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Abstract 

 

The human genome contains variants ranging in size from small single nucleotide 

polymorphisms (SNPs) to large structural variants (SVs).  High-quality benchmark small variant 

calls for the pilot National Institute of Standards and Technology (NIST) Reference Material 

(NA12878) have recently been developed by the Genome in a Bottle Consortium, but no similar 

high-quality benchmark SV calls exist for this genome.  Since SV callers output highly 

discordant results, we developed methods to combine multiple forms of evidence from multiple 

sequencing technologies to classify candidate SVs into likely true or false positives.  Our method 

(svclassify) calculates annotations from one or more aligned bam files from any high-throughput 

sequencing technology, and then builds a one-class model using these annotations to classify 

candidate SVs as likely true or false positives.  We first used pedigree analysis to develop a set 

of high-confidence breakpoint-resolved large deletions.  We then used svclassify to cluster and 

classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes 

Project and a set of breakpoint-resolved complex insertions from Spiral Genetics.  We find that 

likely SVs generally cluster separately from likely non-SVs based on our annotations, and that 

the SVs cluster into different types of deletions.  We then developed a supervised one-class 

classification method that uses a training set of random non-SV regions to determine whether 

candidate SVs have abnormal annotations different from most of the genome.  To test this 

classification method, we use our pedigree-based breakpoint-resolved SVs, 1000 Genomes 

Project validated SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-

resolved insertions, along with semi-automated visualization using svviz.  We find that candidate 

SVs with high scores are generally true SVs, and candidate SVs with low scores are 

questionable.  We distribute a set of 2676 high-confidence deletions and 68 high-confidence 

insertions with high svclassify scores from these call sets for benchmarking SV callers. 
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Introduction 

 

The human genome contains variants ranging in size from small single nucleotide 

polymorphisms (SNPs) to large structural variants (SVs).  SVs include variations such as novel 

sequence insertions, deletions, inversions, mobile-element insertions, tandem duplications, 

interspersed duplications and translocations.  In general, SVs include deletions and insertions 

larger than 50 base pairs (bps), while smaller insertions or deletions are referred to as indels, 

though the threshold of 50 bps is somewhat arbitrary and based on the fact that different 

bioinformatics methods are usually used to detect SVs vs. small indels and SNPs.  SVs have long 

been implicated in phenotypic diversity and human diseases [1]; however, identifying all SVs in 

a whole genome with high-confidence has proven elusive.  Recent advances in next-generation 

sequencing (NGS) technologies have facilitated the analysis of SVs in unprecedented detail, but 

these methods tend to give highly non-overlapping results [2].  In this work, we develop methods 

to evaluate candidate SVs based on evidence from multiple NGS technologies. 

NGS offers unprecedented capacity to detect many types of SVs on a genome-wide scale.  

Many bioinformatics algorithms are available for detecting SVs using NGS including depth of 

coverage (DOC), paired-end mapping (PEM), split-read and assembly-based methods [2].  DOC 

approaches identify regions with abnormally high or low coverage as potential copy number 

variants. Hence, DOC methods are limited to detecting only deletions and duplications but not 

other types of SVs, and they have more power to detect larger events and deletions.  PEM 

methods evaluate the span and orientation of paired-end reads.  Read pairs map farther apart 

around deletions and closer around insertions, and orientation inconsistencies indicate potential 

inversions or tandem duplications.  Split reads are used to identify SVs by identifying reads 

whose alignments to the reference genome are split in two parts and contain the SV breakpoint.  

Assembly-based methods first perform a de novo assembly, and then the assembled genome is 

compared to the reference genome to identify all types of SVs.  By combining various 

approaches to detect SVs, it is possible to overcome the limitations of individual approaches in 

terms of the types and sizes of SVs that they are able to detect, but still difficult to determine 

which are true [3, 4]. 

Numerous methods have been developed to find candidate SVs using NGS, but clinical 

adoption of human genome sequencing requires methods with known accuracy.  The Genome in 
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a Bottle Consortium (GIAB) is developing well-characterized whole-genome reference materials 

for assessing variant-call accuracy and understanding biases.  Recently GIAB released high-

confidence SNP, indel, and homozygous reference genotypes for Coriell DNA sample NA12878, 

which is also candidate National Institute of Standards and Technology (NIST) Reference 

Material 8398 [5].  In this work, we developed methods to integrate evidence of SVs in mapped 

sequencing reads from multiple sequencing technologies.  We used unsupervised machine 

learning to determine the characteristics of the different SV types, and we used One Class 

Classification to classify candidate SVs as likely true positives, false positives, or ambiguous.  

Using these methods, we classified three independently established “validated” call sets 

containing large deletions or insertions. 

Our classification methods use the machine learning technique One Class Classification 

(OCC) [6, 7].  In contrast to the more common two-class models that have two training sets (e.g., 

positives and negatives), one-class methods have only a single training set and try to identify 

sites unlike the training set.  In our OCC methods, the algorithm tries to identify a region, R, of 

the annotation space that contains a specified, large proportion (e.g. 95% or 99%) of the non-

SVs.  Sites that have annotations falling outside R are classified as SVs.  In essence, these are 

outliers relative to the non-SVs.  For selecting R, only a representative set of non-SVs is required 

for the training.  In our model, we use random genomic coordinates as our one class because 

random coordinates are unlikely to be near true SV breakpoints.  For our one-class model, we 

only include annotations that are likely to indicate a SV if they differ from random coordinates 

for a defined set of parameters (e.g., read clipping, pair distance, and coverage).  We do not 

include annotations like mapping quality that may not always distinguish SVs from non-SVs 

because atypical values may also indicate random regions of the genome that are difficult to 

sequence.  We do not use a two class machine learning model because our potential training SV 

call sets are primarily easier-to-detect mid-size deletions and insertions and are not representative 

of all types of deletions, insertions, or other SV types, which is an important assumption of two-

class models.  Therefore, a two class model trying to differentiate our SV sets from random 

genomic coordinates can do a very good job separating these two sets, but the model is likely to 

misclassify other candidate SVs not in the “Validated/assembled” call sets (e.g., duplications, 

deletions in difficult parts of the genome, etc.).  Because our one-class model does not rely on 

biased “Validated/assembled” call sets, we expect our one-class model to be more generalizable 
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to other types of SVs by selecting annotations for which atypical values are usually associated 

with SVs.  Our methods, which classify based on evidence from multiple technologies, are 

complementary to the recently published Parliament method [8], which generates candidate SVs 

using multiple technologies and bioinformatics methods, and then uses a PacBio/Illumina hybrid 

assembly to determine whether the candidate SVs are likely to be true.  Similarly, in the 

characterization of the performance of the LUMPY tool, the authors developed a high-

confidence set that had breakpoints supported by long reads from PacBio or Moleculo.  In 

addition to using svviz to visualize and determine the number of reads supporting the alternate, 

we also combine the support from multiple sequencing technologies in a robust machine learning 

model. 
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Materials and Methods 

 

Data sets 

 

Four whole-genome sequencing data sets (Table 1) were used to develop methods to classify 

candidate SVs into true positives and false positives for Coriell DNA sample NA12878.  Two 

data sets were generated using short-read sequencing technologies, and two data sets were 

generated using long-read sequencing technologies.  For the Platinum Genomes 2x100bps HiSeq 

data, raw reads were mapped to the National Center for Biotechnology Information (NCBI) build 

37 using the Burrows-Wheeler Aligner (BWA) software with default parameters [9].  For 

Illumina HiSeq (read length = 250 bps), PacBio, and Moleculo whole-genome sequencing data 

sets, aligned bam files were publicly available and were used directly in this study. 

 

SV validated/assembled sets 

 

Three validated/assembled SV sets (Table 2) totaling 5,035 deletions and 70 insertions were 

derived from Coriell DNA sample NA12878. 

(A) Personalis deletions calls were derived based on pedigree analysis, which included 16 

members of the family. 

To be included in the validated/assembled set, the following conditions had to be met: 

(1) Deletion must have been detected in at least one NA12878 sample. 

(2) Deletion must have been detected in at least 2 other samples in the pedigree 

with exact breakpoint matches. 

The Personalis gold data set was further refined by experimental validations.  Primers 

were designed based on following criteria: 

(1) Each primer maps no more than 3 times in genome. 

(2) Require unique polymerase chain reaction (PCR) product in genome. 

(3) 400 - 800 bps product size. 

(4) Pad 100 bps around each deletion junction. 
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For small deletions (< 200 bps) a single primer pair was designed that straddled the 

deletion.  For large deletions (> 1500 bps) two primer pairs were designed around each 

reference breakpoint junction.  Site specific PCR amplification and high depth MiSeq 

shotgun sequencing followed by manual inspection of the alignments was used to 

validate all the deletions.  Sanger sequencing was used when we were not able confirm 

the deletion with MiSeq.  For 3 deletions (2:104186941-104187136, 7:13022102-

13028550, and 14:80106289-80115049) this was done because we did not see any 

junction reads. 

 

(B) The 1000 Genomes Project validated/assembled contains the set of validation deletion calls 

found in the genome of NA12878 by the 1000 Genomes Project pilot phase [10, 11].  These 

deletion calls were validated by assembly or by other independent technologies such as array 

comparative genomic hybridization, sequence capture array, superarray, or PCR. 

 

(C) Spiral Genetics’ Anchored Assembly was performed whole read overlap assembly on 

corrected, unmapped reads to detect structural variants using Illumina 2x100bps HiSeq whole-

genome sequencing data set.  Sequencing errors were corrected by counting k-mers.  Low count 

k-mers were discarded as erroneous.  The set of high scoring, or true k-mers was used to 

construct a de Bruijn graph representing an error-free reconstruction of the true read sequences.  

Each read was corrected by finding the globally optimum base substitution(s) so that it aligned to 

the graph with no mismatches and differed by the smallest base quality score from the original 

read.  Of these corrected reads, those that did not match the reference exactly were assembled 

into a discontiguous read overlap graph to capture sequence variation from the reference.  

Variants were mapped to human reference coordinates (NCBI build 37) by walking the read 

overlap graph in both directions until an “anchor” read, where a continuous 65 bps matches the 

reference, denoted the beginning and end of each variant.  Where a variant had more than one 

anchor, pairing information was used to determine the correct location of the anchor.  We used 

70 calls from the “Insertions” output, all of which were complex insertions (i.e., a set of 

reference bases was replaced by a larger number of bases). 

 

Deduplicated deletions 
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Any overlapping deletions within the validated/assembled SV sets were discarded, which 

resulted in 2336 unique Personalis deletion calls and 1825 unique 1000 Genomes deletion calls 

(Table 2).  Bedtools’ intersect function was used to screen overlap between these two datasets 

(Supplementary table 1).  Merged deduplicated deletion calls were generated by keeping all the 

2336 unique Personalis deletion calls and merging with 746 non-overlapping 1000 Genomes 

deletion calls with minimum overlap required to be 1 bp, which resulted 3082 deduplicated 

deletion calls. 

 

Random region non-SV call sets 

 

In addition, five sets of likely non-SVs were generated: 2 random and 3 from repetitive regions 

of the genome (Table 2) as follows: 

(1) 4000 random regions were generated with a uniform size distribution on a log scale from 

50 bps to 997527 bps.  Start sites were chosen randomly using the Generate Random 

Genomic Coordinates script in R 

(http://www.niravmalani.org/generate-random-genomic-coordinates/). 

(2) 2306 random regions were generated with a size distribution matching the calls from the 

pedigree-based Personalis deletions call set.  Start sites were chosen randomly using the 

Generate Random Genomic Coordinates script in R 

(http://www.niravmalani.org/generate-random-genomic-coordinates/). 

(3) 497 long interspersed nuclear elements (LINEs) were randomly selected from a list of 

LINEs from the University of California, Santa Cruz (UCSC) Genome Browser’s 

RepeatMasker Track. 

(4) 498 long terminal repeat elements (LTRs) were randomly selected from a list of LTRs 

from the UCSC Genome Browser’s RepeatMasker Track. 

(5) 496 short interspersed nuclear elements (SINEs) were randomly selected from a list of 

SINEs from the UCSC Genome Browser’s RepeatMasker Track. 

 

svclassify 
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The svclassify tool was developed to quantify annotations of aligned reads inside and around 

each SV (Figure 1).  It was written using the Perl programming language employing SAMtools 

(version 0.1.19-44428cd) [12] and BEDTools (version 2.17.0) [13] to calculate parameters such 

as coverage, paired-end distance, soft clipped reads, mapping quality, numbers of discordant 

paired-ends reads, numbers of heterozygous and homozygous SNP genotype calls, percentage of 

the GC-content, and percentage of the repeats and low complexity DNA sequence bases, and 

mapping quality.  svclassify requires the following inputs: a BAM file of aligned reads, a list of 

SVs, homozygous and heterozygous SNP genotype calls, a list of repeats from the UCSC 

Genome Browser’s RepeatMasker Track and a reference genome.  BAM files can come from 

any aligner.  The user can specify the size for the flanking regions.  svclassify also includes 

partially mapped reads to the L, LM, M, RM, or R regions for calculations.  The insert size is 

calculated as the end-to-end distance between the reads (length of both reads + distance 

separating the reads).  Because PacBio reads have high insertion and deletion error rates, Del 

(the mean of deleted bases of the reads) and Ins (the mean of inserted bases of the reads) were 

normalized by subtracting the mean Del (0.0428) and Ins (0.0948) per read length of 4000 

random regions.  For exploratory analyses, svclassify generates 85 to 180 annotations for each 

SV from each dataset, depending on sequencing technology (Supplementary table 2 and 3).  For 

our unsupervised and one class analyses, we used only subsets of these annotations that we 

expected to give the best results.  These subsetted annotations are given in the csv files 

(Supplementary table 4 to 7). 

 

Data Analysis 

 

The results from svclassify were subjected to two types of analyses – (1) Unsupervised Learning 

based on a hierarchical cluster analysis using the L1 distance (also called Manhattan distance), 

and (2) One Class Classification using the L1 distance or support vector machines (SVM) using a 

carefully selected set of 4000 non-SVs. 

 

Unsupervised Learning 
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Data values for each variable (characteristic) used in the analysis were first transformed using an 

inverse hyperbolic sine transformation (Burbidge et al. Alternative Transformations to Handle 

Extreme Values of the Dependent Variable).  This transformation uses the following function. 

 

y = sinh-1(x) = loge[x + sqrt(x2+1)] 

 

This function is often used as an alternative to the logarithmic transformation.  It has the 

advantage that zero or negative values of x do not cause problems.  Generally speaking it is quite 

similar to a standard logarithmic transformation except near and below zero.  Next, all variables 

were standardized by subtracting the mean and dividing by the standard deviation.  All further 

work was done using these transformed data. 

 

A hierarchical cluster analysis was performed with all 7797 random sites, 5035 deletion sites, 

and 70 insertion sites (see Table 2), using L1 distance as the distance function rather than 

Euclidean distance [14] since Manhattan distance is less influenced by outliers within the non-

SV class.  The Ward method was used for clustering [15].  A classical multidimensional scaling 

(MDS) analysis was carried out to help visualize the spatial locations of the clusters [16].  For a 

given positive integer k, the MDS algorithm determines a k-dimensional representation of the 

data space such that the distances between pairs of data points in the original data space are 

preserved as best as possible.  We used k = 3 in our analysis to facilitate visualization.  We used 

the OneClassPlusSVM.R script. 

 

One-class classification using L1 distance 

 

The set of 4000 random sites representing the class of likely non-SVs with a size range of 50 bps 

to 997527 bps were used for training the one-class classifier.  First, a separate classifier was 

developed using data from each sequencing technology for these 4000 sites.  The classifier was 

based on the empirical distribution of L1 distances of each of the 4000 sites from the mean M for 

the 4000 sites.  For these likely non-SVs, a threshold value tp was determined such that a 

proportion p of the 4000 L1 distances were less than or equal to tp.  The region R is then defined 

as the set of all points in the transformed data space whose L1 distance from the mean M is less 
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than or equal to tp.  When there are only two annotations measured for each site, this region takes 

the shape of a rhombus.  In the high dimensional data space the shape of the region R is a 

multidimensional rhombus.  The classification rule is as follows.  Given any new site, calculate 

its L1 distance from M.  If it is greater than tp classify it as a SV.  Otherwise call it a non-SV.  

Five classifiers were developed one for each of the four sequencing technologies and one using 

the combined data.  We used the Unsupervised.R script. 

 

One-class classification using one-class SVM 

 

Support Vector Machines (SVM) [17] are generally used for supervised learning when it is 

desired to develop a classification rule for classifying sites into two or more classes.  Different 

versions of SVMs have been developed for one-class classification [18, 19].  We use the version 

proposed by Schölkopf et al. just as in the case of L1 one-class classification discussed above, we 

develop five classifiers based on data from each of the four sequencing technologies and a 

classifier based on the combined data from all four sequencing technologies to distinguish SVs 

from random regions and SVs from validated/assembled sets.  In this analysis, a different data 

transform method was applied to each annotation.  First, for each annotation we defined the 

deviation directions of interest compared to the reference distribution of SVs from the random 

regions to define outliers.  According to the defined directions of deviations, we transformed the 

data so that the range of each annotation satisfies the required condition of one-class SVM. i.e. 

for each annotation, the larger the directional deviation was, the closer to 0 the transformed value 

was.  One-class SVM implemented with e1071 package of the Comprehensive R Archive 

Network was trained by the transformed data of 4000 random regions to define linear class 

boundaries that may discriminate true SVs from randomly generated SVs.  The proportion of 

SVs in the training set identified as outliers (false positive rate) 1-p was approximately controlled 

by a factor ν in the training algorithm defined by the authors (supplementary information 1).  We 

used the OneClassPlusSVM.R script. 

 

Ensemble classifiers 
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Above, an L1 classifier was developed separately for data from each of the four sequencing 

datasets.  A fifth classifier was developed by combining annotations from all four datasets into a 

single model.  Rather than combining the datasets, we can combine the four classifiers using an 

idea referred to as ensemble learning.  We consider ensemble classifiers that are based on 

declaring a new site to be a SV provided at least k of the individual classifiers predict the site as a 

SV.  We can do this for k=1, 2, 3, 4.  These ensemble classifiers arising from the four L1 

classifiers were investigated and their performances are reported in the results section.  A similar 

process was repeated for the one-class SVM classifier.  As the class boundaries developed with 

one-class SVM could have intersections, in one-class SVM analysis, for each SV, we recorded 

the smallest true negative rate of the training that lead to a classifier defines this SV as one from 

the random regions, as an equivalent to the proportion p used for the L1 classifiers. 

We chose k=3 from the L1 classifier to produce our final high-confidence SVs, since we 

expect classifications based on evidence from multiple datasets are more likely to be robust. 

Candidate SV sites from Personalis, 1000 Genomes, and Spiral Genetics as well as Random 

Genome sites were stratified into sites with varying levels of evidence for an SV using the L1 

classifier.  To exclude difficult regions in which our classifier may give misleading results, we 

first excluded sites with Platinum Genomes coverage > 300 in the left and right flanking regions 

(~1.5 times the mean coverage, so these may be inside duplicated regions), as well as sites with 

Platinum Genomes mean mapping quality < 30 in the left or right flanking regions.  We used the 

OneClassPlusSVM.R script. 

 

Manual inspection of SVs 

 

To understand the accuracy of our classifier, we manually inspected a subset of the sites from 

each call set in each Phred-score category.  Specifically, we inspected all 17 random sites with 

p > 0.99 to determine if these might be real SVs.  We also randomly selected 20 sites each from 

Personalis and 1000 Genomes with p > 0.99, and 10 sites from Personalis and 1000 Genomes 

with p < 0.68, 0.68 < p < 0.90, and 0.90 < p < 0.99 (or we inspected all sites if there were fewer 

than 10 in any category).  Manual inspection was performed using the GeT-RM project browser 

(http://www.ncbi.nlm.nih.gov/variation/tools/get-rm/browse/), the integrative genomics viewer 

(IGV) (version 2.3.23 (26)) [20] and svviz (version 1.0.9; https://github.com/svviz/svviz).  We 
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selected the following tracks on GeT-RM Browser for manual inspections: GRCh37.p13 

(GCF_000001405.25) Alternate Loci and Patch Alignments, GRC Curation Issues mapped to 

GRCh37.p13, Repeats identified by RepeatMasker, 1000 Genomes Phase 1 Strict Accessibility 

Mask, dbVar ClinVar Large Variations, dbVar 1000 Genomes Consortium Phase 3 (estd214), 

NIST-GIAB v.2.18 abnormal allele balance, NIST-GIAB v.2.18 calls with low mapping quality 

or high coverage, NIST-GIAB v.2.18 evidence of systematic sequencing errors, NIST-GIAB 

v.2.18 local alignment problems, NIST-GIAB v.2.18 low coverage, NIST-GIAB v.2.18 no call 

from HaplotypeCaller, NIST-GIAB v.2.18 regions likely have paralogs in the 1000 Genomes 

decoy, NIST-GIAB v.2.18 regions with structural variants in dbVar for NA12878, NIST-GIAB 

v.2.18 Simple Repeats from RepeatMasker, NIST-GIAB v.2.18 support from < 3 datasets after 

arbitration, NIST-GIAB v.2.18 uncertain regions due to low coverage/mapping quality.  We 

observed coverage of the regions, numbers of soft-clipped reads, numbers of reads with deletions 

relative to the reference genome and numbers of SNPs/indels in the regions from Moleculo and 

PacBio aligned bam files using IGV. 

 

svviz 

 

svviz (version 1.0.9; https://github.com/svviz/svviz) was used to visualize all four whole-genome 

sequencing data sets to see if there is support for a given structural variant [21].  It uses a 

realignment process to identify reads supporting the reference allele, reads supporting the 

structural variant (or alternate allele), and reads that are not informative one way or the other 

(ambiguous).  svviz batch mode was used with default parameters to calculate summary statistics 

for SVs and non-SVs.  In addition, inserted sequences were included as an input for svviz for 

Spiral Genetics’ insertions calls.  For PacBio sequencing data, svviz’s “pacbio” optional 

parameter was used to retain lower quality alignments as support for the reference and alternate 

alleles since PacBio sequencing has a relatively high error rate.  svviz’s commands, input files 

and output files are provided in svviz.zip.  
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Results 

 

To assess the utility of our classification methods, we compiled four whole genome 

sequencing datasets for Coriell DNA sample NA12878 (Table 1).  We used two deletion call sets 

from Personalis and the 1000 Genomes Project totaling 3082 unique deletions, as well as 70 

assembly-based breakpoint-resolved insertions.  Moreover, we generated several likely non-SV 

call sets with different size distributions and sequence contexts (Table 2).  We first present PCR 

validation results for the Personalis deletions.  Then, we generate annotations for the candidate 

SV and non-SV call sets from the four sequencing datasets.  We use hierarchical clustering to 

show that SVs generally cluster separately from non-SVs using these annotations, and that SVs 

cluster into several different types of deletions.  Finally, we use one class classification methods 

to classify calls as high-confidence SVs, high-confidence non-SVs, or uncertain. 

 

PCR Validation of Personalis SVs 

 

To obtain initial estimates of accuracy of the Personalis deletion calls, we performed 

experimental validation for some of the calls.  Only 44 of 2350 calls met the criteria for 

designing primers, 3 primer pairs failed and in one case we were unable to make a call.  We were 

able to validate 38 of Personalis’ deletions with exact breakpoints (including 3 within 1 bps) out 

of the 40 deletions that we could test.  A 39th case was off by 44 bps on one side and the last 

case was a false positive call.  All homozygous calls (6) were confirmed by the validation.  Only 

10 out of 21 heterozygous calls had the correct zygosity call.  Of the heterozygous calls with 

incorrect zygosity, 7 were actually homozygous, 1 could not be determined by the validation and 

1 was not a deletion.  The remaining cases did not have a zygosity call, of which 9 were 

homozygous and 7 were heterozygous. 

 

Generation of annotations from reads in sequencing datasets 

 

To assess the evidence for any candidate SV without the need to design primers for 

validation experiments, we developed svclassify to quantify annotations of aligned reads inside 

and around each SV (Figure 1).  We generated 85 to 180 annotations (supplementary table 4 to 
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7) from each sequencing dataset for each of the SV calls as well as likely non-SV regions from 

four aligned sequence data for NA12878 using svclassify.  Some of the annotations, such as 

depth of coverage (Figure 2), could clearly distinguish most Personalis “Gold” deletions from 

random regions by themselves.  Although annotations such as coverage can be used by 

themselves to classify most Personalis deletions, additional annotations increase confidence that 

the deletion is real and not an artifact (e.g., low coverage due to extreme GC content).  In 

addition, other annotations are necessary to classify other types of SVs like inversions and 

insertions that may not have abnormal coverage.  Therefore, we developed unsupervised and 

one-class supervised machine learning models to combine information from many annotations 

for clustering and classification. 

 

Results of the hierarchical cluster analysis 

 

To understand the types of SV calls in the validated/assembled deletion sets and how they 

segregate from random genomic regions, we first performed unsupervised machine learning 

using hierarchical clustering with a manually selected subset of 11 to 35 annotations from 

svclassify, depending on the technology (Supplementary table 4 to 7).  This subset of annotations 

was chosen to reduce the number of annotations used in the model to those that we expected to 

be most important for clustering calls into different categories.  We decided to focus our analyses 

on eight major clusters, which are visualized as a tree (dendrogram) in Figure 4A and with 

multidimensional scaling in Figures 4B and 4C.  Six of the clusters (1, 2, 3, 6, 7) were 

predominantly (98.5 %) SVs, two clusters (4 and 5) were predominantly (98.9 %) non-SVs, and 

one cluster (8) was 40 % SVs and 60 % non-SVs.  The label (SV or non-SV) associated with 

each site was not provided to the clustering method, and yet the clusters showed a good 

separation of SVs from non-SVs based entirely on the annotation values.  To ensure the 4000 

random regions sufficiently represented non-SVs, we also generate random regions matching the 

size distribution of the Personalis deletions, as well as random SINEs, LINEs, and LTRs.  It is 

promising that even the randomly selected SINEs, LINEs, and LTRs generally segregate with the 

random genome regions even though they are from regions of the genome that are difficult to 

map. 
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We further compared the annotations of these 8 clusters to understand whether they 

represent different categories of SVs and random regions.  Clusters 4 and 5 contain close to 99 % 

non-SVs, but Cluster 4 generally contains larger sites than Cluster 5.  Cluster 8 is a mix of 60 % 

non-SVs and 40 % SVs, and sites in Cluster 8 generally have a coverage between the normal 

coverage and half the normal coverage, and more sites have lower mapping quality, repetitive 

sequence, and high or low GC content.  Further subdivisions of Cluster 8 might divide the true 

SVs from non-SVs. 

98.5 % of sites in Clusters 1, 2, 3, 6, and 7 are from the Personalis and 1000 Genomes 

Gold sets, but the clusters contain different types of SVs.  Clusters 1, 2, 3, and 6 generally 

contain reads with lower mapping quality inside the SV, though the low mapping quality could 

arise from a variety of sources (e.g., repetitive regions that are falsely called SVs, true 

heterozygous or homozygous deletions of repetitive elements like Alu elements, or true 

homozygous deletions that contain some incorrectly mapped reads inside the deletion).  Clusters 

2 and 3 appear to be true deletions of Alu elements, since sites in these clusters are ~300 bps, are 

annotated as SINEs, LINEs, or LTRs by RepeatMasker, have high GC content, and have low 

mapping quality.  Cluster 2 sites are primarily heterozygous Alu deletions since they have about 

half the typical coverage, and Cluster 3 sites are primarily homozygous Alu deletions and a small 

fraction of other homozygous deletions because they contain less than half the typical coverage.  

All 655 sites in Cluster 1 are from Personalis and 1000 Genomes, and appear to be mostly larger 

homozygous deletions (half are larger than 2000 bps), and they have lower than half the normal 

coverage, low mapping quality, and more discordantly mapped reads.  86 % of sites in Cluster 6 

are from 1000 Genomes and appear likely to represent mostly true homozygous deletions with 

imprecise breakpoints that are too narrow, since the left and right flanking regions, in addition to 

the region inside the putative SV, have low coverage less than half the typical coverage.  97.4 % 

of sites in Cluster 7 are from Personalis and 1000 Genomes, and they appear to be predominantly 

heterozygous deletions in relatively easier parts of the genome with high mapping quality.  These 

results are summarized in Table 3. 

More sophisticated versions of our clustering approach are available.  Parametric 

approaches include Gaussian mixture modeling, but there are also nonparametric mixture 

modeling approaches available.  However, we find that at best only a marginal improvement is 

realized using such more advanced methods. 
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One-class classification of candidate SVs using L1 distance 

 

We next developed a one-class classification model to classify candidate sites as high-

confidence SVs or uncertain.  This one-class model uses only the 4000 random sites for training, 

and it assumes that sites with annotations unlike most of these random sites are more likely to be 

SVs. As shown in Supplementary table 3, we did not use several of the annotations from the 

unsupervised hierarchical clustering because atypical values for these annotations (e.g., mapping 

quality or SV size) do not necessarily indicate that an SV exists in this location (see the 

discussion above about hierarchical clustering for possible reasons for low mapping quality).  

The number of annotations used ranged from 7 for PacBio to 30 for Illumina paired-end 

(Supplementary table 4 to 7). 

Results from the L1 distance one-class classification are summarized using ROC curves. 

Five different ROC curves are shown in Figure 5A-5B, one from each classifier using one of the 

four data sets and one classifier based on all datasets combined.  The classifier based on all 

datasets combined performs the best with PlatGen alone being a close second.  ROC curves for 

the ensemble classifiers, based on the four L1 classifiers using each of the four data sets 

separately, are shown in Figure 5C-5D.  Four different ensemble classifiers are considered based 

on four different ways of combining the results from the individual classifiers.  A typical 

ensemble classifier will classify a site as SV if k or more of the individual classifiers make an SV 

call.  Here k can be 1, 2, 3, or 4.  The results show that using k=3 provides the best ensemble 

classifier with k=2 being a close second. Performance is similar for the k=3 classifier and all 

datasets combined, and we use k=3 for our final results because we expect requiring evidence 

from 3 datasets will be more robust.  

For k=3, we calculated the proportion p of random sites that are closer to the center than 

each candidate site.  We stratified candidate sites into those with p < 0.68, 0.68 < p < 0.9, 0.9 < p 

< 0.99, or p > 0.99, as shown in Table 4. 

 

One-class classification of candidate SVs using SVM 
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To compare to an alternative distance measure and method for one-class classification, 

we also developed a one-class SVM model.  We found that results were generally similar 

between the L1 one-class results and the SVM one-class results in terms of ROC curves 

(Supplementary Figures 1, 2, and 4).  Supplementary table 8 gives the concordance/discordance 

matrix for predictions from the L1 and SVM one-class classifications for selected values of p.  

Agreement between the two methods is 84 % with p > 0.99, 98 % with p > 0.95 and 99 % with 

p > 0.9, on Personalis validated/assembled set.  The high agreement between SVM and L1 at p > 

0.95 suggests that our one class classification method is robust to the type of model.  We further 

examined the 7 sites consistently identified with only SVM and 1 site consistently identified with 

only L1 that had low p (0.6 > p > 0.5) with one method and p > 0.9 with the other method. We 

found that these were from difficult regions of the genome, such as telomeres, high coverage 

regions, and low mapping quality regions, so they are filtered from our final high-confidence 

calls.  However, similar comparisons of predictions on 1000 Genome set with L1 and SVM 

ensemble classifiers suggest that the L1 classifier has better efficiency in predictions on 1000 

Genome set and better agreement on different technologies.  Therefore we use the simpler L1 

method. 

 

Manual inspection of one-class results 

 

We randomly selected a subset of sites from each call set in each selected p value range 

from Table 4 for manual inspection.  In general, Personalis and 1000 Genomes sites with high p 

values were very likely accurate and mostly homozygous, while sites with lower p appeared to 

be questionable, small, and/or heterozygous.  Most of the Spiral Genetics insertions had very 

high p, indicating a true SV is likely in the region. 

For Personalis, we inspected 20 randomly selected sites with p > 0.99, and all appeared to 

be accurate (Supplementary table 9).  Only 5 (25 %) of these sites appeared likely to be 

heterozygous, since homozygous deletions generally are more different from random regions 

than heterozygous deletions.  4 out of 5 heterozygous sites had 0.99 < p < 0.999, whereas all 15 

homozygous deletions had p > 0.999 except for one small 52-bps deletion, and 13 of the 

homozygous deletions had p > 0.9999.  Also, all 10 of the randomly selected Personalis sites 

with 0.9 < p < 0.99 were likely to be true heterozygous deletions, and none were homozygous 
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(Supplementary table 10).  There were only 8 sites with p < 0.9 in the Personalis set 

(Supplementary table 11), and these were a mixture of likely true but very small deletions and 

other potential deletions that were difficult to determine whether they were true or artifacts since 

they were only supported by a small number of reads.  Therefore, we do not include these in our 

final high-confidence set. 

For 1000 Genomes, we similarly inspected 20 randomly selected sites with p > 0.99, and 

all appeared to be accurate except for one in a low complexity region, which had few supporting 

reads in svviz.  Only 4 (20 %) of the sites with p > 0.99 had p > 0.9999, in contrast to 65 % of 

the Personalis calls.  3 of the 4 site with p > 0.9999 were likely to be homozygous deletions.  

One likely true heterozygous deletion had p > 0.999, and the remaining 15 sites with 0.99 < p < 

0.999 appeared likely to be true heterozygous deletions except for one in a low complexity 

region (Supplementary table 12).  Also, 7 of the 9 randomly selected 1000 Genomes sites with 

0.9 < p < 0.99 were likely to be true heterozygous deletions, and none were homozygous 

(Supplementary table 13).  The other 2 sites contained 17 % and 58 % low complexity sequence 

and 68 % and 66 % GC content, and they appeared likely to be erroneous calls since no reads 

aligned to the alternate allele for any technology using svviz (except for a single moleculo read 

for one of the sites).  8 of the 9 randomly selected 1000 Genomes sites with 0.7 < p < 0.9 were 

smaller than 100 bps, 7 were likely to be true heterozygous deletions, and none were 

homozygous (Supplementary table 14).  5 of the 7 randomly selected 1000 Genomes sites with p 

< 0.7 were smaller than 110 bps and were possibly true heterozygous deletions, and none were 

homozygous (Supplementary table 15).  In general, the 1000 Genomes calls have lower p scores 

than the Personalis calls because the Personalis calls contain a higher fraction of homozygous 

deletions, fewer very small deletions, and are all breakpoint-resolved. 

All of the complex insertions from Spiral Genetics had p > 0.97, indicating that they are 

likely to be true SVs.  Upon manual inspection of the svviz results (Supplementary table 16), 29 

had evidence in all 4 technologies for a homozygous insertion, 29 had evidence in all 4 

technologies for a heterozygous insertion, and 8 were inconsistent in terms of zygosity across the 

4 technologies.  The reason for the discordance between technologies for the 8 discordant sites is 

not always clear, but it appears that some are likely to be real SVs with different breakpoints.  

For example, an insertion is called at 1:3,418,563 with a length of 352 bp, but appeared likely to 

be a large. 
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Most candidate sites with p > 0.9 appear to be true, but a few of the manually inspected 

sites appeared to be inaccurate or to have incorrect breakpoints.  Therefore, we further refined 

our final callset by using svviz to map reads to the reference or predicted alternate alleles, and we 

included only sites with at least 3 reads supporting the alternate allele in at least 3 of the 4 

datasets.  This filtered 13 % percent of the calls, leaving 2676 deletions and 68 insertions for 

which we have high confidence.  These calls are publicly available at ftp://ftp-

trace.ncbi.nih.gov/giab/ftp/technical/svclassify_Manuscript, and we will continue to update these 

with additional call sets as we further develop our methods.  
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Discussion  

 

High-confidence SV and non-SV calls are needed for benchmarking SV callers.  To establish 

high-confidence, methods are needed to combine multiple types of information from multiple 

sequencing technologies to form robust high-confidence SV and non-SV calls.  Therefore, in this 

work we developed methods to classify SVs as high-confidence based on annotations calculated 

for multiple datasets.  Our classification method gives the highest scores to SVs that are 

insertions or large homozygous deletions, and have accurate breakpoints.  Deletions smaller than 

100-bps often have low scores with our method, so other methods like svviz are likely to give 

better results for very small SVs.  Homozygous deletions generally receive the highest scores 

because they have annotations most unlike random regions of the genome.  Breakpoint-resolved 

deletions generally receive higher scores because reads near the breakpoint have distinct 

characteristics such as clipping and insert size that our method uses to classify SVs.  We produce 

a set of 2676 high-confidence deletions and 68 high-confidence insertions with evidence from 3 

or more sequencing data sets.  These sets of SVs are likely biased towards easier regions of the 

genome and do not contain more difficult types of SVs.  However, they can be used as an initial 

benchmark for sensitivity for deletions and insertions in easier regions of the genome. 

 

Our unsupervised clustering methods also show promise for classifying candidate SVs into 

different types and potentially classifying more difficult types of SVs.  Seven of the eight 

clusters obtained from an unsupervised hierarchical cluster analysis using L1 distances were 

relatively pure clusters consisting of either mostly SVs or mostly non-SVs. The overall 

successful separation of the SVs from the non-SVs by the unsupervised analysis suggests that the 

annotations for SVs and non-SVs occupy more or less disjoint regions in the data space.  Since 

each cluster contains a different type of SV or non-SV, future work might include further 

investigation of these clusters and sub-clusters to understand their meaning.  In addition, we plan 

to apply these clustering methods to additional types of SVs and develop more sophisticated 

classification methods that would place new candidate SVs in one of these categories of different 

types of true or false positive SVs. 
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We plan for the methods developed in this work to form a basis for developing high-confidence 

SV and non-SV calls for the well-characterized NIST RMs being developed by the GIAB.  In 

this work, we apply these methods to produce a set of high-confidence deletions and insertions 

with evidence from multiple sequencing datasets, and we plan to continue to develop these 

methods to be applied to more difficult types of SVs in more difficult regions of the genome.  

We also plan to incorporate calls from methods merging multiple callers, such as MetaSV [22], 

and incorporate statistics from other tools, such as Parliament [8] and svviz [21], in our machine 

learning models. 
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Table 1: Description of NGS data sets from Coriell DNA sample NA12878. 

 

Source Platform Coverage Read length Paired-end 

Platinum Genomes1 Illumina HiSeq 200 100 Yes 

Broad Institute2 Illumina HiSeq 50 250 Yes 

Mount Sinai, NY3  PacBio 12 1 kb – 10 kb No 

Illumina4 Moleculo 30 1.5 kb – 15 kb No 

 

Data sources:  

1http://www.illumina.com/platinumgenomes/ 

2ftp://ftp.broadinstitute.org/pub/crd/NA12878_clones/  

3ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/  

4ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_moleculo/  

 

Table 2: Description of SV validated/assembled sets from Coriell DNA sample NA12878. 

 

Source # of SVs # of unique SVs Size distribution 

Personalis deletions 2306 2292 50 to 158654 

Personalis validated deletions 44 44 49 to 9163 

1000 Genomes deletions [11] 2685 1825 49 to 212899 

Deduplicated deletions 3082 3082 49 to 158654 

Spiral Genetics insertions 70 70 207 to 3865 

Random regions 4000 4000 50 to 997527 

Random regions (size distribution 

matching to Personalis) 

2306 2306 50 to 158654 

Long interspersed nuclear elements 497 497 12 to 6401 

Long terminal repeat elements 498 498 11 to 7511 

Short interspersed nuclear elements 496 496 36 to 335 
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Table 3: Analysis of 8 clusters from hierarchical cluster analysis, including the numbers of sites from each call set and a description of 

the predominant types of sites in each cluster 

 

Cluster 4000 

Random 

Personalis 

Random 

Random 

LINEs 

Random 

LTRs 

Random 

SINEs 

Personalis 

Gold 

1000 

Genomes 

Gold 

Total Proportion 

Gold 

Description 

1 0 0 0 0 0 371 284 655 1.000 Mostly large, 

true 

homozygous 

deletions 

2 0 0 0 0 2 432 237 671 0.997 Heterozygous 

Alu deletions 

3 1 1 1 0 0 705 402 1110 0.997 Homozygous 

Alu deletions 

4 2397 455 38 28 16 9 28 2971 0.012 Large, likely 

non-SVs. 

Generally in 

easy-to-

sequence regions 

5 1073 1351 352 378 279 1 33 3467 0.010 Smaller, likely 

non-SVs. 

Generally in 
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easy-to-

sequence regions 

6 17 2 1 0 0 3 138 161 0.876 Likely true large 

homozygous 

deletions with 

inaccurate 

breakpoints so 

that the true 

deletion is larger 

than the called 

region 

7 14 16 2 2 4 624 811 1473 0.974 Mostly true 

heterozygous 

deletions in 

easier-to-

sequence regions 

8 498 481 103 90 195 161 752 2280 0.400 Mix of non-SVs 

and SVs in more 

difficult regions 

with coverage 

between the 

normal coverage 
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and half the 

normal coverage 

Total 4000 2306 497 498 496 2306 2685 12788 0.390  

 

Table 4: Number of sites from each candidate call set that have k=3 L1 Classification scores in each range, where the score is the 

proportion p of random sites that are closer to the center than each candidate site.  These numbers are after filtering sites for which the 

flanking regions have low mapping quality or high coverage. 

 Filtered <0.68 0.68-0.9 0.9-0.97 0.97-0.99 0.99-0.997 0.997-0.999 >0.999 

Random 

Personalis 
229 3025 501 177 65 3 0 0 

Personalis 

Gold 
106 8 10 44 414 409 1302 13 

Personalis 

Validated 

3 0 0 0 10 7 19 0 

1000 

Genomes  
382 56 103 257 714 388 780 5 

Spiral Gen 

Insertions 
1 0 0 0 12 16 41 0 

Deduplicated 

Deletions 
195 45 61 145 675 513 1434 14 
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Figure 1: Annotations are generated for each SV for five different regions in and around the SV: 

Left flanking region (L), Left middle flanking region (LM), Middle regions based on SV 

coordinates (M), Right middle flanking region (RM), and Right flanking region (R). 

 

 

 

Figure 2:  Depth of coverage distribution for Personalis deletion calls (PlatGen_M_Cov) and 

random regions (PlatGen_Random_4000_M_Cov).  See original data at 

https://plot.ly/~justinzook/2. 
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Figure 3:  Flowchart of analytical approach to classify candidate SVs into likely true or false 

positives.  The subset of 35 annotations was chosen for Illumina paired-end data (fewer for 

PacBio and moleculo data) to reduce the number of annotations used in the model to those that 

we expected to be most important for clustering calls into different categories.  The one-class 

model uses only the 4000 random sites for training, and it assumes that sites with annotations 

unlike most of these random sites are more likely to be SVs. 
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(A) 

 

(B)       (C) 

 

Figure 4:  Hierarchical clustering results using L1 distance and Ward’s method shown as (A) a 

dendrogram and (B-C) in multi-dimensional scaling plots.  (A) The horizontal dotted red line 

shows the cut-off at a cluster dissimilarity index of about 10000, which results in 8 clusters.  The 

clusters are number 1 to 8 from left to right, with 4 and 5 containing primarily non-SVs, 8 

containing a mixture of SVs and non-SVs, and 1, 2, 3, 6, and 7 containing different types of 

deletions (see Table 4).  (B-C) Multidimensional scaling plots for visualizing the 8 clusters. We 

use a 3 dimensional representation of the data space which associates 3 MDS coordinates to each 

site, one for each dimension.  (B) Plot of MDS-2 against MDS-1, which clearly separates Cluster 

6 (mainly SVs with inaccurate breakpoints).  (C) Plot of MDS-3 against MDS-1, in which the 

different types of SVs are generally well-separated from each other and from non-SVs. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 16, 2015. ; https://doi.org/10.1101/019372doi: bioRxiv preprint 

https://doi.org/10.1101/019372
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 5:  ROC curves for One-class classification using the L1 Distance, treating the 4000 

Random regions as negatives and the Personalis or 1000 Genomes calls as positives.  (A) ROC 

curves for one-class models for each dataset separately and for all combined for the Personalis 

validated deletion calls.  (B) ROC curves for one-class models for each dataset separately and for 

all combined for the 1000 Genomes validated deletion calls.  (C) ROC curves for one-class 

model requiring 1 or more, 2 or more, 3 or more, or all 4 technologies to have high classification 

scores for the Personalis validated deletion calls.  (D) ROC curves for one-class model requiring 

1 or more, 2 or more, 3 or more, or all 4 technologies to have high classification scores for the 

1000 Genomes validated deletion calls.  The 3 or more classification method is used to produce 

the final high-confidence SVs in this work.  The horizontal axis shows the false positive rate 

(from the random set of regions matching the size distribution of the Personalis deletions) and 

the vertical axis shows the corresponding true positive rate (assuming all the validated/assembled 

calls are true).  See original data at https://plot.ly/~desuchen0929/303, 

https://plot.ly/~desuchen0929/311, https://plot.ly/~desuchen0929/319, and 

https://plot.ly/~desuchen0929/322.  
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Supplementary Information 

 

1. Data transform for one- class SVM. 

For a certain annotation, the “right-tail” case means outliers should have positive deviations, the 

“left-tail” case means outliers should have negative deviations, and the “both-tail” case means 

that outliers could have either positive or negative deviations.  Reference deviations were then 

calculated for different cases.  For the left-tail and right-tail cases, 

𝜎 = √
∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑒𝑥𝑡𝑟𝑒𝑚𝑒)2

𝑛
 

σ is the reference deviation, xi is annotation value of the ith site from the random regions. n is the 

number of sites from the random regions (n = 4000).  xextreme is either the minimum of xi for the 

right-tail case, or the maximum of xi for left-tail case.  For any observation x of the same 

annotation for any SV, the transform y is 

𝑦 = 2/(1 + 𝑐𝑜𝑠ℎ(|𝑥 − 𝑥𝑒𝑥𝑡𝑟𝑒𝑚𝑒|/𝜎)) 

For both-tail case, we define two reference deviations σright and σleft for either positive or negative 

deviations from the median xmed of xi, 

𝜎𝑟𝑖𝑔ℎ𝑡 = √
∑𝑥𝑖>𝑥𝑚𝑒𝑑

(𝑥𝑖 − 𝑥𝑚𝑒𝑑)2

∑𝑥𝑖>𝑥𝑚𝑒𝑑
1

, 𝜎𝑙𝑒𝑓𝑡 = √
∑𝑥𝑖<𝑥𝑚𝑒𝑑

(𝑥𝑖 − 𝑥𝑚𝑒𝑑)2

∑𝑥𝑖<𝑥𝑚𝑒𝑑
1

 

The transform y is 

𝑦 = 2/(1 + 𝑐𝑜𝑠ℎ(|𝑥 − 𝑥𝑚𝑒𝑑|/𝜎𝑟𝑖𝑔ℎ𝑡)), if x > xmed 

𝑦 = 2/(1 + 𝑐𝑜𝑠ℎ(|𝑥 − 𝑥𝑚𝑒𝑑|/𝜎𝑙𝑒𝑓𝑡)), if x < xmed 

y = 0, if x = xmed 

Therefore outliers indicating potential SVs approach 0 in this transform, which is required by the 

application of one-class SVM.  In the transformed metric space, linear classifiers were trained by 

the one-class SVM (implemented with package e1071 in the Comprehensive R Archive 

Network) with SVs from the random regions as the training set.  The proportion of SVs in the 

training set identified as outliers (false positive rate) 1-p was approximately controlled by a 

factor ν in the training algorithm defined by the authors.  In short, ν ∈ (0,1) defines the ratio of 

penalty induced by margin size (e.g. distance from origin point to the class boundary with linear 

kernel) and penalty induced by number of outliers in the training set in the total penalty function 
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for soft margin case.  Higher ν allows more training data points to be on the outliers side to 

maximize the margin.  Classifiers at different ν’s were then applied to predict other SV data sets. 

 

 

 

Supplementary figure 1:  ROC curves for One-class classification using SVM, treating the 

4000 Random regions as negatives and the Personalis or 1000 Genomes calls as positives.  (A) 

ROC curves for one-class models for each dataset separately and for all combined for the 

Personalis validated deletion calls.  (B) ROC curves for one-class models for each dataset 

separately and for all combined for the 1000 Genomes validated deletion calls.  (C) ROC curves 

for one-class model requiring 1 or more, 2 or more, 3 or more, or all 4 technologies to have high 

classification scores for the Personalis validated deletion calls.  (D) ROC curves for one-class 

model requiring 1 or more, 2 or more, 3 or more, or all 4 technologies to have high classification 

scores for the 1000 Genomes validated deletion calls.  See original data at 

https://plot.ly/~desuchen0929/325, https://plot.ly/~desuchen0929/328, 

https://plot.ly/~desuchen0929/331, and https://plot.ly/~desuchen0929/337. 
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Supplementary figure 2:  ROC curves for One-class classification using SVM and L1 “3 or 

more” strategy, treating the 4000 random regions as training negatives, treating (A) the 

Personalis deletion calls and (B) the 1000 Genomes deletion calls as testing positives and 

treating the 2306 random regions as testing negatives.  See original data at 

https://plot.ly/~desuchen0929/341, and https://plot.ly/~desuchen0929/345. 
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Supplementary figure 3: ROC curves for One-class classification using the L1 Distance, 

treating the 4000 random regions as negatives and the Spiral Genetics insertions calls as 

positives.  (A) ROC curves for one-class models for each dataset separately and for all 

combined.  (B) ROC curves for one-class model requiring 1 or more, 2 or more, 3 or more, or all 

4 technologies to have high classification scores.  See original data at 

https://plot.ly/~desuchen0929/386, and https://plot.ly/~desuchen0929/389. 
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Supplementary figure 4: ROC curves for One-class classification using SVM, treating the 4000 

random regions as negatives and the Spiral Genetics insertions calls as positives. (A) ROC 

curves for one-class models for each dataset separately and for all combined. (B) ROC curves for 

one-class model requiring 1 or more, 2 or more, 3 or more, or all 4 technologies to have high 

classification scores.  See original data at https://plot.ly/~desuchen0929/391, and 

https://plot.ly/~desuchen0929/393. 
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Supplementary table 1: Number of overlapping deletion calls between Personalis and 1000 

Genomes deletion calls with different amounts of overlap 

Personalis unique deletion 

calls 

1000 Genomes unique 

deletion calls 

Overlap # of overlapping 

deletion calls 

2336 1825 1 bp 1082 

2336 1825 10 % 1082 

2336 1825 25 % 1081 

2336 1825 50 % 1076 

2336 1825 75 % 1070 

2336 1825 90 % 1066 

2336 1825 100 % 986 
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Supplementary table 2: Output format of svclassify 

svclassify generates more than 175 annotations for each SV from each aligned sequence data. 

SV_size: The SV_size gives the size of a structural variant (SV). 

SV_Cat: The SV_Cat gives the size distribution of a SV as a categorical value (i.e. SV size of < 

100 = 0, SV size of >=100 to <1000 = 1, SV size of >=1000 to <10000 = 2, SV size of >=10000 

= 3). 

  

Each SV is characterized in five groups (please refer to Figure 1): 

  

(1) Left flanking region (L) 

(2) Left middle flanking region (LM) 

(3) Middle regions based on SV coordinates (M) 

(4) Right middle flanking region (RM) 

(5) Right flanking region (R) 

  

Cov: The Cov gives the mean of depth of coverage. 

Cov_sd: The Cov_sd gives the standard deviation of depth of coverage. 

Cov_pro: The Cov_pro gives the proportion of the SV with depth of coverage less than 5X. 

Insert: The Insert gives the mean of insert size of paired reads (samtools flags of -f2). 

Insert_sd: The Insert_sd gives the standard deviation of insert size of paired reads. 

Insert_10_percentile: The Insert_10_percentile gives the 10th percentile of insert size distribution 

of paired reads. 

Insert_90_percentile: The Insert_90_percentile gives the 90th percentile of insert size distribution 

of paired reads. 

Dis_unmap: The Dis_unmap gives numbers of the unmapped mate (samtools flags of -f9 -F 

1792). 

Dis_map: The Dis_map gives numbers of the mapped mate in reverse orientation (samtools flags 

of -f1 -F 1802). 

Dis_all: The Dis_all gives numbers of the total paired reads (samtools flag of -f2). 

Dis_unmap_ratio: The Dis_unmap_ratio gives the ratio of numbers of the unmapped mate to 

numbers of total paired reads. 
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Dis_map_ratio: The Dis_map_ratio gives the ratio of numbers of the mapped mate in reverse 

orientation to numbers of total paired reads. 

Mapping_q: The Mapping_q gives the mean of mapping quality of the reads. 

Mapping_q_sd: The Mapping_q_sd gives the standard deviation of mapping quality of the reads. 

Mapping_pro: The Mapping_pro gives the proportion of reads with mapping quality of zero. 

Mapping_10_percentile: The Mapping_10_percentile gives the 10th percentile of mapping 

quality distribution of the reads. 

Mapping_90_percentile: The Mapping_90_percentile gives the 90th percentile of mapping 

quality distribution of the reads. 

Soft: The Soft gives the mean of soft clipped bases of the reads. 

Soft_sd: The Soft_sd gives the standard deviation of soft clipped bases of the reads. 

Soft_pro: The Soft_pro gives the proportion of the reads with soft clipped bases greater than 5. 

Soft_10_percentile: The Soft_10_percentile gives the 10th percentile of soft clipped bases of the 

reads distribution. 

Soft_90_percentile: The Soft_90_percentile gives the 90th percentile of soft clipped bases of the 

reads distribution. 

Del: The Del gives the mean of deleted bases of the reads. 

Del_sd: The Del_sd gives the standard deviation of deleted bases of the reads. 

Del_10_percentile: The Del_10_percentile gives the 10th percentile of deleted bases of the reads 

distribution. 

Del_90_percentile: The Del_90_percentile gives the 90th percentile of deleted bases of the reads 

distribution. 

Ins: The Ins gives the mean of inserted bases of the reads. 

Ins_sd: The Ins_sd gives the standard deviation of inserted bases of the reads. 

Ins_10_percentile: The Ins_10_percentile gives the 10th percentile of inserted bases of the reads 

distribution. 

Ins_90_percentile: The Ins_90_percentile gives the 90th percentile of inserted bases of the reads 

distribution. 

Diff: The Diff gives the mean of differences between numbers of inserted and numbers of deleted 

bases of the reads. 
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Diff_sd: The Diff_sd gives the standard deviation of differences between numbers of inserted 

and numbers of deleted bases of the reads. 

Diff_10_percentile: The Diff_10_percentile gives the 10th percentile of differences between 

numbers of inserted and numbers of deleted bases distribution of the reads. 

Diff_90_percentile: The Diff_90_percentile gives the 90th percentile of differences between 

numbers of inserted and numbers of deleted bases distribution of the reads. 

M_Cov_Cat: The M_Cov_Cat gives the coverage distribution of a SV as a categorical based on 

user defined input coverage_cutoff value. 

M_Homvar: The M_Homvar gives the number of homozygous SNP genotype calls inside the 

SV. 

M_Homvar_SV: The M_Homvar_SV gives the ratio of number of homozygous SNP genotype 

calls inside the SV to the size of SV. 

M_Hetvar: The M_Hetvar gives the number of heterozygous SNP genotype calls inside the SV. 

M_Hetvar_SV: The M_Hetvar_SV gives the ratio of number of heterozygous SNP genotype calls 

inside the SV to the size of SV. 

M_GCcontent: The M_GCcontent gives the percentage of GC content to the size of SV. 

M_Sine_Line_Ltr_SV: The M_Sine_Line_Ltr_SV gives the percentage of short interspersed 

nuclear elements (SINE), long interspersed nuclear elements (LINE) and long terminal repeat 

elements (LTR) identified by RepeatMasker to the size of SV. 

M_Simple_Low_Satellite_SV: The M_Simple_Low_Satellite_SV gives the percentage of simple, 

low complexity and satellite repeats identified by RepeatMasker to the size of SV. 

 

 

Supplementary table 3: Selected characteristics for hierarchical clustering and One-class 

models 

 

For Illumina and moleculo datasets: 

M_Cov, M_Cov_sd, M_Insert_sd, M_Dis_unmap_ratio, M_Dis_map_ratio, M_Soft_pro, 

M_Homvar_SV, M_Hetvar_SV 

L_Insert_90_percentile, L_Dis_unmap_ratio, L_Dis_map_ratio, L_Soft_90_percentile, L_Cov 

R_Insert_90_percentile, R_Dis_unmap_ratio, R_Dis_map_ratio, R_Soft_90_percentile, R_Cov 
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LM_Insert_90_percentile, LM_Dis_unmap_ratio, LM_Dis_map_ratio, LM_Soft_90_percentile, 

LM_Cov 

RM_Insert_90_percentile, RM_Dis_unmap_ratio, RM_Dis_map_ratio, RM_Soft_90_percentile, 

RM_Cov  

 

For PacBio datasets: 

L_Diff, R_Diff, M_Cov, M_Del, M_Ins, M_Diff, M_Diff_sd, M_Homvar_SV, M_Hetvar_SV 

 

For hierarchical clustering only: 

SV_size, M_Mapping_q, M_Sine_Line_Ltr_SV, M_GC_Content, and 

M_Simple_Low_Satellite_SV 

 - Note also that all of these except M_Mapping_q are the same for all of the datasets so only 

need to be included once for the joint dataset unsupervised analysis. 

 

Supplementary table 8: Elements of concordance/discordance matrix of predictions on 

Personalis validated/assembled set by the one-class L1 classifier and one-class SVM with 

annotations of all technologies combined.  

p 0.99 0.95 0.9 0.68 

SVM(+), L1(+) 1665 2291 2302 2306 

SVM(+), L1(-) 458 4 1 0 

SVM(-), L1(+) 10 5 0 0 

SVM(-), L1(-) 173 6 3 0 

 

 

Elements of concordance/ discordance matrix of predictions on Personalis validated/assembled 

set with ensemble classifiers (k=3) of one-class L1 classifier and one-class SVM. 

p 0.99 0.95 0.9 0.68 
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SVM(+), L1(+) 1711 2232 2275 2296 

SVM(+), L1(-) 341 12 4 3 

SVM(-), L1(+) 45 35 11 1 

SVM(-), L1(-) 209 27 16 6 

 

Elements of concordance/Discordance matrix of predictions on 1000 Genomes set by the one-

class L1 classifier and one-class SVM with annotations of all technologies combined. 

P 0.99 0.95 0.9 0.68 

SVM(+), L1(+) 1188 2373 2567 2654 

SVM(+), L1(-) 598 100 51 7 

SVM(-), L1(+) 100 43 7 8 

SVM(-), L1(-) 799 169 60 16 

 

Elements of concordance/ discordance matrix of predictions on 1000 Genomes set with ensemble 

classifiers (k=3) of one-class L1 classifier and one-class SVM. 

p 0.99 0.95 0.9 0.68 

SVM(+), L1(+) 1189 2161 2405 2598 

SVM(+), L1(-) 463 93 69 41 

SVM(-), L1(+) 176 150 75 16 

SVM(-), L1(-) 857 281 136 30 
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