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Abstract

Cross-sectional time series single cell data confound several sources of
variation, with contributions from measurement noise, stochastic cell to
cell variation and cell progression at different rates. Time series from sin-
gle cell assays are particularly susceptible to confounding as the measure-
ments are not averaged over populations of cells. When several genes are
assayed in parallel these effects can be estimated and corrected for under
certain smoothness assumptions on cell progression. We present a princi-
pled probabilistic model with a Bayesian inference scheme to analyse such
data. We demonstrate our method's utility on public microarray, nCounter
and RNA-seq data sets from three organisms. Our method almost perfectly
recovers withheld capture times in an Arabidopsis data set, it accurately
estimates cell cycle peak times in a human prostate cancer cell line and it
correctly identifies two precocious cells in a study of paracrine signalling in
mouse dendritic cells. Furthermore, our method compares favourably with
Monocle, a state-of-the-art technique. We also show using held out data
that uncertainty in the temporal dimension is a common confounder and
should be accounted for in analyses of cross-sectional time series.

1 Introduction

1.1 Cross-sectional time series

Manybiological systems involve transitions between cellular states characterised
by gene expression signatures. These systems are typically studied by assaying
gene expression over a time course to investigate which genes regulate the tran-
sitions. An ideal study of such a system would track individual cells through
the transitions between states. Studies of this form are termed longitudinal.
However current medium and high-throughput assays used to measure gene
expression destroy cells as part of the protocol. This results in cross-sectional
data wherein each sample is taken from a different cell.

This study analyses the problem of variation in the temporal dimension:
cells do not necessarily transition at a common rate between states. Even if
several cells about to undergo a transition are synchronised by an external sig-
nal, when samples are taken at a later time point each cell may have reached a
different point in the transition. This suggests a notion of pseudotime to model
these systems. Pseudotime is a latent (unobserved) dimension whichmeasures

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2015. ; https://doi.org/10.1101/019588doi: bioRxiv preprint 

https://doi.org/10.1101/019588
http://creativecommons.org/licenses/by/4.0/


the cells' progress through the transition. Pseudotime is related to but not nec-
essarily the same as laboratory capture time.

Variation in the temporal dimension is a particular problem in cross-sectional
studies as each sample must be assigned a pseudotime individually. In longi-
tudinal studies information can be shared across measurements from the same
cell at different times.

Inconsistency in the experimental protocol is another source of variation in
the temporal dimension. It may not be physically possible to assay several cells
at precisely the same time point. This leads naturally to the idea that the cells
should be ordered by the pseudotime they were assayed.

1.2 Single cell assays

The exploration of cell-to-cell heterogeneity of expression levels has recently
been made possible by single cell assays. Many authors have investigated vari-
ous biological systemsusingmedium throughput technologies such as qPCR [1–
4] and nCounter [5, 6] or high throughput technologies such as RNA-seq [7–
14]. These studies have shown that cellular heterogeneity is prevalent in many
organisms and regulatory systems. The variation in gene expression underlying
this cellular heterogeneity has been attributed to several causes both technical
and biological [3, 8–10]. Whilst accounting for variation in expression levels,
none of these studies investigated howmuch is attributable to uncertainty in the
temporal dimension. Conversely, methods such as Monocle and Wanderlust
(described below) have attempted to place cells in a pseudotemporal ordering
but do not explicitly model variation in the data.

1.3 Dimension reduction

Analyses of medium and high-throughput expression assays often use dimen-
sion reduction techniques. Anywhere between forty and several tens of thou-
sands of gene expression levels may have been measured in each sample. This
high-dimensional data can often be better analysed after projection into a low
(two or three) dimensional latent space. Often this projection results in a natu-
ral clustering of cells from different time points or of different cell types which
can then be related to the biology of the system. Such clusterings may suggest
hypotheses about likely transitions between clusters and their relationship in
time.

Dimension reduction has a large literature and there are many available
methods, here we give a few examples of some that have been used in single
cell expression analyses.

Principal components analysis (PCA) is prevalent in analyses of expression
data [7, 8, 11, 14]. PCA finds linear transformations of the data that preserve
as much of the variance as possible. In one example typical of single cell tran-
scriptomics, Guo et al. studied the development of the mouse blastocyst from
the one cell stage to the 64 cell stage [1]. They projected their 48-dimensional
qPCR data into two dimensions using PCA. Projection into these two dimen-
sions clearly separated the three cell types present in the 64 cell stage.

Multi-dimensional scaling (MDS) is another popular dimension reduction
technique. MDS aims to place each sample in a lower dimensional space such
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that distances between samples are conserved as much as possible. Kouno et
al. used MDS to study the differentiation of THP-1 human myeloid monocytic
leukemia cells intomacrophages after stimulation with PMA [3]. Their primary
MDS axis explained the temporal progression through the differentiation, their
secondaryMDS axis explained the early-response of the cells to the stimulation
they had undergone.

Independent components analysis (ICA) projects highdimensional data into
a latent space thatmaximises the statistical independence of the projected axes.
Trapnell et al. used ICA to investigate the differentiation of primary humanmy-
oblasts [12]. The latent space serves as a first stage in their pseudotime estima-
tion algorithm Monocle (see below).

Gaussian process latent variable models (GPLVMs) are a dimension reduc-
tion technique related to PCA. They can be seen as a non-linear extension [15]
to a probabilistic interpretation of PCA [16]. Buettner et al. used GPLVMs to
study the differentiation of cells in the mouse blastocyst [17, 18]. They used
qPCR data from Guo et al. who had analysed the expression of 48 genes in cells
spanning the 1- to 64-cell stages of blastocyst development [1]. Buettner et al.
were able to uncover subpopulations of cells at the 16-cell stage, one stage ear-
lier than Guo et al. had identified using PCA.

The latent space in all of the methods above is unstructured: there is no di-
rect physical or biological interpretation of the space and the methods do not
directly relate experimental covariates such as cell type or capture time to the
space. The samples are placed in the space only to maximise some relevant
statistic, although the analysis often reveals some additional structure. For ex-
ample, one axis may coincide with the temporal dimension of the data, or cell
types may be clearly separated. In these cases the structure has been inferred
in an unsupervised manner. However there is no guarantee that the methods
above will uncover any specific structure of interest, for example, a pseudotime
ordering.

Here we propose to impose an a priori structure on the latent space. In
the model presented in this paper the latent space is one-dimensional and the
structure we impose on the space relates it to the temporal information of the
cell capture times. That is the latent space represents the pseudotime.

1.4 Pseudotime estimation

A number of methods have been proposed to estimate pseudotimes in gene ex-
pression time series. Äijö et al. proposed a temporal scaling method DyNB to
estimate pseudotimes [19]. DyNB shifts the observed time by a multiplicative
factor representing speed of transition through the process. It is applicable to
longitudinal rather than cross-sectional time series. Äijö et al. modelled RNA-
seq count data from human Th17 cell differentiation using a negative binomial
distribution with a time-varying mean. The time-varying mean was fit using a
Gaussian process over the scaled pseudotime space. They compared this pseu-
dotime based model favourably with a similar model that only used the capture
time points.

Trapnell et al. have developed the Monocle pseudotime estimation algo-
rithm [12]. Monocle is a two-stage procedure: first it uses the ICA dimension
reduction algorithm tomap gene expression data into a low-dimensional space;
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second it finds the minimal spanning tree over the samples' locations in this
space. This spanning tree is used to assign a pseudotime to each cell. Trap-
nell et al. show how Monocle can be used to identify pseudotemporal order-
ing, switch-like changes in expression, novel regulatory factors and sequential
waves of gene regulation.

Wanderlust is a graph-basedpseudotime estimation algorithmdeveloped by
Bendall et al. [20]. Wanderlust arranges the high-dimensional input data into
a nearest neighbour graph wherein cells that have similar expression profiles
are connected. Wanderlust then applies a repetitive randomised shortest path
algorithm to assign an average pseudotime to each cell. Bendall et al. used
Wanderlust to analyse human B cell lymphopoiesis.

Both of the Monocle and Wanderlust algorithms do not explicitly make a
connection between the cell capture times and the estimated pseudotime. This
has two effects: first in the inference of the pseudotime, nonsensical results are
possible such as pseudotimes whose order is far from the capture times; second
the estimated pseudotimes are not on the same scale as the capture times, they
are quantified in arbitrary temporal units.

1.5 Gaussian processes

Gaussian processes (GPs) are Bayesian models that are well suited to model
expressionprofiles and capture the uncertainty inherent in noisy data. Bayesian
inference in GPs can be performed analytically and provides posterior mean
estimates with a full covariance structure. A GP is parameterised by a mean
and a covariance function. For more details, Rasmussen and Williams have
published a comprehensive review [21].

GPs have been used extensively to model time series and other phenom-
ena in biological systems: Stegle et al. designed a two-sample test for differ-
ential expression between time series using GPs [22]; Honkela et al. used GPs
to model expression profiles of transcription factors in an ODE based model of
gene regulation [23]; Äijö et al. used GPmodels of regulatory functions to infer
gene networks [24]; and Kirk et al. used GPs to model time series in a multiple
dataset integration method [25].

2 Methods

2.1 Data

Ourmethod has been designed to analyse single cell data but there is no techni-
cal reason why each sample must be from a cell. The model itself and notion of
pseudotime would suit many cross-sectional data sets. Indeed one of the data
sets used in our results section is from whole leaf microarray assays. However
for consistency of explanation we refer to each sample as a cell in this paper.

Ourmethod works on data with a simple structure. First, it expects gene ex-
pression data on a logarithmic scale, such as Ct values from qPCR experiments
or log transformed counts from RNA-seq experiments. Second, it requires a
capture time for each cell. This specifies at which time point that cell was sam-
pled.
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Our notation for the data is: G is the number of genes assayed; C is the
number of cells sampled; xg,c is the expression level of gene g in cell cwhere 1 ≤
g ≤ G and 1 ≤ c ≤ C; the capture time of cell c is kc where kc ∈ {κ1, κ2, . . . , κT };
and T is the number of distinct capture times.

2.1.1 Cell size adjustment

Single cell expressionmeasurements can often contain per-cell biases that present
as differences in basal levels of transcription. These can be caused by biological
effects such as cell size or technical effects such as lysis efficiency or sequencing
depth. We use a technique based on themethod proposed by Anders andHuber
to account for these effects [26].

Given a subset of the genes G ⊆ {1, . . . , G} and a subset of the cells C ⊆
{1, . . . , C} we define the cell size for cell c ∈ C as

Sc(G, C) = Mediang∈G{xg,c −Meanc∈C{xg,c}} (1)

The median is used as it provides a robust estimate of the differences across
genes. We estimate the cell sizes separately for the cells grouped by capture
time,

Ct = {c : kc = κt}

only using those genes that are expressed in at least half of the cells,

Gt = {g : xg,c > 0 for at least half of c ∈ Ct}

and apply the cell size as a correction to the raw data

x′g,c = xg,c − Sc(Gt, Ct) (2)

where t is such that kc = κt. In all that follows we use x′g,c rather than xg,c as
our expression data.

2.2 Model

The primary latent variables in our model are the pseudotimes. The model as-
signs a pseudotime to each cell such that the induced gene expression profiles
over the latent pseudotime space have low noise levels and are smooth.

Our model captures several aspects of the data: first, the data are noisy
which we model in a gene-specific fashion; second, we expect the expression
profiles to be smooth; third, we expect the pseudotime of each cell not to stray
too far from its capture time.

The model can be split into several parts: one part represents the gene ex-
pression profiles; another part represents the pseudotimes associatedwith each
cell; and another part links the expression data to the profiles.

2.2.1 Gene expression profiles

The expression profiles aremodelled using Gaussian processes. The expression
profile yg of gene g is a draw from a Gaussian process

yg ∼ GP(ϕg,Σg) (3)
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where ϕg is a (constant) gene-specific mean function estimated from the data
andΣg is a gene-specific covariance function. The expression profiles are func-
tions of pseudotime and as such the covariance function relates two pseudo-
times.

Σg(τ1, τ2) = ψgΣτ (τ1, τ2) + ωgδτ1,τ2 (4)

Here Στ is a covariance function that defines the covariance structure over the
pseudotimes. Στ imposes the smoothness constraints that are shared across
genes; ψg parameterises the amount of temporal variation this gene profile has;
and ωg models the noise levels for this gene. Log-normal priors for the ψg and
ωg are parameterised as

logψg ∼ N (µψ, σψ) (5)

logωg ∼ N (µω, σω) (6)

2.2.2 Pseudotimes

The pseudotime τc for cell c is given a prior centred on the time the cell was
captured.

τc ∼ N (kc, στ ) (7)

Each τc is used in the calculation of the covariance structure over pseudotimes
Στ . Στ is taken to be a Matern3/2 covariance function. Our experience shows
that this function captures our smoothness constraints well although any rea-
sonable covariance function could be used.

Στ (τ1, τ2) = Matern3/2

(
r =

|τ1 − τ2|
l

)
= (1 +

√
3r) exp[−

√
3r] (8)

where l is a length-scale hyperparameter shared across the genes.
For cyclic data such as from the cell cycle or circadian rhythms we expect

the expression profiles to be periodic. We can model this explicitly by a trans-
formation of r in Equation (8). We replace r by rΩ

rΩ =
Ω

2
sin

πr

Ω
(9)

This has the effect of restricting theGPprior to periodic functionswith periodΩ.

2.2.3 Expression data

Themodel links the expression data to the expression profiles by evaluating the
profiles at the pseudotimes.

x′g,c = yg(τc) (10)
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2.3 Relationship to other models

Briefly, ourmodel can be interpreted as a one-dimensional GPLVMwith a prior
structure on the latent pseudotime space. The GPLVM model is a non-linear
version of probabilistic PCA. In probabilistic PCA, the locations of the data in
the latent space are given a Gaussian prior with zero mean and unit covariance.
In our model the analogous latent variables are the pseudotimes. Our model
gives the pseudotimes a structured prior rather than a standard normal: that is
we relate the latent pseudotimes to the capture times of the cells using a Gaus-
sian prior.

2.4 Hyperparameter estimation

All of the hyperparameters µψ, σψ, µω, σω are estimated by an empirical Bayes
procedure described below. The hyperparameters l, στ are supplied directly by
the user of our method.

As with many hierarchical models, the parameters can have several poste-
rior modes. For instance, much of the variation in typical single cell assay data
could be explained by smooth expression profiles with high noise levels. Al-
ternatively the same data could also be explained by rough expression profiles
with low noise levels. Our model aims to balance these conflicting explanations
and find parameters to fit the data with reasonable noise levels and expression
profiles that are neither too smooth nor too rough. Selecting suitable hyper-
parameters for the parameter priors is important to avoid unrealistic regions
of parameter space. We have found an empirical Bayes approach useful in this
regard.

We need to estimate how much of the variation in the data is due to noise
and how much is due to temporal variation in the underlying expression pro-
files. We use a simple approach thatmight slightly overestimate both sources of
variation but works well enough in our experience. First we group the expres-
sionmeasurements by gene and capture time to calculate means and variances.

Mg,t = Meanc{x̂g,c : kc = κt} (11)

Vg,t = Varc{x̂g,c : kc = κt} (12)

We estimate the gene-specific noise levels by assuming that all the within-time
variation in the data is due to noise

ω̂g = Meant{Vg,t} (13)

for each gene g. This ignores any effect the temporal variationmay have had on
the observed variance in the data and should overestimate the ωg.

To estimate the temporal variation, we examine the between time variation
in the data. Howeverwe need to account for the effect of the covariance function
Στ , which models the variation over time. We evaluate Στ at the observed cap-
ture times to estimate the covariance of samples from the capture times. This
gives a covariance matrix Σ̂ where

Σ̂t1,t2 = Στ (κt1 , κt2) (14)

It can be shown (see Appendix 5.1) that a sample from a zero mean Gaussian
with covariance matrix Σ is expected to have a variance of

V (Σ) = Mean(Diag(Σ))−Mean(Σ) (15)
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Using the linearity of this result the expected variance of samples from expres-
sion profile yg at the capture times κ1, . . . , κT are expected to have variance
equal to

ψgV (Σ̂) + ωg (16)

We slightly overestimate ψg by setting

ψ̂g =
Vart(Mg,t)

V (Σ̂)
(17)

where the overestimation is caused by ignoring the effect of ωg on the expected
variance. This should be a small effect as we average over multiple cells per
capture time.

Using these estimates for ψg and ωg we empirically set the hyperparameters
of the model as

µψ = Mean{log ψ̂g} (18)

σ2
ψ = Var{log ψ̂g} (19)

µω = Mean{log ω̂g} (20)

σ2
ω = Var{log ω̂g} (21)

2.5 Inference

Our model is coded using the Stan probabilistic modelling language [27]. The
Stan package provides various inference algorithms. In this work we have used
the No-U-Turn Hamiltonian Markov chain Monte Carlo sampler (NUTS) [28].
In theory using aMCMC sampler gives us samples from the full posterior of the
model. However the model is multimodal with respect to the pseudotime as-
signments and this makes it sometimes difficult for the sampler to mix samples
from the full posterior. The multimodality occurs as there may be many pseu-
dotemporal orderings of the cells that give smooth expression profiles. Moving
between these modes is difficult for the sampler since in order to change the
order of cells they must pass each other in pseudotime. If the cells' expres-
sion profiles are sufficiently different the likelihood of the sampler passing this
configuration can be very low. In these cases the sampler may only visit a few
modes of the posterior. This difficulty in mixing is not unique to our model.
Many other models such as K-means clustering exhibit similar behaviour. In
these models it is common practice to use a single sample as a point estimate
of the latent variables. Typically the sample with the highest probability under
the model is selected. The Stan NUTS sampler provides R̂ statistics that give
confidence in the mixing over pseudotime [29]. These statistics can be evalu-
ated on a dataset-by-dataset basis and a point estimate or the full posterior can
be used for further analysis.

In order to further mitigate the pseudotime mixing problem we use a naive
heuristic to initialise our MCMC chains. We sample many (by default, 6000)
sets of pseudotimes from the prior and evaluate their likelihood (in combina-
tion with empirical Bayes estimates of the other parameters). We initialise
our chains with the pseudotimes with highest likelihoods. This naive approach
could almost certainly be improved upon but it is superior to using random
samples from the prior to initialise the chains (data not shown).
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2.6 Validation

In the results section we analyse specific data sets and validate the inferences
from our model in several biological contexts. However we also wished to vali-
date ourmodel technically. Webase this technical validation on the smoothness
of expression profiles induced on held out genes. The held out genes are not
used during model fitting and are only used in the validation stage. To evaluate
the smoothness we developed a basic statistic to capture this concept. Given
expression values x′g,c for a held out gene g over cells 1 ≤ c ≤ C, pseudotimes
τ1, . . . , τC and an ordering z1, . . . , zC such that

τz1 ≤ . . . ≤ τzC

we define the roughness of the gene in terms of the differences of consecutive
expression measurements under the ordering given by the pseudotimes

Rg(z) =
1

σg

√√√√ 1

C − 1

C−1∑
c=1

(x′g,zc − x′g,zc+1
)2 (22)

where σg is the standard deviation of the expression measurements. Clearly
low Rg values should correlate with smooth profiles and high Rg values should
correlate with rough profiles.

One benefit of defining Rg in terms of the pseudotime ordering rather than
the pseudotime itself is that it is easy to generate random orderings under a
suitable null hypothesis. The null hypothesis we use is that the cells are ordered
by capture time but within a capture time are equally likely to have any order.
That is, we generate random orderings that respect the capture times. We use
a one-sided t-test to determine if the mean of the roughness of the pseudotime
orderings is less than the mean of the roughness of orderings drawn under the
null hypothesis. Defining Rg in terms of the ordering rather than the actual
pseudotime also allows us to use it to compare the roughness of orderings from
other methods such as Monocle.

2.7 Availability

Themodel described in this paper is available as anRpackage on github (https:
//github.com/JohnReid/DeLorean/). The code is open source and is available
under a liberal MIT license. Code to replicate the results in this paper is avail-
able as vignettes in the package and the necessary data is also provided with the
package.

3 Results

We used our model to analyse three sets of data from three different organisms
assayed using three different technologies: whole leafArabidopsis thalianami-
croarrays [30]; nCounter single cell profiling of a human prostate cancer cell
line [6]; and single cell RNA-seq of mouse dendritic cells [11].
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3.1 The response of Arabidopsis to infection

Windram et al. examined the response of Arabidopsis thaliana to infection by
the necrotrophic fungal pathogen Botrytis cinerea [30]. They generated high-
resolution time series over 48 hours for an infected condition and a control con-
dition. We investigated if our model could estimate the correct order for the
samples if their exact capture times were withheld.

3.1.1 The model correctly estimates withheld sample times

Windram et al. measured expression levels every two hours resulting in 24
distinct capture time points. We grouped these 24 time points into four low-
resolution groups, each consisting of six consecutive timepoints. We then asked
our model to estimate the pseudotimes associated with each sample but only
provided it with the low-resolution group labels. Our model is not suitable for
fitting thousands of genes simultaneously so we fit 150 of the genes mentioned
in the text of Windram et al.'s publication [30].

Ourmodel estimated pseudotimes for each sample in the infected condition
(see Figure 1). In general the mixing of the posterior was good as quantified by
the R̂ statistics (all but two of the τc R̂ statistics were less than 1.15). The profiles
induced by the inferred pseudotimes were smooth (see Figure 2).
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Figure 1: Pseudotime estimates for the samples from Windram et al.'s Ara-
bidopsis data. Left: Boxplots of the full pseudotime posteriors. The estimated
pseudotimes are in good agreement with the true capture times. The model
tends to spread the samples out around the 20 hour mark in pseudotime. Pre-
sumably the expression profiles vary the most at this point. Also the samples
are spread out more broadly in pseudotime (between -20 and 60 hours) com-
pared to the true capture times. Right: The pseudotimes estimated by the best
sample from the posterior plotted against the true capture times.

The Spearman correlation between estimated pseudotimes from the poste-
rior and the true capture times was high (posteriormean ρ = .993) (see Figure 3
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Figure 2: Expression profiles of selected genes over pseudotime. The expres-
sion data x′g,c are shown as points coloured by their obfuscated capture time.
The expected posterior mean of each profile is shown as a grey line and the
shaded grey area in each profile represents the posterior uncertainty up to two
standard deviations away from the mean.
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top left). The correlation for the best posterior sample had Spearman correla-
tion ρ = .997.

3.1.2 Our model fits the data better than Monocle

We also used the Monocle algorithm [12] to predict pseudotimes for the same
150 genes. Monocle was unable to recover the capture times for cells from the
first low resolution group (see Figure 3). The Spearman correlation between
Monocle's estimated pseudotimes and the true capture times was not as high
(ρ = 0.927) as that for our estimates. Monocle's difficulty in resolving the cor-
rect ordering can be explained by its inability to use prior information that could
resolve the first two groups of cells.
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Figure 3: Left: Pseudotimes predicted by the Monocle algorithm (ρ = 0.927).
Right: Posterior of the Spearman correlation between estimated pseudotimes
from our model and true capture times. The Spearman correlation of the Mon-
ocle pseudotimes with the true capture times is shown as a red dashed line. The
Spearman correlation of the best sample with the true capture times is shown
as a blue dashed line.

3.1.3 The pseudotimes induce smooth profiles on held out genes

We calculated roughness statisticsRg (see Section 2.6) for the 50 genes that we
had not used to fit the model and averaged over genes. We did the same for
1000 pseudotime orderings sampled under the null hypothesis. The posterior
mean of the Rg of the pseudotimes estimated by our model were significantly
smaller than those from the null hypothesis (p < 10−15 one-sided t-test) (see
Figure 4).

3.2 The effect of cell cycle on single cell gene expression

McDavid et al. were interested in the effect of the cell cycle on the single cell
gene expression [6]. They assessed this effect by assaying the expression levels
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Figure 4: Roughnesses of samples from the posterior of our model (pink) and
from draws from the null hypothesis (cyan). The roughness of the best sample
from our posterior is shown as a dotted blue line.

of 333 genes in 930 cells across three human cell lines using nCounter single
cell profiling [31]. Based on these data they concluded that cell cycle explains
just 5% to 17% of expression variability.

CycleBase [32] is a database of cell cycle related genes and time series ex-
pression data. It contains metadata including the time in the cell cycle at which
expression peaks for cell cycle related genes. To evaluate our model, we as-
sessed how closely the peaks in the expression profiles estimated by our model
fromMcDavid et al.'s data matched the CycleBase peak times. Additionally as a
baseline, we compared peaks estimated from the raw expression data by a naive
algorithm to the Cyclebase peak times.

3.2.1 The model recovers cell cycle peak times

To fit our model we selected 37 cells at random from the PC3 human prostate
cancer cell line and chose the top 56 differentially expressed genes according
to McDavid et al.'s differential expression test. We mapped cells identified by
McDavid et al. asG0/G1, S, andG2/M to capture times of 1, 2 and3 respectively.
We used a length scale of 5 and set στ = 1

2 . Tomodel the cyclic nature of the cell
cycle, we used a periodic covariance function with period Ω = 3. This ensured
the expression profiles were periodic and transitions between all the cell cycle
phases were consistent. Our model did not mix well with many R̂ > 1.2 hence
for further analysis we used the sample with highest log probability. We show
expression profiles from this sample in Figure 5.

In order to test the fit of our model we estimated peak times from the ex-
pression profiles fit by the model and compared these to peak times as defined
by the CycleBase database. To quantify this fit we calculated the root mean
squared error (RMSE) between the CycleBase defined peak times and our esti-
mates (RMSE=16.7).

We wished to understand how well our model estimated peak times com-
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Figure 5: Expression profiles over pseudotime from the McDavid et al. cell cy-
cle data. The pseudotimes are those from the best sample. Note the circular
x axis: the first and last labels are both for the G2/M stage. The genes were
selected based on high ratios of temporal variance to noise. Each point repre-
sents the expression of the given gene in a cell. The points are coloured by the
cell cycle stage with which the cell was labelled by McDavid et al. The dark grey
line represents the posterior mean of the expression profile for the gene and
the shaded grey ribbon represents two standard deviations either side of this
mean. The vertical dotted lines are the peak times as defined by the CycleBase
database.

pared to naive estimates. We made naive estimates from the raw expression
data as follows. Each cell in McDavid et al.'s data had been labelled with one of
the cell cycle phases. We identified the cell with maximal raw expression value
for each gene. The middle of the cell cycle phase with which this cell was la-
belled was used as the naive estimate of the gene's peak time. These estimated
peak times had a RMSE of 21.3 which is 28% larger than the RMSE of our esti-
mated peak times. This demonstrates that the our model's expression profiles
capture information present in the data at a higher temporal resolution than
the raw labels.

3.3 Paracrine signalling in mouse dendritic cells

Shalek et al. generated cross-sectional time courses of the response of primary
mouse bone-marrow-derived dendritic cells in three separate conditions using
single-cell RNA-seq [11]. We analysed the data on the lipopolysaccharide stim-
ulated (LPS) condition using our model.
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3.3.1 The model identifies precocious cells

Shalek et al. identified a core antiviral module of genes that are expressed in
conditions such as LPS after two to four hours. They also identified two cells
captured at one hour that had thismodule switched on precociously. Other cells
captured at one hour did not express the genes in thismodule. This concept that
some cells can progress through pseudotime faster than others is exactly the
concept that ourmodel is designed to capture. Wewere interested to establish if
our model could place these cells at later pseudotimes than other cells captured
at one hour.

To fit our model we sampled 37 cells from the LPS condition including the
two precocious cells captured at one hour. Shalek et al. defined several gene
modules in their publication that show different temporal patterns of expres-
sion across the LPS time course. We selected the 74 genes from the clusters Id,
IIIb, IIIc, IIId with the highest temporal variance relative to their noise levels.
We set στ = 1 and used a length scale of 5. The model mixed well with all but
four of the cells' pseudotimes having a R̂ of less than 1.2.

Figure 6 shows the module scores of the core antiviral genes (as defined by
Shalek et al.) over pseudotime. The two precocious cells have been fit with a
pseudotime in the middle of the two hour capture cells.
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Figure 6: The module score (as defined by Shalek et al.) of core antiviral genes
over pseudotime. The two precocious cells captured at one hour are plotted as
triangles. These two cells have been placed at a later pseudotime than the other
cells captured at one hour. A Loess curve has also been plotted through the
data.
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3.3.2 The model identifies smooth expression profiles

We calculated roughness statistics Rg (see Section 2.6) for 100 genes that we
had not used to fit the model and averaged over genes. We did the same for
1000 pseudotime orderings sampled under the null hypothesis. The posterior
mean of the Rg of the pseudotimes estimated by our model were significantly
smaller than those from the null hypothesis (p < 10−15 one-sided t-test) (see
Figure 7).

Figure 7: Roughnesses of samples from the posterior of our model (pink) and
from draws from the null hypothesis (cyan). The roughness of the best sample
from our posterior is shown as a dotted blue line.

4 Conclusions

We have presented a principled probabilistic model that accounts for uncer-
tainty in the capture times of cross-sectional time series. We have fit our model
to three separate data sets each using a different biological assay (microarrays,
single cell nCounter and single cell RNA-seq) in three organisms (human,mouse
and Arabidopsis). Our model provided plausible estimates of pseudotimes on
all the data sets. We validated these estimates technically by evaluating the
smoothness of the expression profiles of held out genes in two of the data sets.
These profiles are significantly smoother than expected under the null model.
In addition we validated the estimates biologically using obfuscated capture
times (in the Arabidopsis data set), data from separate experiments (cell cy-
cle peak times) and independent analyses (identification of precocious cells).
Overall these results demonstrate that uncertainty in the temporal dimension
should not be ignored in cross-sectional time series of single cell data and that
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our method captures and corrects for these effects.
Our method has a number of attractive attributes. It explicitly estimates

pseudotimes in contrast to methods such as Monocle and Wanderlust which
estimate orderings of cells. The pseudotimes are on the same scale as the ex-
perimental capture times. The orderings estimated by Monocle and Wander-
lust have no scale. Additionally, the orderings estimated by Monocle andWan-
derlust do not quantify the differences in expression between consecutive cells.
Consecutive cells in the ordering could have similar or diverse expression pro-
files. In our model, consecutive cells that have diverse expression profiles are
placed further apart in pseudotime than similar cells. Thus our pseudotime
estimates quantify the rate of change of the system. For example, in the Ara-
bidopsis example we analysed, the cells are spread out in pseudotime around
the 20 hourmark (Figure 1) suggesting changes in expression levels in response
to the infection are greatest at this time point.

OurmethodusesGaussianprocesseswhich are anatural framework tomodel
noisy expression profiles. Gaussian processes are well established probabilis-
tic models for time series. They provide more than just point estimates of the
profiles, they also provide a measure of posterior uncertainty. This is useful in
downstream analyses such as regulatory network inference. A Gaussian pro-
cess model is characterised by its covariance function and associated parame-
ters and the covariance functions in our model have interpretable parameters:
gene-specific temporal variation and noise. We have also demonstrated how a
Gaussian process framework is suitable for modelling periodic expression pro-
files such as cell cycle expression profiles. The primary limitation of Gaussian
processes for ourmodel is that inference complexity scales cubically in the num-
ber of samples. For this reason our method is not applicable to data frommany
hundreds or thousands of cells like Monocle and Wanderlust.

Inference in our model is performed using Markov chain Monte Carlo. This
techniqueprovides a full posterior distribution over themodel parameters. How-
ever mixing over the pseudotime parameters in our model can be difficult and
we found that our model did not mix well when fit to the cell cycle data set.
In this case, we analysed expression profiles from the sample with highest log
probability and found they estimated cell cycle peak times well.

Single cell assays give us an exciting opportunity to explore heterogeneity
in populations of cells. As the technology develops and the cost of undertak-
ing such assays drops, they are destined to become commonplace. Also high
throughput longitudinal studies remain impractical and for the foreseeable fu-
ture the majority of such time series will be cross-sectional in nature. Until this
changes there will be challenges associated with estimating uncertainty in the
capture times and variation in the rate of progress of individual cells through
a system. Our method explicitly models these effects and is a practical tool for
analysis of such cross-sectional time series. Furthermore in contrast to Wan-
derlust our method only depends on open source software and is available un-
der a liberal open source license.
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5 Appendix

5.1 Variance of draw frommultivariate Gaussian

Suppose we have a zero-mean Gaussian

x = (x1, . . . , xD) ∼ N (0,K)

we wish to estimate the expected sample variance

V (x) =
1

D

∑
d

(xd − x̄)2 where x̄ =
1

D

∑
d

xd

and all sums are from 1 toD. Setting Vd(x) = (xd − x̄)2 we have

V (x) =
1

D

∑
d

Vd(x)

and
⟨Vd(x)⟩ = ⟨x2d⟩ − 2⟨xdx̄⟩+ ⟨x̄2⟩

but

⟨x2d⟩ = Kd,d

⟨xdx̄⟩ =
Kd,.

D

⟨x̄2⟩ =
1

D

∑
d

⟨xdx̄⟩ =
K.,.

D2

where a dot represents summation over that index, so

⟨V (x)⟩ =
1

D

[∑
d

Kd,d −
1

D
K.,.

]
=

1

D

∑
d

Kd,d −
1

D2
K.,.

= Mean{Diag(K)} −Mean{K}
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