KD and T , we carried out a

Fourier analysis as follows. For a given set of KD and T parameter values, we recorded 1,000

independent time series with a rate of 500 samples per second, each time series being 10,000

data points long. Then, we employed the algorithm numpy.rfft of python to compute the

fast Fourier transform of each time series, and used the result to calculate the correspond-
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ing power spectrum. Finally, we obtained the average power spectrum (averaged over the

1,000 measured time series) and plotted it. The whole procedure was repeated for different

combinations of parameters KD and T , and the results are shown in Fig. 5.
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FIG. 5: Power spectra computed from the recorded VP time series, with different combinations of

parameters KD and T . A) Open loop configuration, KD →∞, B) KD = 0.025 V, C) KD = 0.05 V,

and D) KD = 0.1 V. The color code for the plots in graphs B-D is a follows: blue, T = 0; green,

T = 48τ ; red, T = 64τ ; cyan, T = 80τ ; magenta, T = 96τ .

Observe that, in the open-loop configuration, the power spectrum is monotonically de-

caying and thus corresponds to colored noise. This further implies that, in this case, the

electronic circuit has no oscillatory behavior. Regarding the behavior or the gene circuit

with delayed negative-feedback regulation, we see that the power spectrum is in most cases

a concave function with a single maximum. This type of power spectrum is indicative of a

quasi-periodic behavior. Furthermore, quasi-periodicity is not apparent when the time delay

is very small and parameter KD attains large values (KD ≈ 0.1 V). But for instance, when

KD = 0.025 V a quasi-oscillatory behavior is observed even for T = 0. Concerning the influ-

ence of parameters KD and T on the system dynamics, we can see in Fig. 5 that decreasing
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the value of KD and/or increasing that of T increases the height of the power-spectrum

maximum point. This is in agreement with the notion that increasing the time delay and/or

the strength of the feedback increases the amplitude of periodic oscillations. Interestingly,

the position of the spectrum maximum point remains unchanged despite variations in KD

and T . This finding contradicts what is normally observed in deterministic systems in which

the frequency of oscillations usually decreases as the time delay increases [16].
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FIG. 6: Power spectra computed from the recorded VP time series, with different values of the

mRNA and protein degradation rates. Panels A and B correspond to an open-loop gene circuit,

while panels C and D correspond to a gene circuit with negative feedback (KD = 0.05 V) and time

delay (T = 64τ). In panels A and C we can see the effect of changing the mRNA degradation rate;

line color code is as follows: blue corresponds to the nominal parameter values, green corresponds

to a halved mRNA degradation rate, and red corresponds to a doubled mRNA degradation rate.

Finally, in panels B and D we can see the effect of changing the protein degradation rate; line

color code is as follows: blue corresponds to the nominal parameter values, green corresponds to a

halved protein degradation rate, and red corresponds to a doubled protein degradation rate
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To finish the system characterization, we repeated the previously described experiments

with different values of mRNA and protein degradations rates. In particular, we halved

and doubled both degradation rates by accordingly modifying resistances RM and RP . The

resulting power spectra are shown in Fig. 6. Observe that changing mRNA degradation

rate has no notorious effect upon the system oscillatory behavior. However, modifying pro-

tein degradation has important consequences. Increasing the protein degradation rate (γP )

makes the spectra tails heavier in both the open loop and the delayed negative feedback

configurations. This means that higher frequency components contribute more as γP in-

creases. In particular, in the delayed negative feedback configuration, the maximum point

of the power spectrum achieves larger values and moves to higher frequencies as the protein

degradation rate increases.

B. Dynamic effects of extrinsic noise

So far, we have investigated the dynamic behavior of a gene network subject to delayed

negative feedback regulation, in which the only source of biochemical noise is the promoter

random gating between the active and inactive states. Since this kind of noise originates

within the system, it is known as intrinsic noise [6, 7, 17]. However, the system can also be

affected by extrinsic noise. That is, biochemical noise originated within other systems that

interact with the current system [8]. For instance, in our case, we have seen that parameter

KD is proportional to the number of activator molecules. However, these activators are

produced via the expression of another gene and so, rather than being constant, KD can be

understood as the realization of a stochastic process.

According to the previous subsection results, the system quasi-periodic oscillatory behav-

ior is quite sensitive to changes of parameters KD and γ. Thus, it is interesting to investigate

the influence that random extrinsic-noise variations of these parameters have on the system

qausi-periodic behavior. To do this, we built two electronic circuits (termed A and B) like

that schematically represented in Fig. 3, and assume that they interact according to one of

the following situations:

Situation I Circuit A simulates a gene network that produces the transcription factors

(activators) that regulate the expression of the gene network simulated by circuit B.
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Situation II Circuit A simulates a gene network that produces the proteases that degrade

the proteins produced by the gene network simulated by circuit B.
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FIG. 7: Power spectra computed from the recorded VP time series of two coupled gene networks:

one producing the transcription factors (panels A and B) that regulate the expression of the

other gene network (C and D). We considered two different scenarios for the transcription-factor

producing gene network: it expresses constitutively (panels A and C), and it is subject to delayed

negative-feedback self-regulation with KD = 0.05 V and T = 64τ (panels B and D). In each case

we considered different transcription-factor (TF) degradation rates, indicated by means of a color

code as follows: black corresponds to TF degradation rate equal to that of the regulated-network

protein, but with the two networks uncoupled; all other line colors correspond to coupled gene

networks; blue corresponds to a TF degradation rate half as large as that of the regulated protein;

green corresponds to a TF degradation rate equal to that of the regulated protein; red corresponds

to a TF degradation rate twice as large as that of the regulated protein; and magenta corresponds

to a TF degradation rate five times as large as that of the regulated protein.

Taking into account that KD is proportional to the number of activators, we electronically

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2015. ; https://doi.org/10.1101/019638doi: bioRxiv preprint 

https://doi.org/10.1101/019638
http://creativecommons.org/licenses/by-nd/4.0/


simulated Situation I as follows:

• All parameters of circuit B, with the exception of KD and T , were set to their nominal

values. Parameter T was set to 64τ , and the value of KD was chosen as explained

below.

• One of the analog input pins of the micro-controller of circuit B is employed to measure

voltage VP of circuit A (recall that VP is proportional to the protein count). Then,

circuit B’s KD value is computed as KD = εVP , with ε chosen so the average value of

KD equals 0.05 V

• Most of the parameters of circuit A (with the exception of KD and γ) are set to

their nominal vales. In particular, we set T = 64τ . Regarding KD we considered two

possible values for it: KD →∞, which corresponds to a constitutive-expressing gene,

and KD = 0.05 V, that corresponds to a gene network with delayed negative feedback

regulation. Finally, we halved, doubled, and increased to five times the nominal value

of parameter γP , aimed at changing the power spectrum characteristics of circuit A’s

VP time series.

After assembling the two interacting circuits and connecting them, we recorded the VP

voltages of each one of them by means of a bitscope. Each recording was 5,000 data points

long, and was performed with a frequency of 250 samples per second. Then, we computed

the power spectra of the time series recorded from both circuits. The whole procedure was

repeated 1,000 times, and the average power spectra (averaged over the 1,000 experiment

repetitions) were computed at the end. The results are shown in Fig. 8.

From Figs. 8A and 8C we can conclude that colored-noise random variations in the

transcription factor count have little effect upon the quasi-periodic oscillatory dynamics of

the regulated gene network. The most noticeable difference, as compared with the case

with no extrinsic noise, is observed when the transcription factor degradation rate if five

times larger that that of circuit B’s proteins. Since in this last case the transcription-factor

power spectrum has larger high-frequency contributions, our results may indicate that high-

frequency random fluctuations in the transcription factor count have more important effects

upon the quasi-periodic oscillatory behavior of circuit B.

Figs. 8B and 8D also reveal that the quasi-periodic oscillatory behavior of circuit B is

extremely robust to quasi-periodic random fluctuations of the transcription factor count.
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Given that the transcription-factor power spectra are very different, it is not possible to

analyze the results in terms effects due to low-frequency and high-frequency extrinsic-noise

contributions.
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FIG. 8: Power spectra computed from the recorded VP time series of two coupled gene networks:

one producing the proteases (panels A and B) that degrade the proteins resulting from the expres-

sion of the other gene network (C and D). We considered two different scenarios for the protease

producing gene network: it expresses constitutively (panels A and C), and it is subject to delayed

negative-feedback self-regulation with KD = 0.05 V and T = 64τ (panels B and D). In each case

we considered different protease degradation rates, indicated by means of a color code as follows:

black corresponds to protease degradation rate equal to that of the target protein, but with the two

networks uncoupled; all other line colors correspond to coupled gene networks; blue corresponds

to a protease degradation rate half as large as that of the degraded protein; green corresponds to

a protease degradation rate equal to that of the degraded protein; red corresponds to a protease

degradation rate twice as large as that of the degraded protein; and magenta corresponds to a

protease degradation rate five times as large as that of the degraded protein.
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To simulate Situation II, consider that in our circuits, protein degradation rate is inversely

proportional to resistance RP . On the other hand, if circuit A produces the proteases that

degrade the proteins of circuit B, one could expect that circuit’s B protein degradation

rate is proportional to voltage VP of circuit A. Thus, Situation II can be implemented by

controlling circuit’s B RP resistance with circuit’s A VP voltage. We achieved this by using

digital potentiometer DS1803 (1,000 kΩ maximum resistance) controlled by an arduino; and

by programming the arduino such that it reads voltage VP in circuit A and sets resistance

RP of circuit B to ξ/VP . Parameter ξ was chosen so that ξ/V P = 100 kΩ, with V P the

average value of circuit A VP voltage.

After implementing the electronic circuit that simulates Situation II, we repeated the

experiments of Situation I and report the results in Fig. 8. Observe that no matter whether

the protease gene expresses constitutively or its expression level shows random quasi-periodic

oscillations, this kind of extrinsic noise always has a deleterious effect upon circuit B quasi-

periodic behavior. Moreover, the effects of this extrinsic noise augment as the protease

degradation rate increases and the hight frequency contributions to the corresponding power

spectra become greater.

IV. CONCLUDING REMARKS

An electronic circuit that simulates the dynamic behavior of a gene network subject to

delayed negative-feedback regulation was designed and built. Notably, this circuit assumes

that the only source of intrinsic noise in the regulatory pathway is the promoter stochastic

gating between the active and inactive states. Regarding the model parameter values, they

were chosen so they fall within biologically plausible ranges, as well as to ensure that the

circuit shows a quasi-periodic dynamic behavior.

Before investigating the effects of extrinsic noise on the system dynamics, we investigated

the robustness of its dynamic behavior to variations of the model parameters. To that end,

we centered our attention on the power spectrum of the recorded VP time series, where VP

is the circuit voltage that is analog to the concentration of proteins in the gene regulatory

network.

First of all we proved that, as expected, the built circuit displays a quasi-periodic be-

havior when it is subject to delayed negative-feedback regulation, and that this behavior
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dissappears in the absence of a feedback regulatory loop. Furthermore, we were able to

show that either increasing the feedback-loop time delay or strengthening the feedback-loop

enhances the system quasi-periodic behavior, in agreement to what happens in the corre-

spondig deterministic systems. Finally, we studied how changes of the mRNA and protein

degradation rate constants affect the observed quasi-periodic oscillations. We found that

the system quasi-periodic behavior is quite robust to mRNA degradatio rate changes, but

sensitive to modifications of the protein degradation rate constant, γP . Larger γP values

make the amplitude and frequency of oscillations increase.

To simulate extrinsic noise we took stochastic time series coming from another circuit

simulating a gene network. Let us term circuit A the circuit where extrinsic noise is orig-

inated, and circuit B the one influenced by extrinsic noise. We considered two different

scenarios

• Circuit A produces the transcriotion factors (which in this case are activators) that

regulate the expression of circuit B promoter.

• Circuit A produces the proteases that degrade the proteins produced by circuit B.

Furthermore, in each scenario we considered two different configurations for circuit A (open

loop and negative feed-back regulated), and for each configuration we varied the degradation

rate of circuit B proteins.

Our results indicate that, the quasi-oscillatory behavior of circuit B is quite robust to

random variations of the transcription factor count, independently of the fluctuations time

scale, and of whether this suorce of extrinsic noise is quasi-periodic or correspons to colored

noise.

Contrarily, we found that the quasi-periodic behavior of circuit B deteriorates when the

degradation rate of circuit B proteins randomly varies in time due to extrinsic noise. More-

over, the extrinsic noise effects become more notorious as the time scale of the corresponding

fluctuations gets shorter.

Summarizing, we investigated the effects of extrinsic noise on the quasi-periodic behavior

of a gene network subject to delayed negative-feedback regulation. According to our results,

these effects strongly depend on the parameters affected by extrinsic noise, as well as on the

time scale of the noisy fluctuations. In most cases we observed that low frequency extrinsic

noise has little effect upon the system oscillatory dynamics.
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