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Abstract 

Motivation 

Genome-wide association study (GWAS) has been a great success in the past decade. 

However, significant challenges still remain in both identifying new risk loci and 

interpreting results. Bonferroni-corrected significance level is known to be conservative, 

leading to insufficient statistical power when the effect size is moderate at risk locus. 

Complex structure of linkage disequilibrium also makes it challenging to separate causal 

variants from nonfunctional ones in large haplotype blocks. 

Results 

We describe GenoWAP, a post-GWAS prioritization method that integrates genomic 

functional annotation and GWAS test statistics. The effectiveness of GenoWAP is 

demonstrated through its applications to Crohn’s disease and schizophrenia using the 

largest studies available, where highly ranked loci show substantially stronger signals in 

the whole dataset after prioritization based on a subset of samples. At the single 

nucleotide polymorphism (SNP) level, top ranked SNPs after prioritization have both 

higher replication rates and consistently stronger enrichment of eQTLs. Within each risk 

locus, GenoWAP is also able to distinguish functional sites from groups of correlated 

SNPs. 

Availability and Implementation 

GenoWAP is freely available on the web at http://genocanyon.med.yale.edu/GenoWAP 
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Introduction  

In the past ten years, genome-wide association studies (GWAS) have been designed and 

applied to identify disease genes for almost all complex diseases. As of January 15, 2015, 

15,216 single nucleotide polymorphisms (SNP) from over 2,000 publications have been 

documented in the GWAS Catalog (Hindorff, et al., 2009). Despite its great success in 

identifying disease-associated loci, scientists have noted several limitations of current 

GWAS approaches. First, although linkage disequilibrium (LD) is the basis of GWAS, it 

also hinders the interpretation of association results. Due to the complex LD structure 

among SNPs, it is the disease-associated haplotype blocks containing hundreds of 

thousands of nucleotides that are identified in GWASs. Therefore, the resolution of 

GWAS is not sufficient for distinguishing causal variants from a large group of correlated 

SNPs, especially in non-coding regions where the mechanism of genomic function is still 

largely unknown (Cooper and Shendure, 2011; Visscher, et al., 2012; Ward and Kellis, 

2012). Second, although Bonferroni-corrected significance threshold (e.g. 5×10!!) is 

widely accepted as the standard cutoff in GWAS analysis, it is well known that 

Bonferroni correction is too conservative when the number of hypotheses is large and 

there are many weak to moderate signals. In fact, for most complex diseases, numerous 

genomic loci are involved in disease etiology while each locus only has a moderate effect 

size. Therefore, studies based on high-throughput genomic scan may be underpowered if 

the sample size is not large enough. This has led to so-called missing heritability, which 

refers to the gap between the narrow-sense heritability estimated from twin/pedigree 

analysis and the proportion of the variance explained by significant SNPs identified from 

GWAS, that has been reported for many diseases (Manolio, et al., 2009; Witte, et al., 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2015. ; https://doi.org/10.1101/019539doi: bioRxiv preprint 

https://doi.org/10.1101/019539
http://creativecommons.org/licenses/by-nc-nd/4.0/


2014). One explanation of missing heritability is the insufficient statistical power to 

identify all the disease-associated SNPs (Eichler, et al., 2010). 

 

Variant prioritization techniques are crucial for post-GWAS analysis on different scales. 

Locally, it can reveal truly functional variants within each significant locus. Globally, 

signals at some loci can be enhanced if proper prior information is used. Many variant 

prioritization methods have been proposed (Hou and Zhao, 2013). Supervised-learning-

based statistical tools for predicting deleterious variants are probably the richest among 

available approaches. So far, most of the existing deleteriousness prediction tools only 

focus on protein-coding genes in the human genome. However, coding-region-based 

tools are not sufficient for post-GWAS prioritization because nearly 90% of the 

significant SNPs identified in GWAS reside in the non-coding genome (Hindorff, et al., 

2009). A few tools targeting non-coding variants have been proposed (Fu, et al., 2014; 

Kircher, et al., 2014; Ritchie, et al., 2014; Shihab, et al., 2015). Detailed comparisons of 

these methods were reviewed elsewhere (Cooper and Shendure, 2011; Wang, et al., 

2015). Unlike the extensively studied protein-altering variants, very few non-coding 

pathogenic variants have been revealed so far (Ward and Kellis, 2012). Therefore, 

existing non-coding variant prioritization tools based on supervised-learning may suffer 

from the potentially biased training data. Their performance in post-GWAS prioritization 

remains to be further investigated. Finally, although deleteriousness of a single SNP is 

crucial for identifying causal variants, it does not provide all the information needed in 

post-GWAS prioritization, where each SNP in GWAS also carries information of nearby 

variants that are not genotyped. A better informed post-GWAS prioritization method 
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should be able to measure the functional potential for the surrounding region of each 

genotyped marker.  

 

Recently, Lu et al. developed GenoCanyon, a statistical framework to predict functional 

non-coding regions in the human genome through integrated analysis of multiple 

biochemical signals and genomic conservation measures (Lu, et al., 2015). Its 

unsupervised-learning framework makes GenoCanyon suffer less from our limited 

knowledge of non-coding genome. Moreover, since the resolution of its functional 

prediction is at the nucleotide level, it is possible to use GenoCanyon scores to evaluate 

the surrounding region of each genotyped SNP. In this paper, we propose GenoWAP 

(Genome Wide Association Prioritizer), a post-GWAS prioritization method that 

integrates GenoCanyon functional prediction and GWAS p-values. We apply the method 

on two smaller GWASs of Crohn’s disease and schizophrenia, respectively, to prioritize 

SNPs. The performance is evaluated using the results from large GWAS meta-analyses of 

these two diseases. Compared to the top loci ranked on p-values only, top ranked loci 

after prioritization tend to show substantially stronger signals in large GWAS studies. 

Within each locus, GenoWAP is able to distinguish true signals among highly correlated 

SNPs. The method has the potential to reduce noises caused by LD and rescue marginal 

signals in GWASs with insufficient sample sizes.  

 

 

Methods 

Statistical model 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2015. ; https://doi.org/10.1101/019539doi: bioRxiv preprint 

https://doi.org/10.1101/019539
http://creativecommons.org/licenses/by-nc-nd/4.0/


For each SNP, we define 𝑍 to be the indicator of general functionality, and define 𝑍! to 

be the indicator of disease-specific functionality. More specifically, if a SNP or its 

surrounding region is active in any genomic functional pathway, then 𝑍 equals to 1. If 

this SNP or the surrounding region is involved in the disease pathway, then 𝑍! equals to 

1. For each SNP, we use 𝑝 to denote its p-value obtained from the standard GWAS 

analysis.  

 

The goal of post-GWAS prioritization is to assign each SNP a new score that measures 

its importance. A reasonable quantity is the conditional probability of being disease-

specific functional given the p-value, i.e. 𝑃(𝑍! = 1|𝑝). Using Bayes formula, we can 

rewrite the conditional probability as below: 

 

 
𝑃 𝑍! = 1 𝑝 =

𝑓(𝑝|𝑍! = 1)×𝑃(𝑍! = 1)
𝑓 𝑝 𝑍! = 1 ×𝑃 𝑍! = 1 + 𝑓(𝑝|𝑍! = 0)×𝑃(𝑍! = 0) (1) 

 

Based on the definitions of 𝑍 and 𝑍!, we know that the SNPs satisfying 𝑍! = 1 must be 

a subset of the SNPs satisfying 𝑍 = 1. This is because if a SNP is disease-specific 

functional, then it has to be functional in the general sense. Therefore, we get the 

following formula. 

 

 𝑃 𝑍! = 1 = 𝑃 𝑍 = 1,𝑍! = 1   

= 𝑃(𝑍! = 1|𝑍 = 1)×𝑃(𝑍 = 1) 
(2) 
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Therefore, in order to calculate the conditional probability 𝑃 𝑍! = 1 𝑝  for a marker, we 

need its prior probability of being functional, i.e. 𝑃(𝑍 = 1); we also need the p-value 

density for disease-specific functional markers, i.e. 𝑓(𝑝|𝑍! = 1), and the p-value density 

for markers that are not related to the disease, i.e. 𝑓(𝑝|𝑍! = 0); finally, we need an 

estimate for the conditional probability of being disease-specific functional given the 

marker is functional in the general sense, i.e. 𝑃(𝑍! = 1|𝑍 = 1). 

 

Estimation 

Recently, Lu et al. developed GenoCanyon, an unsupervised-learning-based statistical 

framework that predicts the functional potential for each nucleotide in the human genome 

(Lu, et al., 2015). For each SNP in our dataset, we use the mean GenoCanyon functional 

score of its surrounding 10,000 base pairs as the prior probability 𝑃(𝑍 = 1). Different 

from using variant-based annotation tools as the prior knowledge, this prior information 

not only measures the importance of the genotyped marker, but also evaluates its 

surrounding region where the ungenotyped causal variants may reside.  

 

Next, we partition all the SNPs into functional (Z = 1) and non-functional (Z = 0) 

subgroups based on the calculated mean GenoCanyon score with cutoff 0.1. Since the 

GenoCanyon functional score has a bimodal pattern, this partition is not sensitive to the 

cutoff choice. There are two major reasons why we do the partition. First, this can be 

viewed as a noise reduction step. After removing the non-functional markers, the signal 

pattern in the functional subgroup is amplified (Figure 1). The proportion of disease-

related markers in the remaining (functional) subgroup also increased, which leads to 
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more stable estimates in the following steps. Second, we can now empirically estimate 

the p-value density for non-functional markers, i.e. 𝑓(𝑝|𝑍 = 0). Since the p-values are 

acquired from a disease-specific case-control study, we assume that the p-values for 

markers that are not related to the disease should behave just like the p-values for 

markers that are not functional entirely. Mathematically, this assumption is characterized 

as the equation below. 

 

 𝑓 𝑝 𝑍! = 0 = 𝑓(𝑝|𝑍 = 0) (3) 

 

Based on this assumption, we can estimate 𝑓 𝑝 𝑍! = 0  using the p-values for SNPs in 

the non-functional subgroup. Notably, it may seem natural to assume 𝑝 𝑍! = 0  follows 

a uniform distribution. However, the p-value of a marker with 𝑍! = 0 can actually be 

driven by a nearby disease-related marker due to LD. The empirically estimated density 

can capture a certain amount of LD information, which is complex and non-trivial to 

model. Moreover, it is common to see some variants with low minor allele frequencies in 

GWAS samples. The p-values for these markers will form a spike near 1 in the p-value 

density. The empirically estimated density is also able to account for this artifact. We 

propose to use histogram for density estimation, because it has stable performance near 

the boundary. In fact, the p-value boundary near 0 is where the real signals reside, and the 

boundary near 1 occasionally has the artifact issue caused by rare variants. Histogram is 

able to capture both issues. Moreover, the sample size in this framework is the number of 

markers, which is usually large in GWAS studies. Therefore histogram is a reasonable 

choice for density estimation. The number of bins is chosen based on cross-validation. 
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It still remains to estimate the p-value density for disease-related markers 𝑓 𝑝 𝑍! = 1 , 

and the conditional probability 𝑃(𝑍! = 1|𝑍 = 1). Now, we partition the functional 

subgroup (𝑍 = 1) into finer subgroups. First, based on equation (3), it is straightforward 

to show that  

 

 𝑓 𝑝 𝑍 = 1,𝑍! = 0 = 𝑓(𝑝|𝑍! = 0) = 𝑓(𝑝|𝑍 = 0) (4) 

 

Therefore, the p-value density for functional markers is the following mixture. 

 

 𝑓 𝑝 𝑍 = 1 = 𝑃 𝑍! = 1 𝑍 = 1 ×𝑓 𝑝 𝑍 = 1,𝑍! = 1 + 𝑃 𝑍! = 0 𝑍 = 1 ×𝑓 𝑝 𝑍 = 1,𝑍! = 0   

= 𝑃 𝑍! = 1 𝑍 = 1 ×𝑓 𝑝 𝑍! = 1 + 𝑃 𝑍! = 0 𝑍 = 1 ×𝑓 𝑝   𝑍! = 0  
(5) 

 

In formula (5), 𝑓(𝑝|𝑍! = 0) has already been estimated in previous steps. We further 

assume a parametric form of 𝑓(𝑝|𝑍! = 1). In a recent work of Chung et al., they showed 

that beta distribution is a robust approximation of p-value distribution under some general 

assumptions of SNP effect size (Chung, et al., 2014). We adopt the same assumption. 

 

 𝑝 𝑍! = 1   ~  𝐵𝑒𝑡𝑎 𝛼, 1 , 0 < 𝛼 < 1  (6) 

 

The constraint 0 < 𝛼 < 1 guarantees that a smaller p-value is more likely to occur than a 

larger p-value. Then, we apply the EM algorithm on all the p-values in the functional 

subgroup. One advantage of beta distribution assumption is that each iteration in the EM 

algorithm has a closed-form expression. In this way, we acquire the estimates for both 
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𝑃(𝑍! = 1|𝑍 = 1) and 𝑃 𝑝 𝑍! = 1 . Then, all missing pieces in formula (1) have been 

estimated. We calculate the conditional probability 𝑃 𝑍! = 1 𝑝  for all the SNPs using 

these estimates. This quantity is referred to as the posterior score in this paper. 

 

 

Results 

Application to Crohn’s disease 

Several GWASs of different scales have been performed for Crohn’s disease. The largest 

GWAS meta-analysis, which identified 71 disease-associated loci, is one of the most 

successful GWASs to date (Franke, et al., 2010). We applied GenoWAP on a smaller 

Crohn’s disease GWAS conducted by the North American National Institute of Diabetes 

and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium, and tested the 

results using the large meta-analysis done by the International Inflammatory Bowel 

Disease Genetics Consortium (IIBDGC). Cohort information is listed in Supplementary 

Table 1. Details of both studies have also been reported previously (Franke, et al., 2010; 

Rioux, et al., 2007). It is worth noting that the samples in these two studies overlap with 

each other. However, the goal for this paper is not to replicate the detected signals in an 

independent cohort. Instead, we seek to better prioritize signals using only a small sample 

size. In order to test the performance, the results from the largest study available are used 

as the gold standard.  

 

For each SNP in the dataset, define 𝑝 to be the GWAS p-value, and define 𝑍! to be the 

indicator of disease-specific functionality. The posterior probability of being disease-
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specific functional, i.e. 𝑃(𝑍! = 1|𝑝), is used to prioritize SNPs (See Methods). This 

score will be referred to as the posterior score in the following sections. Test statistics of 

the NIDDK study were downloaded from dbGap (Supplementary Table 1). Among the 

298,391 SNPs, 70 were deleted due to unavailable hg19 genomic locations. We 

calculated the posterior scores for the remaining 298,321 SNPs (Supplementary Figure 

1). Test statistics of the IIBDGC meta-analysis were downloaded from the IIBDGC 

website (http://www.ibdgenetics.org). The dataset contains 953,241 SNPs, including 

262,621 SNPs overlapping with the NIDDK dataset. 

 

A total of 71 loci passed genome-wide significance level in the validation stage of 

IIBDGC meta-analysis, including 32 previously reported risk loci and 39 newly 

confirmed risk loci (Franke, et al., 2010). We ranked the 298,321 SNPs in the NIDDK 

study based on their p-values and posterior scores, respectively. Then, within each locus 

among the 71 loci, we compared the rank of the lowest p-value to the rank of the largest 

posterior score. 56 out of 71 loci (79%) had an improved rank, 3 loci (4%) had an equal 

rank, while only 12 loci (17%) had a reduced rank (Supplementary Table 2). The 

probability of having an increased rank is significantly higher than that of having a 

decreased rank (p-value = 3.11×10!!, one-sided binomial test). 

 

Next, we compared the top 20 loci with the smallest p-values to the top 20 loci with the 

largest posterior scores in the NIDDK study. The locus information and the lowest meta-

analysis p-value at each locus are listed in Table 1. 14 out of 20 loci are shared between 

the two lists. Interestingly, the posterior-specific loci, i.e. the loci that show up only in the 
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list based on posterior score, showed substantially stronger signals in the IIBDGC meta-

analysis compared to the p-value-specific loci (Table1, Figure 2a). For example, the risk 

locus on chromosome 10q22 was a genome-wide significant locus in the meta-analysis 

(rs1250550, 𝑃!"#$ = 2.00×10!!"). Although the same SNP, rs1250550, had the lowest 

p-value at this locus in the NIDDK dataset (𝑃!"##$ = 5.95×10!!), the signal was not 

strong enough to make this locus surpass other loci such as the one on chromosome 2q24 

(rs6733000, 𝑃!"##$ = 2.01×10!!, Table 1). However, with posterior scores, locus 

10q22 was ranked as the 17th top locus, while the highest posterior score at locus 2q24 

was only 0.0142, which agrees with its weak signal in the meta-analysis result (𝑃!"#$ =

0.019). Overall, two posterior-specific loci were genome-wide significant in the meta-

analysis, while the lowest 𝑃!"#$ among the six p-value-specific loci was only 1.10×

10!!. These results show that our method can effectively reduce noises likely due to LD 

and chance and enhance true signals at disease risk loci. 

 

To see if SNPs with high posterior scores are more enriched of eQTLs, we downloaded 

the whole-blood eQTL data from GTEx (http://www.gtexportal.org). The top 1000 SNPs 

based on p-values are not statistically significantly enriched for eQTLs (p-value = 0.076; 

hypergeometric test; fold enrichment = 1.39), while the enrichment for the top 1000 

SNPs based on posterior scores is highly significant (p-value = 1.46×10!!; fold 

enrichment = 2.17). The difference becomes even more drastic when using the top 2000 

SNPs, with p-values 0.018 and 6.19×10!!! (fold enrichment 1.43 and 2.56), 

respectively. When the number of top SNPs increases, the posterior-based approach 
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dominates the p-value-based approach in both enrichment p-value and fold change 

(Figures 2b and 2c).  

 

In order to show how our method performs locally, we chose two genome-wide 

significant loci from the IIBDGC meta-analysis. First, within the risk locus on 

chromosome 1q23, two SNPs had substantially stronger signals than others, i.e. 

rs2274910 (𝑃!"##$ = 4.40×10!!) and rs955371 (𝑃!"##$ = 4.84×10!!). According to 

the p-values, these two SNPs are undistinguishable, because the signal at rs2274910 is 

only slightly stronger. However, the results from the meta-analysis clearly show the 

existence of two SNP clusters with strong signals at this locus (Figure 3a). The cluster 

closer to gene CD244, in which rs955371 resides, actually has stronger signals than the 

cluster where rs2274910 is located. Interestingly, the posterior scores capture this 

difference between two SNPs very well. In fact, the posterior scores for rs955371 and 

rs2274910 are 0.272 and 0.208, suggesting rs955371 is more likely to be functional even 

though its p-value is larger. The second example is the risk locus on chromosome 14q35, 

which is one of the 12 loci with a reduced rank under the posterior scores 

(Supplementary Table 2). Signals at this locus were not strong in the NIDDK study, 

with the smallest p-value only at 4.70×10!! (rs1959715). Moreover, the signal peak in 

the NIDDK study (near 88.2M) was quite far from that in the meta-analysis, which 

resides in genes GALC and GPR65 (Figure 3b). However, the posterior scores once 

again capture the signal pattern in the meta-analysis. Signals near 88.2M on chromosome 

14 are shrunk substantially, while the SNPs in GALC and GPR65 are pushed up as the 

strongest signal (rs4904410). Since these SNPs have very weak signals in their p-values, 
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the posterior score is still low (See Methods). This explains the reduced rank, because 

the p-value-based rank of rs1959715 was compared with the posterior-based rank of 

rs4904410. It is worth noting that the SNPs with the strongest signals in the meta-

analysis, e.g. rs8005161, were either not genotyped or dropped in the quality control 

steps in the NIDDK study. It is reasonable to believe that the posterior scores would have 

had an even better performance if imputations had been done for the NIDDK dataset. 

 

 

Application to schizophrenia 

In addition to Crohn’s disease, we also applied GenoWAP to schizophrenia, a major 

psychiatric disorder. Psychiatric Genomics Consortium (PGC), the largest international 

consortium in psychiatry, focuses on genetic studies of many psychiatric disorders 

including schizophrenia. Two large-scale GWAS mega-analyses of schizophrenia have 

been published. We applied GenoWAP to the earlier and smaller PGC2011 study 

(Consortium, 2011), and evaluated the performance using results from the larger mega-

analyses published in 2014 (Consortium, 2014). Test statistics for both studies were 

downloaded from the PGC website (Supplementary Table 3). Among the 1,252,901 

SNPs in PGC2011 study, 264 were removed due to unavailable hg19 locations. Posterior 

scores were calculated for all the remaining 1,252,637 SNPs (Supplementary Figure 2). 

PGC2014 study contains 9,444,230 SNPs, including 1,179,913 SNPs overlapping with 

the PGC2011 dataset. 
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PGC2014 study identified 108 schizophrenia-associated loci, from which we removed 

three loci on chromosome X because the PGC2011 dataset did not contain any SNP on 

sex chromosomes. We ranked the 1,252,637 SNPs in PGC2011 study based on their p-

values and posterior scores, respectively. Within each locus, the rank of the lowest p-

value was compared to the rank of the largest posterior score. Across the 105 loci, 68 

(65%) had an improved rank, 1 locus (1%) had an equal rank, and the other 36 loci (34%) 

had a reduced rank (Supplementary Table 4). The probability of having an increased 

rank is significantly higher than that of having a reduced rank (p-value = 0.001, one-sided 

binomial test). Interestingly, among the 10 loci with the strongest signals in the PGC2014 

study, 8 had an increased rank (80%). The proportion of increased or equal ranks 

gradually drops when more top loci in the PGC2014 study were considered, showing less 

confidence in weaker signals (Supplementary Figure 3). 

 

Next, we compared the top 20 loci with the smallest p-values to the top 20 loci with the 

largest posterior scores in the PGC2011 study. In order to identify 20 independent loci, 

582 SNPs were needed when using p-value as the criterion. When posterior scores were 

used to choose top signals, 548 SNPs were sufficient to identify 20 loci, showing better 

efficiency (Figure 4a). A total of 14 loci could be identified using both p-values and 

posterior scores. As for the comparisons between the 6 posterior-specific loci and the 6 p-

value-specific loci, the posterior-specific loci showed better signals than the p-value-

specific loci (Table2, Figure 4b) in the PGC2014 study. Four of the 6 posterior-specific 

loci were genome-wide significant in the PGC2014 study, whereas 2 p-value-specific loci 

passed the genome-wide significance level. Among the 6 p-value-specific loci, the locus 
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on chromosome 3q26 had the strongest signal in the PGC2014 study (𝑃!"#$ = 5.35×

10!!!). This locus will be discussed in detail later. 

 

Since imputation was done for both PGC2011 and PGC2014 studies, and the total 

number of SNPs is large, it is possible to compare the SNP-level replication rates when 

the SNPs were ranked based on p-values and posterior scores. Among the top 500 SNPs 

with the largest posterior scores, 327, 267, and 152 had a p-value lower than 5×10!!, 

5×10!!, and 5×10!!" in the PGC2014 study, respectively. When choosing the top 500 

SNPs based on their p-values, the corresponding numbers were 290, 237, and 120 

(Figure 4c), respectively. A similar pattern can be observed for the top 200 SNPs 

(Supplementary Table 4). We further performed enrichment analysis for whole-blood 

eQTLs. The top 1000 SNPs based on the p-values were significantly enriched for eQTLs 

(p-value = 2.30×10!!!, fold enrichment = 4.57), but the enrichment for the top 1000 

SNPs based on the posterior scores was even stronger (p-value = 3.32×10!!", fold 

enrichment = 4.88). As the number of top SNPs increased, the posterior-based top SNPs 

always had stronger enrichment of eQTL than the p-value-based list (Figures 4d and 4e).  

 

Finally, we compared PGC2011 p-values, PGC2011 posterior scores, and PGC2014 p-

values at two loci to further illustrate the performance of our method. The first locus is on 

chromosome 3q26. It had the strongest signal in PGC2014 among the p-value-specific 

top 20 loci (Table 2, 𝑃!"#$ = 5.35×10!!!). Based on the p-values in the PGC2011 

study, the strongest signals reside in the intergenic region upstream of FXR1. But the 

posterior scores brought down those intergenic SNPs, and enhanced the signals in FXR1 
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instead, which is in agreement with the results from PGC2014 (Figure 5a). In fact, from 

the PGC2014 p-values, we can clearly see that the strongest signals reside in FXR1 while 

the significant results for the SNPs upstream or downstream of FXR1 are likely due to 

LD. The second example is on chromosome 8q21 (Figure 5b). In the PGC2011 study, 

the strongest signal at this locus resides in the intergenic region between 89.7M and 

89.8M. However, posterior scores removed most of the correlated SNPs at this locus, 

leaving three separate peaks as candidate functional spots. The first peak lies right 

upstream of MMP16. The second peak is more upstream (~89.6M), and is suggested to 

be the strongest signal source. The SNPs with the lowest p-values in PGC2011 remained 

as a signal peak, but their posterior scores were not as strong as the peak in the middle. 

Most interestingly, the results from the posterior scores perfectly matched the signal 

patterns in the PGC2014 study. From the lowest panel in Figure 5b, we can clearly see 

two separate peaks at the same locations suggested by the posterior scores, with the one 

near 89.6M being the strongest signal source. Also, the SNPs between 89.7M and 89.8M 

had weaker signals than the peak in the middle. Notably, this entire risk locus resides in 

an intergenic region. This example shows that our method can effectively prioritize SNPs 

in the non-coding genome. 

 

 

Discussion 

In this study, we developed and applied GenoWAP to two sets of GWAS data to illustrate 

its performance in post-GWAS prioritization. Compared to p-values, GenoWAP posterior 

scores can better prioritize SNPs in many different ways. At the locus level, posterior 
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score is more efficient in the sense that fewer SNPs are needed to identify the same 

number of top loci. Moreover, noises due to chance are effectively reduced, and the 

highly ranked loci using posterior score are more likely to be functional than the top loci 

selected purely based on p-values. At the SNP level, markers with high posterior scores 

have both better replication rates and consistently stronger enrichment of eQTLs than the 

top SNPs based on p-values. More importantly, within each risk locus identified in 

GWAS, posterior scores can effectively suggest real signals among a large number of 

correlated SNPs.  

 

The performance of GenoWAP depends on the accuracy of functional annotation and the 

quality of GWAS data. Due to our limited understanding of non-coding genome, it is 

challenging to provide accurate genomic functional annotation. GenoCanyon is the first 

functional prediction tool at the nucleotide level. When more accurate or tissue-specific 

functional annotation becomes available in the future, the performance of GenoWAP may 

be further improved. On the other hand, GenoWAP does not play magic. If no 

information is contained in the GWAS dataset, then GenoWAP can only provide very 

limited insight. 

 

More than 2,000 GWASs have been published in the past decade, and the number 

continues to grow. It is well known that our ability to identify new risk loci for complex 

diseases has surpassed our ability to interpret the results. However, although we are 

overwhelmed by the large amount of information detected in GWASs, evidence such as 

missing heritability still suggests that many risk loci remain to be discovered. Therefore, 
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there is pressing need for post-GWAS prioritization tools and our method has great 

potential for future application. Since GenoWAP uses only p-values as the input, it is 

convenient to apply our method on published results, which may help reveal truly 

functional variants within large haplotype blocks, and ultimately help understand disease 

etiology. Moreover, for multi-stage GWASs, GenoWAP can be used to better prioritize 

SNPs from the discovery stage to the validation planning and increase the replication 

rates. Finally, next-generation sequencing is widely recognized as the future of genomic 

epidemiology. However, the high cost of sequencing usually leads to insufficient sample 

sizes and many other challenging issues (Sboner, et al., 2011). The combination of 

GenoWAP and the rich collection of publicly available GWAS data have the potential to 

provide functional candidates and guide sequencing analysis in the future. 
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Figures and Tables 

 

Figure 1. P-value densities of different subgroups of SNPs. A) P-value histogram of 

non-functional SNPs (Z=0, green), p-value histogram of functional SNPs (Z=1, red), and 

estimated p-value density of disease-specific functional SNPs (ZD=1, blue) in the NIDDK 

GWAS of Crohn’s disease. B) P-value histogram of non-functional SNPs (Z=0, green), 

p-value histogram of functional SNPs (Z=1, red), and estimated p-value density of 

disease-specific functional SNPs (ZD=1, blue) in the PGC2011 GWAS of schizophrenia. 
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Figure 2. Global performance in studies of Crohn’s disease. A) Signals at p-value-

specific, overlapped, and posterior-specific loci in the IIBDGC meta-analysis. The top 20 

loci based on p-values in the NIDDK study are compared with the top 20 loci based on 

their posterior scores. Each locus is evaluated using the signal strength in the IIBDGC 

meta-analysis. Darker color indicates stronger signals in the meta-analysis. B) 

Enrichment of whole-blood eQTLs in the top SNPs selected based on p-value and 

posterior score. The vertical axis shows the transformed p-value of hypergeometric test. 

C) Fold enrichment of whole-blood eQTLs in the top SNPs selected based on p-value and 

posterior score. The vertical axis shows the ratio of observed and expected overlaps 

between eQTLs and highly ranked SNPs. 
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Figure 3. Local performance in studies of Crohn’s disease. From top to bottom, the 

three panels show the p-values from the NIDDK study, the posterior scores, and the p-

values from the IIBDGC meta-analysis, respectively. A) Local performance at the risk 

locus on chromosome 1q23. The top two SNPs at this locus in the NIDDK study are 

undistinguishable based on their p-values. The posterior scores suggest the importance of 

the SNP on the left, which is in agreement with the results from the meta-analysis. B) 

Local performance at the risk locus on chromosome 14q35. Signals at this locus are weak 

in the NIDDK study, and the signal peak is different from that in the meta-analysis. The 

posterior score is able to pull down the noises caused by LD, and push up real signals at 

genes GALC and GPR65. Figures are generated using LocusZoom (Pruim, et al., 2010). 
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Figure 4. Global performance in studies of schizophrenia. A) SNPs needed for 

identifying 20 loci. 582 top SNPs are needed when using p-value as the criterion. 548 

SNPs are sufficient when using posterior score as the criterion. B) Signals at p-value-

specific, overlapped, and posterior-specific loci in the PGC2014 study. The top 20 loci 

based on p-values in the PGC2011 study are compared with the top 20 loci based on their 

posterior scores. Each locus is evaluated using the signal strength in the PGC2014 study. 

Darker color indicates stronger signals in the large study. C) Replication rates of SNPs 

before and after prioritization. The top 500 SNPs under posterior scores have 

substantially higher replication rates than the top 500 SNPs under p-values. D) 

Enrichment of whole-blood eQTLs in the top SNPs selected based on p-value and 

posterior score. The vertical axis shows the transformed p-value of hypergeometric test. 

E) Fold enrichment of whole-blood eQTLs in the top SNPs selected based on p-value and 

posterior score. The vertical axis shows the ratio of observed and expected overlaps 

between eQTLs and highly ranked SNPs. 
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Figure 5. Local performance in studies of schizophrenia. From top to bottom, the 

three panels show the p-values from the PGC2011 study, the posterior scores, and the p-

values from the PGC2014 study, respectively. A) Local performance at the risk locus on 

chromosome 3q26. The top signals at this locus in the PGC2011 study reside upstream of 

gene FXR1, while the posterior scores pull down those signals and suggest the 

importance of SNPs in FXR1. This agrees with the signal pattern in the PGC2014 study. 

B) Local performance at the risk locus on chromosome 8q21. Posterior scores diminish 

most of the correlated SNPs at this locus, leaving three separate signal peaks. The peak 

near 89.6M is suggested to be the strongest signal source, which cannot be seen using p-

values from the PGC2011 study. The signal peaks suggested by posterior scores perfectly 

match the strongest signals in the PGC2014 study. Figures are generated using 

LocusZoom (Pruim, et al., 2010). 
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Table 1. The top loci with the strongest signals in the NIDDK study. 
 

Top 20 loci based on p-valuea Top 20 loci based on posterior scoreb 
Chr. Leading SNP PNIDDK Pmeta Chr. Leading SNP Posterior Pmeta 
16q12 rs2076756 1.26E-14 4.00E-69 16q12 rs2076756 0.999996866 4.00E-69 
1p31 rs7517847 2.99E-13 9.90E-65 1p31 rs7517847 0.999972913 9.90E-65 
2q37 rs2241880 4.40E-08 6.70E-41 2q37 rs2241880 0.987698022 6.70E-41 
4p13 rs16853571 5.59E-07 2.60E-03 4p13 rs16853571 0.936895112 2.60E-03 
12p13 rs886898 1.05E-06 NAc 18q21 rs937815 0.911676708 1.40E-05 
18q21 rs937815 1.88E-06 1.40E-05 12p13 rs886898 0.890272531 NAc 
1q23 rs2343331 2.46E-06 1.70E-03 3q23 rs6439924 0.882792742 8.30E-04 
3q23 rs6439924 2.89E-06 8.30E-04 1p31 rs2819130 0.773882741 2.20E-03 
9q22 rs10821091 9.39E-06 5.40E-04 22q12 rs4821544 0.752640451 1.80E-05 
1p31 rs2819130 1.23E-05 2.20E-03 11q13 rs2712800 0.741211726 8.10E-05 
14q22 rs1188157 1.23E-05 7.20E-04 9q21 rs4878061 0.697750241 5.20E-04 
10q21 rs224136 1.23E-05 4.40E-22 10q21 rs224136 0.663868799 4.40E-22 
1q23 rs723821 1.42E-05 1.10E-04 8q22 rs10505007 0.649891635 2.10E-04 
22q12 rs4821544 1.71E-05 1.80E-05 15q25 rs3743195 0.630338138 3.80E-03 
11q13 rs2712800 1.72E-05 8.10E-05 20q13 rs4810663 0.626012472 2.40E-03 
1q31 rs2490271 1.88E-05 7.50E-03 7q36 rs4721 0.622452751 2.30E-03 
8q23 rs2044999 1.89E-05 8.40E-04 10q22 rs1250550 0.599609304 2.00E-10 
20q13 rs4810663 1.93E-05 2.40E-03 8q23 rs2044999 0.598983918 8.40E-04 
16q24 rs8050910 2.00E-05 2.40E-03 1q31 rs2490271 0.58179581 7.50E-03 
2p24 rs6733000 2.01E-05 1.90E-02 5p13 rs4613763 0.577762625 7.00E-36 

aTop 20 loci with the smallest p-values in the NIDDK study. Loci are ordered according 
to the p-values. Loci in boldface are those not shared in both lists. 
bTop 20 loci with the largest posterior scores in the NIDDK study. Loci are ordered 
according to the posterior scores. Loci in boldface are those not shared in both lists. 
cThe IIBDGC meta-analysis does not contain any SNP at this locus. 
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Table 2. The top loci with the strongest signals in the PGC2011 study. 
 

Top 20 loci based on p-valuea Top 20 loci based on posterior scoreb 
Chr. Leading SNP P2011 P2014 Chr. Leading SNP Posterior P2014 
6p22 rs2021722 4.30E-11 3.86E-32 6p22 rs2021722 0.999990069 3.86E-32 
8q21 rs7004633 1.45E-08 1.90E-08 10q24 rs11191580 0.998895413 9.24E-18 
10q24 rs11191580 2.23E-08 9.24E-18 18q21 rs17512836 0.998854457 9.09E-13 
18q21 rs17512836 2.35E-08 9.09E-13 11q24 rs548181 0.998628374 2.87E-05 
11q24 rs548181 2.91E-08 2.87E-05 7p22 rs1107592 0.99673362 6.12E-14 
7p22 rs10226475 5.06E-08 6.12E-14 15q15 rs1869901 0.991093414 4.92E-08 
8p23 rs10503256 1.96E-07 2.69E-08 1p21 rs1625579 0.98743964 2.79E-17 
3p14 rs11130874 2.09E-07 7.68E-05 3p14 rs191558 0.987169485 7.68E-05 
15q15 rs1869901 3.49E-07 4.92E-08 14q13 rs10135277 0.986756984 1.52E-07 
14q13 rs10135277 5.11E-07 1.52E-07 9p24 rs12352353 0.986087806 3.32E-04 
1p21 rs1625579 5.72E-07 2.79E-17 12p13 rs4765905 0.980692241 2.63E-17 
9p24 rs12352353 6.57E-07 3.32E-04 6p21 rs9462875 0.966743496 9.61E-07 
2q31 rs17180327 6.80E-07 5.95E-06 3p21 rs2239547 0.96441905 3.96E-11 
12p13 rs7972947 7.77E-07 2.63E-17 8q21 rs4484741 0.96417159 1.90E-08 
10q26 rs1025641 8.28E-07 2.21E-04 2q37 rs2675968 0.958718346 3.15E-12 
2q37 rs13025591 1.07E-06 3.84E-05 2q37 rs13025591 0.955105149 3.84E-05 
11q22 rs2509843 1.10E-06 1.24E-04 1p36 rs2252865 0.939171332 2.03E-09 
3q26 rs1879248 1.27E-06 5.35E-11 1q43 rs10803133 0.937014805 4.40E-09 
6p21 rs9462875 1.46E-06 9.61E-07 21q22 rs11702343 0.934578026 8.04E-05 
11p15 rs4356203 1.90E-06 8.01E-06 22q12 rs9621795 0.925914726 1.26E-03 

aTop 20 loci with the smallest p-values in the PGC2011 study. Loci are ordered according 
to the p-values. Loci in boldface are those not shared in both lists. 
bTop 20 loci with the largest posterior scores in the PGC2011 study. Loci are ordered 
according to the posterior scores. Loci in boldface are those not shared in both lists. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Material 
 
 
 
Supplementary Figure 1. Manhattan plot of p-values and posterior scores for the 
NIDDK study. 
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Supplementary Figure 2. Manhattan plot of p-values and posterior scores for the 
PGC2011 study. 
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Supplementary Figure 3. Negative association between the proportion of increased 
ranks under posterior score and the number of top loci being considered. 
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Supplementary Figure 4. Enhanced replication rates after prioritization among the top 
200 SNPs. 
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Supplementary	
  Table	
  1.	
  	
  Basic	
  information	
  for	
  NIDDK	
  study	
  and	
  IIBDGC	
  Meta-­‐
analysis.	
  
	
  

 
NIDDK Studya IIBDGC Meta-Analysisb 

Disease Crohn's disease Crohn's disease 
# Cases 968c 6,333 
# Controls 995 15,056 
Genotyping Platform Illumina HumanHap300 Multiple 
# SNPs 298,391 953,241 
Imputation No imputation HAPMAP3 

a The SNP-level summary statistics of the NIDDK study was downloaded from dbGap 
(http://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000130.v1.p1). 
b The SNP-level summary statistics of the IIBDGC meta-analysis was downloaded from 
the IIBDGC website (http://www.ibdgenetics.org). 
c The sample size information might be inconsistent with the original publication. The 
case/control sample size here was extracted from the header lines of the analyses file 
downloaded from dbGaP. 
 
	
   	
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 20, 2015. ; https://doi.org/10.1101/019539doi: bioRxiv preprint 

https://doi.org/10.1101/019539
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary	
  Table	
  2.	
  Ranks	
  of	
  top	
  signals	
  under	
  p-­‐value	
  and	
  posterior	
  score	
  at	
  
71	
  genome-­‐wide	
  significant	
  loci	
  of	
  Crohn’s	
  disease.	
  
	
  

 
Rankings based on p-values Ranking based on posterior scores 

Chr. Leading SNP Pvalue Ranka Leading SNP Posterior Rankb 
32 previously confirmed Crohn's disease risk loci 

1p31 rs7517847 2.99E-13 2 rs7517847 0.999972913 3 
1p13 rs971173 4.44E-03 1954 rs971173 0.114306737 679 
1q23 rs2274910 4.40E-04 273 rs955371 0.272006962 154 
1q24 rs9286879 8.39E-03 3444 rs9286879 0.072577451 1507 
1q32 rs2297909 3.52E-03 1582 rs12122721 0.104187914 796 
2q37 rs2241880 4.40E-08 13 rs2241880 0.987698022 9 
3p21 rs7629936 4.69E-04 282 rs7629936 0.316858359 111 
5p13 rs4613763 6.97E-05 68 rs4613763 0.577762625 38 
5q31 rs2243300 8.76E-04 491 rs2243300 0.243962672 184 
5q33 rs2112637 1.23E-03 635 rs2112637 0.183061328 283 
5q33 rs10045431 1.03E-03 561 rs6556377 0.056512976 2330 
6p22 rs6921781 8.76E-03 3578 rs6921781 0.071176737 1554 
6p21 rs630379 1.62E-03 781 rs630379 0.186331957 274 
6q21 rs2859307 5.53E-03 2373 rs2859307 0.101481811 842 
6q27 rs9347189 2.69E-03 1230 rs9347189 0.104526433 788 
7p12 rs2045369 1.44E-02 5604 rs10251980 0.035266352 5016 
8q24 rs2124036 2.28E-02 8398 rs2124036 0.048432287 2942 
9p24 rs2150192 3.47E-03 1557 rs2150192 0.128407135 557 
9q32 rs10817694 1.39E-02 5418 rs10817694 0.063059551 1957 
10p11 rs2504246 1.01E-03 550 rs2492448 0.040627018 3967 
10q21 rs224136 1.23E-05 30 rs224136 0.663868799 30 
10q24 rs888208 3.05E-04 201 rs888208 0.369345672 82 
11q13 rs1892954 9.91E-04 543 rs6592651 0.130472283 537 
12q12 rs545385 6.17E-04 358 rs1444204 0.044793579 3365 
13q14 rs583271 1.32E-02 5153 rs3764147 0.048506448 2934 
16q12 rs2076756 1.26E-14 1 rs2076756 0.999996866 1 
17q21 rs931992 6.32E-03 2687 rs931992 0.094628434 945 
17q21 rs9252 4.61E-02 16050 rs9252 0.032894817 5790 
18p11 rs9303778 2.88E-03 1305 rs9303778 0.14135767 460 
19p13 rs12977033 5.45E-04 324 rs12977033 0.296653851 127 
21q21 rs1736148 2.69E-03 1230 rs1736148 0.145846532 435 
21q22 rs3827246 1.14E-02 4497 rs3827246 0.07032351 1585 

39 Crohn's disease risk loci newly confirmed in the meta-analysis 
1p36 rs707455 4.26E-04 264 rs707455 0.190027644 264 
1q22 rs6427128 1.72E-03 833 rs6427128 0.181139121 288 
1q31 rs10922341 2.41E-02 8834 rs12568860 0.012105168 36458 
1q32 rs4845119 1.07E-02 4287 rs6677934 0.046490815 3156 
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2p23 rs658414 1.04E-03 564 rs517403 0.12858641 555 
2p23 rs780094 3.54E-02 12585 rs2304681 0.026501082 8879 
2p21 rs3901678 2.49E-03 1150 rs3901678 0.088740493 1060 
2p16 rs13003464 2.32E-03 1085 rs13003464 0.128992257 549 
2q12 rs917997 1.55E-03 751 rs13015714 0.124198461 589 
2q33 rs700646 3.90E-03 1748 rs770657 0.02803119 8052 
2q37 rs16827412 2.69E-02 9748 rs7426302 0.038987848 4243 
3p24 rs6792314 8.60E-05 79 rs9881034 0.105980098 773 
5q13 rs7702331 1.28E-02 5005 rs638333 0.049480331 2826 
5q15 rs4869151 9.50E-03 3857 rs4869151 0.077020627 1358 
5q31 rs445310 6.52E-03 2764 rs445310 0.094057648 957 
5q35 rs359457 6.94E-04 399 rs359457 0.270517728 156 
6p25 rs11242859 4.68E-04 281 rs11242859 0.314623689 114 
6q15 rs6939786 5.60E-03 2397 rs6939786 0.099185683 882 
6q25 rs7746447 2.39E-03 1110 rs7746447 0.154569531 395 
8q24 rs3922389 3.27E-02 11697 rs3922389 0.03981035 4091 
9q34 rs4077515 7.33E-04 414 rs4077515 0.264543061 164 
10p15 rs4750000 4.27E-04 265 rs4750000 0.326925509 104 
10q21 rs11005962 4.46E-03 1960 rs1416764 0.070168232 1591 
10q22 rs1250550 5.95E-05 60 rs1250550 0.599609304 35 
11q12 rs7947046 1.75E-03 851 rs7947046 0.16782237 338 
11q13 rs645078 3.61E-03 1615 rs645078 0.116891493 653 
13q14 rs1900448 1.56E-02 6030 rs1900448 0.059300765 2172 
14q24 rs174213 3.52E-03 1582 rs174213 0.076308497 1376 
14q35 rs1959715 4.70E-03 2057 rs4904410 0.020775196 13706 
15q22 rs745103 3.36E-04 219 rs745103 0.359154463 88 
16p11 rs151229 2.18E-02 8101 rs151229 0.025564195 9471 
17q12 rs991804 3.37E-03 1519 rs991804 0.066547951 1762 
19p13 rs6511696 4.76E-03 2077 rs3181049 0.049651701 2809 
19q13 rs2287882 4.49E-03 1973 rs17760633 0.089213415 1051 
19q13 rs485186 1.95E-03 931 rs504963 0.102902888 816 
20q13 rs3810481 1.36E-02 5310 rs3795149 0.062480703 1995 
22q11 rs2298428 8.13E-04 462 rs2298428 0.253181625 175 
22q12 rs9621049 2.94E-04 196 rs9621049 0.2417048 190 
22q13 rs9607601 5.20E-04 307 rs54211 0.151045064 412 

a rank of the SNP with the smallest p-value  
b rank of the SNP with the largest posterior score 
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Supplementary	
  Table	
  3.	
  Basic	
  information	
  for	
  PGC2011	
  study	
  and	
  PGC2014	
  study.	
  
	
  

 
PGC 2011 Studya PGC 2014 Studya 

Study Type GWAS Mega-Analysis GWAS Mega-Analysis 
Disease Schizophrenia Schizophrenia 
# Cases 9,394 34,241b 
# Controls 12,462 45,604 
Genotyping Platform Multiple Multiple 
# SNPs 1,252,901 9,444,230 
Imputation HAPMAP3 1000 Genomes Project 

a The SNP-level summary statistics of both studies were downloaded from the PGC 
website (http://www.med.unc.edu/pgc/). 
b These are the number of  case-control samples. Besides this, 1,235 parent affected-
offspring trios were also included in this study. 
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Supplementary	
  Table	
  4.	
  Ranks	
  of	
  top	
  signals	
  under	
  p-­‐value	
  and	
  posterior	
  score	
  at	
  
105	
  genome-­‐wide	
  significant	
  loci	
  of	
  schizophrenia.	
  
	
  

   
Rankings based on p-values Ranking based on posterior scores 

 Chr. Start Stop Leading SNP Pvalue Ranka Leading SNP Posterior Rankb PGC2014 Rankc 
1 2,372,401 2,402,501 rs10910078 2.84E-03 12084 rs10910078 0.105625533 6249 48 
1 8,411,184 8,638,984 rs2252865 4.90E-06 714 rs2252865 0.939171332 516 51 
1 30,412,551 30,437,271 rs1009080 5.84E-06 746 rs1009080 0.889510826 636 59 
1 44,029,384 44,128,084 rs11210896 4.84E-03 17544 rs3001723 0.054816721 12702 44 
1 73,766,426 73,991,366 rs11210205 1.25E-03 7070 rs11210274 0.004268122 412743 20 
1 97,792,625 98,559,084 rs1625579 5.72E-07 395 rs1625579 0.98743964 242 2 
1 149,998,890 150,242,490 rs16835254 1.05E-04 1981 rs7521783 0.587006577 1211 46 
1 177,247,821 177,300,821 rs1883243 2.20E-02 53656 rs16851048 0.018150739 59742 98 
1 207,912,183 208,024,083 rs2796267 3.81E-04 3724 rs2796267 0.370349774 2010 99 
1 243,503,719 244,002,945 rs6703335 3.26E-06 654 rs6703335 0.930827436 534 62 
2 57,943,593 58,502,192 rs11682175 4.07E-06 679 rs2683634 0.88791048 640 27 
2 72,357,335 72,368,185 rs2241057 2.76E-02 64075 rs2241057 0.032173977 27702 72 
2 146,416,922 146,441,832 rs2381759 3.66E-03 14379 rs2381759 0.004539113 377737 56 
2 149,390,778 149,520,178 rs12614977 9.92E-03 29507 rs12614977 0.047367587 15941 84 
2 162,798,555 162,910,255 rs4664442 7.99E-05 1738 rs2052400 0.507027988 1434 102 
2 185,601,420 185,785,420 rs1344706 1.84E-04 2629 rs2369595 0.027291935 34285 17 
2 193,848,340 194,028,340 rs17662626 3.09E-06 645 rs17662626 0.007332516 203243 75 
2 198,148,577 198,835,577 rs8539 9.97E-04 6166 rs8539 0.22157605 3253 30 
2 200,161,422 200,309,252 rs4673339 9.31E-02 166270 rs4673339 0.009291762 146143 74 
2 200,715,237 200,848,037 rs11694369 2.15E-03 9958 rs1509835 0.086500653 7519 10 
2 225,334,096 225,467,796 rs2047134 1.35E-02 37243 rs16866061 0.04363978 17834 78 
2 233,559,301 233,753,501 rs2675968 2.57E-06 621 rs2675968 0.958718346 450 21 
3 2,532,786 2,561,686 rs17194476 7.29E-02 136349 rs17620999 0.006866829 221634 33 
3 17,221,366 17,888,266 rs17044053 3.88E-03 14986 rs11923589 0.063036738 10203 66 
3 36,843,183 36,945,783 rs4624519 6.26E-06 762 rs4624519 0.838545989 698 12 
3 52,541,105 52,903,405 rs2239547 2.25E-06 610 rs2239547 0.96441905 427 36 
3 63,792,650 64,004,050 rs832197 4.04E-04 3818 rs11922435 0.257087548 2831 82 
3 135,807,405 136,615,405 rs10935182 1.23E-04 2154 rs10935186 0.475527492 1548 39 
3 180,588,843 181,205,585 rs1351235 8.86E-06 836 rs1805572 0.762139463 816 25 
4 23,366,403 23,443,403 rs215451 2.01E-03 9461 rs215478 0.020263667 51863 92 
4 103,146,888 103,198,090 rs17823966 9.03E-03 27523 rs170871 0.023889704 41691 6 
4 170,357,552 170,646,052 rs3797040 2.68E-04 3116 rs3797040 0.433948011 1694 53 
4 176,851,001 176,875,801 rs1106568 4.31E-04 3933 rs2333325 0.064505664 9890 76 
5 45,291,475 45,393,775 rs9292918 1.14E-02 32785 rs6451798 0.009397056 143152 70 
5 60,499,143 60,843,543 rs34635 8.54E-05 1789 rs7701440 0.544500484 1343 8 
5 88,581,331 88,854,331 rs187571 2.90E-02 66539 rs187571 0.028878051 31739 65 
5 109,030,036 109,209,066 rs12656073 4.34E-03 16236 rs12656073 0.085565957 7598 91 
5 137,598,121 137,948,092 rs13159624 2.38E-03 10684 rs13159624 0.107687062 6135 67 
5 140,023,664 140,222,664 rs2337515 4.43E-03 16465 rs17286731 0.080733657 8014 105 
5 151,941,104 152,797,656 rs12522297 7.23E-06 791 rs2910032 0.093191565 7022 40 
5 153,671,057 153,688,217 rs6863455 4.31E-02 90406 rs6863455 0.018396721 58777 93 
6 26,000,000 34,000,000 rs2021722 4.30E-11 1 rs2021722 0.999990069 1 1 
6 73,132,701 73,171,901 rs9360557 1.01E-04 1936 rs9360557 0.536308045 1367 89 
6 84,279,922 84,407,274 rs217297 7.86E-04 5388 rs2224195 0.028036516 33156 47 
6 96,300,000 96,500,000 rs584453 2.35E-03 10575 rs1546898 0.005915849 268799 54 
7 1,896,096 2,190,096 rs1107592 5.28E-08 141 rs1107592 0.99673362 125 7 
7 24,619,494 24,832,094 rs2721783 5.60E-04 4505 rs2711115 0.223822916 3219 90 
7 86,403,226 86,459,326 rs6943762 4.07E-03 15490 rs12704289 0.024224333 40865 42 
7 104,598,064 105,063,064 rs4730073 9.81E-05 1900 rs4730073 0.619997851 1105 50 
7 110,034,393 110,106,693 rs7783665 1.45E-04 2345 rs7783185 0.080875631 7999 95 
7 110,843,815 111,205,915 rs38752 2.82E-04 3202 rs214475 0.414654919 1784 15 
7 131,539,263 131,567,263 rs10954343 6.65E-04 4941 rs10954343 0.069858026 9175 97 
7 137,039,644 137,085,244 rs320692 2.51E-04 3023 rs320686 0.172770756 4030 60 
8 4,177,794 4,192,544 rs10503253 3.84E-07 333 rs10503253 0.516813746 1404 77 
8 27,412,627 27,453,627 rs1565735 1.39E-03 7514 rs7844965 0.043300639 18028 88 
8 60,475,469 60,954,469 rs7828435 9.82E-04 6114 rs7838646 0.043872025 17687 71 
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8 89,340,626 89,753,626 rs4484741 1.70E-07 216 rs4484741 0.96417159 428 79 
8 111,460,061 111,630,761 rs17392088 3.91E-03 15059 rs13270567 0.003609355 487064 32 
8 143,309,503 143,330,533 rs10098073 5.42E-06 736 rs10098073 0.778332214 789 5 
9 84,630,941 84,813,641 rs2767713 7.53E-05 1694 rs4877686 0.569316316 1270 61 
10 18,681,005 18,770,105 rs7893279 8.08E-04 5469 rs7893279 0.028444957 32514 18 
10 104,423,800 104,957,618 rs11191580 2.23E-08 104 rs11191580 0.998895413 69 3 
11 24,367,320 24,412,990 rs10834318 1.17E-04 2107 rs10834318 0.231132207 3130 58 
11 46,342,943 46,751,213 rs12574668 8.95E-04 5801 rs12574668 0.190473356 3717 24 
11 57,386,294 57,682,294 rs11570190 1.66E-05 974 rs11570190 0.861473829 676 57 
11 109,285,471 109,610,071 rs1439513 1.69E-03 8492 rs2212430 0.010916963 119181 94 
11 113,317,794 113,423,994 rs2514218 8.57E-03 26495 rs4245147 0.025994085 36705 34 
11 123,394,636 123,395,986 rs7927176 8.42E-05 1772 rs7927176 0.583233406 1228 73 
11 124,610,007 124,620,147 rs11219769 6.39E-02 122871 rs11219769 0.022997524 44197 22 
11 130,714,610 130,749,330 rs10791097 2.17E-04 2853 rs10791097 0.472430131 1555 16 
11 133,808,069 133,852,969 rs7106715 1.99E-04 2736 rs7106715 0.267248486 2734 35 
12 2,321,860 2,523,731 rs4765905 8.92E-07 471 rs4765905 0.980692241 321 4 
12 29,905,265 29,940,365 rs436124 1.91E-03 9158 rs302321 0.136143977 5014 96 
12 57,428,314 57,682,971 rs324015 3.24E-04 3450 rs324015 0.398537952 1857 19 
12 92,243,186 92,258,286 rs4240748 3.81E-03 14776 rs4240748 0.019537175 54405 101 
12 103,559,855 103,616,655 rs998499 1.26E-02 35330 rs10860949 0.004407257 394586 104 
12 110,723,245 110,723,245 rs4766428 1.93E-03 9249 rs4766428 0.147415196 4640 52 
12 123,448,113 123,909,113 rs940904 4.93E-04 4211 rs1727331 0.257456611 2825 9 
14 30,189,985 30,190,316 rs2068012 2.54E-02 60026 rs2068012 0.03757315 22470 81 
14 72,417,326 72,450,526 rs12896825 2.80E-04 3191 rs4902961 0.10553426 6258 69 
14 99,707,919 99,719,219 rs17098461 3.42E-01 490951 rs17098461 0.008175246 176098 68 
14 103,996,234 104,184,834 rs4906356 8.41E-04 5586 rs11846404 0.237856661 3040 13 
15 40,566,759 40,602,237 rs1869901 3.49E-07 323 rs1869901 0.991093414 194 63 
15 61,831,663 61,909,663 rs4775413 4.01E-06 677 rs11071612 0.297931316 2468 43 
15 70,573,672 70,628,872 rs1971791 3.27E-02 72789 rs1971791 0.031307514 28593 86 
15 78,803,032 78,859,610 rs3813570 6.08E-04 4729 rs3813570 0.285819187 2566 14 
15 84,661,161 85,153,461 rs11638630 4.59E-04 4061 rs11631921 0.283185603 2588 28 
15 91,416,560 91,429,040 rs8032315 2.84E-03 12100 rs8032315 0.114366082 5836 11 
16 9,875,519 9,970,219 rs9938117 6.22E-04 4776 rs11647877 0.237327839 3046 80 
16 13,728,459 13,761,359 rs16962588 1.68E-03 8477 rs16962588 0.000392095 892172 49 
16 29,924,377 30,144,877 rs12716974 2.20E-03 10117 rs4283241 0.108968991 6075 37 
16 58,669,293 58,682,833 rs12447862 3.69E-02 80047 rs12447862 0.010095183 131547 87 
16 67,709,340 68,311,340 rs2863981 3.28E-03 13303 rs2863981 0.103787479 6354 83 
17 2,095,899 2,220,799 rs11078883 9.46E-04 5987 rs11078883 0.228496217 3159 41 
17 17,722,402 18,030,202 rs2955384 5.23E-03 18490 rs2955384 0.057142608 11854 85 
18 52,747,686 53,200,117 rs17512836 2.35E-08 106 rs17512836 0.998854457 73 23 
18 53,453,389 53,804,154 rs17602354 9.33E-04 5943 rs17602354 0.085071447 7632 29 
19 19,374,022 19,658,022 rs2965189 1.57E-04 2439 rs2965189 0.533443545 1373 45 
19 30,981,643 31,039,023 rs919803 2.56E-02 60492 rs919803 0.01109558 116888 64 
19 50,067,499 50,135,399 rs6509439 1.61E-04 2465 rs11083979 0.355100419 2096 103 
20 37,361,494 37,485,994 rs4812319 3.69E-04 3671 rs4812319 0.364286076 2046 26 
20 48,114,136 48,131,649 rs576119 1.85E-03 8994 rs576119 0.135692494 5027 100 
22 39,975,317 40,016,817 rs5995756 3.67E-04 3661 rs5995756 0.267076671 2735 38 
22 41,408,556 41,675,156 rs5758209 8.39E-06 826 rs5758209 0.688851004 971 31 
22 42,315,744 42,689,414 rs134902 1.85E-04 2635 rs134902 0.468962552 1568 55 

a rank of the SNP with the smallest p-value  
b rank of the SNP with the largest posterior score 
c rank of 105 loci based on the p-values in the PGC2014 study 
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