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 2 

Abstract 22 

Identifying sources of variation in DNA methylation levels is important for 23 

understanding gene regulation. Recently, bisulfite sequencing has become a popular 24 

tool for investigating DNA methylation levels. However, modeling bisulfite 25 

sequencing data is complicated by dramatic variation in coverage across sites and 26 

individual samples, and because of the computational challenges of controlling for 27 

genetic covariance in count data. To address these challenges, we present a 28 

binomial mixed model and an efficient, sampling-based algorithm (MACAU: Mixed 29 

model association for count data via data augmentation) for approximate parameter 30 

estimation and p-value computation. This framework allows us to simultaneously 31 

account for both the over-dispersed, count-based nature of bisulfite sequencing 32 

data, as well as genetic relatedness among individuals. Using simulations and two 33 

real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis 34 

thaliana and reduced representation bisulfite sequencing (RRBS) data from 35 

baboons), we show that our method provides well-calibrated test statistics in the 36 

presence of population structure. Further, it improves power to detect differentially 37 

methylated sites: in the RRBS data set, MACAU detected 1.6-fold more age-38 

associated CpG sites than a beta-binomial model (the next best approach). Changes 39 

in these sites are consistent with known age-related shifts in DNA methylation levels, 40 

and are enriched near genes that are differentially expressed with age in the same 41 

population. Taken together, our results indicate that MACAU is an efficient, effective 42 

tool for analyzing bisulfite sequencing data, with particular salience to analyses of 43 

structured populations. MACAU is freely available at www.xzlab.org/software.html. 44 
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Author Summary 45 

DNA methylation is an important epigenetic modification involved in regulating 46 

gene expression. It can be measured at base-pair resolution, on a genome-wide 47 

scale, by coupling sodium bisulfite conversion with high-throughput sequencing (a 48 

technique known as ‘bisulfite sequencing’). However, the data generated by such 49 

methods present several challenges for statistical analysis. In particular, while the 50 

raw data generated from bisulfite sequencing experiments are read counts, they are 51 

often converted to proportions for ease of modeling, resulting in loss of information. 52 

Furthermore, although DNA methylation levels are known to be heritable—and are 53 

thus affected by kinship and population structure—existing approaches for modeling 54 

bisulfite sequencing data fail to account for this covariance. Such failure can lead to 55 

spurious associations and reduced power. Here, we present a new approach that 56 

models bisulfite sequencing data using raw read counts, while also taking into 57 

account population structure and other sources of data over-dispersion. Using 58 

simulations and two real data sets (publicly available data from Arabidopsis thaliana 59 

and newly generated data from Papio cynocephalus), we demonstrate that our 60 

model provides well-calibrated p-values and improves power compared with 61 

previous methods. In addition, the DNA methylation patterns identified by our 62 

method agree with those reported in previous studies.  63 

64 
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Introduction 65 

DNA methylation — the covalent addition of methyl groups to cytosine bases 66 

— is a major epigenetic gene regulatory mechanism observed in a wide variety of 67 

species. DNA methylation influences genome-wide gene expression patterns, is 68 

involved in genomic imprinting and X-inactivation, and functions to suppress the 69 

activity of transposable elements [1–3]. In addition, DNA methylation is essential for 70 

normal development. For example, mutant Arabidopsis plants with reduced levels of 71 

DNA methylation display a range of abnormalities including reduced overall size, 72 

altered leaf size and shape, and reduced fertility [4–6]. In humans, DNA methylation 73 

levels are strongly linked to disease, including major public health burdens such as 74 

diabetes [7,8], Alzheimer’s disease [9,10], and many forms of cancer [7,11–15]. 75 

Together, these observations point to a central role for DNA methylation in shaping 76 

genome architecture, influencing development, and driving trait variation. 77 

Consequently, there is substantial interest in identifying the genetic [16–19] and 78 

environmental [20–23] factors that shape DNA methylation levels. Progress toward 79 

this goal requires statistical approaches that can handle the complexities of real 80 

world, population-based datasets. Here, we present one such approach, designed 81 

specifically for analyses of differential methylation levels in bisulfite sequencing 82 

datasets.    83 

High-throughput bisulfite sequencing approaches, which include whole 84 

genome bisulfite sequencing (WGBS or BS-seq) [24], reduced representation 85 

bisulfite sequencing (RRBS) [25,26], and sequence capture followed by bisulfite 86 

conversion [27,28], are used to estimate genome-wide DNA methylation levels at 87 
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base-pair resolution. All such methods rely on the differential sensitivity of 88 

methylated versus unmethylated cytosines to the chemical sodium bisulfite. 89 

Specifically, sodium bisulfite converts unmethylated cytosines to uracil (and 90 

ultimately thymine following PCR), while methylated cytosines are protected from 91 

conversion. Estimates of DNA methylation levels for each cytosine base can thus be 92 

obtained directly from high-throughput sequencing data by comparing the number of 93 

C’s (reflecting an originally methylated version of the base) versus T’s (reflecting an 94 

originally unmethylated version of the base) at that position in the mapped reads.  95 

The raw data produced by bisulfite sequencing methods are therefore count 96 

data, in which both the number of methylated reads and the total coverage at a site 97 

contain useful information. Higher total coverage corresponds to a more reliable 98 

estimate of the true DNA methylation level, which, in a typical experiment, can vary 99 

dramatically across individuals and sites (e.g., by several orders of magnitude: S1 100 

Figure). Many commonly used methods for testing for differential methylation 101 

(whether by genotype, environmental predictor, or experimental perturbation) ignore 102 

this variability by converting counts to percentages or proportions (e.g., t-tests, 103 

Mann-Whitney U tests, linear models, and all tools initially designed for array-based 104 

data [29,30]; Table 1). Thus, a site at which 5 of 10 reads are designated as 105 

methylated (i.e., read as a cytosine) is treated identically to a site at which 50 of 100 106 

reads are designated as methylated. This assumption reduces the power to uncover 107 

true predictors of variation in DNA methylation levels, because it treats noisy 108 

measurements the same way as accurate ones.  109 

 110 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Table 1. Approaches for identifying differentially methylated loci in bisulfite 111 

sequencing data sets. 112 

Statistical method 
Directly models 

counts? 

Controls for 
biological 

covariates? 

Controls for 
genetic 

covariance? 

Programs that implement the 
method 

t-test or Wilcoxon 
rank-sum test 

No No No R and many others 

Fisher’s exact test Yes No No R and many others 
Binomial 

regression 
Yes Yes No R and many others 

Linear regression No Yes No R and many others 

Beta-binomial 
model 

Yes Some1 No 
DSS [31], MOABS [32], 

RadMeth [33] 

Linear mixed 
model 

No Yes Yes 
GEMMA [34], EMMA [35], 

EMMAX [36], FaST-LMM [37] 
Binomial mixed 

model 
Yes Yes Yes MACAU 

1Only RadMeth; the implementations of the beta-binomial model in MOABS and DSS do not allow the 113 

user to control for covariates. 114 

 115 

 116 

To address this problem, several recently introduced methods for differential 117 

DNA methylation analysis implement a beta-binomial model (e.g., ‘DSS: Dispersion 118 

Shrinkage for Sequencing data’ [31], ‘RADMeth: Regression Analysis of Differential 119 

Methylation’ [33], and ‘MOABS: Model Based Analysis of Bisulfite Sequencing data’ 120 

[32]). These methods model the binomial nature of bisulfite sequencing data, while 121 

taking into account the well-known problem of over-dispersion in sequencing reads. 122 

Because these methods work directly on count data, they can reliably account for 123 

variation in read coverage across sites and individuals. Consequently, beta-binomial 124 

methods consistently provide increased power to detect true associations between 125 

genetic or environmental sources of variance and DNA methylation levels [31–33].  126 

However, methods based on beta-binomial models only account for over-127 

dispersion due to independent variation, making them unsuited for data sets 128 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

containing population structure or related individuals. Accounting for genetic 129 

relatedness is important because genetic variation can exert strong and pervasive 130 

effects on DNA methylation levels [17,19,38,39]. In humans, methylation levels at 131 

more than ten thousand CpG sites are influenced by local genetic variation [18], and 132 

DNA methylation levels in whole blood are 18%-20% heritable on average, with the 133 

heritability estimates for the most heritable loci (top 10%) averaging around 68% 134 

[38,39]. As a result, DNA methylation levels will frequently covary with kinship or 135 

population structure, and failure to account for this covariance could lead to spurious 136 

associations or reduced power to detect true effects. This phenomenon has been 137 

extensively documented for genotype-phenotype association studies [35,36,40–42], 138 

and controlling for genetic covariance between samples is now a basic requirement 139 

for genome-wide association studies. Similar logic applies to analyses of gene 140 

regulatory phenotypes and studies of gene expression variation often do take 141 

genetic structure into account by using mixed model approaches [43–45]. However, 142 

despite growing interest in environmental epigenetics and epigenome-wide 143 

association studies (EWAS), none of the currently available count-based methods 144 

appropriately control for genetic effects on DNA methylation levels in bisulfite 145 

sequencing data (Table 1). Consequently, even though count-based methods have 146 

been shown to be more powerful, recent bisulfite sequencing studies have turned to 147 

linear mixed models to deal with the confounding effects of population structure 148 

[19,46].  149 

To address this gap, we present a binomial mixed model (BMM) for 150 

identifying differentially methylated sites that directly models raw read counts while 151 
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accounting for both covariance between samples and extra over-dispersion caused 152 

by independent noise. We also present an efficient, sampling-based inference 153 

algorithm to accompany this model, called MACAU (Mixed model association for 154 

count data via data augmentation). MACAU works directly on binomially distributed 155 

count data from any high-throughput bisulfite sequencing method (e.g., WGBS, 156 

RRBS, targeted sequence capture) and uses random effects to not only model over-157 

dispersion (as in the standard beta-binomial approach [47]), but also to model 158 

relatedness/population structure. Hence, MACAU enables users to identify 159 

differentially methylated sites in a wide variety of settings, with little cost to power 160 

even when genetic effects on DNA methylation levels are negligible.  161 

We compared MACAU’s performance with currently available methods under 162 

two realistic scenarios, using both real bisulfite sequencing data sets (WGBS and 163 

RRBS) and simulations parameterized based on properties of real data. In the first 164 

scenario, we analyzed publicly available data from Arabidopsis thaliana [48] to show 165 

that, when a predictor variable of interest is correlated with population structure, 166 

MACAU provides better control of type I error than existing methods. This setting is 167 

particularly relevant to understanding geographic variation in DNA methylation levels 168 

(e.g., [19,48–50]) and for identifying genetic or environmental predictors of DNA 169 

methylation in structured samples (e.g., [50,51]). In the second scenario, we used 170 

newly generated RRBS data from wild baboons (Papio cynocephalus) to 171 

demonstrate that MACAU also provides increased power to detect truly differentially 172 

methylated sites in the presence of kinship—a condition that often holds in analyses 173 

of natural populations (e.g., [48,52,53]) and in tests for epigenetic discordance 174 
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between siblings [22,53–55]. As interest in epigenome-wide association studies 175 

(EWAS), environmental epigenetics, and the epigenetic correlates of disease grows, 176 

these types of complex data sets will become increasingly common.  177 

 178 

Results 179 

The binomial mixed model and the MACAU algorithm 180 

Here, we briefly describe the model and the algorithm. Additional information 181 

is provided in the Supplementary Information Text File, which includes details on the 182 

model, inference method, and algorithm (including descriptions of the data 183 

augmentation approach and efficient MCMC sampling steps).  184 

To detect differentially methylated sites, we model each potential target of 185 

DNA methylation individually (i.e., we model each CpG site one at a time) as a 186 

function of x, a predictor variable of interest. Here, x could be a genotype value, as 187 

in methylation QTL mapping analyses; an environmental predictor of interest, such 188 

as temperature, chemical exposure, or social environment; an individual 189 

characteristic, such as age or sex; or an experimental perturbation, as in a 190 

treatment-control design. For each site, we consider the following binomial mixed 191 

model (BMM):  192 

 �� � ������ , 	�

, (1) 

where �� is the total read count for ith individual; �� is the methylated read count for 193 

that individual, constrained to be an integer value less than or equal to ��; and 	� is 194 

an unknown parameter that represents the underlying proportion of methylated 195 
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reads for the individual at the site. We use a logit link to model 	� as a linear function 196 

of several parameters: 197 

 ��
 � 	�

1 � 	�

� � �
�

�� � ��� � 
� � �� , (2) 

 � � �
�, � , 
�

� � ����0, �� �!
, (3) 

 " � ���, � , ��
� � ����0, ���1 �  �
#
, (4) 

where, for a data set including c covariates and n individuals, �� is a c-vector of 198 

covariates including an intercept; � is a c-vector of corresponding coefficients; �� is 199 

the predictor of interest for individual i and � is its coefficient; � is an n-vector of 200 

genetic random effects that model correlation due to population structure or kinship; 201 

MVN denotes the multivariate normal distribution; " is an n-vector of environmental 202 

residual errors that model independent variation; ! is a known n by n relatedness 203 

matrix that can be calculated based on pedigree or genotype data; # is an n by n 204 

identity matrix; �� � is the genetic variance component; ���1 �  �
 is the 205 

environmental variance component; and  � is the heritability of the logit transformed 206 

methylation proportion (i.e. ��
�$�%
). Note that ! has been standardized to ensure 207 

$��!
/� � 1, so that  � lies between 0 and 1 and can be interpreted as heritability 208 

(see [56]; tr denotes the trace norm).  209 

Both � and " model over-dispersion (i.e., the increased variance in the data 210 

that is not explained by the binomial model). However, they model different aspects 211 

of over-dispersion: " models the variation that is due to independent environmental 212 

noise (a known problem in data sets based on sequencing reads [57–60], including 213 

analyses of read proportions [61]), while � models the variation that is explained by 214 

kinship or population structure. Effectively, our model improves and generalizes the 215 
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beta-binomial model by introducing this extra � term to model individual relatedness 216 

due to population structure or stratification. In the absence of �, our model becomes 217 

similar to other beta-binomial models previously developed for modeling count data 218 

[31,33,47,62].  219 

We are interested in testing the null hypothesis that the predictor of interest 220 

has no effect on DNA methylation levels: (�: � � 0. This test requires obtaining the 221 

maximum likelihood estimate �* from the model. Unlike its linear counterpart, 222 

estimating �* from the binomial mixed model is notoriously difficult, as the joint 223 

likelihood consists of an n-dimensional integral that cannot be solved analytically 224 

[63,64]. Standard approaches rely on numerical integration [65] or Laplace 225 

approximation [66,67], but neither strategy scales well with the increasing dimension 226 

of the integral, which in our case is equal to the sample size. Because of this 227 

problem, standard implementations of binomial mixed models often produce biased 228 

estimates and overly narrow (i.e., anti-conservative) confidence intervals [68–72]. To 229 

overcome this problem, we instead use a Markov chain Monte Carlo (MCMC) 230 

algorithm-based approach for inference, using un-informative priors for the hyper-231 

parameters  � and ��. After drawing accurate posterior samples of �, we rely on the 232 

asymptotic normality of both the likelihood and the posterior distributions [73] to 233 

obtain the approximate maximum likelihood estimate �* and its standard error se(�*). 234 

This procedure allows us to construct approximate Wald test statistics and p-values 235 

for hypothesis testing. Despite the stochastic nature of the procedure, the MCMC 236 

errors are small enough to ensure stable p-value computation across multiple 237 

MCMC runs (S2 Figure). We note that with reasonably large sample sizes (n=50 or 238 
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more), the resulting p-values are also robust to prior perturbation on hyper-239 

parameters (S3 Figure); however, all results reported here are based on calculations 240 

with un-informative priors.  241 

In addition to the approximate inference procedure described above, we also 242 

developed a novel MCMC algorithm based on an auxiliary variable representation of 243 

the binomial distribution for efficient, approximate p-value computation [74–76] (see 244 

SI Text File Section 2: Inference Method Overview and SI Text File Section 3.1: 245 

Data Augmentation for more details). We did so to reduce the heavy computational 246 

burden of standard MCMC algorithms, which would otherwise be prohibitive in terms 247 

of run time for large datasets. Building on the auxiliary variable representation, our 248 

main technical contribution is a new framework that approximates the distribution of 249 

the auxiliary variables (S4 Figure, S1-S2 Tables) while simultaneously taking 250 

advantage of recent innovations for fitting mixed effects models [34,35,37,77] (see 251 

SI Text File Sections 3.2 and 3.3). This framework reduces per-MCMC iteration 252 

computational complexity from cubic to quadratic with respect to the sample size, 253 

and results in an approximate n-fold speed up in practice compared with the popular 254 

Bayesian software MCMCglmm [78], where n is the sample size (S5 Figure, S3 255 

Table; we note that this speed-up is generalizable to other GLMM problems as well). 256 

Our implementation of the BMM is therefore efficient for data sets ranging up to 257 

hundreds of samples and millions of sites, as computational complexity scales only 258 

linearly with respect to the number of analyzed sites (S5 Figure).  259 

Because our model effectively includes the beta-binomial model as a special 260 

case, we expect it to perform similarly to the beta-binomial model in settings in which 261 
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population structure is absent (we say “effectively” because the beta-binomial model 262 

uses a beta distribution to model independent noise while we use a log-normal 263 

distribution). However, we expect our model to outperform the beta binomial in 264 

settings in which population structure is present. In addition, in the presence of 265 

population stratification, we expect the beta-binomial model to produce inflated test 266 

statistics (thus increasing the false positive rate) while our model should provide 267 

calibrated ones. Below, we test these predictions using two different bisulfite 268 

sequencing data sets. We begin with simulations in which the true value of � is 269 

known, and the over-dispersion parameter and genetic covariance between samples 270 

are motivated by the real data sets. We also motivate our choice of simulated 271 

sample sizes based on real bisulfite sequencing data sets, which currently range 272 

from ~20 – 150 samples [19,26,46,53,79–82]. However, because sample sizes are 273 

only likely to grow in the future, for the data set types of most direct interest (i.e., 274 

those that contain population structure and heritable DNA methylation levels) we 275 

further consider sample sizes that are much larger than currently represented in the 276 

literature (n = 500 and n = 1000). Finally, we apply our model directly to the real 277 

data. 278 

 279 

Count-based models perform well in the absence of genetic effects on DNA 280 

methylation levels 281 

We first compared the performance of the BMM implemented in MACAU with 282 

the performance of other currently available methods for analyzing bisulfite 283 

sequencing data in the absence of genetic effects. Intuitively, we expected MACAU 284 
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and the beta-binomial model to perform similarly, and we expected both methods to 285 

outperform those that first transform the raw count data. To test our prediction, we 286 

simulated the effect of a predictor variable on DNA methylation levels across 5000 287 

CpG sites (4500 true negatives and 500 true positives). Motivated by our analysis of 288 

age effects on DNA methylation levels in the baboon RRBS data set (below), we 289 

conducted this simulation by sampling from a distribution of known age values from 290 

the same baboon population. For all simulations, we set the effect of genetic 291 

variation on DNA methylation levels equal to zero, which is equivalent to setting 292 

either (i) the heritability of DNA methylation levels to zero (unlikely based on prior 293 

findings [38,39]), or (ii) studying completely unrelated individuals in the absence of 294 

population structure. To explore MACAU’s performance across a range of 295 

conditions, we simulated age effects on DNA methylation levels across three effect 296 

sizes (percent of variance in DNA methylation explained (PVE) = 5%, 10%, or 15%) 297 

and three sample sizes (n = 20, 50, and 80). These values capture the majority of 298 

effect sizes and sample sizes documented in recent genome-wide bisulfite 299 

sequencing studies (e.g., [45,52,53,83]). 300 

Because age is naturally modeled as a continuous variable, we focused our 301 

comparisons only on approaches that could accommodate continuous predictor 302 

variables (comparisons in which we artificially binarized age, which allowed us to 303 

include a larger set of approaches, are shown in S6 Figure and S7 Figure for cases 304 

excluding and including genetic effects on DNA methylation, respectively; however, 305 

binarizing a truly continuous variable consistently results in poorer performance: see 306 

S6 Figure versus S9 Figure). Specifically, in addition to the BMM implemented in 307 
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MACAU, we considered the performance of a beta-binomial model, a binomial 308 

model, a linear model, and a linear mixed model (implemented in the software 309 

GEMMA [34]). For the linear and linear mixed model case, methylation proportions 310 

were quantile normalized to a standard normal prior to modeling (see Methods and 311 

S8 Figure for parallel results using logit, M-value, and arcsin(sqrt) transformations 312 

prior to linear mixed modeling as alternatives to quantile normalization). As 313 

expected, we found that MACAU performed similarly to the beta-binomial model, 314 

and that these two approaches consistently detected more true positive age effects 315 

on DNA methylation levels (at a 10% empirical FDR) than all other methods (S9 316 

Figure). For example, in the “easiest” case we simulated (PVE = 15%, n = 80), we 317 

found that the beta-binomial model detected 30% of simulated true positives, while 318 

the BMM implemented in MACAU detected 27.8%. The slight loss of power in the 319 

BMM is a consequence of the smaller degrees of freedom caused by the additional 320 

genetic variance component. In comparison, the linear model detected 21.2% of true 321 

positives; the linear mixed effects model, 14%; and the binomial model, 8.4% (S9 322 

Figure). Although it is often used to test for differential methylation [53,84,85], the 323 

binomial model exhibits low power when an empirical FDR is used to control for 324 

multiple hypothesis testing due to poor type I error calibration, as has been 325 

previously reported [33]. Area under a receiver operating characteristic curve (AUC) 326 

was also consistently very similar between the beta-binomial and MACAU (S9 327 

Figure), although the advantage of the count-based methods was less clear by this 328 

measure. This reduced contrast is because AUC is based on true positive-false 329 

positive trade-offs across the entire range of p-value thresholds: methods can 330 
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consequently yield high AUCs even when they harbor little power to detect true 331 

positives at FDR thresholds that are frequently used in practice. Taken together, our 332 

simulations suggest a general advantage to count-based models for samples that 333 

contain no genetic structure. Further, the differences in performance between the 334 

beta-binomial model and the BMM implemented in MACAU were consistently small 335 

in this setting (S9 Figure).  336 

 337 

Binomial mixed models control for false positive associations that arise from 338 

population structure: simulations and a real data example from Arabidopsis 339 

We next evaluated each model’s performance in a more realistic setting, in 340 

which genetic covariance between samples could potentially confound tests for 341 

environmental or genetic effects on DNA methylation levels. As a case study 342 

example, we drew from publicly available phenotype data and SNP genotype data 343 

for 24 Arabidopsis thaliana accessions [86,87] in which leaf tissue samples had 344 

been recently subjected to whole genome bisulfite sequencing [48]. Among these 345 

accessions, a secondary dormancy phenotype (measured as the slope of the 346 

relationship between length of cold treatment and seed germination percentages 347 

[88]) is correlated with population structure (R2 = 0.38 against the first principal 348 

component of the genotype matrix for these accessions; p = 7.84 x 10-4; S10 349 

Figure). Because secondary dormancy is associated with environmental conditions 350 

that are experienced after the seed has already dispersed, we have no expectation 351 

that secondary dormancy should be associated with DNA methylation levels in leaf 352 

tissue. Consequently, this data set provided the opportunity to evaluate calibration of 353 
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Type I error (false positives) using MACAU, which controls for population structure, 354 

versus other available approaches. 355 

To do so, we first used the true distribution of secondary dormancy 356 

characteristics and the true genetic structure among these 24 accessions to simulate 357 

a dataset that consisted entirely of null associations. Specifically, we simulated data 358 

sets (containing 4000 sites each) in which the secondary dormancy had no effect on 359 

DNA methylation levels, but the effect of genetic variation on DNA methylation levels 360 

was either moderate (h2 = 0.3) or large (h2 = 0.6). Thus, in these data sets, 361 

population structure could confound the relationship between the predictor variable 362 

(the capacity for secondary dormancy) and DNA methylation levels if not taken into 363 

account. 364 

As predicted, we found that the BMM implemented in MACAU appropriately 365 

controlled for genetic effects on DNA methylation levels: whether DNA methylation 366 

levels were moderately (h2 = 0.3) or strongly (h2 = 0.6) heritable, MACAU did not 367 

detect any sites associated with secondary dormancy at a relatively liberal false 368 

discovery rate threshold of 20% (whether calculated against empirical permutations 369 

or calculated using the R package qvalue [32]). In addition, the p-value distributions 370 

for secondary dormancy effects on DNA methylation levels, in both simulations, did 371 

not differ from the expected uniform distribution (Fig. 1; Kolmogorov-Smirnov (KS) 372 

test when h2 = 0.3: D = 0.015, p = 0.909; when h2 = 0.6: D = 0.016, p = 0.874; 373 

genomic control factors: 0.90 when h2 = 0.3, 0.93 when h2 = 0.6). In contrast, when 374 

we analyzed the same simulated data sets with a beta-binomial model, we 375 

erroneously detected 2 CpG sites associated with secondary dormancy when 376 
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heritability was set to 0.3, and 4 CpG sites when heritability was set to 0.6 (at a 20% 377 

FDR in both cases). More concerningly, the distributions of p-values produced by the 378 

beta-binomial model were significantly different from the expected uniform 379 

distribution and skewed towards low (significant) values (KS test when h2 = 0.3: D = 380 

0.084, p = 1.75 x 10-8; when h2 = 0.6: D = 0.096, p = 2.80 x 10-11; genomic control 381 

factors: 1.18 when h2 = 0.3, 1.32 when h2 = 0.6). These results suggest an 382 

increasing problem with false positives as the heritability of DNA methylation levels 383 

increases (see S11 Figure for similar results when comparing a linear model to a 384 

linear mixed model).  385 

 386 

Fig. 1. MACAU appropriately controls for genetic covariance in 387 

simulated and real WGBS data and eliminates false positive 388 

identification of differentially methylated sites. (A, B) The distribution of p-389 

values for 4000 simulated true negative sites (n = 24 accessions; effect of 390 

secondary dormancy on DNA methylation levels = 0). For each simulation, h2 391 

was set to 0.3 (A) or 0.6 (B). Simulated data were analyzed with a beta-392 

binomial model or MACAU, and compared against the expected uniform 393 

distribution. (C) QQ-plots comparing the p-value distributions for (i) a model 394 

testing for effects of secondary dormancy on DNA methylation levels in real 395 

WGBS data, with quantiles plotted on the y-axis; and (ii) the same model 396 

when the secondary dormancy values were permuted across individuals, with 397 

quantiles plotted on the x-axis. The genomic control factor, λ, is shown for 398 

each set of results.  399 

 400 
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 401 

 Notably, this problem should become more acute with increasing sample size, 402 

which provides greater power to detect false positives generated by this type of 403 

confounding [89]. Indeed, both increasing the simulated sample size and increasing 404 

the simulated correlation between the predictor variable and genetic structure 405 

produces increasingly poorly calibrated results. For example, when sample sizes 406 

were simulated from 25 up to 1000 individuals (and the heritability of DNA 407 

methylation levels was set to 0.6), we observed genomic inflation factors ranging 408 

from 1.03 – 3.49 for data sets analyzed with a beta-binomial (Fig. 2a). Not 409 

surprisingly, for a dataset of a fixed size, the beta-binomial genomic control factor 410 

increased as the confounding between population structure and the predictor 411 

variable of interest became more extreme (see S12a Figure for comparable results 412 

for a linear model). In contrast, when we analyzed the same simulated datasets with 413 

the BMM implemented in MACAU, the genomic control factors consistently ranged 414 

from 0.82 – 1.08, even when sample sizes were large and/or the correlation between 415 

population structure and the predictor variable was substantial (Fig. 2b; see S12b 416 

Figure for comparable results from a linear mixed model). Importantly, these 417 

differences in genomic control factors can translate into substantial differences in the 418 

results suggested by a given method. For example, when n = 1000 and the predictor 419 

variable is highly confounded with population structure (R2 = 0.5), a beta-binomial 420 

falsely identified 32% of sites in the data set as differentially methylated (10% FDR), 421 

while MACAU correctly identified no differentially methylated sites (10% FDR; S13 422 

Figure). 423 
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 424 

Fig 2. MACAU controls for genetic covariance in data sets that span a 425 

range of sample sizes and levels of correlation between population 426 

structure and a predictor variable of interest. Genomic control factor when 427 

simulated datasets (n=5000 sites per dataset; h2 = 0.6) were analyzed with 428 

either (A) a beta-binomial model or (B) a BMM implemented in MACAU. The 429 

correlation between the simulated predictor variable and the first principal 430 

component of genome-wide genotype data is plotted on the x-axis. Genotype 431 

data are for Arabidopsis accessions, as reported in [87]. 432 

 433 

To investigate the calibration of test statistics in the real data set, we then 434 

analyzed the relationship between the secondary dormancy phenotype and WGBS 435 

data for the 24 Arabidopsis accessions in which both phenotype and WGBS data 436 

were available (n = 830,676 CpG sites tested [32,33,34]). We again compared the 437 

performance of a simple linear model, a binomial model, a beta-binomial model, the 438 

BMM implemented in MACAU, and an LMM implemented in GEMMA. Further 439 

illustrating its poor handling of Type I error, the binomial model detected more than 440 

100,000 secondary dormancy-associated sites at a 10% empirical FDR threshold, 441 

respectively, with a genomic control factor of 3.81. A beta-binomial model 442 

substantially improved over the binomial model, but still detected 39 secondary 443 

dormancy-associated sites at a 20% empirical FDR threshold, and 150 sites and 690 444 

sites at a 10% or 20% FDR qvalue threshold, respectively (genomic control factor = 445 

1.16). Given the clear confounding of population structure and secondary dormancy 446 
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in this sample, as well as the results of our simulations, these associations are 447 

probably largely, if not completely, spurious. In contrast, MACAU, the linear mixed 448 

model (GEMMA), and the simple linear model did not identify any CpG sites 449 

associated with secondary dormancy, either at a 10% or a 20% false discovery rate 450 

threshold (Fig. 1 and S11 Figure; genomic control factors: MACAU – 0.89, GEMMA 451 

– 0.97, Linear model – 0.99). Based on our earlier simulations, the similarity of 452 

performance among the three approaches likely stems from different reasons: the 453 

linear model is poorly powered to detect positive hits with this sample size (either 454 

true positives or false positives); the linear mixed model controls for population 455 

structure but has low power to detect true associations; while MACAU combines 456 

both the increased power conferred by modeling the raw count data with appropriate 457 

controls for population structure (see Fig. 1 and results below).  458 

 459 

MACAU provides increased power to detect true positives in the presence of 460 

kinship: simulations based on data from baboons 461 

 In other data sets, a predictor variable of interest may not be confounded with 462 

genetic structure, but modeling genetic similarity between samples could reduce 463 

residual error variance and improve power. To investigate this scenario, we focused 464 

on the relationship between age and DNA methylation levels in a wild baboon 465 

population. Female baboons remain in their natal groups throughout their lives, 466 

producing relatedness values that are primarily due to matrilineal descent. The 467 

resulting genetic structure is one in which females tend to be more closely related to 468 

each other, on average, than males or male-female dyads [90], but in which not all 469 
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females are related (because multiple matrilines co-reside in a single group). Data 470 

sets drawn from baboon populations therefore include a substantial number of 471 

unrelated individuals, but also some dyads that are genetically non-independent 472 

(i.e., relatives: S14 Figure).  473 

 To test the relative performance of different modeling approaches in this 474 

setting, we first simulated moderate to large genetic effects on DNA methylation 475 

levels (h2 = 0.3 and 0.6 respectively, as in the Arabidopsis simulation above) and 476 

relatedness values based on the observed distribution of relatedness values within 477 

baboon social groups (n = 80, 500, or 1000 baboons). We again simulated a range 478 

of non-zero effect sizes (percent variance explained by age = 5%, 10%, or 15%) for 479 

500 true positive sites, and an effect size of zero for 4500 true negative sites.  480 

 In simulations in which age had a moderate effect on DNA methylation levels 481 

(PVE = 10%), MACAU detected 11.4% (when h2 = 0.3) and 20.6% (when h2 = 0.6) 482 

of simulated true positives at a 10% empirical FDR, and produced well calibrated p-483 

values for sites with no simulated age effect (S15 Figure). In comparison, the beta-484 

binomial model (the next best model) detected 8.2% and 10.4% of true positives, 485 

respectively (Fig. 3). As in the simulations, we again observed that a simple binomial 486 

model was prone to type I error, which resulted in failure to detect true age-487 

associated sites when empirical FDRs were calculated against permuted data. Our 488 

additional simulations at PVE = 5% or PVE = 15%, and n = 500 or n = 1000, 489 

confirmed MACAU’s advantage over other methods across a range of conditions 490 

(S16-S17 Figure). As expected, the magnitude of this advantage was positively 491 

correlated with the heritability of DNA methylation levels. 492 
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 493 

Fig. 3. MACAU exhibits increased power to detect differential 494 

methylation when DNA methylation levels are heritable. Receiver 495 

operating characteristic (ROC) curves and true positive rates at a 10% false 496 

discovery rate threshold for simulated age effects on DNA methylation levels 497 

at (A-C) simulated sites with moderately heritable DNA methylation levels (h2 498 

= 0.3) and (D-F) simulated sites with highly heritable DNA methylation levels 499 

(h2 = 0.6). Panels B and E are enlarged versions of panels A and D, 500 

respectively. They focus on false positive rates below 0.1, because the 501 

performance of alternative methods at low false positive rates tends to be 502 

most important to researchers in practice; that is, it is unlikely to matter if 503 

method performance is identical when accepting a 50% false positive rate, 504 

which would yield very poor inferential power. Each simulated dataset 505 

contained n=80 individuals and 5000 simulated CpG sites, with 500 true 506 

positives and 4500 true negatives. Here, we show results where the 507 

simulated percent variance explained by age = 10%. A binomial model could 508 

not detect true positives at a false positive rate below 0.10 (when h2 = 0.3) or 509 

below 0.9 (when h2 = 0.6); the binomial is therefore removed from panel B, 510 

and only shown for large false positive rates in panel E.   511 

 512 

Age-associated DNA methylation levels in wild baboons 513 

 Finally, we analyzed the new baboon RRBS data set for differential 514 

methylation patterns by age (n = 50, age range = 1.76 – 18.01 years in our sample, 515 
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S4 Table). Because age-related effects on DNA methylation levels are well 516 

described, this approach allowed us to not only evaluate MACAU’s ability to detect 517 

differentially methylated sites, but also to identify known age-related signatures in 518 

DNA methylation data [38,39,91–93]. This data set included 433,871 CpG sites, 519 

enriched for putatively functional regions of the genome (e.g., genes, gene 520 

promoters, CpG islands, as expected in RRBS data sets [25,26]: S18 Figure; see 521 

also S19 Figure and S4 Table for additional information on data quality, including 522 

bisulfite conversion rates, MspI digest efficiency, correlation with gene expression 523 

levels, and methylation level distributions by genomic regions). As in our simulations, 524 

we found that MACAU provided increased power to detect age effects in the 525 

presence of familial relatedness. We detected 1.6-fold more age-associated CpG 526 

sites at a 10% empirical FDR using MACAU compared to the results of a beta-527 

binomial model, the next best approach (1.4-fold more sites at a 20% empirical FDR; 528 

Fig. 4 and S20 Figure). This advantage was consistently observed across all FDR 529 

thresholds we considered, except for relatively low (<7.5%) empirical FDR 530 

thresholds, when all of the methods were very low powered as a result of the modest 531 

sample size. 532 

 533 

Fig. 4. Age-associated CpG sites identified by MACAU in the baboon 534 

RRBS data. (A) The number of age-associated CpG sites detected at a given 535 

empirical FDR. The binomial model cannot detect age-associated sites at a 536 

false discovery rate below 0.20 and is consequently removed from the panel. 537 

(B) For age-associated sites detected by MACAU (at a 10% FDR), the 538 
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proportion of sites that gain or lose methylation with age is shown by genomic 539 

region. Positive = DNA methylation levels increase with age; Negative = DNA 540 

methylation levels decrease with age. (C) Age-associated CpG sites detected 541 

using MACAU (10% FDR) are more likely to fall near genes that are 542 

expressed in whole blood, compared to the background set of CpG sites near 543 

genes (**p < 10-10). Further, age-associated CpG sites are more likely to 544 

occur near genes that are differentially expressed (DE) with age, compared to 545 

CpG sites near genes that are not DE with age (*p = 0.032). 546 

 547 

We performed several analyses to investigate the likely validity and functional 548 

importance of the age-associated CpG sites we identified. Based on the results of 549 

previous studies, we expected that age-associated sites in CpG islands would tend 550 

to gain methylation with age [92,93], while sites in other regions of the genome (e.g., 551 

CpG island shores, gene bodies) would tend to lose methylation with age [92,93]. In 552 

addition, we expected that, in whole blood, bivalent/poised promoters should gain 553 

DNA methylation with age, while enhancers should lose methylation with age (as 554 

discussed in [91,92,94]). Finally, we expected that stretches of differentially 555 

methylated sites (i.e., differentially methylated regions, or DMRs) would tend to 556 

occur in or near CpG islands and CpG shores, potentially altering how steeply 557 

methylation levels change between islands and their surrounding shelves (e.g., [95]).  558 

Our results conformed to these patterns: sites in CpG islands tended to gain 559 

methylation with age (71.4% of sites were positively correlated with age); and sites 560 

in promoters, CpG island shores, and gene bodies tended to lose methylation with 561 
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age (72.7%, 75.4%, and 75.2% of sites were negatively correlated with age, 562 

respectively; Fig. 4). In addition, we found that positively correlated, age-associated 563 

sites were highly enriched in chromatin states associated with bivalent/poised 564 

promoters (as defined by the Roadmap Epigenomics Project [96]). Specifically, age-565 

associated CpG sites in bivalent/poised promoters were 3.4 times more likely to 566 

show increases in DNA methylation with age, compared to age-associated CpG 567 

sites in other regions (p < 10-10, Fisher’s exact test). Negatively correlated age-568 

associated sites (i.e., sites where DNA methylation levels decreased with age) were 569 

strongly enriched in enhancers (defined as sites either marked by H3K4me1 in 570 

human PBMCs [97] or sites within chromatin states annotated as ‘enhancers’ by the 571 

Roadmap Epigenomics Project [96], p = 2 x 10-4, Fisher’s exact test). Finally, we 572 

detected 142 age-related DMRs, the majority of which were found in CpG islands, 573 

shores, and bridging islands and shores (S21 Figure and S5 Table). 574 

We also reasoned that true positive age-associated CpG sites should contain 575 

information about age-associated gene expression levels. To test this hypothesis, 576 

we turned to previously generated whole blood RNA-seq data [43] from the same 577 

baboon population (n = 63; only four baboons in the RNA-seq data set were also 578 

included in the DNA methylation data set). Overall, we observed a strong enrichment 579 

of differentially methylated CpG sites in or near (within 10 kb) blood-expressed 580 

genes (n = 12,018 genes), compared to the background set of all CpG sites near 581 

genes (Fisher’s exact test, p < 10-10). Further, CpG sites near age-associated genes 582 

(n = 1396 genes, 10% FDR) were 30.5% more likely to be differentially methylated 583 

with age compared to the background set of all CpG sites near genes (Fisher’s exact 584 
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test, p = 0.032; Figure 4). Notably, this enrichment was almost always stronger for 585 

the set of differentially methylated sites identified by MACAU than for the same 586 

number of top sites identified when running the linear model, linear mixed model, 587 

binomial, or beta-binomial approaches, across different FDR thresholds (S22 588 

Figure). 589 

 590 

 591 

Discussion 592 

DNA methylation levels can have potent effects on downstream gene 593 

regulation, and, in doing so, can shape key behavioral, physiological, and disease-594 

related phenotypes [7,20,98–100]. These observations have motivated an increasing 595 

number of DNA methylation studies in humans and other organisms, highlighting the 596 

need for sophisticated statistical methods that can accommodate the complexities of 597 

a broad array of data sets [19,46]. Here, we demonstrate that the binomial mixed 598 

model implemented in our software MACAU can (i) effectively control for 599 

confounding relationships between genetic background and a predictor variable of 600 

interest and (ii) provide increased power to detect true sources of variance in DNA 601 

methylation levels in data sets that contain kinship or population structure. In 602 

addition, MACAU provides increased flexibility over current count-based methods 603 

that cannot accommodate biological replicates (e.g., Fisher’s exact test), continuous 604 

predictor variables (e.g., DSS, MOABS, RadMeth), or biological or technical 605 

covariates (e.g., MOABS, DSS; see also Table 1). Given the increasing interest in 606 

both the environmental [21,101,102] and genetic [16,17,19,103] architecture of DNA 607 
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methylation levels, we believe MACAU will be a useful tool for generalizing 608 

epigenomic studies to a larger range of populations. MACAU is particularly well 609 

suited to data sets that contain related individuals or population structure; notably, 610 

several major population genomic resources contain structure of these kinds (e.g., 611 

the HapMap population samples [104], the Human Genome Diversity Panel [105], 612 

and the 1000 Genomes Project in humans [106]; the Hybrid Mouse Diversity Panel 613 

in mice [107]; and the 1001 Genomes Project in Arabidopsis [108]).  614 

Indeed, our results suggest MACAU is a useful tool even in data sets that are 615 

less affected by genetic structure, or when the heritability of DNA methylation levels 616 

is unclear. Because the beta-binomial model is effectively incorporated as a special 617 

case, MACAU exhibits only a slight loss of power relative to a beta-binomial model 618 

without genetic random effects when h2 = 0, while conferring better power and better 619 

test statistic calibration when h2 > 0 (S9, S16-S17 Figures, Fig. 1). Previous studies 620 

in humans have shown that, while the heritability of DNA methylation levels varies 621 

across loci, an appreciable proportion of loci are either modestly (h2 ≥ 0.3: 21.06% of 622 

all CpG sites) or highly (h2 ≥  0.6: 6.95% of all CpG sites) heritable [39,109]. Further, 623 

DNA methylation QTLs are widespread across the genome [18,38,103]. Thus, 624 

because investigators will rarely have a priori knowledge of the heritability of DNA 625 

methylation levels at a given locus, and because the advantage of a beta-binomial 626 

model is small even when heritability is zero, we recommend applying MACAU in 627 

cases in which genetic effects on DNA methylation levels are poorly understood. In 628 

addition, our model provides a natural framework for incorporating the spatial 629 

dependency of DNA methylation levels across neighboring sites [110,111], which we 630 
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expect to increase power even further [110,111]. However, we do note that, even 631 

with the efficient algorithm implemented here, fitting the binomial mixed model (or its 632 

extensions) remains more computationally expensive than other approaches for 633 

moderately sized datasets (S3 Table). While it remains appropriate for the sample 634 

sizes used in current studies (e.g., dozens to hundreds of individuals), or even larger 635 

with the support of a moderate-sized computing cluster (because MACAU is easily 636 

parallelizable with respect to sites), rapid increases in sample size—especially in the 637 

context of EWAS—strongly motivate additional algorithm development to scale up 638 

the binomial mixed model for data sets that include thousands or tens of thousands 639 

of individuals. This is particularly important given that methods tailored for other 640 

types of studies (e.g., quantile normalization followed by linear mixed modeling or 641 

voom + limma, both commonly used for RNA-seq) do not appear to translate well to 642 

bisulfite sequencing data sets (Figure S8; see Methods for additional information on 643 

the voom + limma comparison).  644 

Although we developed MACAU with the analysis of bisulfite sequencing data 645 

in mind, we note that a count-based binomial mixed model may be an appropriate 646 

tool in other settings as well. For example, allele-specific gene expression (ASE) can 647 

be measured in RNA-seq data by comparing the number of reads originating from a 648 

given variant to the total number of mapped reads for that site [77,112–114]. 649 

Similarly, alternative isoform usage can be represented as a proportion of reads 650 

containing a non-constitutive exon versus the total reads for the same gene [47]. 651 

The structure of these data are highly similar to the structure of bisulfite sequencing 652 

data, which focus on counts of methylated versus total reads. Unsurprisingly, beta-653 
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binomial models have also emerged as one of the most popular methods for 654 

estimating both ASE values [114–116] and alternative isoform usage [47]. 655 

Researchers interested in the predictors of variation in either of these measures — 656 

which could include trans-acting genetic effects, environmental conditions, or 657 

properties of the individual (e.g., sex or disease status) — might also benefit from 658 

using MACAU. Recent work from the TwinsUK study motivates the need for such a 659 

model: Grundberg et al. demonstrated a strong heritable component to ASE levels 660 

[117], which could be effectively taken into account using the random effects 661 

approach implemented here.  662 

Finally, linear mixed models have been recently proposed to account for cell 663 

type heterogeneity in epigenome-wide association studies focused on array data 664 

[118]. In this framework, the random effect covariance structure is based on overall 665 

covariance in DNA methylation levels between samples, which is assumed to be 666 

largely attributable to variation in tissue composition. MACAU provides a potential 667 

avenue for extending these ideas to sequencing-based data sets.   668 

 669 

Materials and Methods 670 

Arabidopsis thaliana whole genome bisulfite sequencing (WGBS) data set 671 

 We downloaded publicly available WGBS data generated by Schmitz et al. 672 

[48], as well as previously published SNP genotype data [87] and secondary 673 

dormancy data [86] for 24 Arabidopsis accessions. We used the SNP genotype data 674 

(specifically, 188,093 sites with minor allele frequency >5%) to construct a pairwise 675 

genetic relatedness matrix, K, as the product of a standardized genotype matrix X, 676 
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or K=XXT/p [56], where genotypes were expressed as 0, 1, or 2 depending on the 677 

number of reference alleles for that site-sample combination. We used this estimate 678 

of K for both the simulations and our analyses of the real WGBS data. 679 

In these analyses, we focused on CpG sites measured in ≥50% of 680 

accessions, and excluded sites that were constitutively hypermethylated (average 681 

DNA methylation level >0.90) or hypomethylated (average DNA methylation level 682 

<0.10, following [101,118]). We also excluded highly invariable sites (i.e., sites 683 

where the standard deviation of DNA methylation levels fell in the lowest 5% of the 684 

overall data set) and sites with very low coverage (i.e., sites where the mean 685 

coverage fell in the lowest quartile for the overall data set, below a mean of 3.34 686 

reads). After filtering, the final data set consisted of 830,676 sites. 687 

For the analysis of test statistic calibration as a function of sample size (Fig. 688 

2), we also used Arabidopsis data, but simulated the phenotype data as a function of 689 

genetic covariance between the accessions. Genotype data were obtained from [87].  690 

 691 

Baboon reduced representation bisulfite sequencing (RRBS) data set  692 

Study subjects and sample collection. To investigate age effects on DNA 693 

methylation levels, in both real and simulated data sets, we drew on data and 694 

samples from a wild population of yellow baboons in the Amboseli ecosystem of 695 

southern Kenya. This population has been monitored for over four decades by the 696 

Amboseli Baboon Research Project (ABRP) [119], and the ages of animals born in 697 

the study population (n = 37; 74% of the data set) were therefore known to within a 698 

few days’ error. For animals that immigrated into the study population, ages were 699 
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estimated from morphological features by trained observers (n = 13; 26% of the data 700 

set) [120]. Pairwise relatedness values were calculated based on previously 701 

collected microsatellite data (14 highly variable loci) [121,122], using the likelihood-702 

based estimator of Lynch and Ritland [123] implemented in the program 703 

COANCESTRY [124]. Using the age and relatedness data sets, we simulated age 704 

effects on DNA methylation levels for either n = 20, 50, or 80 baboons from a single 705 

social group. For simulations with larger sample sizes, we extrapolated both age 706 

values and pairwise relatedness values from the n = 80 dataset to maintain the 707 

same level of age variation and genetic structure; notably, our results are highly 708 

stable in the face of realistic levels of noise in the estimate of K (S23 Figure). In 709 

addition, we used previously collected blood samples from the Amboseli population, 710 

paired with age and microsatellite genotype records, to investigate age effects on 711 

DNA methylation levels in a newly generated RRBS data set.    712 

To generate the new RRBS data, we used whole blood samples collected 713 

from 50 animals (35 males and 15 females) by the ABRP between 1989 and 2011 714 

following well-established procedures [43,125,126]. Briefly, animals were 715 

immobilized by an anesthetic-bearing dart delivered through a hand-held blow gun. 716 

They were then quickly transferred to a processing site for blood sample collection. 717 

Following sample collection, study subjects were allowed to regain consciousness in 718 

a covered holding cage until they were fully recovered from the effects of the 719 

anesthetic. Upon recovery, study subjects were released near their social group and 720 

closely monitored. Blood samples were stored at the field site or at an ABRP-721 
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affiliated lab at the University of Nairobi until they were transported to the United 722 

States.  723 

Importantly, given the large range in sample collection dates, we observed no 724 

correlation between the age of our study subjects at sample collection and sample 725 

age (i.e., time since the collection date; Spearman rank correlation, p = 0.779). 726 

Further, to ensure that variation in sample collection dates did not influence our 727 

results, we also controlled for sample age as a covariate in our final analyses of the 728 

RRBS dataset (see Analysis of age-related changes in DNA methylation levels). 729 

 730 

RRBS data generation and low-level processing. Genomic DNA was 731 

extracted from whole blood samples using the DNeasy Blood and Tissue Kit 732 

(QIAGEN) according to the manufacturer’s instructions. RRBS libraries were created 733 

from 180 ng of genomic DNA per individual, following the protocol by Boyle et al. 734 

[25]. In addition, 1 ng of unmethylated lambda phage DNA (Sigma Aldrich) was 735 

incorporated into each library to assess the efficiency of the bisulfite conversion 736 

(>98% in all case: S4 Table). All RRBS libraries were sequenced using 100 bp 737 

single end sequencing on an Illumina HiSeq 2000 platform, yielding a mean of 28.97 738 

±8.97 million reads per analyzed sample (range: 9.59 – 79.78 million reads; Table 739 

S4).  740 

 We removed adaptor contamination and low-quality bases from all reads 741 

using the program TRIMMOMATIC [127]. We then mapped the trimmed reads to the 742 

olive baboon genome (Panu 2.0) using BSMAP, a tool designed for high-throughput 743 

DNA methylation data [128]. We used a Python script packaged with BSMAP to 744 
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extract the number of reads as cytosine (reflecting an originally methylated base) 745 

and the total read count for each individual and CpG site. We performed the same 746 

set of filtering steps described for the Arabidopsis WGBS data set to produce our 747 

final data set for the baboons. Specifically, we excluded sites that were constitutively 748 

hypermethylated or hypomethylated, sites that were highly invariable, and sites that 749 

had low average coverage across individuals (in this case, the lowest quartile for 750 

mean coverage levels was 4.74 reads). The final filtered data set consisted of 751 

433,871 CpG sites. 752 

 753 

Simulations 754 

To simulate the methylated read counts and total read counts that result from 755 

WGBS and RRBS, we performed the following procedure: 756 

First, we simulated the proportion of methylated reads for each site. To do so, 757 

we drew secondary dormancy values or age values, �, as the predictor of interest, 758 

from the actual values for the Arabidopsis accessions or from the baboon 759 

population, respectively. For simulations that focused on Arabidopsis data sets of 760 

various sizes (e.g., Figure 2), we simulated � and varied the degree to which it was 761 

confounded with population structure. Specifically, for each dataset (ranging from 762 

n=25 to n=1000 accessions) we performed principal components analysis on the 763 

SNP genotype data, and extracted the first principal component to capture the major 764 

axis of population structure (PC1). We then added environmental noise from a zero-765 

centered normal distribution to achieve a correlation (R2) between the simulated 766 

phenotype and PC1 that reached the desired value (ranging from R2 = 0.1 to 0.5). 767 
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For each simulated data set, we simulated the DNA methylation level at each 768 

CpG site, 	, as a linear function of � and its effect size, �. In addition, we included 769 

the effects of genetic variation (
) and random environmental variation (�), passed 770 

through a logit link (based on the model described in the Results section).  771 

 For the baboon RRBS and the Arabidopsis WGBS simulations, we 772 

determined K from 14 highly variable microsatellite loci or from the publicly available 773 

SNP data, as described above. For each simulation, we set  � to 0, 0.3, or 0.6 to 774 

simulate non-heritable, modestly heritable, or highly heritable DNA methylation 775 

levels. We also estimated the variance term �� from the real data sets. Specifically, 776 

we took the mean estimate of �� across all sites (calculated in MACAU) for each real 777 

data set, and used this value as the fixed value of �� in the corresponding 778 

simulations.  779 

 Next, for each site, we simulated total read counts �� for each individual i from 780 

a negative binomial distribution that models the extra variation observed in the real 781 

data: 782 

 ��  ~ ���$, ,
, (5) 

where t and p are site specific parameters estimated from the real data. Specifically, 783 

we generated 10,000 sets of t and p parameters by fitting a negative binomial 784 

distribution to the total read count data from 10,000 randomly selected CpG sites in 785 

the real baboon RRBS data set or the real Arabidopsis data set, using the function 786 

‘fitdistr’ in the R package MASS [129]. To simulate counts for a given CpG site, we 787 

randomly selected one of these parameter sets to produce the total number of 788 

reads. Finally, we simulated the number of methylated reads for each individual at 789 
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that locus (�) by drawing from a binomial distribution parameterized by the number 790 

of total reads (�) and the DNA methylation level (	). 791 

 792 

Comparison of MACAU to existing methods 793 

For all simulated and real data sets, we used raw methylated and total read 794 

counts to compare the results of a beta-binomial model (using a custom R script), a 795 

binomial model (implemented via ‘glm’ in R), and the binomial mixed model 796 

implemented in MACAU. For computation time comparison, we used the 797 

MCMCglmm software, which also provides an implementation of a binomial mixed 798 

model [78]. In addition, we used the same count data to run a Fisher’s exact test 799 

(implemented in R), DSS [31], and RadMeth [33] in the subset of analyses that 800 

utilized these programs. To analyze simulated and real data sets using a linear 801 

model (implemented using ‘lm’ in R) or the linear mixed model implemented in 802 

GEMMA [34], we estimated DNA methylation levels by dividing the number of 803 

methylated reads by the total read count for each individual and CpG site. We then 804 

quantile normalized the resulting proportions for each CpG site to a standard normal 805 

distribution, and imputed any missing data using the K-nearest neighbors algorithm 806 

in the R package impute [130].  807 

In addition to the quantile normalization approach, we also evaluated three 808 

other methods for transforming methylation proportions: a logit transformation, 809 

following [110]; the “M” value transformation (log2((methylated counts + 810 

α)/(unmethylated counts + α)), where α = 0.01, following [30]; and an arcsin square 811 

root transformation, following [131]. All four approaches produced qualitatively 812 
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identical results (S8 Figure), so we elected to concentrate on the results from 813 

quantile normalization in the main text. Finally, we also tested the performance of a 814 

powerful, commonly used method for modeling RNA-seq data: the combination of 815 

the voom function for data weighting with limma, a linear model approach [132]. Our 816 

results indicated that voom + limma performs more poorly than even a simple linear 817 

model (S24 Figure), probably because read depth variation is much more 818 

complicated in bisulfite sequencing studies than in RNA-seq studies (Figure S1). 819 

Because voom + limma also cannot account for population structure, we report 820 

these results in the SI but focus on results from the simple linear model in the main 821 

text.  822 

To compute empirical false discovery rates in simulated data, we divided the 823 

number of false positives detected at a given p-value threshold by the total number 824 

of sites called by the model as significant at that threshold (i.e., the sum of false 825 

positives and true positives). To compute empirical false discovery rates in the real 826 

data, in which the false positives and true positives were unknown, we used 827 

permutations. Specifically, we permuted the predictor variable for each data set four 828 

times, reran our analyses, and then calculated the false discovery rate as the 829 

average number of sites detected at a given p-value threshold in the permuted data 830 

divided by the total number of sites detected at that threshold in the real data. For 831 

simulated data sets only, we also calculated the area under the receiver operating 832 

characteristic curve (AUC) to produce a measure of the overall tradeoff between 833 

detecting true positives and calling false positives. 834 

 835 
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Analysis of age-related changes in DNA methylation levels      836 

Our initial analyses of the baboon RRBS dataset focused only on the relative 837 

ability of each method to detect age-associated sites. For these analyses, we 838 

therefore did not control for other biological covariates that may contribute to 839 

variance in DNA methylation levels (note that biological covariates cannot be 840 

incorporated into several implementations of the beta-binomial model [31,32]: see 841 

Table 1). However, to investigate patterns of age-related changes in DNA 842 

methylation levels, and to compare them to previously described patterns in the 843 

literature, we wished to control for such covariates. To do so, we reran the 844 

differential methylation analysis in MACAU, this time controlling for sex, sample age, 845 

and efficiency of the bisulfite conversion rate estimated from the lambda phage 846 

spike-in.  847 

First, we investigated whether age-associated sites were enriched in 848 

functionally coherent regions of the genome, many of which have previously been 849 

identified as age-related [38,92,93]. To do so, we defined gene bodies as the 850 

regions between the 5’-most transcription start site (TSS) and 3’-most transcription 851 

end site (TES) of each gene using Panu 2.0 annotations from Ensembl [133]. We 852 

defined promoter regions as the 2 kb upstream of the TSS. CpG were annotated 853 

based on the UCSC Genome Browser track for baboon [134], with CpG island 854 

shores defined as the 2 kb regions flanking either side of the CpG island boundary 855 

(following [26,135,136]). Finally, because no enhancer annotations are available that 856 

are specific to baboons, we used H3K4me1 ChIP-seq data generated by ENCODE 857 

(from human peripheral blood mononuclear cells) to define enhancer regions [97]. In 858 
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addition, we used chromatin state annotations from the Roadmap Epigenomics 859 

Project (also generated from human peripheral blood mononuclear cells) to further 860 

investigate biases in the locations of age-associated sites [96]. Using these 861 

annotation sets, we performed Fisher’s Exact Tests to ask whether age-associated 862 

sites were enriched or underrepresented in specific genomic regions. To identify 863 

differentially methylated regions (DMRs), we used the criteria proposed by [137]. 864 

Specifically, DMRs contained at least 3 differentially methylated sites with an inter-865 

CpG distance ≤1 kb, with only 3 non-differentially methylated sites permitted in the 866 

DMR as a whole.  867 

Second, we asked whether differentially methylated sites were more likely to 868 

fall close to blood-expressed genes. For this comparison, we drew on previously 869 

published RNA-seq data, generated from whole blood samples collected in the 870 

Amboseli baboon population [43]. We defined blood-expressed genes as those 871 

genes that had non-zero counts in more than 10% of individuals in the RNA-seq 872 

data sets, and that had mean read counts greater than or equal to 10. We then 873 

compared the number of differentially methylated CpG sites near blood-expressed 874 

genes (i.e., within the gene body or within 10 kb of the gene TSS or TES) to the 875 

number of differentially methylated CpG sites near genes that were not expressed in 876 

blood, using a Fisher’s Exact Test.  877 

Finally, we investigated whether CpG sites that occur near genes that are 878 

differentially expressed with age were also more likely to be differentially methylated 879 

with age. For this comparison, we defined ‘age-associated genes’ as genes 880 

differentially expressed with age (at a 10% FDR) in the RNA-seq data set [43]. We 881 
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compared the number of differentially methylated CpG sites near blood-expressed, 882 

age-associated genes to the number of differentially methylated CpG sites near 883 

genes that were not within this set of genes, again using a Fisher’s Exact Test. 884 

 885 

Ethics statement 886 

The baboon data used in this study was generated from samples collected 887 

from wild baboons living in the Amboseli ecosystem of southern Kenya. This 888 

research is conducted under the authority of the Kenya Wildlife Service (KWS), the 889 

Kenyan governmental body that oversees wildlife (permit number 890 

NCST/RCD/12B/012/57 to Jenny Tung). As the animals are members of a wild 891 

population, KWS requires that we do not interfere with injuries to study subjects 892 

inflicted by predators, conspecifics, or through other naturally occurring events. 893 

Permission to perform temporary immobilizations (for blood sample collection) was 894 

granted by KWS; further, these immobilizations were supervised by a KWS-895 

approved Kenyan veterinarian, who monitored anesthetized animals for 896 

hypothermia, hyperthermia, and trauma (no such events occurred during our sample 897 

collection efforts). Observational and sample collection protocols were approved 898 

though IACUC committees at Duke University (current protocol is A020-15-01 to 899 

Jenny Tung and Susan C. Alberts). 900 

 901 

Software and data availability 902 

 The MACAU software and a custom script for implementing a beta-binomial 903 

model in R is available at: www.xzlab.org/software.html. Previously published data 904 
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sets are available at http://bergelson.uchicago.edu/regmap-data/regmap.html/ 905 

(Arabidopsis SNP genotype data); http://www.ncbi.nlm.nih.gov/geo/ (Arabidopsis 906 

WGBS data: GSE43857); 907 

http://www.nature.com/nature/journal/v465/n7298/full/nature08800.html#supplement908 

ary-information (Arabidopsis phenotype data); and http://www.ncbi.nlm.nih.gov/sra 909 

(Baboon RNA-seq data: GSE63788). Baboon RRBS data generated in this study are 910 

deposited in NCBI (project accession SRP058411).  911 

 912 

Acknowledgments 913 

We thank the Kenya Wildlife Services, Institute of Primate Research, National 914 

Museums of Kenya, National Council for Science and Technology, members of the 915 

Amboseli-Longido pastoralist communities, Tortilis Camp, and Ker & Downey Safaris 916 

for their assistance in Kenya. We also thank Jeanne Altmann and Susan Alberts for 917 

support and access to the Amboseli data set and samples; Raphael Mututua, Serah 918 

Sayialel, Kinyua Warutere, Mercy Akinyi, Tim Wango, and Vivian Oudu for 919 

invaluable assistance with sample collection; Alexander Meissner, Joe Aman, and 920 

Joe DeYoung for assistance with RRBS; Matthew Stephens and Sayan Mukherjee 921 

for insight and support on previous versions of MACAU; and Susan Alberts, Hyun 922 

Min Kang, Sayan Mukherjee, Roger Pique-Regi, Dan Runcie, William Wen, and 923 

three anonymous reviewers for useful comments on a previous version of the 924 

manuscript. Finally, we thank the Baylor College of Medicine Human Genome 925 

Sequencing Center for access to the current version of the baboon genome 926 

assembly (Panu 2.0).  927 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42

 928 

Supporting Information 929 

Text S1: Supplementary text 930 

Figures S1-S24: Supplementary figures 931 

Tables S1-S5: Supplementary tables 932 

  933 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43

References 934 

1.  Mohandas T, Sparkes R, Shapiro L. Reactivation of an inactive human X 935 

chromosome: evidence for X inactivation by DNA methylation. Science. 936 

1981;211: 393–396.  937 

2.  Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. 938 

Nature. 1993;366: 362–365. doi:10.1038/366362a0 939 

3.  Jones P. Functions of DNA methylation: islands, start sites, gene bodies and 940 

beyond. Nat Rev Genet. 2012;13: 484–92. doi:10.1038/nrg3230 941 

4.  Kakutani T, Jeddeloh J, Richards EJ. Characterization of an Arabidopsis 942 

thaliana DNA hypomethylation mutant. Nucleic Acids Res. 1995;23: 130–137.  943 

5.  Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL. Demethylation-944 

induced developmental pleiotropy in Arabidopsis. Science. 1996;273: 654–945 

657. doi:10.1126/science.273.5275.654 946 

6.  Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in 947 

Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad 948 

Sci. 1996;93: 8449–8454. doi:10.1073/pnas.93.16.8449 949 

7.  Rakyan VK, Beyan H, Down T, Hawa MI, Maslau S, Aden D, et al. 950 

Identification of type 1 Diabetes-associated DNA methylation variable 951 

positions that precede disease diagnosis. PLoS Genet. 2011;7: 1–9. 952 

doi:10.1371/journal.pgen.1002300 953 

8.  Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide 954 

Dna methylation analysis of human pancreatic islets from type 2 diabetic and 955 

non-diabetic donors identifies candidate genes that influence insulin secretion. 956 

PLoS Genet. 2014;10. doi:10.1371/journal.pgen.1004160 957 

9.  De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, et al. 958 

Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, 959 

BIN1, RHBDF2 and other loci. Nat Neurosci. 2014;17: 1156–1163. 960 

doi:10.1038/nn.3786 961 

10.  Bakulskia K, Dolinoya D, Sartorb M, Paulsond H, Konend J, Liebermane A, et 962 

al. Genome-wide DNA methylation differences between late-onset Alzheimer’s 963 

disease and cognitively normal controls in human frontal cortex. J Alzheimers 964 

Dis. 2012;29: 1–28. doi:10.3233/JAD-2012-111223.Genome-Wide 965 

11.  Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. 966 

Epigenome-wide association data implicate DNA methylation as an 967 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44

intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31: 968 

142–147. doi:10.1038/nbt.2487 969 

12.  Irizarry R, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The 970 

human colon cancer methylome shows similar hypo- and hypermethylation at 971 

conserved tissue-specific CpG island shores. Nat Genet. 2009;41: 178–86. 972 

doi:10.1038/ng.298 973 

13.  Gluckman PD, Hanson M, Buklijas T, Low FM, Beedle AS. Epigenetic 974 

mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev 975 

Endocrinol. 2009;5: 401–8. doi:10.1038/nrendo.2009.102 976 

14.  Suarez-Alvarez B, Rodriguez RM, Fraga MF, López-Larrea C. DNA 977 

methylation: a promising landscape for immune system-related diseases. 978 

Trends Genet. 2012;28: 506–14. doi:10.1016/j.tig.2012.06.005 979 

15.  Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites 980 

characterizes dysregulation of cancer genes. Genome Biol. 2013;14: R21. 981 

doi:10.1186/gb-2013-14-3-r21 982 

16.  Shah S, McRae AF, Marioni RE, Harris SE, Gibson J, Henders AK, et al. 983 

Genetic and environmental exposures constrain epigenetic drift over the 984 

human life course. Genome Res. 2014; doi:10.1101/gr.176933.114 985 

17.  Bell JT, Pai A, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA 986 

methylation patterns associate with genetic and gene expression variation in 987 

HapMap cell lines. Genome Biol. 2011;12: R10. doi:10.1186/gb-2011-12-1-r10 988 

18.  Banovich NE, Lan X, Mcvicker G, Degner JF, Blischak JD, Roux J, et al. 989 

Methylation QTLs are associated with coordinated changes in transcription 990 

factor binding, histone modifications, and gene expression levels. PLoS 991 

Genet. 2014;10: 1–12. doi:10.1371/journal.pgen.1004663 992 

19.  Dubin MJ, Zhang P, Meng D, Remigereau M, Osborne EJ, Casale FP, et al. 993 

DNA methylation variation in Arabidopsis has a genetic basis and appears to 994 

be involved in local adaptation. eLife. 2015;4: e05255. 995 

doi:10.7554/eLife.05255 996 

20.  Weaver ICG, Cervoni N, Champagne F a, D’Alessio AC, Sharma S, Seckl JR, 997 

et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7: 998 

847–54. doi:10.1038/nn1276 999 

21.  Waterland R a, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, 1000 

Travisano M, et al. Season of conception in rural gambia affects DNA 1001 

methylation at putative human metastable epialleles. PLoS Genet. 2010;6: 1002 

e1001252. doi:10.1371/journal.pgen.1001252 1003 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45

22.  Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. 1004 

Persistent epigenetic differences associated with prenatal exposure to famine 1005 

in humans. Proc Natl Acad Sci. 2008;105: 17046–9. 1006 

doi:10.1073/pnas.0806560105 1007 

23.  Wolff GL, Kodell RL, Moore SR, Cooney C. Maternal epigenetics and methyl 1008 

supplements affect agouti gene expression in Avy/a mice. Am Soc Exp Biol. 1009 

1998;12: 949–57.  1010 

24.  Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. 1011 

Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA 1012 

methylation patterning. Nature. 2008;452: 215–219. doi:10.1038/nature06745 1013 

25.  Boyle P, Clement K, Gu H, Smith Z. Gel-free multiplexed reduced 1014 

representation bisulfite sequencing for large-scale DNA methylation profiling. 1015 

Genome Biol. 2012;13: R92. doi:10.1186/gb-2012-13-10-R92 1016 

26.  Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of 1017 

reduced representation bisulfite sequencing libraries for genome-scale DNA 1018 

methylation profiling. Nat Protoc. 2011;6: 468–81. doi:10.1038/nprot.2010.190 1019 

27.  Ivanov M, Kals M, Kacevska M, Metspalu A, Ingelman-Sundberg M, Milani L. 1020 

In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite 1021 

sequencing of 174 ADME genes. Nucleic Acids Res. 2013;41. 1022 

doi:10.1093/nar/gks1467 1023 

28.  Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, et 1024 

al. Targeted bisulfite sequencing reveals changes in DNA methylation 1025 

associated with nuclear reprogramming. na. 2009;27: 353–60. 1026 

doi:10.1038/nbt.1530 1027 

29.  Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen 1028 

KD, et al. Minfi: A flexible and comprehensive Bioconductor package for the 1029 

analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30: 1030 

1363–1369. doi:10.1093/bioinformatics/btu049 1031 

30.  Du P, Zhang X, Huang C-C, Jafari N, Kibbe W, Hou L, et al. Comparison of 1032 

Beta-value and M-value methods for quantifying methylation levels by 1033 

microarray analysis. BMC Bioinformatics. 2010;11: 587. doi:10.1186/1471-1034 

2105-11-587 1035 

31.  Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect 1036 

differentially methylated loci from single nucleotide resolution sequencing data. 1037 

Nucleic Acids Res. 2014;42: 1–11. doi:10.1093/nar/gku154 1038 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46

32.  Sun D, Xi Y, Rodriguez B, Park HJ, Tong P, Meong M, et al. MOABS: model 1039 

based analysis of bisulfite sequencing data. Genome Biol. 2014;15: R38. 1040 

doi:10.1186/gb-2014-15-2-r38 1041 

33.  Dolzhenko E, Smith AD. Using beta-binomial regression for high-precision 1042 

differential methylation analysis in multifactor whole-genome bisulfite 1043 

sequencing experiments. BMC Bioinformatics. 2014;15: 215. 1044 

doi:10.1186/1471-2105-15-215 1045 

34.  Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for 1046 

association studies. Nat Genet. 2012;44: 821–4. doi:10.1038/ng.2310 1047 

35.  Kang HM, Zaitlen N, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. 1048 

Efficient control of population structure in model organism association 1049 

mapping. Genetics. 2008;178: 1709–23. doi:10.1534/genetics.107.080101 1050 

36.  Kang H, Sul J, Zaitlen N, Kong S, Freimer NB, Sabatti C, et al. Variance 1051 

component model to account for sample structure in genome-wide association 1052 

studies. Nat Genet. 2010;42: 348–354. doi:10.1038/ng.548.Variance 1053 

37.  Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST 1054 

linear mixed models for genome-wide association studies. Nat Methods. 1055 

2011;8. doi:10.1038/nmeth.1681 1056 

38.  Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, et al. Epigenome-1057 

wide scans identify differentially methylated regions for age and age-related 1058 

phenotypes in a healthy ageing population. PLoS Genet. 2012;8. 1059 

doi:10.1371/journal.pgen.1002629 1060 

39.  McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, et al. 1061 

Contribution of genetic variation to transgenerational inheritance of DNA 1062 

methylation. Genome Biol. 2014;15: R73. doi:10.1186/gb-2014-15-5-r73 1063 

40.  Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. Genes 1064 

mirror geography within Europe. Nature. 2008;456: 98–101. 1065 

doi:10.1038/nature07566 1066 

41.  Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick N, Reich D. 1067 

Principal components analysis corrects for stratification in genome-wide 1068 

association studies. Nat Genet. 2006;38: 904–909. doi:10.1038/ng1847 1069 

42.  Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A 1070 

unified mixed-model method for association mapping that accounts for multiple 1071 

levels of relatedness. Nat Genet. 2006;38: 203–8. doi:10.1038/ng1702 1072 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47

43.  Tung J, Zhou X, Alberts SC, Stephens M, Gilad Y. The genetic architecture of 1073 

gene expression levels in wild baboons. eLife. 2015;4: 1–22. 1074 

doi:10.7554/eLife.04729 1075 

44.  Turner L, Harr B. Genome-wide mapping in a house mouse hybrid zone 1076 

reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife. 2014;3: 1077 

e02504. doi:10.7554/eLife.02504 1078 

45.  Tung J, Barreiro LB, Johnson ZP, Hansen KD, Michopoulos V, Toufexis D, et 1079 

al. Social environment is associated with gene regulatory variation in the 1080 

rhesus macaque immune system. Proc Natl Acad Sci. 2012;109: 6490–5. 1081 

doi:10.1073/pnas.1202734109 1082 

46.  Orozco LD, Morselli M, Rubbi L, Guo W, Go J, Shi H, et al. Epigenome-Wide 1083 

Association of Liver Methylation Patterns and Complex Metabolic Traits in 1084 

Mice. Cell Metab. Elsevier Inc.; 2015;21: 905–917. 1085 

doi:10.1016/j.cmet.2015.04.025 1086 

47.  Zhao K, Lu Z-X, Park JW, Zhou Q, Xing Y. GLiMMPS: Robust statistical model 1087 

for regulatory variation of alternative splicing using RNA-seq data. Genome 1088 

Biol. BioMed Central Ltd; 2013;14: R74. doi:10.1186/gb-2013-14-7-r74 1089 

48.  Schmitz RJ, Schultz MD, Urich M, Nery JR, Pelizzola M, Libiger O, et al. 1090 

Patterns of population epigenomic diversity. Nature. 2013; 1091 

doi:10.1038/nature11968 1092 

49.  Platt A, Gugger PF, Pellegrini M, Sork VL. Genome-wide signature of local 1093 

adaptation linked to variable CpG methylation in oak populations. Mol Ecol. 1094 

2015;1: n/a–n/a. doi:10.1111/mec.13230 1095 

50.  Heyn H, Moran S, Hernando-herraez I, Res G, Sayols S, Gomez A, et al. DNA 1096 

methylation contributes to natural human variation DNA methylation 1097 

contributes to natural human variation. 2013; 1363–1372. 1098 

doi:10.1101/gr.154187.112 1099 

51.  Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, et 1100 

al. Epigenetic and genetic influences on DNA methylation variation in maize 1101 

populations. Plant Cell. 2013;25: 2783–97. doi:10.1105/tpc.113.114793 1102 

52.  Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, et al. Analysis 1103 

of DNA methylation in a three-generation family reveals widespread genetic 1104 

influence on epigenetic regulation. PLoS Genet. 2011;7: e1002228. 1105 

doi:10.1371/journal.pgen.1002228 1106 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 48

53.  Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA 1107 

methylation signatures link prenatal famine exposure to growth and 1108 

metabolism. Nat Commun. 2014;5: 1–13. doi:10.1038/ncomms6592 1109 

54.  Wong CCY, Caspi A, Williams B, Craig IW, Houts R, Ambler A, et al. A 1110 

longitudinal study of epigenetic variation in twins. Epigenetics. 2010;5: 516–1111 

526. doi:10.4161/epi.5.6.12226 1112 

55.  Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, et al. Neonatal 1113 

DNA methylation profile in human twins is specified by a complex interplay 1114 

between intrauterine environmental and genetic factors, subject to tissue-1115 

specific influence. Genome Res. 2012; doi:10.1101/gr.136598.111 1116 

56.  Zhou X, Carbonetto P, Stephens M. Polygenic Modeling with Bayesian Sparse 1117 

Linear Mixed Models. PLoS Genet. 2013;9. doi:10.1371/journal.pgen.1003264 1118 

57.  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for 1119 

differential expression analysis of digital gene expression data. Bioinformatics. 1120 

2010;26: 139–40. doi:10.1093/bioinformatics/btp616 1121 

58.  Anders S, Huber W. Differential expression analysis for sequence count data. 1122 

Genome Biol. BioMed Central Ltd; 2010;11: R106. doi:10.1186/gb-2010-11-1123 

10-r106 1124 

59.  Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al. 1125 

Comprehensive evaluation of differential gene expression analysis methods 1126 

for RNA-seq data. Genome Biol. 2013;14: R95. doi:10.1186/gb-2013-14-9-r95 1127 

60.  Robinson MD, Smyth GK. Moderated statistical tests for assessing differences 1128 

in tag abundance. Bioinformatics. 2007;23: 2881–2887. 1129 

doi:10.1093/bioinformatics/btm453 1130 

61.  Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al. 1131 

Understanding mechanisms underlying human gene expression variation with 1132 

{RNA} sequencing. Nature. 2010;464: 768–772.  1133 

62.  Knowles DA, Davis JR, Raj A, Zhu X, Potash JB, Myrna M, et al. Allele-1134 

specific expression reveals interactions between genetic variation and 1135 

environment. bioRxiv. 2015; doi:http://dx.doi.org/10.1101/025874 1136 

63.  McCulloch CE, Searle SR, Neuhaus JM. Generalized, Linear, and Mixed 1137 

Models. New York, NY, USA: Wiley-Interscience; 2008.  1138 

64.  Bolker BMB, Brooks MEM, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, 1139 

et al. Generalized linear mixed models: a practical guide for ecology and 1140 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49

evolution. Trends Ecol Evol. 2009;24: 127–135. 1141 

doi:10.1016/j.tree.2008.10.008 1142 

65.  Pinheiro JC, Chao EC. Efficient Laplacian and Adaptive Gaussian Quadrature 1143 

Algorithms for Multilevel Generalized Linear Mixed Models. J Comput Graph 1144 

Stat. 2006;15: 58–81. doi:10.1198/106186006X96962 1145 

66.  Breslow NE, Clayton DG. Approximate inference in generalized linear mixed 1146 

models. J Am Stat Assoc. 1993;88: 9–25.  1147 

67.  Goldstein H. Nonlinear multilevel models, with an application to discrete 1148 

response data. Biometrika. 1991;78: 45–51.  1149 

68.  Goldstein H, Rasbash J. Improved approximations for multilevel models with 1150 

binary responses. J R Stat Soc Ser A. 1996;159: 505–513.  1151 

69.  Rodriguez G, Goldman N. Improved estimation procedures for multilevel 1152 

models with binary response: {A} case-study. J R Stat Soc Ser A. 2001;164: 1153 

339–355.  1154 

70.  Browne WJ, Draper D. A comparison of {B}ayesian and likelihood-based 1155 

methods for fitting multilevel models. Bayesian Anal. 2006;3: 473–514.  1156 

71.  Jang W, Lim J. A numerical study of {PQL} estimation biases in generalized 1157 

linear mixed models under heterogeneity of random effects. Commun Stat - 1158 

Simul Comput. 2009;38: 692–702.  1159 

72.  Fong Y, Rue H, Wakefield J. Bayesian inference for generalized linear mixed 1160 

models. Biostatistics. 2010;11: 397–412.  1161 

73.  Schwartz L. On Bayes procedures. Z Wahrscheinlichkeitstheorie. 1965;4: 10–1162 

26. doi:10.1007/BF00535479 1163 

74.  Frühwirth-Schnatter S, Frühwirth R, Held L, Rue H. Improved auxiliary mixture 1164 

sampling for hierarchical models of non-Gaussian data. Stat Comput. 2009;19: 1165 

479–492. doi:10.1007/s11222-008-9109-4 1166 

75.  Scott SL. Data augmentation, frequentist estimation, and the Bayesian 1167 

analysis of multinomial logit models. Stat Pap. 2011;52: 87–109. 1168 

doi:10.1007/s00362-009-0205-0 1169 

76.  Fruhwirth-Schnatter S, Fruhwirth R. Data augmentation and MCMC for binary 1170 

and multinomial logit models. In: Kneib T, Tutz G, editors. Statistical Modelling 1171 

and Regression Structures: Festschrift in Honour of Ludwig Fahrmeir. New 1172 

York: Springer; 2010. pp. 111–132. doi:10.1007/978-3-7908-2413-1 1173 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50

77.  Pirinen M, Donnelly P, Spencer CC. Efficient computation with a linear mixed 1174 

model on large-scale data sets with applications to genetic studies. Ann Appl 1175 

Stat. 2013;7: 369–390. doi:10.1214/12-AOAS586 1176 

78.  Hadfield JD. MCMC methods for multi-response generalized linear mixed 1177 

models: the MCMCglmm R package. J Stat Softw. 2010;33: 1–22.  1178 

79.  Landau DA, Clement K, Ziller MJ, Boyle P, Fan J, Gu H, et al. Locally 1179 

Disordered Methylation Forms the Basis of Intratumor Methylome Variation in 1180 

Chronic Lymphocytic Leukemia. Cancer Cell. Elsevier Inc.; 2014;26: 813–825. 1181 

doi:10.1016/j.ccell.2014.10.012 1182 

80.  Plongthongkum N, van Eijk KR, de Jong S, Wang T, Sul JH, Boks MPM, et al. 1183 

Characterization of Genome-Methylome Interactions in 22 Nuclear Pedigrees. 1184 

PLoS One. 2014;9: e99313. doi:10.1371/journal.pone.0099313 1185 

81.  Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C, et al. Genomic distribution 1186 

and Inter-Sample variation of Non-CpG methylation across human cell types. 1187 

PLoS Genet. 2011;7. doi:10.1371/journal.pgen.1002389 1188 

82.  Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, et al. 1189 

Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. 1190 

Nature. 2011;480: 245–9. doi:10.1038/nature10555 1191 

83.  Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally 1192 

induced transgenerational environmental reprogramming of metabolic gene 1193 

expression in mammals. Cell. Elsevier Inc.; 2010;143: 1084–96. 1194 

doi:10.1016/j.cell.2010.12.008 1195 

84.  Murria R, Palanca S, Juan I De, Egoavil C, Alenda C, García-casado Z, et al. 1196 

Methylation of tumor suppressor genes is related with copy number 1197 

aberrations in breast cancer. Am J Cancer Res. 2015;5: 375–385.  1198 

85.  Lockett G a., Kucharski R, Maleszka R. DNA methylation changes elicited by 1199 

social stimuli in the brains of worker honey bees. Genes, Brain Behav. 1200 

2012;11: 235–242. doi:10.1111/j.1601-183X.2011.00751.x 1201 

86.  Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, et al. 1202 

Genome-wide association study of 107 phenotypes in Arabidopsis thaliana 1203 

inbred lines. Nature. 2010;465: 627–631. doi:10.1038/nature08800 1204 

87.  Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, et al. 1205 

Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana 1206 

accessions from the RegMap panel. Nat Genet. 2012;44: 212–216. 1207 

doi:10.1038/ng.1042 1208 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 51

88.  Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE. Gene 1209 

expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate 1210 

a common underlying dormancy control mechanism. Plant J. 2006;46: 805–1211 

822. doi:10.1111/j.1365-313X.2006.02738.x 1212 

89.  Price AL, Zaitlen N a, Reich D, Patterson N. New approaches to population 1213 

stratification in genome-wide association studies. Nat Rev Genet. 2010;11: 1214 

459–463. doi:10.1038/nrg2813 1215 

90.  Altmann J, Alberts S, Haines S, Dubach J, Muruthi PM, Coote T, et al. 1216 

Behavior predicts genetic structure in a wild primate group. Proc Natl Acad 1217 

Sci. 1996;93: 5797–5801.  1218 

91.  Winnefeld M, Lyko F. The aging epigenome: DNA methylation from the cradle 1219 

to the grave. Genome Biol. 2012;13: 165. doi:10.1186/gb4033 1220 

92.  Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, et al. 1221 

Differential DNA methylation with age displays both common and dynamic 1222 

features across human tissues that are influenced by CpG landscape. 1223 

Genome Biol. 2013;14: R102. doi:10.1186/gb-2013-14-9-r102 1224 

93.  Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels 1225 

JL, et al. Aging and environmental exposures alter tissue-specific DNA 1226 

methylation dependent upon CPG island context. PLoS Genet. 2009;5. 1227 

doi:10.1371/journal.pgen.1000602 1228 

94.  Rakyan VK, Down TA, Maslau S, Andrew T, Yang T, Beyan H, et al. Human 1229 

aging-associated DNA hypermethylation occurs preferentially at bivalent 1230 

chromatin domains. Genome Res. 2010;4: 434–439.  1231 

95.  Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, 1232 

et al. Increased methylation variation in epigenetic domains across cancer 1233 

types. Nat Genet. Nature Publishing Group; 2011;43: 768–75. 1234 

doi:10.1038/ng.865 1235 

96.  Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky 1236 

M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. 1237 

Nature. 2015;518: 317–330. doi:10.1038/nature14248 1238 

97.  Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis C, Doyle F, et al. An 1239 

integrated encyclopedia of DNA elements in the human genome. Nature. 1240 

2012;489: 57–74. doi:10.1038/nature11247 1241 

98.  Murgatroyd C, Patchev A V, Wu Y, Micale V, Bockmühl Y, Fischer D, et al. 1242 

Dynamic DNA methylation programs persistent adverse effects of early-life 1243 

stress. Nat Neurosci. 2009;12: 1559–66. doi:10.1038/nn.2436 1244 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52

99.  Ikegame T, Bundo M, Murata Y, Kasai K, Kato T, Iwamoto K. DNA methylation 1245 

of the BDNF gene and its relevance to psychiatric disorders. J Hum Genet. 1246 

2013;58: 434–8. doi:10.1038/jhg.2013.65 1247 

100.  Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A. Resilience to 1248 

social stress coincides with functional DNA methylation of the CRF gene in 1249 

adult mice. Nat Neurosci. 2010;13: 1351–3. doi:10.1038/nn.2642 1250 

101.  Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. 1251 

Factors underlying variable DNA methylation in a human community cohort. 1252 

Proc Natl Acad Sci. 2012;109: 17253–60. doi:10.1073/pnas.1121249109 1253 

102.  Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and 1254 

implications. Nat Rev Genet. 2011;13: 97–109. doi:10.1038/nrg3142 1255 

103.  Shi J, Marconett CN, Duan J, Hyland PL, Li P, Wang Z, et al. Characterizing 1256 

the genetic basis of methylome diversity in histologically normal human lung 1257 

tissue. Nat Commun. 2014;5: 3365. doi:10.1038/ncomms4365 1258 

104.  The International HapMap Consortium. The International HapMap Project. 1259 

Nature. 2003;426: 789–796. doi:10.1038/nature02168 1260 

105.  Cann H, Toma D, Cazes L, Legrand M, Morel V, Piouffre L, et al. A human 1261 

genome diversity cell line panel. Science. 2002;296: 261–2. 1262 

doi:http://dx.doi.org/10.1108/17506200710779521 1263 

106.  The 1000 Genomes Project Consortium. An integrated map of genetic 1264 

variation from 1,092 human genomes. Nature. 2012;135: 0–9. 1265 

doi:10.1038/nature11632 1266 

107.  Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, et al. 1267 

A high-resolution association mapping panel for the dissection of complex 1268 

traits in mice. Genome Res. 2010; 281–290. doi:10.1101/gr.099234.109 1269 

108.  Weigel D, Mott R. The 1001 genomes project for Arabidopsis thaliana. 1270 

Genome Biol. 2009;10: 107. doi:10.1186/gb-2009-10-5-107 1271 

109.  Quon G, Lippert C, Heckerman D, Listgarten J. Patterns of methylation 1272 

heritability in a genome-wide analysis of four brain regions. Nucleic Acids Res. 1273 

2013;41: 2095–2104. doi:10.1093/nar/gks1449 1274 

110.  Akalin A, Kormaksson M. methylKit: a comprehensive R package for the 1275 

analysis of genome-wide DNA methylation profiles. Genome Biol. BioMed 1276 

Central Ltd; 2012;13: R87. doi:10.1186/gb-2012-13-10-R87 1277 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53

111.  Hansen K, Langmead B, Irizarry R. BSmooth�: from whole genome bisulfite 1278 

sequencing reads to differentially methylated regions. Genome Biol. BioMed 1279 

Central Ltd; 2012;13: R83. doi:10.1186/gb-2012-13-10-R83 1280 

112.  Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. 1281 

Characterizing the genetic basis of transcriptome diversity through RNA-1282 

sequencing of 922 individuals. Genome Res. 2014;24: 14–24. 1283 

doi:10.1101/gr.155192.113 1284 

113.  Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, et al. 1285 

Analyses of allele-specific gene expression in highly divergent mouse crosses 1286 

identifies pervasive allelic imbalance. Nat Genet. 2015;47: 353–360. 1287 

doi:10.1038/ng.3222 1288 

114.  Pickrell JJK, Marioni JJC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al. 1289 

Understanding mechanisms underlying human gene expression variation with 1290 

RNA sequencing. Nature. 2010;464: 768–772. 1291 

doi:10.1038/nature08872.Understanding 1292 

115.  Skelly D, Johansson M, Madeoy J, Wakefield J, Akey JM. A powerful and 1293 

flexible statistical framework for testing hypotheses of allele-specific gene 1294 

expression from RNA-seq data. Genome Res. 2011;21: 1728–1737. 1295 

doi:10.1101/gr.119784.110 1296 

116.  Harvey C, Moyebrailean G, Davis O, Wen X, Luca F, Pique-Regi R. QuASAR: 1297 

Quantitative allele specific analysis of reads. Bioinformatics. 2014; 1–7. 1298 

doi:10.1101/007492 1299 

117.  Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, et al. 1300 

Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat 1301 

Genet. 2012;44: 1084–1089. doi:10.1038/ng.2394 1302 

118.  Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide 1303 

association studies without the need for cell-type composition. Nat Methods. 1304 

2014;11: 309–11. doi:10.1038/nmeth.2815 1305 

119.  Alberts SC, Altmann J. The Amboseli Baboon Research Project: 40 years of 1306 

continuity and change. In: Kappeler P, Watts DP, editors. Long-Term Field 1307 

Studies of Primates. New York: Springer; 2012. pp. 261–288.  1308 

120.  Altmann J, Altmann S, Hausfater G. Physical maturation and age estimates of 1309 

yellow baboons, Papio cynocephalus, in Amboseli National Park, Kenya. Am J 1310 

Primatol. 1981;1: 389–399. doi:10.1002/ajp.1350010404 1311 

121.  Buchan JC, Alberts SC, Silk JB, Altmann J. True paternal care in a multi-male 1312 

primate society. Nature. 2003;425: 179–81. doi:10.1038/nature01866 1313 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 54

122.  Alberts SC, Buchan JC, Altmann J. Sexual selection in wild baboons: from 1314 

mating opportunities to paternity success. Anim Behav. 2006;72: 1177–1196. 1315 

doi:10.1016/j.anbehav.2006.05.001 1316 

123.  Lynch M, Ritland K. Estimation of pairwise relatedness with molecular 1317 

markers. Genetics. 1999;152: 1753–1766.  1318 

124.  Wang J. COANCESTRY: a program for simulating, estimating and analysing 1319 

relatedness and inbreeding coefficients. Mol Ecol Resour. 2011;11: 141–5. 1320 

doi:10.1111/j.1755-0998.2010.02885.x 1321 

125.  Tung J, Primus A, Bouley AJ, Severson TF, Alberts SC, Wray G. Evolution of 1322 

a malaria resistance gene in wild primates. Nature. 2009;460: 388–91. 1323 

doi:10.1038/nature08149 1324 

126.  Tung J, Akinyi MY, Mutura S, Altmann J, Wray G, Alberts SC. Allele-specific 1325 

gene expression in a wild nonhuman primate population. Mol Ecol. 2011;20: 1326 

725–39. doi:10.1111/j.1365-294X.2010.04970.x 1327 

127.  Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina 1328 

sequence data. Bioinformatics. 2014;30: 2114–2120. 1329 

doi:10.1093/bioinformatics/btu170 1330 

128.  Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. 1331 

BMC Bioinformatics. 2009;10: 232. doi:10.1186/1471-2105-10-232 1332 

129.  Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth. New York, 1333 

NY: Springer; 2002.  1334 

130.  Hastie T, Tibshirani R, Narasimhan B, Chu G. Impute: imputation for 1335 

microarray data. R package version 1.42.0. 2015.  1336 

131.  Johnson KC, Koestler DC, Cheng C, Christensen BC. Age-related DNA 1337 

methylation in normal breast tissue and its relationship with invasive breast 1338 

tumor methylation. Epigenetics. 2014;9: 268–275. doi:10.4161/epi.27015 1339 

132.  Law C, Chen Y, Shi W, Smyth G. Voom! Precision weights unlock linear model 1340 

analysis tools for RNA-seq read counts. Melbourne, Australia; 2013.  1341 

133.  Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 1342 

2015. Nucleic Acids Res. 2014;43: D662–D669. doi:10.1093/nar/gku1010 1343 

134.  Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, et al. 1344 

The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 1345 

2014;42: 764–770. doi:10.1093/nar/gkt1168 1346 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 55

135.  Hernando-Herraez I, Prado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, 1347 

Hvilsom C, et al. Dynamics of DNA methylation in recent human and great ape 1348 

evolution. PLoS Genet. 2013;9: e1003763. doi:10.1371/journal.pgen.1003763 1349 

136.  Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six 1350 

months exercise intervention influences the genome-wide DNA methylation 1351 

pattern in human adipose tissue. PLoS Genet. 2013;9: e1003572. 1352 

doi:10.1371/journal.pgen.1003572 1353 

137.  Slieker RC, Bos SD, Goeman JJ, Bovée JV, Talens RP, van der Breggen R, et 1354 

al. Identification and systematic annotation of tissue-specific differentially 1355 

methylated regions using the Illumina 450k array. Epigenetics Chromatin. 1356 

2013;6: 26. doi:10.1186/1756-8935-6-26   1357 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 56

Supplementary Figure 1. In a real WGBS dataset (from Arabidopsis) and a real 1358 

RRBS dataset (from yellow baboons), coverage varies widely across CpG sites 1359 

and individuals. For each CpG site represented in each data set (n=433,871 for 1360 

baboon and n=830,676 for Arabidopsis), we calculated the mean site-specific 1361 

coverage across individuals, as well as the standard deviation of coverage values for 1362 

those sites. The distribution of these values are are shown for the baboon RRBS 1363 

dataset (A-B, in blue) and the Arabidopis WGBS dataset (C-D, in green). Average 1364 

coverage values are depicted in A and C, and coverage standard deviation values 1365 

are depicted in B and D.  1366 

 1367 

Supplementary Figure 2. MACAU p-values are consistent across runs. QQ-1368 

plots comparing the p-value distributions for 3 independent runs of MACAU on the 1369 

same data sets, with different simulated heritability values (Panels A, D - h2 = 0; 1370 

Panels B, E - h2 = 0.3; Panels C, F - h2 = 0.6). Pairwise correlations between each 1371 

independent run were R > 0.95 for h2 = 0:,R > 0.97 for h2 = 0.3; and R > 0.98 for h2 = 1372 

0.6. Distributions shown are for analyses of simulated secondary dormancy effects 1373 

on DNA methylation levels in the Arabidopsis data set (4000 sites, n=24 1374 

accessions).  1375 

 1376 

Supplementary Figure 3. MACAU results are robust to prior perturbation. QQ-1377 

plots comparing the results from MACAU implemented with an uninformative prior 1378 

(σ2 ~ U(0,1), as in the main text, x-axis) versus an alternative prior (log(σ2) ~ U(0,1), 1379 

y-axis). All analyses tested for age effects on DNA methylation levels in a simulated 1380 

baboon data (based on properties of the real baboon RRBS data and age 1381 

information). Sample sizes and heritabilities are shown on each plot, as are the 1382 

results from a Kolmogorov-Smirnov test comparing the two distributions represented 1383 

in each plot. In all cases, the simulated percent variance explained by age was set to 1384 

10%. The number of age-associated sites detected in each analysis were identical 1385 

for all simulations where n=80 (10% empirical FDR), and very similar when n=50 1386 

(0.4-0.8% more age-associated sites were detected with the alternative prior than 1387 

with the uninformative prior). 1388 

 1389 

Supplementary Figure 4. The normal mixture provides an accurate 1390 

approximation to the negative log gamma distribution. (A) Density plot and (B) 1391 

quantile-quantile plots demonstrating that the normal mixture approximation 1392 

approximates –log(Ga(r, 1)) well even in the most difficult case when r=1. 1393 

Supplementary Figure 5. A binomial mixed model (BMM) implemented in 1394 

MACAU is more efficent than a BMM implemented in the software MCMCglmm. 1395 

(A) Computation time (in hours) is plotted for datasets containing varying numbers of 1396 

individuals, but each containing 100 sites. Computation time is plotted on a log10 1397 

scale in the main plot, and on a traditional scale in the inset. (B) Computation time 1398 

(in hours) is plotted for a dataset containing 150 individuals, but varying numbers of 1399 

sites (in thousands) as noted on the x-axis. All computation was performed on a 1400 

single core of an Intel Xeon L5420 2.50 GHz processor. 1401 
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 1402 

Supplementary Figure 6. Comparisons between methods when DNA 1403 

methylation levels are not heritable, and the predictor variable is binarized. To 1404 

include methods that can only analyze categorical differences in DNA methylation 1405 

levels between two groups, we binarized age values in our simulated RRBS 1406 

datasets (individuals below median age = young versus individuals above median 1407 

age = old). We compared the AUC of each method (open circles), as well as their 1408 

ability to detect true positives at a 10% FDR (closed circles). For these comparisons, 1409 

we used simulated datasets with a fixed h2 of 0 (n = 5000 sites including 500 true 1410 

positives and 4500 true negatives; percent variance explained by age varies as 1411 

noted in the panel headings). Results for simulations with (A) n = 50 or (B) n = 80 1412 

individuals are plotted below.  Note that the right-hand y axis for the proportion of 1413 

true positives detected varies depending on sample size. 1414 

Supplementary Figure 7. Comparisons between methods when DNA 1415 

methylation levels are heritable, and the predictor variable is binarized. To 1416 

include methods that can only analyze categorical differences in DNA methylation 1417 

levels between two groups, we binarized age values in our simulated RRBS 1418 

datasets (individuals below median age = young versus individuals above median 1419 

age = old). We compared the AUC of each method (open circles), as well as their 1420 

ability to detect true positives at a 10% FDR (closed circles). For these comparisons, 1421 

we used simulated datasets with a fixed sample size of 80 (n = 5000 sites including 1422 

500 true positives and 4500 true negatives; percent variance explained by age 1423 

varies as noted in the panel headings). Results for simulations with (A) h2 = 0.3 or 1424 

(B) h2 = 0.6 are plotted below.  1425 

 1426 

Supplementary Figure 8. MACAU outperforms linear mixed models 1427 

implemented after a variety of standard data transformation approaches. We 1428 

performed four different transformations on simulated baboon bisulfite sequencing 1429 

count data (n = 5000 sites including 500 true positives and 4500 true negatives; 1430 

percent variance explained by age = 10%; sample size = 80, h2 = 0.6). Below, we 1431 

use QQ-plots to compare the distribution of p-values produced by GEMMA 1432 

(operating on the transformed data) versus MACAU (analyzing the raw count data). 1433 

In all panels, the observed p-values are plotted against quantiles for the distribution 1434 

of p-values obtained from running each method (MACAU or GEMMA, respectively) 1435 

on permuted data. We also note the proportion of simulated true positives detected 1436 

by each approach (for comparison, MACAU detects 20.6% of simulated true 1437 

positives in the same dataset).  1438 

Supplementary Figure 9. Comparison across methods when DNA methylation 1439 

levels are not heritable. We compared the AUC of each method (open circles) and 1440 

their ability to detect true positives at a 10% FDR (closed circles). We did so using 1441 

simulated data sets (n = 5000 sites including 500 true positives and 4500 true 1442 

negatives; percent variance explained by age varies as noted in the panel 1443 

headings). For all simulations shown below, h2 was set to 0. (A) Results for 1444 
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simulations with n=20 individuals; (B) with n=50 individuals; and (C) with n=80 1445 

individuals. Note that the right-hand y axis for the proportion of true positives 1446 

detected varies depending on sample size. 1447 

Supplementary Figure 10. Secondary dormancy is correlated with population 1448 

structure in the Arabidopsis WGBS dataset. Principal components analysis on 1449 

188,093 genotyped sites with minor allele frequency >5% reveals that genetic 1450 

background is correlated with secondary dormancy values. The correlation between 1451 

the secondary dormancy phenotype values and the first principal component of the 1452 

genetic relatedness matrix is R2 = 0.38, p = 7.84 x 10-4 (n = 24). The first principal 1453 

component (PC1) explains 8.5% of the genetic variance in the data set. 1454 

 1455 

Supplementary Figure 11. A mixed modeling approach (implemented in 1456 

GEMMA) appropriately controls for genetic covariance in simulated and real 1457 

WGBS data. (A, B) The distribution of p-values for 4000 simulated true negative 1458 

sites (n = 24 accessions; effect of secondary dormancy on DNA methylation levels = 1459 

0). For each simulation, h2 was set to 0.3 (A) or 0.6 (B). Simulated data were 1460 

analyzed with a linear model or GEMMA, and compared against the expected 1461 

uniform distribution. (C) QQ-plots comparing the p-value distributions for (i) a model 1462 

testing for effects of secondary dormancy on DNA methylation levels in real WGBS 1463 

data, plotted on the y-axis; and (ii) the same model when the secondary dormancy 1464 

values were permuted across individuals, plotted on the x-axis. Here, the lack of 1465 

inflated test statistics in the case of the linear model is likely due to the model’s low 1466 

power (see Figure S12b, for n=25). The genomic control factor, λ, is shown for each 1467 

set of results.  1468 

 1469 

Supplementary Figure 12. A mixed modeling approach (implemented in 1470 

GEMMA) controls for genetic covariance in data sets that span a range of 1471 

sample sizes and levels of correlation between population structure and a 1472 

predictor variable of interest. Genomic control factor when simulated datasets 1473 

(n=5000 sites per dataset; h2 = 0.6) were analyzed with either (A) a linear model or 1474 

(B) a linear mixed model implemented in GEMMA. The correlation between the 1475 

simulated predictor variable and the first principal component of genome-wide 1476 

genotype data is plotted on the x-axis. 1477 

 1478 

Supplementary Figure 13. MACAU controls for genetic covariance in data sets 1479 

that span a range of sample sizes and levels of correlation between population 1480 

structure and a predictor variable of interest. Percent of dataset associated with 1481 

the predictor variable (at a 10% FDR) when simulated datasets (n=5000 sites per 1482 

dataset; h2 = 0.6) were analyzed with either (A) a beta-binomial model or (B) a 1483 

binomial mixed model implemented in MACAU. The correlation between the 1484 

simulated predictor variable and the first principal component of genome-wide 1485 

genotype data is plotted on the x-axis. 1486 

 1487 

Supplementary Figure 14. Distribution of pairwise relatedness values for 1488 

baboons (n=80) from a single social group, used in simulations. Approximately 1489 
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half of the individuals are unrelated, while a small proportion (~10%) are highly 1490 

related (i.e., related at the level of half siblings or higher, r = 0.25). 1491 

 1492 

Supplementary Figure 15. MACAU produces well-calibrated p-values when the 1493 

simulated effect of age is set to 0. Results from 4500 simulated sites, where we 1494 

set the effect of age on DNA methylation levels equal to 0 and the heritability of DNA 1495 

methylation levels equal to (A) 0, (B) 0.3, or (C) 0.6. All QQ-plots compare the 1496 

distribution of p-values produced by MACAU to the expected uniform distribution. 1497 

Supplementary Figure 16. MACAU provides increased power to detect age-1498 

associated sites when DNA methylation levels are heritable. We simulated age 1499 

effects on DNA methylation levels, in presence of genetic effects (panel A, h2 = 0.3; 1500 

panel B, h2 = 0.6) across a range of effect sizes. The proportion of true positives 1501 

detected at a 10% empirical FDR is plotted for each method (closed circles) as is the 1502 

AUC (open circles). For all simulations shown here, the sample size was set to 80 1503 

individuals. 1504 

Supplementary Figure 17. MACAU provides increased power to detect age-1505 

associated sites when DNA methylation levels are heritable. We simulated age 1506 

effects on DNA methylation levels in datasets of 500 (A-B) and 1000 individuals (C-1507 

D). For all simulations, we included genetic effects on DNA methylation levels 1508 

(panels A and C: h2 = 0.3; panels B and D: h2 = 0.6). Below, we show the proportion 1509 

of true positives detected at a 1% empirical FDR (closed circles) as well as the AUC 1510 

(open circles) for each method.  1511 

 1512 

Supplementary Figure 18. Distribution of sites covered in the baboon RRBS 1513 

dataset (n = 433,871 CpG sites). (A) Absolute number of sites analyzed for a given 1514 

genomic region. See Materials and Methods for information on how we defined each 1515 

genomic region. (B) Proportion of total annotated features in the baboon genome for 1516 

which a least one CpG site was analyzed in this data set. 1517 

Supplementary Figure 19. DNA methylation patterns in the baboon RRBS data 1518 

. (A) The distributions of bisulfite conversion rates (estimated from a spike-in sample 1519 

of unmethylated lambda phage DNA) and proportions of reads starting or ending 1520 

with an Msp1 digest site, for each sample. (B) Barplots showing the distribution of 1521 

DNA methylation levels by genomic compartment. As expected, CpG islands, 1522 

H3K3me1-marked enhancers and promoters tend to be lowly methylated, while 1523 

gene bodies and the background set of all sites analyzed tend to be 1524 

hypermethylated. See [1] for similar results from a human RRBS dataset. (C) For 1525 

each CpG site within 5000 bp of an annotated Ensembl TSS, we calculated the 1526 

mean DNA methylation level at that site across all 50 baboons. These mean levels 1527 

are plotted as a smoothed function of distance from the TSS, stratified by gene 1528 

expression level quartiles obtained from baboon whole blood RNA-seq [2]. As 1529 

expected, more highly methylated regions are associated with more lowly expressed 1530 

genes. Only expressed genes were included. 1531 
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Supplementary Figure 20. Distribution of p-values from four different methods 1532 

for the real RRBS data. QQ-plots comparing the p-value distributions for (i) a model 1533 

testing for effects of age on DNA methylation levels in real RRBS data, plotted on 1534 

the y-axis; and (ii) the same model when the age values were permuted across 1535 

individuals, plotted on the x-axis. For each method, the number of sites detected at a 1536 

10% FDR was as follows: Beta-binomial = 747, GEMMA = 205, Linear 324, MACAU 1537 

= 1018.  1538 

 1539 

Supplementary Figure 21. MACAU detects differentially methylated regions in 1540 

the baboon genome. Using the criteria of [3], we detected 142 age-related DMRs. 1541 

Two representative DMRs are plotted in panels A and B (location of DMR in panel A: 1542 

Chr14, 908111-908168; and panel B: Chr 20: 996106-996139; see Table S5 for the 1543 

locations of additional DMRs). To detect DMRs, baboon ages were binarized into 1544 

two categories, based on whether an individual’s age fell above or below the median 1545 

age in our sample. Smoothed estimates of DNA methylation levels are shown for 1546 

each age group, and the location of measured CpG sites are noted along the x-axis 1547 

by black dots. Panel C shows the proportion of all identified DMRs that fell in a CpG 1548 

island, CpG island shore, or both. 1549 

Supplementary Figure 22. Sites identified by MACAU are consistently enriched 1550 

near genes identified as age-associated in the same population. For each 1551 

method below, we asked whether CpG sites that occur near age-associated genes 1552 

(identified using RNA-seq data from [2]) were more likely to be differentially 1553 

methylated with age compared to the background set of all CpG sites near genes 1554 

(using a Fisher’s exact test). We report the enrichment observed and show whether 1555 

the p-value associated with the Fisher’s exact test (FET) was below 0.05 (triangles). 1556 

We repeated this analysis using a varying number of top CpG sites from each 1557 

method, with the number for each analysis shown on the x-axis. Dotted vertical lines 1558 

correspond to the number of sites detected by MACAU at a 10% empirical FDR (a 1559 

more conservative approach), or at a 10% FDR calculated in the R package qvalue 1560 

[4] (a less conservative approach). 1561 

Supplementary Figure 23. MACAU is robust to error in the estimation of 1562 

pairwise genetic relatedness. To understand how the performance of MACAU 1563 

varies when there is error in the estimation of pairwise genetic relatedness, we 1564 

added random error drawn from a normal distribution with mean 0 and standard 1565 

deviation as shown on the x-axis. We then reran our analyses of simulated data sets 1566 

with varying heritabilities (as shown in the figure legend inset) where n=80 and 1567 

percent variance explained by age=10%. For each analysis, we show the number of 1568 

simulated true positives detected by MACAU at a 10% empirical FDR (note that the 1569 

results from our original analyses, with no error in the estimation of pairwise genetic 1570 

relatedness, corresponds to the results for SD = 0 on the x-axis).   1571 

Supplementary Figure 24. MACAU outperforms the linear modeling approach 1572 

implemented in ‘voom + limma’. We tested the performance of a commonly used 1573 

method for modeling RNA-seq data: the combination of the voom function for data 1574 
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weighting with limma, a linear model approach [5]. We used simulated baboon 1575 

bisulfite sequencing count data where the percent variance explained by age = 10%, 1576 

sample size = 80, and h2 = 0.6 (n = 5000 sites including 500 true positives and 4500 1577 

true negatives). QQ-plots show the results for both the voom + limma approach 1578 

(purple), as well as results from the same dataset using MACAU (orange). QQ-plots 1579 

compare the p-value distributions for (i) a model testing for the effect of age on DNA 1580 

methylation levels, plotted on the y-axis; and (ii) the same model when the age 1581 

values were permuted across individuals, plotted on the x-axis (i.e., the null 1582 

distribution of p-values). MACAU detects 20.6% of simulated true positives at a 10% 1583 

FDR, while the voom + limma approach detects less than 1% of simulated true 1584 

positives.  1585 

 1586 

Table S1. Normal Mixture Approximations to -log(Ga(r, 1)) for r in [1, 5]. Normal 1587 

mixture approximations to -log(Ga(r, 1)) for r in [1, 5]. A separate normal mixture 1588 

distribution is used to approximate each negative log gamma distribution. The 1589 

estimated parameters in the normal mixture distribution ensure that the Kullback-1590 

Leibler (KL) divergence between the two distributions is below 5x10-4. The 1591 

parameters in the normal mixture distribution include the number of normal 1592 

components (k), their weights (w), means (m) and variances (σ2). Means and 1593 

variances are shown in their standardized version, where Ψ(r) denotes the 1594 

diagamma function and Ψ’(r) denotes the trigamma function. 1595 

 1596 

Table S2. Normal Mixture Approximations to -log(Ga(r, 1)) for r in [6, 170]. 1597 

Normal mixture approximations to -log(Ga(r, 1)) for r in [6, 170]. A separate normal 1598 

mixture distribution is used to approximate each negative log gamma distribution. 1599 

The estimated parameters in the normal mixture distribution ensure that the 1600 

Kullback-Leibler (KL) divergence between the two distributions is below 5x10-4. The 1601 

parameters in the normal mixture distribution include the number of normal 1602 

components (k), their weights (w), means (m) and variances (σ2), all of which are 1603 

functions of r. Means and variances are shown in their standardized version, where 1604 

Ψ(r) denotes the diagamma function and Ψ’(r) denotes the trigamma function. 1605 

 1606 

Table S3. Computation times for each method on the two real datasets. 1607 

Computation was performed on a single core of an Intel Xeon L5420 2.50 GHz 1608 

processor. n = number of individuals; m = number of sites. 1609 

 1610 

Table S4. Baboon RRBS dataset sample characteristics and read mapping 1611 

summary. 1612 

 1613 

Table S5. Locations of identified age-DMRs in the baboon genome. 1614 

Supplementary References 1615 

1.  Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, et al. Double restriction-enzyme 1616 

digestion improves the coverage and accuracy of genome-wide CpG 1617 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


 62

methylation profiling by reduced representation bisulfite sequencing. BMC 1618 

Genomics. 2013;14: 11. doi:10.1186/1471-2164-14-11 1619 

2.  Tung J, Zhou X, Alberts SC, Stephens M, Gilad Y. The genetic architecture of 1620 

gene expression levels in wild baboons. eLife. 2015;4: 1–22. 1621 

doi:10.7554/eLife.04729 1622 

3.  Slieker RC, Bos SD, Goeman JJ, Bovée JV, Talens RP, van der Breggen R, et 1623 

al. Identification and systematic annotation of tissue-specific differentially 1624 

methylated regions using the Illumina 450k array. Epigenetics Chromatin. 1625 

2013;6: 26. doi:10.1186/1756-8935-6-26 1626 

4.  Dabney A, Storey J. qvalue: Q-value estimation for false discovery rate 1627 

control. R package version 1.43.0. 2015.  1628 

5.  Law C, Chen Y, Shi W, Smyth G. Voom! Precision weights unlock linear model 1629 

analysis tools for RNA-seq read counts. Melbourne, Australia; 2013.  1630 

 1631 

 1632 

 1633 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/

