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Organisms and ecological groups accumulate evidence to make decisions. Classic experiments
and theoretical studies have explored decisions between alternatives when the correct choice is fixed
during a trial. However, the natural world constantly changes. Using sequential analysis we derive
equations for the likelihood of different choices, when the correct option changes in time. Our
analysis shows that ideal observers discount prior evidence at a rate determined by the volatility
of the environment. Nondimensionalization shows that the dynamics of evidence accumulation is
governed solely by the information gained over an average environmental epoch. A plausible neural
implementation of an optimal observer in a changing environment shows that, in contrast with
previous models, neural populations representing alternate choices are coupled through excitation.

Introduction. Mammals [1–4], insects [5, 6], and single
cells [7] use incoming evidence to make choices. Per-
ception is noisy, but it is possible to determine optimal
policies for integrating uncertain information to make de-
cisions [8–10]. Remarkably, such policies are consistent
with the behavior of many animals faced with uncer-
tain choices [3, 4, 11]. Stochastic accumulator models
provide a plausible neural implementation of such deci-
sions [12, 13]. These models are analytically tractable [2],
and can implement optimal decision strategies [14]. How-
ever, a key assumption of most models is that the correct
choice is fixed in time, i.e. decisions are made in a static
environment. This assumption may hold in the labora-
tory, but natural environments are seldom static [15, 16].

Here we show that optimal stochastic accumulator
models can be extended to a changing environment.
These extensions reveal how to optimally discount old
information, and provide explicit limits on the certainty
that can be attained when the underlying truth changes.
Moreover, they suggest a biophysical neural implemen-
tation for evidence integrators that differs considerably
from those in a static environment.

We develop our model in a way that parallels the case
of a static environment with two possible states, H+ and
H−. The problem is to optimally integrate a stream of
observations (measurements) to infer the present environ-
mental state. In the static case, this can be done using se-
quential analysis [1, 9]: An observer makes a stream of in-
dependent, noisy measurements, ξ1:n = (ξ1, ξ2, ..., ξn), at
equally spaced times, t1:n = (t1, t2, ..., tn). Their distri-
butions, f+(ξj) := Pr(ξj |H+), and f−(ξj) := Pr(ξj |H−),
depend on the environmental state. Combined with the
prior probability, Pr(H±), of the states, this gives the
likelihood ratio,

Rn =
Pr(H+|ξ1:n)

Pr(H−|ξ1:n)
=
f+(ξ1)f+(ξ2) · · · f+(ξn)

f−(ξ1)f−(ξ2) · · · f−(ξn)

Pr(H+)

Pr(H−)
,
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which can also be written recursively [9]:

Rn =

(
f+(ξn)

f−(ξn)

)
·Rn−1, with R0 =

Pr(H+)

Pr(H−)
. (1)

With a fixed number of observations, the likelihood ratio
can be used to make a choice that minimizes the total
error rate [8], or maximizes reward [10]. Eq. (1) gives a
recursive relation for the log likelihood ratio, yn = lnRn,

yn = yn−1 + ln
f+(ξn)

f−(ξn)
. (2)

When the time between observations, ∆t = tj − tj−1, is
small, we can approximate this stochastic process by the
stochastic differential equation (SDE) [17],

dy = g±dt+ ρ±dWt, (3)

where Wt is a Wiener process, and the constants g± =
1

∆tEξ[ln
f+(ξ)
f−(ξ) |H±] and ρ2

± = 1
∆tVarξ[ln

f+(ξ)
f−(ξ) |H±] de-

pend on the environmental state. Below we approximate
other discrete time process, like Eq. (2), with SDEs. For
details, see the Supplementary Material [18].

In state H+ we have g+∆t =
∫∞
−∞ f+(ξ) ln f+(ξ)

f−(ξ)dξ.

Thus the drift between two observations equals the
Kullback–Leibler divergence between f+ and f−, i.e. the
strength of the observed evidence from a measurement in
favor of H+. Hence g+ and g− are the rates at which an
optimal observer accumulates information.

Two alternatives in a changing environment. We
assume that at time t the state, H(t), of a changing en-
vironment is either H+ or H−. An observer infers the
present state from a sequence of observations, ξ1:n, made
at equally spaced times, t1:n, and characterized by dis-
tributions f±(ξn) := Pr(ξn|H±). The state of the envi-
ronment changes between observations with probability
ε±∆t := Pr(H(tn) = H∓|H(tn−1) = H±) known to the
observer. The likelihoods, Ln,± = Pr(H(tn) = H±|ξ1:n),
then satisfy [18]

Ln,± ∝ f±(ξn) ((1−∆tε±)Ln−1,± + ∆tε∓Ln−1,∓) , (4)
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FIG. 1. Evidence accumulation in a dynamic environment.
(A) The environmental state transitions from state H+ to
H− and back with rates ε+, and ε−, respectively. Observa-
tions follow state dependent distributions f±(ξ) = Pr(ξ|H±).
(B) The distributions of the measurements, ξj , change with
the environmental state. (C,D) The evolution of the log like-
lihood ratio, y, (panel C) and the log likelihoods x± (panel
D). At time t, evidence favors the environmental state H+ if
y(t) > 0, or, equivlently, x+(t) > x−(t).

with proportionality constant Pr(ξ1:n−1)/Pr(ξ1:n). The
ratio of likelihoods of the two environmental states at
time tn, can be determined recursively as

Rn =
Ln,+
Ln,−

=
f+(ξn)

f−(ξn)

(1−∆tε+)Rn−1 + ∆tε−
∆tε+Rn−1 + 1−∆tε−

. (5)

This equation describes a variety of cases of evidence ac-
cumulation studied previously (Fig. S1 in [18]): If the
environment is fixed (ε± = 0), we recover Eq. (1). If
the environment starts in state H−, changes to H+, but
cannot change back (ε− > 0,ε+ = 0), we obtain

Rn =
f+(ξn)

f−(ξn)

Rn−1 + ∆tε−
1−∆tε−

,

a model used in change point detection [19].
We can again approximate the stochastic process de-

scribing the evolution of the log likelihood ratio, yn =
lnRn, by an SDE [18]:

dy = [g(t) + ε−(e−y + 1)− ε+(ey + 1)︸ ︷︷ ︸
nonlinearity

]dt+ ρ(t)dWt,

(6)

where the drift g(t) = 1
∆tEξ

[
ln f+(ξ)

f−(ξ) |H(t)
]
, and variance

ρ2(t) = 1
∆tVarξ

[
ln f+(ξ)

f−(ξ)

∣∣∣∣H(t)

]
are no longer constant,

but depend on the state of the environment at time t.
The nonlinearity highlighted in Eq. (6) does not ap-

pear in Eq. (3), and serves to discount older evidence
by a factor determined by environmental volatility. In
previous work such discounting was modeled by a lin-
ear term [12, 20, 21], however our derivation shows that
the resulting Ornstein-Uhlenbeck (OU) process does not
model an optimal observer.

Equal switching rates. When ε := ε+ = ε−, rates of
switching between states are equal. Eq. (6) then becomes

dy = g(t)dt− 2ε sinh(y)dt+ ρ(t)dWt. (7)
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FIG. 2. Dependence of the probability of the correct response
(accuracy) on normalized information gain, m, when ε+ = ε−.
(A) Accuracy in an interrogation protocol increases with m
and interrogation time, t, but saturates. Horizontal bars on
left indicate the accuracy when the environment is in a single
state for a long time, as in Eq. (10). (B) When the observer
responds freely accuracy is similar, but saturates at 1. The
increase in accuracy in time is exceedingly slow for low m.
With multiple choices, N > 2, the accuracy behaves similarly
(See Supplementary Material [18]).

Rescaling time using τ = εt, we obtain

dy = [g(t)/ε] dτ − 2 sinh(y)dτ +
[
ρ(t)/

√
ε
]

dWt. (8)

Since g(t) is the rate of evidence accumulation, and ε−1

is the average time spent in each state, [g(t)/ε] can be
interpreted as the information gained over an average
duration of an environmental state.

When observations follow Gaussian distributions,
f± ∼ N (±µ, σ2), then g(t) = ±2µ2/σ2 and ρ = 2µ/σ
and

dy = sign[g(t)]mdτ − 2 sinh(y)dτ +
√

2m dWt, (9)

where m = 2µ2/(σ2ε). The behavior of the system is
completely determined by the single parameter m, the
information gain over an average environmental epoch.

The probability of a correct response (accuracy) in
both interrogation (Fig. 6A) and free response (Fig. 6B)
protocols increase with m. When an optimal observer is
interrogated about the state of the environment at time
t, the answer is determined by the sign of y. The envi-
ronment is changing, and observers discount old evidence
at a rate increasing with 1/m. Decisions are thus effec-
tively based on a fixed amount of evidence, and accuracy
saturates at a value smaller than 1 (Fig. 6A). If the envi-
ronment remains in a single state for a long time, the log
likelihood ratio, y, approaches a stationary distribution,

S±(y) = Ke±y−
2 cosh(y)

m , H(t) = H±, (10)

where K is a normalization constant. In contrast, no
stationary distribution exists when the environment is
static (ε ≡ 0). Since S±(y) is obtained in the limit of
many observations when the environment is trapped in
a single state,

∫∞
0
S(y)dy provides an upper bound for

accuracy (Fig. 6A). To achieve accuracy a in the free
response protocol (Fig. 6B), we require |y| ≥ ln a

1−a [2].
The waiting time for this accuracy steeply increases with
a and decreases with m.
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FIG. 3. Evidence accumulation with multiple choices in a
changing environment. (A) The environment switches be-
tween N states (here N = 3). (B) Distributions fi(ξ) =
Pr(ξ|Hi) describing the probability of observation ξ in envi-
ronmental state Hi. (C,D) Realization of the log likelihood
ratios (panel C: ln(L1/L2), ln(L2/L3), ln(L3/L1)) and log
likelihoods (panel D).

We note that the hyperbolic sine term in Eq. (9) is
superlinear. This means that, following an environmental
switch, evidence is discounted more rapidly than in an
OU model. We will see that similar observations hold in
a changing environment with multiple states.

Likelihood update with multiple states. With mul-
tiple environmental states, Hi (i = 1, ..., N), the optimal
observer computes the present likelihood of each state
from a sequence of measurements, ξ1:n. Each measure-
ment has distribution fi(ξn) := Pr(ξn|Hi) dependent
on the state [13, 22]. The environment switches from
state j to i between two measurements with probability
εij∆t = Pr(H(tn) = Hi|H(tn−1) = Hj) for i 6= j, and
Pr(H(tn) = Hi|H(tn−1) = Hi) = 1 −

∑
j 6=i ∆tεji (See

Fig 3A).
We again use sequential analysis to obtain the likeli-

hoods Ln,i = Pr(H(t) = Hi|ξ1:n) of the hypotheses Hi

given n observations. The index that maximizes the like-
lihood, ı̂ = argmaxi Ln,i, then gives the most likely state.
Following the approach above, we obtain [18]:

Ln,i =
Pr(ξ1:n−1)

Pr(ξ1:n)
fi(ξn)×1−

∑
j 6=i

∆tεji

Ln−1,i +
∑
j 6=i

∆tεijLn−1,j

 .

(11)

Again after taking logarithms, xn,i = lnLn,i, we can
approximate the discrete stochastic process in Eq. (11),
with an SDE [18],

dx = g(t)dt+ Λ(t)dWt +K(x)dt, (12)

where the drift has components gi(t) =
1

∆tEξ [ln fi(ξ)|H(t)], Λ(t)Λ(t)T = Σ(t) with en-

tries Σij = 1
∆tCovξ[ln fi(ξ), ln fj(ξ)|H(t)], compo-

nents of Wt are independent Wiener processes, and

H
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FIG. 4. Evidence accumulation with a continuum of choices.
(A) The observer needs to infer the state of the environment,
Hθ, where θ ∈ [−1, 1] from observations with distributions
fθ(ξ) = Pr(ξ|Hθ). (B) The environmental state changes
stochastically at discrete times. (C) In slowly changing envi-
ronments, the distribution of log likelihoods can nearly equi-
librate prior to switches (solid line represents the true state
of the environment at time t). (E) In quickly changing envi-
ronments, the distribution remains flat, as limited evidence is
accumulated between switches.

Ki(x) =
∑
j 6=i(εije

xj−xi−εji). The drift gi is maximized
in environmental state Hi. To recover the N = 2 case,
given in Eq. (6), we can exchange the numbers in
Eq. (12) with ± to obtain the log likelihood SDEs:

dx± = [g±(t) +
(
ε∓e

x∓−x± − ε±
)
]dt+ dW±, (13)

〈WiWj〉 = Σijt, and let y = x+− x−. Analogous expres-
sions for log likelihood ratios, yij = ln(Li/Lj), can be
derived [18]. The matrix of log likelihood ratios quanti-
fies how much more likely one alternative is compared to
others (e.g., Fig. 3C) [23].

A continuum of hypotheses. Lastly, we consider the
case of a continuum of possible environmental states.
This provides a tractable model for recent experiments
with observers who infer the location of a hidden, inter-
mittently moving target from noisy observations. Evi-
dence suggests that humans update their beliefs quickly
and near optimally when observations indicate that the
target has moved [24].

Suppose the environmental state, H(t), intermittently
switches between a continuum of possible states, Hθ,
where θ ∈ [a, b]. An observer again computes the
likelihood of each state from observations, ξ1:n, with
distributions fθ(ξn) := Pr(ξn|Hθ). The environment
switches from state θ′ to state θ between observations
with relative likelihood defined εθθ′dθ∆t := Pr(H(tn) =
Hθ|H(tn−1) = Hθ′) for θ 6= θ′, and Pr(H(tn) =

Hθ|H(tn−1) = Hθ) = 1 −
∫ b
a

∆tεθ′θdθ
′ (See [18] for de-

tails). From Eq. (11) the expression for the likelihoods
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Ln,θ = Pr(H(tn) = Hθ|ξ1:n) [18] is:

Ln,θ =
Pr(ξ1:n−1)

Pr(ξ1:n)
fθ(ξn)×((

1−
∫ b

a

∆tεθ′θdθ
′

)
Ln−1,θ +

∫ b

a

∆tεθθ′Ln−1,θ′dθ
′

)
.

We again approximate the log likelihood, lnLn,θ, by a
temporally continuous process,

dx = g(t)dt+ Λ(t)dWt +K(x)dt, (14)

where gθ(t) = 1
∆tEξ [ln fθ(ξ)|H(t)], the components

of Wt are independent Wiener processes, Kθ(x) =∫ b
a

(εθθ′e
xθ′−xθ − εθ′θ)dθ

′, and Λ(t)Λ∗(t) = Σ(t) is the
covariance function given by

Σθθ′(t) =
1

∆t
Covξ [ln fθ(ξ), ln fθ′(ξ)|H(t)] . (15)

The drift gθ(t) is maximal when θ agrees with the present
environmental state. The most likely state, given obser-

vations up to time t, is θ̂ = argmaxθxθ(t).
Even when the environment is stationary for a long

time, noise in the observations stochastically perturbs
the likelihoods, xθ(t), over the environmental states.
In slowly changing environments, the likelihoods nearly
equilibrate to a well peaked distribution between envi-
ronmental switches (Fig. 4C). This does not occur in
quickly changing environments (Fig. 4D). However, each
log likelihood, xθ(t), approaches a stationary distribution
if the environmental state remains fixed for a long time.
The term K(x) in Eq. (14) provides for rapid departure
from this quasi-stationary density when the environment
changes, a mechanism proposed in [24].

Neural population model. Previous neural models of
decision making typically relied on mutually inhibitory
neural networks [12, 25, 26], with each population rep-
resenting one alternative. In contrast, inference in dy-
namic environments with two states, H+ and H−, can
be optimally performed by mutually excitatory neural
populations with activities (firing rates) r+ and r−,

dr+ = [I+(t)− αr+ + F+(r− − r+)] dt+ dW+, (16a)

dr− = [I−(t)− αr− + F−(r+ − r−)] dt+ dW−, (16b)

where the transfer functions are F±(x) = −αx/2+ε∓ex−
ε±, the external input I±(t) = I0

± when H(t) = H±
and vanishes otherwise, W± are Wiener processes with
covariance defined as in Eq. (13) [18]. When α > 0 and
sufficiently small, population activities are modulated by
self-inhibition, and mutual excitation (Fig. 3A). Taking
y = r+ − r− reduces Eq. (49) to the SDE for the log
likelihood ratio, Eq. (6). In the limit ε± → 0, we obtain
a linear integrator dr± = [I±dt+ dW±]−α(r+ +r−)dt/2
[2, 26].

The model given by Eq. (49) is matched to the
timescale of the environment determined by ε±, solu-
tions approach stationary distributions if input is con-
stant. Due to mutual excitation, they are very sensitive
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FIG. 5. Neural population models of evidence accumula-
tion. (A) Two populations u± receive a fluctuating stimulus
with mean I±; they are mutually coupled by excitation (cir-
cles) and locally coupled by inhibition (flat ends) [18]. When
I+ > 0, the fixed point of the system has coordinates satisfy-
ing x+ > x− as shown in the plots of the associated poten-
tials. (B) Taking ε± → 0 in Eq. (49) generates a mutually
inhibitory network that perfectly integrates inputs I± and has
a flat potential function. (C) With N = 3 alternatives, three
populations coupled by mutual excitation can still optimally
integrate the inputs I1,2,3, rapidly switching between the fixed
point of the system in response to environmental changes.

to changes in inputs. These features are absent previous
connectionist models [27]. Even when ε is small, Eq. (49)
has a single attracting state determined by the mean in-
puts I0

±. We illustrate the response of the model to in-
puts using potentials (Fig. 5A). In contrast to the sin-
gle attractor of Eq. (49), mutually inhibitory models can
possess a neutrally stable line attractor that integrates
inputs (ε± ≡ 0, Fig. 5B) [28]. In analogous systems for
N > 2 dynamic states, coupling between populations is
again excitatory (Fig. 5C) [18].

Discussion. We have derived a nonlinear stochastic
model of optimal evidence accumulation in changing
environments. Importantly, the resulting SDE is not an
OU process, as suggested in previous heuristic models
[12, 17, 21]. Rather, an exponential nonlinearity allows
for optimal discounting of old evidence, and rapid
adjustment of decision variables following environmental
changes. Sequential sampling in dynamic environments
with two states has been studied previously in special
cases, such as adapting spiking model, capable of
responding to environmental changes [29]. Likelihood
update procedures have also been proposed for multiple
alternative tasks in the limit εij → 0 [23, 30]. Further-
more, Eq. (11) for the case N = 2 was derived in [31],
but its dynamics were not analyzed. One important
conclusion of our work is that m = g/ε, the information
gain over the characteristic environmental timescale, is
the key parameter determining the model’s dynamics
and accuracy. It is easy to show that equivalent pa-
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rameters govern the dynamics of likelihoods of multiple
choices. We have thus presented tractable equations
that illuminate how the belief of an optimal observer

evolves in a changing environment.
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Supplementary Material

Here we present the derivations for the likelihood update formulas and their approximations discussed in the main
text. We begin by deriving the update expression for the likelihood ratio, Rn, in the case of two alternatives in a
changing environment. The result is a nonlinear recursive equation. Subsequently, we show how to approximate
the log likelihood ratio, yn = lnRn, using a stochastic differential equation (SDE). To make the relation between
the two precise, it is key to view the discrete equation for yn as a family of equations parameterized by the time
interval, ∆t, over which each observation, ξn, is made [2]. Furthermore, we extend our derivations to multiple
(N > 2) alternatives, and show that the log likelihood updates can be approximated by a nonlinear system of
stochastic differential equations in the continuum limit. We emphasize that, with the appropriate scaling of the
probabilities, fi(ξ) = Pr(ξ|Hi), associated with each alternative Hi, there is a precise correspondence between the
discretized version of the continuum limits and the log likelihood updates. Lastly, we present a derivation for the
stochastic integrodifferential equation that represents the log likelihood for a continuum of possible environmental
states, θ ∈ [a, b].

Note that throughout the supplementary material, we use notation involving a subscript ∆t. This helps us define
a family of stochastic processes indexed by the spacing between observations ∆t = tn − tn−1. For instance, f∆t,±(ξ)
represents the probability of an observation, ξ, in environmental state H± (or, in the language of statistics, when
hypothesis H± holds). This probability changes with the timestep ∆t. This approach allows us to properly take the
continuum limit ∆t → 0. However, for simplicity we refrain from using this notation in the main text. Rather, we
treat the limiting SDEs as approximations of discrete likelihood update processes. Also, we slightly abuse notation
and write fi(ξ) = Pr(ξ|Hi), even when ξ is a continuous random variable.

Likelihood ratio for two alternatives. We begin by deriving the recursive update equation for the likelihoods
Ln,± := Pr(H(tn) = H±|ξ1:n) associated with each alternative H±, where each observation (measurement), ξi, is made
at time ti. This is the probability that alternative H± is true at time tn, given that the series of observations ξ1:n

has been made. Importantly, the underlying truth changes stochastically, and in a memoryless way, with transition
probabilities given by ε∆t,± := Pr(H(tn) = H∓|H(tn−1) = H±), so that Pr(H(tn) = H±|H(tn−1) = H±) = 1− ε∆t,±.
We begin by examining the likelihood Ln,+ associated with the alternative H+. Using Bayes’ rule and the law of
total probability we can relate the current likelihood Ln,+ to the conditional probabilities at the time of the previous
observation, tn−1:

Ln,+ =
Pr(H(tn) = H+)

Pr(ξ1:n)
Pr(ξ1:n|H(tn) = H+)

=
Pr(H(tn) = H+)

Pr(ξ1:n)

∑
s∈{+,−}

Pr(ξ1:n|H(tn) = H+;H(tn−1) = Hs)Pr(H(tn−1) = Hs|H(tn) = H+).

To derive a recursive equation, with probabilities that are not conditioned on the state at tn, we first use Bayes’ rule
again to write

Pr(H(tn−1) = H+|H(tn) = H+) =
Pr(H(tn) = H+|H(tn−1) = H+)Pr(H(tn) = H+)

Pr(H(tn−1) = H+)
= (1− ε∆t,+)

Pr(H(tn−1) = H+)

Pr(H(tn) = H+)
,

and

Pr(H(tn−1) = H−|H(tn) = H+) =
Pr(H(tn) = H+|H(tn−1) = H−)Pr(H(tn−1) = H−)

Pr(H(tn) = H+)
= ε∆t,−

Pr(H(tn−1) = H−)

Pr(H(tn) = H+)
.

Plugging these formulas into our expression for Ln,+, we can then write

Ln,+ =
1

Pr(ξ1:n)
×
(

(1− ε∆t,+)Pr(ξ1:n|H(tn) = H+;H(tn−1) = H+)Pr(H(tn−1) = H+)

+ ε∆t,−Pr(ξ1:n|H(tn) = H+;H(tn−1) = H−)Pr(H(tn−1) = H−)
)
.

The observation ξn is independent from the sequence of observations ξ1:n−1 when conditioned on the states H(tn) =
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H+ and H(tn−1) = H±, respectively. Thus, we obtain

Ln,+ =
Pr(ξn|H(tn) = H+)

Pr(ξ1:n)
×
(

(1− ε∆t,+)Pr(ξ1:n−1|H(tn−1) = H+)Pr(H(tn−1) = H+)

+ ε∆t,−Pr(ξ1:n−1|H(tn−1) = H−)Pr(H(tn−1) = H−)
)

=
Pr(ξn|H(tn) = H+)

Pr(ξ1:n)
×
(

(1− ε∆t,+)Pr(H(tn−1) = H+|ξ1:n−1)Pr(ξ1:n−1)

+ ε∆t,−Pr(H(tn−1) = H−|ξ1:n−1)Pr(ξ1:n−1)
)

=
Pr(ξ1:n−1)Pr(ξn|H(tn) = H+)

Pr(ξ1:n)
×
(

(1− ε∆t,+)Pr(H(tn−1) = H+|ξ1:n−1) + ε∆t,−Pr(H(tn−1) = H−|ξ1:n−1)
)
.

Thus, by using our definition of the likelihoods Ln,±, we can write an update equation for Ln,+ in terms of the
likelihoods Ln−1,± at the previous time, tn−1,

Ln,+ =
Pr(ξ1:n−1)Pr(ξn|H(tn) = H+)

Pr(ξ1:n)
((1− ε∆t,+)Ln−1,+ + ε∆t,−Ln−1,−) , (17)

where L0,+ = Pr(H+, t0).
Similarly we obtain an update equation for the likelihood Ln,− of the alternative H− at time tn:

Ln,− =
Pr(ξ1:n−1)Pr(ξn|H(tn) = H−)

Pr(ξ1:n)
(ε∆t,+Ln−1,+ + (1− ε∆t,−)Ln−1,−) , (18)

where L0,− = Pr(H−, t0).
From Eqs. (17) and (18), the likelihood ratio Rn = Ln,+/Ln,− is readily seen to satisfy the recursive equation

Rn =
f∆t,+(ξn)

f∆t,−(ξn)

(1− ε∆t,+)Rn−1 + ε∆t,−
ε∆t,+Rn−1 + 1− ε∆t,−

, (19)

where f∆t,±(ξn) = Pr(ξn|H(tn) = H±) is the distribution for each choice parameterized by the timestep ∆t = tn−tn−1,

and R0 = Pr(H+,t0)
Pr(H−,t0) .

The continuum limit for the log likelihood ratio of two alternatives. In this section, we derive a continuum
equation for the log likelihood ratio yn := lnRn. We will proceed by first defining a family of stochastic difference
equations for yn, which are parameterized by the timestep ∆t = tn− tn−1, between pairs of observations. By choosing
an appropriate parameterization, we obtain a continuum limit that is a SDE. To begin, we divide both sides of Eq. (19)
by Rn−1 and take logarithms to yield

yn − yn−1 = ln
f∆t,+(ξn)

f∆t,−(ξn)
+ ln

1− ε∆t,+ + ε∆t,−e
−yn−1

1− ε∆t,− + ε∆t,+eyn−1
. (20)

Following [2, 32], we assume that the time interval between individual observations, ∆t, is small. Denote by ∆yn =
yn − yn−1 the change in the log likelihood ratio due to the observation at time tn. By assumption, the probability
that the environment changes between two observations scales linearly with ∆t up to higher order terms, so that
ε∆t,± := ∆tε± + o(∆t). Omitting higher order terms ∆t, Eq. (20) can then be rewritten as

∆yn = ln
f∆t,+(ξn)

f∆t,−(ξn)
+ ln(1 + ∆t(−ε+ + ε−e

−yn−1))− ln(1 + ∆t(−ε− + ε+e
yn−1)).

Since we assumed ∆t� 1, we can use the approximation ln(1 + a) ≈ a which is valid when |a| � 1. We also assume
that the change in the log likelihood ratio, ∆yn, is small over the time interval ∆t, so yn−1 can be replaced by yn on
the right-hand side of the equation. We obtain

∆yn ≈ ln
f∆t,+(ξn)

f∆t,−(ξn)
+ ∆t(ε−(e−yn + 1)− ε∆t,+(1 + eyn))

= Eξ

[
ln
f∆t,+(ξn)

f∆t,−(ξn)

∣∣∣∣H(tn)

]
+

(
ln
f∆t,+(ξn)

f∆t,−(ξn)
− Eξ

[
ln
f∆t,+(ξn)

f∆t,−(ξn)

∣∣∣∣H(tn)

])
+ ∆t(ε−(e−yn + 1)− ε+(1 + eyn)).

(21)
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FIG. 6. In a dynamic environment, the dynamics of the log likelihood ratio, y, depends on the rates of switching between
states. (A) When ε± = 0, the environment is static. (B) When then environment changes slowly, |ε±| � 1, the log likelihood
ratio, y, can saturate. (C) In a rapidly changing environment, y tends not to equilibrate. (D) When ε+ = 0 and ε− > 0, the
task becomes a change detection problem.

where we conditioned on the state of the environment, H(tn) = H± at time tn. Replacing the index n, with the time
t, we can therefore write

∆yt ≈ ∆tg∆t(t) +
√

∆tρ∆t(t)η + ∆t(ε−(e−yt + 1)− ε+(1 + eyt)), (22)

where η is random variable with standard normal distribution, and

g∆t(t) :=
1

∆t
Eξ

[
ln
f∆t,+(ξ)

f∆t,−(ξ)

∣∣∣∣H(t)

]
and ρ2

∆t(t) :=
1

∆t
Varξ

[
ln
f∆t,+(ξ)

f∆−(ξ)

∣∣∣∣H(t)

]
. (23)

Clearly, the drift g∆t and variance ρ2
∆t will diverge or vanish unless f∆t,±(ξ) are scaled appropriately in the ∆t→ 0

limit. We discuss different ways of introducing such a scaling in the next section.
Assuming that we have well-defined limits g(t) := lim∆t→0 g∆t(t) and ρ2(t) := lim∆t→0 ρ

2
∆t(t), the discrete-time

stochastic process, Eq. (22), approaches the stochastic differential equation

dy = g(t)dt+ ρ(t)dWt + (ε−(e−y + 1)− ε+(1 + ey))dt, (24)

where Wt is a standard Wiener process. This limit holds in the sense of distributions. Roughly, the smaller ∆t is,
the closer the distributions of the random variables yn and y(tn) whose evolutions are described by Eq. (20), and
Eq. (24), respectively. This correspondence can be made precise using the Donsker Invariance Principle [33].

In sum, Eq. (24), can be viewed as an approximation of the logarithm of the likelihood ratio whose evolution is
given exactly by Eq. (19). For a fixed interval ∆t, the parameters of the two equations are related via Eq. (23), and
ε∆t,±/∆t = ε±. An illustration of the behaviors of the model, Eq. (24), is given in Fig. 6, showing how the volatility
of the environment (given by ε±) impacts the dynamics of evidence integration.

Precise correspondence. We now discuss two approaches in which the correspondence between Eqs. (20) and
(24) can be made exact. We choose a specific scaling for the drift and variance arising from each observation, ξn.
Suppose that over the time interval ∆t, an observation, ξn, is a result of r∆t separate observations – for example
the measurement of the direction of r∆t different dots [3]. In this case the estimate of the average of the individual
measurements – e.g. the average of the velocities of dots in a display – will have both a mean and a variance that
increase linearly with ∆t.

As a concrete example we can compute g(t) and ρ(t) in SDE (24) when observations, ξn, follow normal distributions
with mean and variance scaled by ∆t,

f∆t,±(ξ) =
1√

2π∆tσ2
e−(ξ−∆tµ±)2/(2∆tσ2).
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It is then straightforward to compute [2, 32],

g∆t :=
1

∆t
Eξ

[
ln
f∆t,+(ξ)

f∆t,−(ξ)

∣∣∣∣H(t)

]
= ± (µ+ − µ−)2

2σ2
= g±, ρ2

∆t(t) :=
1

∆t
Varξ

[
ln
f∆t,+(ξ)

f∆t,−(ξ)

∣∣∣∣H(t)

]
=

(µ+ − µ−)2

σ2
= ρ2,

and note that g(t) ∈ {g+, g−} is a telegraph process [34] with the probability masses P (g+, t) and P (g−, t) evolving
according to the master equation Pt(g±, t) = ∓ε+P (g+, t)± ε−P (g−, t). In this case ρ2(t) = ρ2 remains constant.

More generally, we can obtain an identical result by considering that each observation made on a time interval
consists of a number of sub-observations, each with statistics that scale with the length of the interval and the number
of sub-observations. We define a family of stochastic processes parameterized by k, the number of sub-observations
made in an interval of length ∆t. As above, when k = 1, we assume that an observation ξn is the result of r∆t separate
observations. Assuming r is large, note that for k > 1 each of the k subobservations contain roughly rk = br∆t/kc
observations with mean and variance that scale linearly with rk ∝ ∆t/k. We can achieve this by approximating

ln
f∆t,+(ξn)
f∆t,−(ξn) in Eq. (21) by the family of stochastic processes parameterized by k [2]

k∑
l=1

∆t

k
ln
f+(ξl)

f−(ξl)
+

k∑
l=1

√
∆t√
k

(
ln
f+(ξl)

f−(ξl)
− Eξ

[
ln
f+(ξ)

f−(ξ)

∣∣∣∣H(t)

])
.

The scaling in this approximation guarantees that g(t) = lim∆t→0 g∆t(t) = lim∆t→0
1

∆tEξ

[
ln

f∆t,+(ξ)
f∆t,−(ξ)

∣∣∣H(t)
]

=

Eξ

[
ln f+(ξ)

f−(ξ)

∣∣∣H(t)
]

and ρ2(t) = lim∆t→0 ρ
2
∆t = lim∆t→0

1
∆tVarξ

[
ln

f∆t,+(ξ)
f∆t,−(ξ)

∣∣∣H(t)
]

= Varξ

[
ln f+(ξ)

f−(ξ)

∣∣∣H(t)
]
. Further-

more, as k →∞, by the central limit theorem,

∆yt ≈
k∑
l=1

∆t

k
ln
f+(ξl)

f−(ξl)
+

k∑
l=1

√
∆t√
k

(
ln
f+(ξl)

f−(ξl)
− Eξ

[
ln
f+(ξ)

f−(ξ)

∣∣∣∣H(t)

])
+ ∆t(ε−(e−yt + 1)− ε+(1 + eyt))

converges in distribution to

∆yt ≈ ∆tg(t) +
√

∆tρ(t)η + ∆t(ε−(e−yt + 1)− ε+(1 + eyt)),

where η is a standard normal random variable. Taking the limit ∆t→ 0 yields Eq. (24).

Continuum limit for the log likelihood with multiple alternatives. We now describe the calculation of the
continuum limit of the recursive system defining the evolution of the likelihoods Ln,i = Pr(H(tn) = Hi|ξ1:n) of one
among multiple alternatives (environmental states), Hi, i = 1, .., N . The state of the environment, and equivalently
the correct choice at time t, again change stochastically. We assume that the transitions between the alternatives are
memoryless, with transition rates ε∆t,ij := Pr(H(tn) = Hi|H(tn−1) = Hj). Using Bayes’ rule and rearranging terms
(analogous to the derivation of Eqs. (17) and (18)), we can express each likelihood Ln,i in terms the likelihoods at
the time of the previous observation, Ln−1,j ,

Ln,i =
Pr(ξ1:n−1)

Pr(ξ1:n)
Pr(ξn|Hi, tn)

N∑
j=1

ε∆t,ijLn−1,j .

Since we are only interested in comparing likelihoods, we can drop the common prefactor Pr(ξ1:n−1)
Pr(ξ1:n) , and use the fact

that
∑N
j=1 ε∆t,ji = 1 (since ε∆t,ij is a left stochastic matrix) to write ε∆t,ii = 1−

∑
j 6=i ε∆t,ji and obtain

Ln,i = f∆t,i(ξn)

1−
∑
j 6=i

ε∆t,ji

Ln−1,i +
∑
j 6=i

ε∆t,ijLn−1,j

 , (25)

where f∆t,i(ξn) = Pr(ξn|Hi, tn). From Eq. (25), it follows that log of the rescaled likelihoods, xi := lnLi, satisfies the
recursive relation

xn,i − xn−1,i = ln f∆t,i(ξn) + ln

1−
∑
j 6=i

ε∆t,ji +
∑
j 6=i

ε∆t,ije
xn−1,j−xn−1,i

 .

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 16, 2015. ; https://doi.org/10.1101/019398doi: bioRxiv preprint 

https://doi.org/10.1101/019398
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

To derive an approximating SDE, we denote by ∆xn,i = xn,i − xn−1,i, the change in the log likelihood due to an
observation at time tn. As before, we assume ε∆t,ij := ∆tεij +o(∆t) for i 6= j, and drop the higher order terms, giving

∆xn,i = ln f∆t,i(ξn) + ln

1−
∑
j 6=i

∆tεji +
∑
j 6=i

∆tεije
xn−1,j−xn−1,i

 . (26)

Assuming ∆t � 1, we again use the approximation ln(1 + a) ≈ a which holds for |a| � 1. We also assume that the
change in the log likelihood, |∆xn,i| � 1, is small over the time interval ∆t, so that

∆xn,i ≈ ln f∆t,i(ξn) + ∆t
∑
j 6=i

(
εije

xn,j−xn,i − εji
)

=Eξ [ln f∆t,i(ξ)|H(tn)] + (ln f∆t,i(ξn)− Eξ [ln f∆t,i(ξ)|H(tn)]) + ∆t
∑
j 6=i

(
εije

xn,j−xn,i − εji
)
, (27)

where we condition on the current state of the environment H(tn) ∈ {H1, ...,HN}.
Replacing the index n, by the time t, we can therefore write

∆xt,i ≈∆tg∆t,i(t) +
√

∆tρ∆t,i(t)ηi + ∆t
∑
j 6=i

(
εije

xt,j−xt,i − εji
)
, (28)

where ηi’s are correlated random variables with standard normal distribution

g∆t,i(t) :=
1

∆t
Eξ [ ln f∆t,i(ξ)|H(t)] and ρ2

∆t,i(t) :=
1

∆t
Varξ [ ln f∆t,i(ξ)|H(t)] . (29)

The correlation of ηi’s is given by

Corrξ[ηi, ηj ] := Corrξ [ ln f∆t,i(ξ), ln f∆t,j(ξ)|H(t)] . (30)

Note that Eq. (28) is the multiple-alternative version of Eq. (22). Equivalently, we can write Eq. (28) as

∆xt,i ≈∆tg∆t,i(t) +
√

∆tŴ∆t,i + ∆t
∑
j 6=i

(
εije

xt,j−xt,i − εji
)
,

where Ŵ∆t := (Ŵ∆t,1, . . . , Ŵ∆t,N ) follows a multivariate Gaussian distribution with mean zero and covariance matrix
Σ∆t given by

Σ∆t,ij =
1

∆t
Covξ [ ln f∆t,i(ξ), ln f∆t,j(ξ)|H(t)] . (31)

Finally, taking the limit ∆t→ 0, and assuming that the limits

gi(t) := lim
∆t→0

g∆t,i(t), and Σij(t) := lim
∆t→0

Σ∆t,ij(t), (32)

are well defined, we obtain the system of SDEs

dxi = gi(t)dt+ dŴi(t) +
∑
j 6=i

(
εije

xj−xi − εji
)

dt, (33)

or equivalently as the vector system

dx = g(t)dt+ Λ(t)dWt +K(x)dt,

where g(t) = (g1(t), ..., gN (t))T and Λ(t)Λ(t)T = Σ(t) are defined using the limits in Eq. (32), Ki(x) =∑
j 6=i (εije

xj−xi − εji), and the components of Wt are independent Wiener processes. We can recover Eq. (24)
by taking N = 2, letting y = x1−x2, and exchanging the indices 1 and 2 with + and −, respectively. The dependence
of accuracy on time is shown in Fig. 7.

As in the case of two alternatives, Eq. (33) can be viewed as an approximation of the logarithm of the likelihood
whose evolution is given exactly by Eq. (25). For a fixed interval ∆t, the parameters of these equations are related
via Eq. (33), and ε∆t,ij/∆t = εij .
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FIG. 7. Dependence of accuracy of responses on the number of alternatives N in Eq. (36). We fix εij ≡ ε for all i 6= j, gi ≡ g,
and set m = g/ε ≡ 20. (A) Accuracy in an interrogation protocol decreases with the number of alternatives N , saturating at
ever lower levels. (B) The free response protocol results in similar behavior, but the accuracy saturates at 1. The increase in
accuracy in time is exceedingly slow for higher numbers of alternatives N .

The limits gi(t) := lim∆t→0 g∆t,i(t) and Σij(t) := lim∆t→0 Σ∆t,ij(t) are defined when the statistics of the obser-
vations scale with ∆t. As we argued in section Precise correspondence, this can be obtained by considering
observations drawn from a normal distribution with mean and variance scaled by ∆t:

f∆t,i(ξ) =
1√

2π∆tσ2
e−(ξ−∆tµi)

2/(2∆tσ2).

Alternatively, the required scaling can also be obtained when each observation made on a time interval consists of a
number of sub-observations, (ξ1, . . . , ξk), with mean and variance scaled by ∆t

k . To do so we approximate ln f∆t,i(ξn)
in Eq. (27) by

k∑
l=1

∆t

k
ln fi(ξl) +

k∑
l=1

√
∆t√
k

(ln fi(ξl)− Eξ [ln fi(ξ)|H(t)]) .

Log likelihood ratio for multiple alternatives. We can also derive a continuum limit for the log likelihood ratio
for any two choices i, j ∈ {1, 2, ..., N}. From Eq. (25), the likelihood ratio Rn,ij = Ln,i/Ln,j . We note that this will
provide us with a matrix of stochastic processes. We start with the recursive equation

Rn,ij =
f∆t,i(ξn)

f∆t,j(ξn)

(
1−

∑
k 6=i ε∆t,ki

)
Rn−1,ij +

∑
k 6=i ε∆t,ikRn−1,kj

1−
∑
k 6=j ε∆t,kj +

∑
k 6=j ε∆t,jkRn−1,kj

. (34)

We can thus derive the continuum equation for the log likelihood ratio yn,ij := lnRn,ij , as we did in the case of two
alternatives. Since yij(t) is the difference of log likelihoods yij(t) = xi(t)− xj(t), from Eq. (33) we obtain

dyij = (gi(t)− gj(t))dt+ dŴi(t)− dŴj(t) +
∑
k 6=i

(εikeyki − εki) dt−
∑
k 6=j

(εjkeykj − εkj) dt, (35)

or

dyij = gij(t)dt+ dŴij +

∑
k 6=j

εkj −
∑
k 6=i

εki +
∑
k 6=i

εike
yki −

∑
k 6=j

εjke
ykj

dt, (36)

where gij(t) = Eξ

[
ln fi(ξ)

fj(ξ)

∣∣∣H(t)
]

and Ŵ is a Wiener process with covariance matrix given by

Covξ

[
Ŵij , Ŵi′j′

∣∣∣H(t)
]

= Covξ

[
ln fi(ξ)

fj(ξ)
, ln fi′ (ξ)

fj′ (ξ)

∣∣∣H(t)
]
. We can also write Eq. (36) in vector form

dy = gdt+ Λ(t)dWt + K(y)dt, (37)
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where Kij(y) =
∑
k 6=j εkj −

∑
k 6=i εki +

∑
k 6=i εike

yki −
∑
k 6=j εjke

ykj , Λ(t)Λ(t)T = Σ(t) is the covariance matrix, and
the components of Wt are independent Wiener processes.

Log likelihood for a continuum of alternatives. Finally, we examine the case where an observer must choose
between a continuum of hypotheses Hθ where θ ∈ [a, b]. Thus, we will first derive a discrete recursive equation for
the evolution of the likelihoods Ln,θ = Pr(H(tn) = Hθ|ξ1:n). The state of the environment, the correct choice at
time t, again changes according to a continuous time Markov process. We define this stochastically switching process
through its transition rate function ε∆t,θθ′ , which is given for θ′ 6= θ as∫ θ2

θ1

ε∆t,θθ′dθ := Pr
(
H(tn) ∈ H[θ1,θ2]

∣∣ H(tn−1) = Hθ′) ,

where H[θ1,θ2] is the set of all states Hθ with θ in the interval [θ1, θ2]. Thus, ε∆t,θθ′ describes the probability of a
transition over a timestep, ∆t, from state Hθ′ to some state Hθ, with θ ∈ [θ1, θ2]. This means that Pr(H(tn) =

Hθ|H(tn−1) = Hθ) = 1 −
∫ b
a
ε∆t,θ′θdθ

′. As in the derivation of the multiple alternative 2 ≤ N < ∞ case, we can
express each likelihood Ln,θ at time tn in terms of the likelihoods Ln−1,θ′ at time tn−1, so

Ln,θ =
Pr(ξ1:n−1)

Pr(ξ1:n)
Pr(ξn|H(tn) = Hθ)

(
Pr(H(tn) = Hθ|H(tn−1) = Hθ)Ln−1,θ +

∫ b

a

ε∆t,θθ′Ln−1,θ′dθ
′

)
.

Notice that the sum from the N < ∞ case, as in Eq. (25), has been replaced with an integral over all possible
hypotheses Hθ′ , θ

′ ∈ [a, b] and a term corresponding to the probability of the environment not changing. Again we

drop the common factor Pr(ξ1:n−1)
Pr(ξ1:n) , since we wish to compare likelihoods. We obtain

Ln,θ = f∆t,θ(ξn)

([
1−

∫ b

a

ε∆t,θ′θdθ
′

]
Ln−1,θ +

∫ b

a

ε∆t,θθ′Ln−1,θ′dθ
′

)
, (38)

where f∆t,θ(ξn) = Pr(ξn|H(tn) = Hθ). From Eq. (38), we can thus derive a recursive relation for the log of the
rescaled likelihoods xn,θ := lnLn,θ in terms of xn−1,θ so

xn,θ − xn−1,θ = ln f∆t,θ(ξn) + ln

(
1−

∫ b

a

ε∆t,θ′θdθ
′ +

∫ b

a

ε∆t,θθ′e
xn−1,θ′−xn−1,θdθ′

)
.

To approximate this discrete-time stochastic process with a SDE, we denote by ∆xn,θ = xn,θ − xn−1,θ, the change in
log likelihood due to the observation at time tn. Furthermore, we assume ε∆t,θθ′ := ∆tεθθ′ + o(∆t) and drop higher
order terms,

∆xn,θ = ln f∆t,θ(ξn) + ln

(
1−

∫ b

a

∆tεθ′θdθ
′ +

∫ b

a

∆tεθθ′e
xn−1,θ′−xn−1,θdθ′

)
. (39)

Assuming ∆t� 1, we can utilize the approximation ln(1 + a) ≈ a which holds when |a| � 1. Assuming |∆xn,θ| � 1,

∆xn,θ ≈ ln f∆t,θ(ξn) + ∆t

∫ b

a

(
εθθ′e

xn,θ′−xn,θ − εθ′θ
)

dθ′ (40)

= Eξ [f∆t,θ(ξ)|H(tn)] + (ln f∆t,θ(ξn)− Eξ [ln f∆t,θ(ξ)|H(tn)]) + ∆t

∫ b

a

(
εθθ′e

xn,θ′−xn,θ − εθ′θ
)

dθ′ (41)

conditioned on the current state of the environment H(tn) = Hϕ where ϕ ∈ [a, b].
Exchanging the index n with the time, t, we can therefore write

∆xt,θ ≈∆tg∆t,θ(t) +
√

∆tρ∆t,θ(t)ηθ + ∆t

∫ b

a

(
εθθ′e

xt,θ′−xt,θ − εθ′θ
)

dθ′, (42)

where ηθ’s are correlated random variables which marginally follow a standard normal distribution, and

g∆t,θ(t) :=
1

∆t
Eξ [ ln f∆t,θ(ξ)|H(t)] , and ρ2

∆t,θ(t) :=
1

∆t
Varξ [ ln f∆t,θ(ξ)|H(t)] . (43)
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The correlation of ηi’s is given by

Corrξ[ηθ, ηθ′ ] := Corrξ [ ln f∆t,θ(ξ), ln f∆t,θ′(ξ)|H(t)] . (44)

Equivalently, we can write Eq. (42) as

∆xt,θ ≈∆tg∆t,θ(t) +
√

∆tŴ∆t,θ + ∆t

∫ b

a

(
εθθ′e

xt,θ′−xt,θ − εθ′θ
)

dθ′,

where Ŵ∆t := (Ŵ∆t,θ)θ∈[a,b] follows a multivariate Gaussian distribution with mean zero and covariance function
Σ∆t,θθ′ given by

Σ∆t,θθ′ =
1

∆t
Covξ [ ln f∆t,θ(ξ), ln f∆t,θ′(ξ)|H(t)] . (45)

Finally, taking the limit ∆t→ 0, and assuming that the limits

gθ(t) := lim
∆t→0

g∆t,θ(t), and Σθθ′(t) := lim
∆t→0

Σ∆t,θθ′(t), (46)

are well defined, we obtain the system of SDEs

dxθ = gθ(t)dt+ dŴθ(t) +

∫ b

a

(
εθθ′e

xθ′−xθ − εθ′θ
)

dθ′dt, (47)

or equivalently as the system of SDEs

dx = g(t)dt+ Λ(t)dWt +K(x)dt, (48)

where g(t) =
(
gθ(t)

)
θ∈[a,b]

and Λ(t)Λ(t)T = Σ(t) are defined using the limits in Eq. (46), Kθ(x) =∫ b
a

(εθθ′e
xθ′−xθ − εθ′θ) dθ′, and the components of Wt are independent Wiener processes.

Neural population model for N = 2. Inference in dynamic environments with two states, H+ and H−, can be
optimally performed by mutually excitatory neural populations r+ and r−,

dr+ = [I+(t)− αr+ + F+(r− − r+)] dt+ dW+, (49a)

dr− = [I−(t)− αr− + F−(r+ − r−)] dt+ dW−, (49b)

where the external input I±(t) = I0
± when H(t) = H± and vanishes otherwise, F±(r) = −αr/2+ ε∓er− ε±, and α > 0

so that the system is stable. Note, the parameter α provides the leak in the activity of each individual population,
which depends on both the time constants and recurrent architecture of the local network [25].

When the environment has not changed for a long time, the noise-free system approaches a fixed point given by

(r̄+, r̄−) = (
I+ + ε−e−ȳ − ε+

α
+
ȳ

2
,
I− + ε+eȳ − ε−

α
− ȳ

2
),

where ȳ = ln

[
I+ − I− + ε− − ε+

2ε+
+

√
(I+ − I− + ε− − ε+)2

4ε2+
+
ε−
ε+

]
.

Note that by increasing (decreasing) α, the fixed points (r̄+, r̄−) move closer (farther) from the origin (0, 0).
We now demonstrate that coupling between populations described by Eq. (49) can be excitatory and coupling

within populations inhibitory, as stated in the main text. To do so, note that the Jacobian matrix of (F+, F−) has
the form:

J(r+, r−) =

[
α/2− ε−er−−r+ −α/2 + ε−er−−r+

−α/2 + ε+er+−r− α/2− ε+er+−r−

]
.

For ε± > 0, taking α < 2 min{ε−e−ȳ, ε+eȳ} will guarantee that the sign of the Jacobian matrix is

[
− +
+ −

]
on a region

that contains the fixed point. This corresponds to a neural network with self-inhibition and mutual excitation. We
illustrate this point with the network wiring diagrams we have drawn in Fig. 5 of the main text.

Neural population model for multiple alternatives. We can extend our results for the N = 2 case by deriving
a neural population model of decision making in changing environments. In [13], the reliability of motion information
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was assumed to vary during a trial, and the optimal model encoded the posterior probability distribution over the
possible stimulus space. Here, we assume the true hypothesis, H(t), changes in time. For an arbitrary number of
possible states, {H1, ...,HN}, decisions can be performed optimally by neural populations x1, ..., xN coupled by mutual
excitation

dri =

Ii(t)− αri +
∑
j 6=i

Fij(rj − ri)

dt+ dŴi(t), (50)

where the external input Ii(t) = I0
i when H(t) = Hi and 0 otherwise and (dŴ1(t), ...,dŴN (t))T = Λ(t)dWt with

Λ(t) defined as in Eq. (48). Population firing rates are again determined by inhibition within each population and
excitation between populations as described by the arguments of the firing rate function

Fij(r) = −αr/N + εije
r − εji.

Note that by taking yij = ri − rj , we can convert the neural population model, Eq. (50), to the SDE for the log
likelihood ratio, Eq. (36). Also notice that, as in the case of N = 2 alternatives, in the limit εij → 0, we obtain linear
integrators [26]

dri =

Ii(t)− α N∑
j=1

rj/N

dt+ dŴi(t).
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