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AN ACCURATE GENETIC CLOCK

Molecular clocks give “Time to most recent common ancestor” TMRCA
of genetic trees. By Watson-Galton17 most lineages terminate, with
a few overrepresented singular lineages generated by W. Hamilton’s
“kin selection”13. Applying current methods to this non-uniform
branching produces greatly exaggerated TMRCA. We introduce an
inhomogenous stochastic process which detects singular lineages by
asymmetries, whose reduction gives true TMRCA. This implies a new
method for computing mutation rates. Despite low rates similar to
mitosis data, reduction implies younger TMRCA, with smaller errors.
We establish accuracy by a comparison across a wide range of time,
indeed this is only clock giving consistent results for both short and
long term times. In particular we show that the dominant European
y-haplotypes R1a1a & R1b1a2, expand from c3700BC, not reaching
Anatolia before c3300BC. While this contradicts current clocks which
date R1b1a2 to either the Neolithic Near East4 or Paleo-Europe20, our
dates support recent genetic analysis of ancient skeletons by Reich23.

The genetic clock, computing TMRCA by measuring genetic mutations, was
conceived by Emile Zuckerkandl and Linus Pauling 32,33 on empirical grounds.
However work on neutral mutations by Motto Kimura16 gave a theoretical basis
and formula. While our theory applies to general molecular evolution, we focus
on the Y-chromosome with DYS regions (DNA Y-chromosome Segments)
counting the “short tandem repeat” (STR) number of nucleotides of a micro
satellite. In fact one uses many DYS sites, marked by j = 1, ...N , each individual
i, 1 = 1, ..n, has STR number xi,j . The Y-chromosome is passed unchanged
from father to son, except for mutations xi,j → xi,j ± 1 occurring at rate

Probability[xi,j → xi,j + 1] =
µj
2
, P robability[xi,j → xi,j − 1] =

µj
2
.

The fundamental assumption is that the sample population has a single pa-
triarch at time t = TMRCA(generations). Now suppose the present (sample)
population has mode mj at DYS j. This is taken to be the STR value of
the original patriarch. A calculation shows the present population with vari-
ance Vj =

∑n
i=1(xi,j −mj)

2/n = tµj . Then averaging over the markers gives
TMRCA =

∑
j Vj/(n

∑
j µj). This variance method and its variations we call

KAPZ after its originators.

In practise problems soon arose. Mutation rates could be computed from
mitosis, but sample sizes are too small to give great accuracy. Using these
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a KAPZ due to Zhivotovsky31,31 was applied to R1b1a2 by Myres20 giving
L23*(Turkey) giving 9000BC, σ = 2000.

Mutation rates could also be estimated from large family groups with geneal-
ogy data. However there are significant discrepancies in rates between different
family groups. Also these “pedigree” rates are much larger than those from
mitosis. A similar phenomena for the mitochondrial clock suggested high short
term rates and lower long term rates14,15. So very low long term rates of .00069
were suggested31 for the Y-clock. We show this is unnecessary.

Another problem is that KAPZ is for large populations whereas ancient
populations were small and modern samples can be tiny, e.g. n < 20. This led
to the introduction of Bayesian methods such as BATWING27, which considers
all possible genealogical trees giving the present sample data, then searches for
the tree of maximum likehood. But the BATWING TMRCA is often greater
than KAPZ, e.g. for the Cinnioglu8 study of Anatolian DNA both methods
were applied to the same data and mutation rates. For R1b1a2 the KAPZ had
TMRCA = 9800BC compared with 18, 000BC for BATWING. Balaresque4

used BATWING to give an origin for R1b1a2 in Neolithic Anatolia c. 6000BC,
but their statistics was disputed by Bushby29. All of this was contradicted by
Reich22 who found R1b1a2 in skeletons c 3300BC from Yamnaya cemeteries.

Figure 1: A singular lineage increases variance and apparent TMRCA:
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true TMRCA
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Singular Lineages

A fundamental problem is that present populations have highly overrepresented
branches we call singular lineages. A well known example is the SNP L21 which
is a branch of R1b1a2. Individuals identified as L21 are often excluded from
R1b1a2 analysis because they skew the results. Such a singular lineage causes
the variance to be much greater, even though the original TMRCA remains
unchanged, see figure 1. For Bayesian methods such lineages are very unlikely
giving an even greater apparent TMRCA. However one cannot deal with sin-
gular branches by excluding them. For one thing, our method will show that
50% of DYS show evidence of singular side branches, i.e. more than a SD
from expected. Excluding them would also remove some of the oldest branches
and produce a TMRCA which is too young. Now these singular lineages are
very (mathematically) unlikely to arise from the stochastic system which is the
mathematical basis of KAPZ (or the equivalent Monte-Carlo process modeling
BATWING). We believe that the standard stochastic process is perturbed by
other improbable events, which are then amplified by biological processes.

First, the Watson-Galton Process17 implies lineages almost certainly die out.
Conversely, the “kin selection” of W.D. Hamilton13, shows kin co-operation
gives genetic advantages. Consider three examples with well developed DNA
projects. Group A of the Hamiltons has approximately 100, 000 descended from
a Walter Fitzgilbert c 1300AD. Group A of the Macdonalds has about 700, 000
descendants from Somerfeld c1100AD, and Group A of the O’Niall has over
6 million descendants from Niall of the Seven Hostages, c300AD. These are
elite groups with all the social advantages. One sees lines of chieftains, often
polygamous. Our model has many extinct twigs with a few successful branches,
whereas current models assume a uniform “star radiation”, see below

Star radiation from patriarch

Present  distribution of data
(slope ~ rate of mutation)

Present  distribution of data,
with  singular side branches,
extinctions 

Non-uniform radiation

Time (ybp)
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Reduction of Singular Lineages

Modelling singular lineages requires a new stochastic system where instead of a
single patriarch we imagine many “virtual patriarchs”, each originating at tme
tk ago. Each of these giving a proportion 0 ≤ ρk ≤ 1 of the present population.
So we now have an inhomogenous expansion. Furthermore the symmetric model
for mutations has to be changed to

Probability[xi,j → xi,j + 1] = µj,+1 , P robability[xi,j → xi,j − 1] = µj,−1 .

We introduce asymmetric mutations and show how to compute it. Asymmetry
will play a very important role in detecting singular lineages. This inhomoge-
nous asymmetric system is mathematically equivalent to a mixed population.
Computing its solution is an “inverse problem”. Unfortunately inversion is un-
stable for such systems, also there is no unique solution. However it turns out
that, up to a standard deviation SD, most DYS markers show at most one
singular branch which is found from asymmetries in the distribution. These
singular branches are then reduced revealing the original lineage. We then com-
pute a branching time tj for each marker j. The effect of reduction is dramatic,
see Figure 3. Now the nonuniform branching process causes the tj to be ran-
domly distributed so their mean is not the TMRCA. Large errors in mutation
rates means one cannot simply take the max tj to be the TMRCA. Instead
stochastic simulations of the branching process, using robust statistics to avoid
outliers, find the most likely TMRCA, see Supplementary Material 1 (SM1) for
full mathematical details.

These methods also imply a new way of computing mutation rates, see SM2.
Previously, there were methods based on mitosis data or pedigree studies of
family DNA projects (which gave quite different rates). We begin with 8 very
large SNP projects from FTDNA using 37 markers, of course with unknown
TMRCA and find mutation rates as the fixed points of a stochastic process.
These take about 3 iterates to converge. After we discard markers with mutation
SD > 33% we are left with 29 markers. We find the mutation rates are close
to those obtained from mitosis and nearly 1/3 the values obtained by pedigree.
Despite the fact that our mutation rates are lower than most studies, reduction
of singular lineages produces more recent TMRCA than current models.

Examples

Our clock is the only one with across the board consistent results:

Group A of n TMRCA [SD] First Known
Hamilton 144 1358AD [140] Walter Fitzgilbert 1270− 1330AD
Macdonald 95 900AD [250] Somerled (Norse c 800-1000AD)
O′Niall 713 200AD [225] Niall 300AD/Conn100AD

Table 1: TMRCA for Medieval groups.
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Archeological finds convinced Marija Gimbutas11 to attribute Proto Indo-
European (PIE) to the Yamnaya Culture c 3500BC of the Russian Steppes,
see Anthony2. This is consistent with mainstream linguistic theory, some even
wrote of linguistic DNA. But actual genetics was ignored because this contra-
dicts current genetic clocks. Now the dominant European y-haplotypes are
R1b1a2 & R1a1a (which like other y-haplotypes is marked by a unique single
nucleotide polymorphism (SNP) mutation). Table 2 shows the expansion times
of c3700BC, similar for regions Russia, Poland, Germany and Scandinavia. The
times are so close only Scandinavia is significantly later. This data is from
FTDNA projects for region X only using individuals with named ancestor from
X. These independent results agree within the standard deviation (SD), with
dates matching the Corded Ware Culture, a semi-nomadic people with wagons
and horses who expanded west from the Urkraine c3000BC. This is consistent
with the oldest R1b1a2, R1a1a skeletons being from the Yamnaya Culture23.

Region R1b1a2 [SD] n R1a1a [SD] n
All 3700BC [625] 460 3800BC [700] 1270

Russia NA 3750BC [700] 337
Poland 3960BC [950] 65 4600BC [820] 876
Germany 2780BC [500] 438 3750BC [800] 190

Scandinavia 2550BC [500] 153 4500BC [1000] 140

Table 2: R1b1a2, R1a1a independent comparison

An interesting intermediate step occurs between the medieval and eneolithic.
The mythical Irish Chronicles relate that the O’Niall descend directly from the
first Gaelic High Kings, which tradition dated c1300-1600BC. The O’Niall have
the unique mutation M222 which is a branch of the haplotype L21. For L21,
n = 1029, we compute TMRCA = 1600BC and SD σ = 320. These are dates
for proto Celtic, i.e. what archeologists call the pre Urnfelder Cultures, c.
1300-1600BC, see SM5. Furthermore L21 is in turn a branch of haplotype P312
which we date to 2300BC. This date suggests the Bell Beaker Culture of Western
Europe. Indeed the only known23 Bell Beaker genome is P312 with 14C date
2300BC.

Our method requires large data sets and many markers which means we
have to rely on data from FTDNA, finding 29 useable markers out of standard
37 they use. In fact many researchers4 have used FTDNA data. We think
our method of reduction with robust statistics solves any problems with this
data. To test this we compared our results with R1a1a1 data obtained from
Underhill26 with n = 974(which involved excluding his four M420 individuals
and others with missing markers), and 15 useable markers. The result was
2550BC, σ = 400, within the CI of our R1a1a results. Table 5 shows the
results of extensive simulations using random subsets of our FTDNA data, for
29, 15 and 7 markers. For the same 15 markers as the Underhill26 the different
FTDNA data gives very similar 3300BC, σ = 840 for R1a1a, verifying the
correctness of using FTDNA data. However once you get down to 7 markers
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the confidence interval becomes large, e.g. R1a1a gives 3400BC, σ = 1500.
Also it becomes difficult to deal with outliers.

An example with few markers is R1b1a2 data of Balaresque4. Our method
(this time with 7 useable markers) gave SD> 30%, see Table 6. Now Balaresque4

used the Bayesian method BATWING29 to suggest a Neolithic origin in Ana-
tolia. With the same Cinnioglu8 data our method gives for Turkish R1b1a2
(n = 75) a TMRCA = 5300BC, σ = 3100, i.e. anytime from the Ice Age to the
Iron Age. Fortunately, once again, we find good data from FTDNA: the Arme-
nian DNA project, see Table 3. By tradition the Armenians entered Anatolia
from the Balkans c1000BC so they might not seem a good example of ancient
Anatolian DNA. But some 100 generations of genetic diffusion has resulted in
an Armenian distribution of Haplotypes J, G, R1b1a2 closely matching that of
all Anatolians, therefore representive of typical Anatolian DNA. We see that
Anatolian R1b1a2 arrived after c3300BC, ruling out the Neolithic expansion
c6000BC. When dealing with regional haplotypes, e.g. R1b1a2 in Anatolia, the
TMRCA is only a upper bound for the arrival times, for the genetic spread
may be carried by movements of whole peoples from some other region.

Armenian n TMRCA [SD]
R1b1a2 99 3300BC [800]
G2a2b 46 9300BC [2000]
J2 97 12100BC [2200]

Observe that our TMRCA for Armenian G2a2b (formerly G2a3) and J2
show them to be the first Neolithic farmers from Anatolia, i.e. older than
7000BC. In Table 4 we compared J2, G2a2b for all of Western Europe (non-
Armenian data). Our dates show J2 was expanding at the end of the Ice Age.
Modern J2 is still concentrated in the fertile crescent, but also in disconnected
regions across the Mediterranean. The old genetic model predicted a continuous
wave of Neolithic farmers settling Europe. But you cannot have a continuous
maritime settlement: it must be leap-frog. Also repeated resettlement from the
Eastern Mediterranean has mixed ancient J2 populations, and our method gives
the oldest date. On the other hand G2a2b shows exactly the dates expected
from a continuous wave of Neolithic farmers across Central Europe, consistent
with Neolithic skeletons showing G2a2b (e.g. the famous Iceman).

SNP (n) 7 marker [SD] 15 marker [SD] 29 marker [SD]
G2a2b(1221) 4800BC [2050] 8600BC [2120] 5359BC [900]
R1b1a2(460) 5524BC [2000] 4300BC [950] 3700BC [625]
R1a1a(1270) 3400BC [1500] 3200BC [840] 3800BC [700]
I1(2898) 3500BC [1500] 2711BC [950] 1800BC [400]
L21(1029) 1870BC [800] 1700BC [400] 1600BC [325]
U106(1533) 1800BC [800] 2500BC [600] 2400BC [440]
J2(1241) 6100BC [2100] 18500BC [3000] 15500BC [2600]
P312(971) 2600BC [900] 2850BC [625] 2240BC [420]
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Discussion

History, archeology, evolutionary biology, not to mention epidemics (e.g.
dating HIV), forensic criminology and genealogy are just some of the applica-
tions of molecular clocks. Unfortunately current clocks have been found to give
only “ballpark” estimates. Our method is the only one giving accurate time, at
least for the human y-chromosome verified over the period 500−15, 000ybp. Our
methods should also give accurate times for mitochondrial and other clocks.

Many geneticists thought natural selection makes mutation rates too vari-
able to be useful. The problem is confusion between the actual biochemical
process giving mutations and superimposed processes like kin selection produc-
ing apparently greater rates. Notice that the SD for our mutation rates is on
average 14% which is much smaller than the actual previous rates. We believe
this small SD proves the reality of neutral mutation rates of Moto Kimura16.

While our method is accurate for “big data”, applications to genetics, foren-
sics, genealogy require the TMRCA between just two individuals, or between
two species. Now for this “2-body problem” we cannot determine what singular
lineages the branching has been through: with mutations either exaggerated or
suppressed. Thus previous methods for small samples are at best unreliable. It
is an important problem to find what accuracy is possible for small samples.

In checking accuracy we ran into the question of the origins of PIE. Although
there are genes for language there is certainly none for any Indo-European lan-
guage. Thus inferences have to be indirect. Marija Gimbutas saw patterns in
symbolism and burial rituals suggesting the Yamnaya Culture was the cradle of
Proto Indo-European. Also their physiology was robustly Europeanoid unlike
the gracile skeletons of Neolithic Europe, but this could be nutrition and not
genetic. So it was an open question whether the spread of this robust type into
Western Europe in the late Neolithic marked an influx of Steppe nomads or a
revolution in diet.

Reich23 observed all 6 skeletons from Yamnaya sites, c 3300BC by 14C dat-
ing, are either R1a1b1 and R1a1a. But that method could not date the origin of
R1a1b1 and R1a1a. Our TMRCA shows both these haplotypes expanding at es-
sentially the same time c3700BC. This, together with our later date for Anatolia,
implies that R1b1a2 and R1a1a must have originated in the Yamnaya Culture,
c 3700BC. Furthermore, considering the correlation of haplotypes R1b1a2 and
R1a1a with Indo-European languages (i.e. all countries with R1b1a2 & R1a1a
frequency > 50% speak Indo-European), this provides powerful evidence for the
origin of Proto Indo-European.
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Supplementary Material 1:
Mathematical Genetics

Sophisticated Mathematical theory has been developed for genetics, see
1,2,5. However all of these assume the present distribution is entirely the
result of the stochastic process. We emphasize the role of extraneous forces
like kin-selection which operates on too big a scale and rarely enough with
results that cannot be subsumed into the mutation rates. So our method
does not follow from any of these previous theories nor is it just applying
a known statistics package. Instead we return to basic principles.

Fundamental Solutions

The Y-chromosome has DYS marked by j = 1, ...N , where one can count the
STR number xj . Consider the probability Pj,k (at time t generations) that at
marker j we have xj = k. This satisfies the homogenous stochastic system

Pj,k(t)

dt
= −µjPj,k +

∑
m>0

µj,−m Pj,k−m + µj,m Pj,k+m

This homogenous system gives a uniform expansion from a single patriarch.

The system is essentially the model of Wehrhahn9 who had µj,−1 = µj,1.
We introduce asymmetric mutations with total rate

µj =
∑
m>0

µj,−m + µj,m

About 50% of DYS markers show asymmetric mutations, i.e. µj,−1 6= µj,1 .

The fundamental solution comes from the generator function

G(z, t) =
∞∑
−∞

Pj,kz
k ,

with complex variable z, and normalized initial condition xj = 0 or Pj,0(0) = 1:

G(z, t) = Exp[−µjt+ t
∑
m>0

µj,−mz
m + µj,mz

−m]

Then G can be expanded in powers of z to give Pj,k(t). Now for the simplest
asymmetric case, with only one step mutations, we have G(z, t) =

e−µjtetµj,−1zetµj,1/z = e−µjt

{ ∞∑
m=0

µmj,−1
m!

(z t)m

}{ ∞∑
m=0

µmj,−1
m!

(t/z)m

}
so using the Hyperbolic Bessel Function of Order k ≥ 0, see Olver 7

Ik[u] =
∞∑
m=0

u2m+k

22m+km!(m+ k)!
,
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we see that the homogenous system has fundamental solution

Pj,k(t) = e−µjt
(
µj,1
µj,−1

)k/2
I|k|[2t

√
µj,−1 µj,1 ]

From this we obtain the second moment:

k=∞∑
k=−∞

k2Pj,k = { d
dz
z
d

dz
G(z, t)}|z=1 = tµj + t2(µj,1 − µj,−1)2

Also from the fundamental solution we find, independently of time

Pj,1(t)

Pj,−1(t)
=

µj,1
µj,−1

,

which we call the asymmetric ratio. It will be repeatedly used.

Of course the actual initial value is not xj = 0 but was usually taken to be the
mode mj which was assumed to be the value for original patriarch. Assuming
symmetry, i.e. µj,−1 = µj,1 , the TMRCA is:

T =
1

nµ

∑
j,i

(xj(i)−mj)
2 , µ =

∑
j

µj .

From the present distribution of data we use the frequency

f(j, k) =
Count(xj(i) = k)

n
.

One problem with the KAPZ formula is that higher frequencies f(j, k), |k| =
2, 3... are overrepresented in the actual data. This is because the probability of
a spontaneous two step mutation is much higher then the product of two one
step mutations. So instead we use the frequency to solve the transcendental
equation for the unknown t

f(j, 0) ∼ Pj,0(t) = e−µjtI0[2t
√
µj,−1 µj,1 ]

This nonlinear equation is easily solved via mathematical software such as
MATHEMATICA (I used version 9 running on a boosted 2014 iMac which
has accurate hyperbolic Bessel functions. Earlier versions on older iMacs gave
inaccuracies so one had to compile one’s own functions). Using this formula
resolves some other problems with the KAPZ method, e.g. µj,−1 6= µj,1 gives
an extra quadratic term which if ignored causes large errors.

13
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Heterogeneous diffusion equation

However the main problem is singularities in the stochastic process. For a
uniform stochastic process, 1 − Pj,0(t) ∼ 1 − f(j, 0) is the probability of some
mutation. So the expected variance is f(j, 0)(1−f(j, 0)). Thus if the actual data
variance Vj >> f(j, 0)(1−f(j, 0)) we are not uniform. Now a sublineage of very
high fertility increases variance, giving apparently greater TMRCA although it
is unchanged. One finds similar results for Bayesian methods.

The correct approach to nonuniformity assumes at times ti (generations
ago) a certain proportion 0 ≤ ρi ≤ 1 of the present population originated from
a “virtual patriarch” with an initial STR value mi. The resulting system :

pj,k(t)

dt
= −µjpj,k +

∑
m>0

µj,−m pj,k−m + µj,m pj,k+m + dρ

i.e. dρ are atoms of weight ρi with STR value mi occurring at time ti. As
the system is linear and isotropic the solution is a combination of fundamental
solutions P of the homogenous system. Thus the present distribution f(j, k) is

f(j, k) =
∑
i

ρi Pj,k−mi(ti)

This allows us to consider populations mixed by having singular lineages from
overfertile patriarchs, or by actual immigration from the outside. The inverse
problem seeks to find singularities from present data. Unfortunately inversion is
ill posed for such systems like the heat equation . This instability produces poor
accuracy. Furthermore there is no unique solution, e.g.the present distribution
could have been created yesterday.

However we find that ∼ 50% of the DYS markers show no significant differ-
ence from the uniform expansion of a single patriarch, i.e. the data variance Vj
is close to the expected variance f(j, 0)(1− f(j, 0)). The other markers show at
most one significant side branch, i.e. there is an original branch starting at time
tj,0 with STR m0 and a second one with STR m1 = m0 ± 1 at time tj,1 < tj,0
with significant 0 < ρ1 < ρ0.

Reduction

We locate these singular lineages by looking for asymmetries in the distribution.
For a uniform flow from a single patriarch the frequency of STR value k is given
by f(j, k) ∼ Pj,k(t). The asymmetric ratio:

f(j, 1)

f(j,−1)
∼ Pj,1(t)

Pj,−1(t)
=

µj,1
µj,−1

,

is completely independent of time t. Therefore if say

f(j, 1)

f(j,−1)
>>

µj,1
µj,−1

,
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we have a singular lineage at k = +1. Thus the excess at k = +1 is

f(j,+1)− f(j,−1)
µj,1
µj,−1

To first order approximation then frequency f(j,+2) is due to this singularity
at j = +1 which therefore gave a contribution

f(j,+2)
µj,−1
µj,+1

to k = 0. Thus removing the effect of the singularity at k = +1 leads to new
frequencies

f∗(j,−1) = f(j,−1)

f∗(j, 0) = f(j, 0)− f(j,+2)
µj,−1

µj,+1

f∗(j,+1) = f(j,+1)− f(j,−1)
µj,1
µj,−1

These of course are no longer normalized so we rescale to obtain the renormalized
frequency F (j, k), e.g.

F (j, 0) =
f∗(j, 0)

f∗(j, 0) + f∗(j,−1) + f∗(j,+1)

which will be used to compute the expansion time for marker j. There are
similar formulae if the singularity was at k = −1. This is illustrated in figure 3.

However there is sampling error both in the frequencies and the µj,1, µj,−1.
So we bootstrap taking into account these uncertainties, running the computa-
tion thousands of times. Generally we find the branch singularity is always one
of k = 0,+1,−1 with no SD. In a few cases the singularity may seem to wander
between k = 0,+1,−1. So in the case of a wandering singularity we obtain a
distribution over k = 0,+1,−1 with a mean and SD. In these cases we find the
singularity is relatively small and does not make much difference to the final
result. However to have a stable method we do not throw out these wandering
singularities but in the algorithm use the mean to average between k = 0 and
k = ±1, e.g. if the mean is k = 0 then we use the original unreduced frequency.

Notice that we assume at most one side branch. In theory there could be
many and solving for these produce even better approximations to the present
data. In fact you could get perfect matching but find the atoms were created
yesterday! The thing is that while many markers show significant deviation
from a uniform flow from a single patriarch, after we have carried out reduction
for one possible side branch we find no significant difference from a uniform
flow, i.e. the difference is within the SD. This is of course an approximation,
the next level beyond Zuckerkandl and Pauling, but given the noise in the data
perhaps the best we can do. Later we further reduce the effect of outliers by
using robust statistics.
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Reducing the singular lineages increases the frequency f(j, 0) of the mode
and decreases the computed TMRCA. But as the method of reducing singu-
larities does not respect higher frequencies f(j, k) it follows the KAPZ formula
cannot be used and instead we use the probability of no mutations, i.e. solve

F (j, 0) = e−µjtI0[2t
√
µj,−1 µj,1 ]

This is done for each DYS marker j , giving expansion times t1, ...tN for each
marker, with computed CI. (An extra fixed source of error is the uncertainty
in the mutation rates which we deal with later). We find the reduction of
singularities makes striking difference to the tj of the effected markers, often a
reduction of ∼ 50% for TMRCA.

Now the existence of side branches implies that the main branch could itself
have been the side branch for an earlier branch that did not survive. Thus we do
not expect the expansion times t1, ...tN for each marker to be essentially equal.,
i.e they are not within the SD of each other. Indeed we see that the distribution
of the times tj for different markers are almost certainly not randomly arranged
about a single TRMCA T but distributed from T to the present. This is seen
whether you use reduction or not, or our mutation rates or not. (For a given
population one could scale mutation rates to get equal tj , but then applying
these adhoc mutation rates to other populations does not yield the same values).
The spread out distribution of surviving branches is another verification of our
theory of many extinctions, few survivors. The distribution of the times tj for
different markers we call the branching distribution, which is now discussed.

The Branching Distribution

The times tj for different markers are sorted from the youngest to the oldest,
forming a sequence t∗1, ...t

∗
N . The generation of these branches is by an unknown

probability distribution dτ0 over [0, T ]. We model dτ0 by assuming a surviving
lineage is generated at random with probability β∆t in time period [t, t + ∆t],
multiplied by the probability that the branching hasn’t already occurred. The
constant β averages fertility and extinction rates, the chance of a new lineage
surviving. As β →∞ we get current theory where all lineages originate from a
single patriarch at time T . Simulations with the data show that β varies in the
range 1 to∞. We make no a priori estimate of β, unlike Bayesian methods where
an overall fertility rate is a predetermined parameter. Instead our stochastic
simulation will find the most likely β, T in each case. Assuming independence,
then the generation of branches follows the well known exponential distribution:

τ0[t] = Exp[β(t− T )] UnitStep[T − t]

Notice this implies a finite probability that some markers have essentially zero
mutations. This is actually seen in examples. Both the Hamilton Gp A and
Macdonald Gp A have number of individuals n > 100. For the time scale of
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> 700 years we do not expect there is more than one marker out of 33 which
shows absolutely no mutations from the mode. In fact in both cases there are
8 markers where all n individuals have exactly the same STR value.

Estimating the parameter T for an exponential distribution is a well known
problem of statistics. Kendall proved the best estimate for T would be max tj .
Unfortunately there is also considerable error λj% for the mutation rates µj .
Later we give a method for reducing this error, even so we find the SD in
the range 10% − 30% which gives corresponding range in error for each tj .
We understand that the tj are being generated by the distribution dτ0 but
superimposed on this is a further uncertainty due to mutation rates etc. In
particular the largest tj may be wildly inaccurate. Also we found that simply
taking the average consistently underestimates the TMRCA by a wide margin.

Assuming the mutation rates have normal distribution with mean µj and
variance λ2jµ

2
j , the tj have SD tjλj . Thus the actual data for t∗j has probability

density function for s > 0

dτ(s) =

∫ T

0

e(t−T )/β

β

e
−(t−s)2

2ν

√
2πν

dt .

The variance ν depends on two sources. First from the uncertainty in mutation
rates, for each marker we get varianceλ2j , giving total

ν1 =
1

N

∑
j

λ2j

However a small sample also has inherent error from sampling. We are measur-
ing the probability that there is a mutation. This is binomial with probability

Hj = Hj(t) = 1− Pj,0(t) = 1− e−µjt
(
µj,1
µj,−1

)k/2
I0[2t

√
µj,−1 µj,1 ]

Hence for sample size n there is variance Hj(1−Hj)/n, so the variance in time
due to this is scaled by the derivative giving:

ν2 =
Hj(1−Hj)

n(H ′j)
2

The function H ′j has actually to be computed as an inverse function depending
on Hj . Therefore the total variance averaged over all N markers is ν = ν1 + ν2.
Although for large samples (n > 1000) the second term is insignificant it does
effect the results once you get to n = 100. In our algorithm the branching
distribution is used to generate large numbers of random branching times so as to
bootstrap error estimates. In turns out much faster to compile the distribution
function as a table which can be repeatedly called on.
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Robust Statistics: Estimating T

Inaccurate large values of t∗j are mitigated by using “robust” statistics with
quintiles instead of means/variances. Using FTDNA data we began with 37
markers. However the 4 markers of DYS464 are unordered and cannot be used.
Also we find that markers DYS 19/394, 385b, 459b, CDYb have errors > 33%
in mutation rates so are not used. (These are some of the most popular ones
in the literature!). So usually we have N = 29 markers and take “quintiles”
θ∗ = (t∗9, t

∗
12, t

∗
15, t

∗
18, t

∗
21). This means that tail end data is not discarded but

kept as the information there are 8 values of t∗j > t∗21, which effectively deals with
outliers. Bootstrap methods give the confidence interval CI for each quintile.

Thus we wish to find the best estimate of T given θ∗ (and CI). This well
known statistical problem was investigated by Stochastic Simulations (SS). We
also tried Maximum Likehood Methods which gave similar results but with
larger CI. Monte-Carlo Methods are used to produce very large numbers (∼ 107)
of T, β with corresponding Distribution. These randomly generate ordered
times (s1...s29) for which we take the quintiles θ = (s9, s12, s15, s18, s21). We
filter by requiring that θ close to the data θ∗, i.e. ||θ∗ − θ|| < 2SD. This gives
a stochastic neighborhood U of θ∗ typically containing > 105 sets of data but
with T is known for each θ ∈ U . Thus we can construct a quasilinear estimator:

QL(s9, s12, s15, s18, s21) = q1s9 + q2s12 + q3s15 + q4s18 + q5s21 ,

and use least squares over U to find constants (q1, q2, q3, q4, q5) minimizing

||q1s9 + q2s12 + q3s15 + q4s18 + q5s21 − T || .

The (q1, q2, q3, q4, q5) are computed in MATHEMATICA . We then test them
by applying the QL to all of U , unsurprisingly

MeanU [q1s9 + q2s12 + q3s15 + q4s18 + q5s21 − T ] ∼ 0

What is important is that we find the uncertainty in the SS itself. Actually this
depends on the data and is calculated in each case but for our examples we find

SDU [q1s9 + q2s12 + q3s15 + q4s18 + q5s21 − T ] ∼ .05 T

Finally we apply the quasilinear estimator to the experimental data

(t∗9, t
∗
12, t

∗
15, t

∗
18, t

∗
21)

to obtain our best estimate of T . Application of QL computes the SD for
our data, giving part of the overall SD. This must be combined with the SD
coming from the uncertainty in the SS. Overall we find that our method has SD
∼ 10%, this includes variances from our data, mutation rates and uncertainty
in the SS. We also tested with 15 and 7 markers. Here one must use “quintiles”
τ = ( t∗5, t

∗
8, t
∗
11) , τ = ( t∗3, t

∗
5), respectively with all the loss of accuracy that

implies. See Table 6, 7 for comparisons using 29, 15, 7 markers on same data.
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Supplementary Material 2:
Accurate Mutation rates

Any genetic clock depends on reasonably accurate mutation rates.
The mitosis method looks for mutations in sperm samples. Forensics
uses father-son studies. However typical rates of µ = .002 would re-
quire nearly 50, 000 pairs to get an SD of 10%. Small samples have
meant large errors. The pedigree approach is to study large family
groups with well developed DNA/genealogy data. So inverting the
KAPZ formula would yield accurate rates. However, singular lineages
makes this problematic. Genealogical data might give mutation rates
much greater than the biochemical rates because kin selection etc
tend to exaggerate the apparent mutation rate. An inspection of 10
different sources finds mutation rates claiming SD ∼ 10% yet they
differ from each other by up to 100%. We describe a new method.

To compute our rates we apply our theory to the large DNA projects for
the SNP M222, L21, P312, U106, R1b1a2, I1, R1a1a. This avoids dealing with
populations such as family DNA projects which are self selecting, i.e only those
with the correct surname which neglects distant branches. Also we have very
large samples, our average n > 1000 . Greater accuracy should come from more
generations and individuals. The problem is that we do not know their TMRCA.

Asymmetric Mutation

However before computing mutation rates we must consider asymmetric mu-
tations, i.e. the left and right mutation rates µj,−1 6= µj,1. For a uniform
stochastic process we again use the asymmetric ratio

pj,1(t)

pj,−1(t)
=

µj,1
µj,−1

=
Aj

1−Aj

to define the asymmetric constant Aj ∈ [0, 1] for marker j. For example Aj = 0.5
is complete symmetry. Of course singularities will effect this ratio, however these
only occur < 50% of markers. Thus for each marker, SNP we compute this ratio.
We find the SD for each SNP is relatively small while the difference between
SNP can be large. However for each marker, using 8 SNP enables outliers to be
easily removed leaving allowing us to use simple linear regression: i.e. average
of the Aj over the remaining SNP groups. We see that asymmetry is a real
effect: 50% of the Aj are more than two SD from symmetry Aj = 0.5.

Observe this is significant. The total second moment is

∑
j

k=∞∑
k=−∞

k2Pj,k = t
∑
j

µj + t2
∑
j

(µj,1 − µj,−1)2
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So using all our 33 DYS markers with our µj , we compute constants

µ =
∑
j

µj = .12006, τ =
∑
j

(µj,1 − µj,−1)2 = 0.000236

The KAPZ formula gives variance V = µt compared to the corrected formula
µt + τt2. The uncorrected KAPZ gives an overestimate > 400% for > 200
generations. This effect can be nullified by using the mean instead of the mode,
variance instead of the second moment, however failing to do so gives a large
error. Furthermore other methods which assume symmetric mutations will also
be inaccurate. Having estimates on the asymmetry is essential to our method
because we find singular lineages by looking for asymmetry in the data. Any
such anomaly needs to be significantly greater than the natural asymmetry.

Mutation Rates as a fixed Point

Next we compute mutation rates using 8 very large SNP groups. First, using
the asymmetric constants we find singular lineages and reduce their effect. We
take account of the error in the Aj by a bootstrap technique, which gives the
variance for each frequency f(j, 0). For a given SNP k if markers j started their
expansion at the same time TMRCA Tk we could calculate mutation rates µj
via

(1) f(j, 0) = e−µjTjI0[2Tj
√
µj,−1 µj,1] ,

or rather average the 8 different µj we would obtain. However because of branch-
ing caused by extinction of lineages the different markers do not originate at
the same time but at different times tj . In this case we expect these tj to be
randomly distributed about the log mean over a middle set of times tj . So, for
each SNP group k = 1, ..8 define mean time Tk, not the TMRCA but the mean
log mean over a middle set of markers, which is less. We find that this is very
stable. So for a fixed marker j the data τk,j = tj − Tk should be randomly
distributed about zero over the different SNP k = 1, .., 8. However the wrong
choose of µj would give a bias. In fact this is what we see if the mutation rates
µj = .002 were chosen. In appendix graphs show the τk,j , k = 1, ..8 bunched
around a nonzero point. Thus we try to find µj so that the τk,j , k = 1, 2, ..8
has mean zero. However the τk,j , k = 1, 2, ..8 depend nonlinearly on the rates
µj , as does the mean Tk, k = 1, ..8. We find this nonlinear regression problem
is solved by an iterative scheme which starts with any reasonable set of DNA
rates, finding any reasonable choice iterates to the same final answer. So choose
µj = .002 to begin. Suppose at some stage we have apparent mutation rates
µj . Then, for each SNP, and each marker we solve equation (1) to obtain the
apparent tj . For each SNP k = 1, ..8 we compute the mean log time Tk. At the
next step we get new rates µ∗j from

f(j, 0) = e−µ
∗
jTkI0[2Tk

√
µ∗j,−1 µ

∗
j,1]
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Averaging µ∗j , k = 1, ..8 we get our next set of µj of mutation rates. However
this method would be effected by a marker showing a singular lineage. Fortu-
nately these are few in number and by comparison between the different SNP we
remove the outliers. We then repeat the process, computing Tk again with the
new rates, and another set of mutation rates. So we have an iterative process.

One problem is that the iterates could tend to decrease to zero or increase
to ∞, as we are only calculating relative rates. To prevent this we renormalize
after each iteration so the total

∑
µj is constant. We found the iterative scheme

quickly converges to a fixed set of mutation rates, unique up to a constant factor.
The CI is computed by bootstrap parametrized by the uncertainties in data and
the asymmetric constants. In figure we show the distribution of τk,1, k = 1.2, ..8
before and after the first iteration.

The generation factor γ

This method does not give absolute mutation rates but relative mutation rates
µjγ, where γ is universal time scale constant. To find γ we apply our method to
compute the T = TMRCA of three famous DNA projects and choose γ so the
scaled T/γ best fits the historical record. We choose the DNA projects for the
O’Niall(M222), Gp A of Macdonald (R1a1a) and Gp A of the Hamiltons (I1).
These are large groups with characteristic DNA and fairly accurate times of
origin. Of course finding one constant γ from three projects is inherently more
accurate than using one project to find 33 different mutation rates. Actually
assuming a generation of 27years these three projects yield γ = 1 with about
5% error, i.e. there is no actual need for this correction. This is a constant error
(like uncalibrated 14C dating).

Thus γ is related to the length of a generation. Most researchers use 25yrs
for t > 500ybp and 27yrs for t < 500ybp. Balaresque and al used 30yrs based on
Finer who sees a 30yr generation for modern hunter-gatherers. (Although for
most of the time R1b1a2 were subsistence farmers and not hunter gatherers.) At
first glance our theory allows any nominal generation as it really doesn’t mat-
ter, being included in the γ factor which we compute in years not generations.
Actually its not as simple as that. While our three DNA projects being post
1000AD elites have a 27yr generation the problem is what to do for t > 2000ybp.
Now 25y may be appropriate for subsistence farmers but we found that singular
lineages of the elite have exaggerated effect so 27 years seems appropriate.
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      # 

      
    DYS 

 
Hamilton 
 
 

 
DH-SD 

 
DH+SD 

   Burgella 
   (mitosis) 

 
B(m) - SD 

 

 
    B(m) +SD 
 

 Burgella 
(regress.) 

 
B(r) - SD 
 

 
B(r)+SD 
 

 
     NIST 

 
     FTDNA 

1 393 0.72 0.56 0.92 1.03 0.60 1.77 2.60      2.16 3.119 0.08 1.43 

2 390 2.52 1.87 3.40 2.12 1.49 3.03 4.66     3.92 5.53 2.40 5.32 

3    19/394* 1.30 0.64 2.64 2.19 1.55 3.09 2.84     2.53 3.182 2.38 1.45 

4 391 4.98 3.56 6.96 2.72 1.98 3.72 2.02     1.74 2.343 2.88 4.15 

5     385a 1.26 1.00 1.58       2.10 5.68 

6     385b* 3.13 1.87 5.25                 2.10 5.68 

7 426 0.07 0.04 0.11              0.46        0.25 	
  	
  	
  0.842  0.26 

8 388 0.22 0.15 0.32 0.42        0.02 2.36 0.46      0.25 0.843  0.25 

9 439 3.76 3.07 4.60 5.48        4.17 7.19           2.90        2.58 	
  	
  	
  3.248  4.95 

10     389-I 1.93 1.61 2.31 2.53        1.79 3.57 2.20        1.92 	
  2.517 1.88 2.23 

11      392 0.36 0.23 0.56 0.43        0.20 0.94 0.48        0.26 0.861 0.58 1.59 

12     389b 2.96 2.42 3.62 3.17 2.33 4.31 2.54        2.26 2.867 2.96 2.72 

13 458 7.99 6.83 9.35 6.88 5.16 9.17 4.78 3.91 5.838 10.80 6.30 

14     459a 0.39 0.29 0.53         

15     459b* 2.98 1.54 5.76         

16 455 0.16 0.12 0.22              2.14        1.74 	
  	
  	
  2.63  0.46 

17 454 0.11 0.08 0.15              2.18        1.78 	
  	
  	
  2.674  0.47 

18 447 3.80 2.93 4.92 4.56        1.55           13.32 0.74 0.37 1.467  4.00 

19 437 0.99 0.73 1.35       1.50 2.15 

20 448 1.16 0.81 1.66       1.80 2.71 

21 449 11.70 9.16 14.94           18.97        9.22           38.63 9.64 6.85 13.56  7.84 

22 460 2.63 2.08 3.33 3.82        1.63             8.92 2.49 2.06 3   

23 GATAH4 3.93 3.28 4.71             2.43        1.80          4. 211 2.19 1.91 	
  	
  	
  2.515 2.51  

24 YCA IIa 0.32 0.22 0.46         

25 YCAIIb 1.40 1.03 1.90         

26 456 8.10 5.56 11.80 4.50        3.16             6.42 3.27       2.75 3.881   

27 607 2.15 1.72 2.69              3.73        3.27 	
  	
  	
  4.268            4.10 

28 576 10.65 8.72 13.01           16.22        8.55 30.53           4.18        3.48 	
  	
  	
  5.034          10.20 

29 570 4.60 3.27 6.48           12.61        6.12 25.80           4.20        3.49 	
  	
  	
  5.059            7.90 

30    CDYa 14.71 12.37 17.49                35.30 

31    CDYb* 13.40 2.68 67.00                35.30 

32 442 2.90 2.38 3.54             1.93        1.64 	
  	
  	
  2.256   

33 438 0.43 0.34 0.55       0.70  

Mutation rates 10-3.     
Comparison with Mitosis rates: Burgella summarized 20 different Mitosis sets, e.g. NIST (shown), then used averages(m) and regression(r) 
FTDNA uses  pedigree studies 
*Too inaccurate to use    
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                     Asymmetric  rates  
 

 
# DYS       Aj           SD SD from 0.5 

1 393 0.675 0.087 2.0 
2 390 0.463 0.093 0.4 
3 19/394 0.973 0.032 14.7 
4 391 0.029 0.008 62.8 
5 385a 0.699 0.096 2.1 
6 385b 0.820 0.085 3.8 
7 426 0.370 0.232 0.6 
8 388 0.910 0.072 5.7 
9 439 0.734 0.359 0.7 

10 389-I 0.779 0.105 2.7 
11 392 0.954 0.040 11.2 
12 389b 0.703 0.325 0.6 
13 458 0.512 0.137 0.1 
14 459a 0.139 0.125 2.9 
15 459b 0.003 0.001 353.0 
16 455 0.277 0.168 1.3 
17 454 0.962 0.030 15.4 
18 447 0.154 0.025 13.6 
19 437 0.090 0.090 4.6 
20 448 0.216 0.172 1.6 
21 449 0.518 0.150 0.1 
22 460 0.107 0.050 7.9 
23 GATAH4 0.170 0.198 1.7 
24 YCAIIa 0.195 0.163 1.9 
25 YCAIIb 0.190 0.175 1.8 
26 456 0.671 0.416 0.4 
27 607 0.243 0.103 2.5 
28 576 0.387 0.157 0.7 
29 570 0.448 0.077 0.7 
30 CDYa 0.370 0.181 0.7 
31 CDYb 0.258 0.082 2.9 
32 442 0.603 0.170 0.6 
33 438 0.715 0.215 1.0 

Mean* #1-33       0.26*       0.134  

 
 
*Absolute difference from 0.5,  note 16/33 more than 2 SD from 0.5 
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The log distribution of τk,1, k = 1.2, ..8 before iteration at marker j = 1 , ie
DYS 393, but after reduction 1(µj = .002). The SNP are colored:
M222, L21, P312, U106, R1b1a2, I1, R1a1a.
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After just one iterate we get
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2     Untitled-1

So 5 of our τk,1, k = 1.2, ..8 bunch around zero, outliers are U106 and I1.

The iterative scheme converges to stable values very fast, 7 iterates is enough.

1The calculations and figures for all 33 markers is shown in SM
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Supplementary Material 3:
Reduction of Singular Lineages vs KAPZ

We compare results for our method with KAPZ, for the same data,
29 markers and our mutation rates

First we compare for groups with medieval expansions

Group (n) RSL [SD] KAPZ [SD] First Known
Hamilton (144) 1358AD [140] 1130AD [255] W. Hamilton 1300AD
Macdonald (95) 900AD [250] 530AD [566] Somerled 1100AD
O′Niall (713) 200AD [225] 20BC [364] Niall 300AD

Next we compare SNP G2a2b, R1b1a2, R1a1a, I1, L21, U106, J2, P312:

SNP (n) RSL [SD] KAPZ [SD]
G2a2b (1221) 5359BC [900] 4840BC [1257]
R1b1a2 (460) 3700BC [625] 5490BC [2144]
R1a1a (1270) 3800BC [700] 3670BC [1066]
I1 (2898) 1800BC [400] 2400BC [1061]
L21 (1029) 1600BC [325] 3270BC [1063]
U106 (1533) 2400BC [440] 2530BC [628]
J2 (1241) 15500BC [2600] 11700BC [2990]
P312 (971) 2240BC [420] 2900BC [632]

RSL and KAPZ will give similar results if there is a fast expansion and thus
insignificant singular lineages and branching. Actually this is to be expected
sometimes, i.e. it is not surprising that the results using RSL and KAPZ for
O’Niall, R1a1a, U106 are very similar.

However in other cases the KAPZ results are about 30% too old. In the case
of the Hamiltons and Macdonalds absurdly so. For R1b1a2 it gives an early
Neolithic age, compared with eneolithic for R1a1a, yet these have been dated
to the same Yamanya times. The KAPZ dates for L21 “Celtic” is nearly 2000
years before Urnfelder Culture.

Of course one might try to “improve” KAPZ by increasing the mutation
rates by 33% so the KAPZ times are decreased by 25%. Then the medieval
dates look reasonable but we find 3100BC for G2a2b which is too late. For
R1a1a we would get 2300BC which is not only too late but significantly different
from the 3600BC for R1b1a2. Also G2a2b would be predated by R1b1a2 even
though the latter has never been found in Neolithic sites of Europe. Getting
consistent results across the span of history was a problem of previous clocks.
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