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Abstract 

 Genome scans, including both genome-wide association studies and deep 

sequencing, continue to discover a growing number of significant association signals for 

various traits. However, often variants meeting genome-wide significance criteria 

explain far less of the overall trait variance than “sub-threshold” association signals. To 

extract these sub-threshold signals, there is a need for methods which accurately 

estimate the mean of all (normally-distributed) test-statistics from a genome scan (i.e., 

Z-scores). This is currently achieved by the difficult procedures of adjusting all Z-score 

(𝜒1
2) statistics for “winner’s curse” (multiple testing). Given that multiple testing 

adjustments are much simpler for p-values, we propose a method for estimating  Z-

scores means by i) first adjusting their p-values for multiple testing and then ii) 

transforming the adjusted p-values to upper tail Z-scores with the sign of the original 

statistics. Because a False Discovery Rate (FDR) procedure is used for multiple testing 

adjustment, we denote this method FDR Inverse Quantile Transformation (FIQT). When 

compared to competitors, e.g. Empirical Bayes (including proposed improvements), 

FIQT is more i) accurate and ii) computationally efficient by orders of magnitude. Its 

accuracy advantage is substantial at larger sample sizes and/or moderate numbers of 

association signals. Practical application of FIQT to Z-scores from the first Psychiatric 

Genetic Consortium (PGC) schizophrenia predicts a non-trivial fraction of the significant 

signal regions from the subsequent published PGC schizophrenia studies. Finally, we 

suggest that FIQT might be i) used to improve subject level risk prediction and ii) further 

improved by modelling the noncentrality of 𝜒1
2 statistics.  
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Introduction 

 Genome-wide association studies (GWAS) represent a powerful and widely used 

tool for detecting associations between genetic variants and complex traits. In such 

studies, researchers directly assay and statistically impute (Li, Willer, Ding, Scheet, and 

Abecasis 2010) genotypes for around a million and several million single nucleotide 

polymorphisms (SNPs), respectively. The GWAS paradigm has been very successful in 

identifying genetic variants associated with a range of phenotypes (Dewan, Liu, 

Hartman, Zhang, Liu, Zhao, Tam, Chan, Lam, Snyder et al. 2006; Hindorff, Sethupathy, 

Junkins, Ramos, Mehta, Collins, and Manolio 2009; Wellcome Trust Case Control 

Consortium 2007). However, as seen in GWAS of psychiatric disorders (Purcell, Wray, 

Stone, Visscher, O'Donovan, Sullivan, and Sklar 2009; Sklar, Ripke, Scott, Andreassen, 

Cichon, Craddock, Edenberg, Nurnberger, Jr., Rietschel, Blackwood et al. 2011), a 

considerable portion of the predicted genetic contribution to risk resides in regions 

which do not independently yield significance at accepted genome-wide levels, i.e., 

“suggestive” signals. With the advent of large-scale, whole-exome and -genome 

sequencing studies, the field will likely see an exponential increase in the number of 

such signals.  

Given the increased number such suggestive signals, there is a need for 

statistical methods that accurately estimate effect-sizes for these and, even, all variants 

from genome scans (henceforth, denoting not only extant GWAS and whole-exome 

sequencing but emergent whole-genome sequencing studies as well). These estimates 

might be used, for instance, to estimate the sample size needed to detect a given 

number of association signals. Such sample size estimation is, possibly, the most 

critical consideration in the design of any follow-up sequencing studies.  

When estimating the true effect sizes, it is well established that the largest 

signals are the most affected by the bias known as "winner's curse" (Zollner and 

Pritchard 2007).  This is due to statistics with the largest magnitude having an extreme 

value distribution (Jenkinson 1955), as opposed to the normal (𝜒1
2) distribution we 

commonly assume for a random GWAS statistic. By incorrectly assuming a normal 

distribution, naïve estimators of extreme statistics have a tendency to overestimate the 

magnitude of these statistics (Zollner and Pritchard 2007). In statistical genetics, 

researchers proposed a multitude of methods to adjust for winner’s curse studies with 

one- (discovery) (Faye, Sun, Dimitromanolakis, and Bull 2011; Ghosh, Zou, and Wright 

2008; Sun, Dimitromanolakis, Faye, Paterson, Waggott, and Bull 2011; Xiao and 

Boehnke 2011; Zhong and Prentice 2008; Zollner and Pritchard 2007) and two-stage 

(discovery and replication) studies (Bowden and Dudbridge 2009; Zhong and Prentice 

2008). A majority of these methods are also designed to handle mostly significant 

signals. Because the statistically significant signals are generally few in number, the 
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majority of these methods are unlikely to meaningfully inform the design of future 

studies.  

 Recently, two new tools for estimating all the mean of statistics were proposed. 

The first was adapted from a more general purpose method from statistics, the 

Empirical Bayes (EB) method based on Tweedie’s formula (Efron 2009). Because it 

employs empirical estimates of the density/histogram (120 bins by default) of scan 

statistics, it is well suited for the large number of statistics from a genome scan (albeit 

less suited to instances in which the number of statistics is much smaller). In the context 

of genome scans, this method was used by Ferguson et al. (Ferguson, Cho, Yang, and 

Zhao 2013), who found that the empirical histogram is less precise in the extreme tails 

off the distribution, where tail adjustment (TA) methods (Ghosh, Zou, and Wright 2008; 

Zhong and Prentice 2008) provide better accuracy. Based on these observations, the 

authors proposed an interesting adaptive combination of EB and TA which, at the cost 

of increased computational burden, combined the best attributes of both methods. The 

second of these new tools is a computationally efficient, soft threshold method (Bacanu 

and Kendler 2012) which adjusts statistics such that their sum of squares do not 

overestimate the true mean. Because this method does not use empirical density 

estimation, it is applicable even to a small number of statistics.    

 We propose a novel, computationally efficient, two-step method to accurately 

estimate the mean of univariate statistics from a genome scan. First, we adjust the p-

values for multiple testing using a False Discovery Rate approach (Benjamini Y. and 

Hochberg Y. 1995). Second, we estimate the mean of normally distributed statistics as 

having its i) magnitude equal to the back-transformation of the adjusted p-values to the 

upper quantiles of a standard normal distribution and ii) sign identical to the original 

scan statistics. (While more easily explained as a two-step procedure, for the benefit of 

discussion only, we alternatively present it as a three step procedure in Methods.) As 

compared to competing methods (with some of our improvements), our proposed 

procedure has very good performance in terms of i) squared error loss, ii) fraction of the 

variability in true means of univariate statistics explained and iii) computational 

efficiency. A practical application of this approach shows that, due to their good 

performance, the proposed estimators can be used to predict with reasonable accuracy 

the location of as-yet undetected, significant signals which were ultimately detected in 

subsequent studies of much larger cohorts. Finally, we suggest that these estimators 

can be i) possibly used to improve subject level risk prediction and ii) further improved 

by taking into account the noncentrality of 𝜒1
2 statistics.  

 

Methods  

Notation. Let 𝑋𝑖~𝑁(𝜇𝑖, 1), 𝑖 = 1, . . . , 𝑘, be the univariate statistics from a genome scan 

and 𝑝𝑖, 𝑖 = 1, . . . , 𝑘, their associated p-values. If not reported, 𝑋𝑖 can be easily computed 

based on other reported summary statistics (see Supplementary Material). Alternatively, 
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the summary statistics can be reported on a 𝜒2 scale with 1 degree of freedom (df), i.e., 

𝑋𝑖
2~𝜒1

2(𝜇𝑖
2). However, in describing the methods we assume the summary statistics are 

normally distributed (i.e., Z-scores) and their 𝜒1
2  homologs will be used mostly for 

explaining the heuristics of possible future developments.    

 

Novel method based on p-value adjustment.  Given the extreme value distribution of 

scan statistics in the upper and lower tails and different distributions elsewhere, it is 

unclear (or, at least, very complicated) how to properly estimate the biases of, and 

thereby adjust, all statistics in a genome scan. However, it is quite simple to adjust the 

p-values for the genome-wide multiple testing, e.g. using a FDR (as in this paper) or 

Holm procedure. While the FDR procedure can be anticonservative for the extreme 

scenario of negatively correlated variables, in genetics, Z-scores are only locally 

correlated and we do not expect their correlations to be preponderantly negative. Thus, 

FDR is not expected to be conservative and that’s why it is commonly used in statistical 

genetics. Thus, for a first step let then 𝑝𝑖
∗, 𝑖 = 1, . . . , 𝑘 be the FDR adjusted p-values. In 

the second step, we estimate the expected (adjusted) mean of 𝜒1
2 statistics by 

transforming the adjusted p-values to a 𝜒1
2 scale 𝑋𝑖

∗2̂ = 𝐹𝜒1
2(𝜇𝑖

2),
−1 (1 − 𝑝𝑖

∗), i.e., the upper 

tail 𝑝𝑖
∗ quantile of a 𝜒1

2(𝜇𝑖
2) with 𝜇𝑖

2 representing the suitably chosen non-centrality 

parameters used for computing the original p-values 𝑝𝑖, 𝑖 = 1, . . . , 𝑘. Because the scan 

statistics are computed under the null hypothesis, H0, we used 𝜇𝑖
2 = 0 to obtain all of 

the results presented in this paper (this can be viewed as a shrinkage of 𝑋𝑖 toward 

zero). In the third step, the adjusted standard normal statistic, 𝑋𝑖
∗̂, is obtained as 

𝑋𝑖
∗̂ = 𝑠𝑖𝑔𝑛(𝑋𝑖)√𝑋𝑖

∗2̂. Due to its construction, we denote the proposed method as FDR 

Inverse Quantile Transformation (FIQT). Note that, while we have presented FIQT as a 

three step procedure for the benefit of discussion, it can be simplified to have only two 

steps. This is achieved by transforming directly on the standard normal scale in the 

second step, i.e., 𝑋𝑖
∗̂ = 𝑠𝑖𝑔𝑛(𝑋𝑖)𝛷−1(1 −

𝑝𝑖
∗

2
), where 𝛷 is the cumulative distribution 

function (cdf) of a standard normal. 

 EB extensions. EB uses all genome scan statistics to i) empirically estimate their 

density and ii) use the derivatives of the (log) density function to estimate the mean of 

the statistics and their variance. However, scan statistics are often rather correlated 

locally (i.e., as a consequence of linkage disequilibrium). This is likely to i) affect the 

density estimate (which assumes independent statistics) and ii) underestimate the 

variance of mean statistics. To eliminate (most of) the local correlations we propose an 

EB extension which i) divides the statistics into n equally spaced non-overlapping sets 

(e.g. first set contains statistics with indices 1, 𝑛 + 1, 2𝑛 + 2, . . ., and the second those 

with indices 2, 𝑛 + 2, 2𝑛 + 3, . . .,), ii) estimates the density for each set, iii) uses each set 
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density to estimate a set-specific mean for all scan statistics and iv) estimates the 

overall mean of scan statistics as the average set-specific means. We denote this 

estimator as EB-n, i.e., when using 100 non-overlapping sets the EB extension is 

denoted as EB-100. The obvious disadvantage of EB-n over EB is its increased 

computational burden, as the computationally intensive estimation of density and its 

derivatives are computed 𝑛 times. 

Methods used for comparisons. For comparison, we use the naïve maximum 

likelihood estimator (MLE), i.e., the statistics themselves, classical EB (EB-1 in the 

above set notation) and EB-n (n=10, 50, 100). (Because the soft threshold method 

(Bacanu and Kendler 2012) was found to slightly underperform EB-1, for brevity, we 

omit it from our results). Due to it sometimes outperforming EB in the tails, we also 

include the tail adjustment (TA) method (Ghosh, Zou, and Wright 2008; Zhong and 

Prentice 2008). The original TA adjusts all statistics above a preset (and generally 

significant) threshold, which results in two unusual features for our presentation of 

results. First, given that remaining methods adjust all statistics in a genome scan, we 

employed TA outside its intended purposes, e.g. even for (very) non-significant 

thresholds. Second, given TA’s approach of computing the bias for all statistics above a 

signal threshold, we present the performance of tested methods (MSE and R2 in 

Results section) in a cumulative manner, i.e. for all statistics with p-values below a large 

range of thresholds.  

Implementation and assessment of performance.  We implemented all described 

methods using the R statistical programming environment.  For FDR, FIQT employed 

the p.adjust base function with the “fdr” option specified for method (see SM for the 10-

line implementation in R). EB methods employed the commonly used 120 bins for the 

empirical estimation of the probability density.  The running time of tested methods was 

assessed using the second entry (i.e. “system”) in the output of system.time function.       

Simulations.  Simulating genome scan statistics starting from genotypes is laborious 

and very time consuming. Consequently, we use a faster method that simulates scan 

statistics directly using an ARMA (3,4) model for residuals [see Simulation model in 

Supplementary Material (SM) and Table I]. This model was found to be adequate for 

simulating statistics for markers with a density of approximately 1 SNP/kbp (Bacanu and 

Kendler 2012). Effect sizes (i.e. the true mean of the statistics) and number of the 

signals were based on their homologs in a mega-analysis of human height (Lange, van, 

Andrew, Lyon, DeMeo, Raby, Murphy, Silverman, MacGregor, Weiss et al. 2004). We 

assumed that the phenotype under investigation has 𝑚1 causal loci which represent a 

fraction 𝛾𝑐 ≤  1 of the number of significant loci (𝑚 = 180) in height study (Table I), i.e. 

𝑚1 = 𝛾𝑐 𝑚. When 𝛾𝑐 < 1, the 𝑚1 causal loci are chosen at random from the significant 

loci in the height study. To assess the performance of methods for underpowered 

studies, we performed simulations under 𝐻0. Under this scenario 𝛾𝑐 = 0, i.e. the 
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simulated statistics are identical to an ARMA (3,4) realization of unit variance. We 

simulated sample sizes equaling a fraction 𝛾𝑠 ∈ {
1

8
, 2} of the height meta-analysis 

sample size (𝑛 ≈ 180,000). Additional details regarding the relationship between mean 

of the statistics and 𝛾𝑠, are available in the Simulation model subsection in SM. For 

every parameterization given in Table I, we performed 250 simulations. 

Table I. Simulation design parameters. 
Parameter Name Parameter Design levels 

ARMA(3,4) model used 
for simulating statistics 

AR vector {0.8716, 0.9782, −0.851} 

MA vector {−0.6652, −0.9976, 0.6594, 0.0252} 

Number of simulated 
autosome SNPs 

𝑘 2,866,105 (1 SNP/Kbp) 

Phenotyped sample size 
(thousands) 

𝑛1 {22.5, 45, 90, 180, 360} (i.e. fraction of height meta-

analysis sample 𝛾𝑠 = {
1

8
,

1

4
,

1

2
, 1, 2}) 

Number of causal SNPs 𝑚1 {6, 11, 23, 45, 90, 180} (i.e. fraction of height meta-analysis 

number of causal SNPs 𝛾𝑐 = {0,
1

32
,

1

16
,

1

8
,

1

4
,

1

2
, 1}) 

 

Practical Application.  We applied FIQT to the discovery phase of the 2005 Psychiatric 

Genomics Consortium (PGC) GWAS of schizophrenia (PGC-SCZ1) (Ripke, Sanders, 

Kendler, Levinson, Sklar, Holmans, Lin, Duan, Ophoff, Andreassen et al. 2011) to 

naïvely estimate which genomic regions harbored statistics expected to attain 

significance in four-fold larger discovery phase of the 2014 PGC study (PGC-SCZ2) 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014).     

Results 

Among EB-n methods, we tested EB-1, EB-10, EB-50 and EB-100. EB-10 and EB-50 

have intermediate performance between EB-1 and EB-100, with EB-10 closer to EB-1 

and EB-50 closer to EB-100 (data not shown). Consequently, we present only the 

results for EB-1 and EB-100.   

Under 𝐻0, i.e. the surrogate for underpowered studies, FIQT has the best mean square 

error (MSE) performance everywhere, except for the (very rare) region of extremely low 

p-values, where EB-1 slightly outperforms it (Fig.1). Among the remaining methods, EB-

1 performs best and, as expected, MLE has the largest MSE. We note that, in marked 

contrast to the alternative hypothesis results presented below, EB-1 thoroughly 

outperforms EB-100. 
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Figure 1. Null hypothesis mean square error (MSE) of FIQT estimates for Z-scores having negative log p-

values below a threshold equal to -log10p. 

 

Under the alternative, 𝐻𝑎, FIQT has better MSE performance for settings with larger 

number of signals and larger sample sizes (Fig.2). Its performance improvement over 

competitors is sometimes substantial, e.g. for large sample sizes and medium number 

of signals. EB-1 does not outperform FIQT under any 𝐻𝑎 scenarios and EB-100 only 

nominally so for smaller sample sizes. Surprisingly, even though it was designed only 

as a tail bias adjustment, TA performs reasonably well. Under certain scenarios, e.g. 

large sample sizes, it outperforms EBs for statistics with nominally significant p-values 

and even slightly outperforms FIQT for a very narrow range of moderately small p-

values. When the accuracy measure is R2, i.e. the explained variability of the true Z-

scores means, FIQT practically outperforms all other methods (Fig. 3), albeit EB-100 

only nominally.  

Due to its very simple computation, FIQT has much faster running times then 

competitors. When compared to the next most accurate method, EB-100, the proposed 

method is faster by more than four orders of magnitude (Fig. S1 in SM). FIQT is also 

faster than the less accurate EB-1 by almost two orders of magnitude (data not shown).     

Practical application. Given that discovery phase of PGC-SCZ2 has around four times 

the sample size of its PGC-SCZ1 homolog, then naïvely, the mean statistics in PGC2 

are expected to be twice as large as the PGC-SCZ1 FIQT estimates (see Fig. S2 for 

relationships between these estimators and PGC-SCZ1 statistics). This naïve FIQT 

application to PGC-SCZ1 resulted in the prediction of 46 regions expected to attain 

significance in PGC-SCZ2 (obtained by combining significant signals within 250 Kb). Of 

these, 34 regions (~ 75%) overlap the 105 independent chromosomal regions reported 
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in PGC-SCZ2. A total of 18 predicted PGC-SCZ2 regions overlap the extended MHC 

region (25-33 Mb on chromosome 6) from the actual PGC-SCZ2 findings, as opposed 

to only 5 reported by PGC-SCZ1. Of the 34 overlapping predicted PGC-SCZ2 regions, 

16 are in loci outside MHC regions, as opposed to just 4 reported by PGC-SCZ1. These 

non-MHC regions include CACNA1C and the ITIH3/ITIH4 cluster, which were reported 

as harboring significant signals only after jointly analyzing PGC-SCZ1 and bipolar 

disorder cohorts (Ripke, Sanders, Kendler, Levinson, Sklar, Holmans, Lin, Duan, 

Ophoff, Andreassen et al. 2011).    

 
Figure2. Alternative hypothesis FIQT MSE  for Z-scores having negative log p-values below -log10p. 𝜸𝒔 is the 

relative (to height meta-analysis) sample size and 𝜸𝒄 is the number of causal signals relative to 180 significant 

height meta-analysis signals. 
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Figure 3. The alternative hypothesis variability in true means (R

2
) for Z-scores having negative log p-values 

below -log10p. See Fig.2 for background and notations. 

 

Discussion 

 We propose a novel approach, FIQT, to extract information from genome scan 

statistics by accurately predicting the mean of the statistics. The accurate prediction is 

achieved via a three-step process. First, the p-values are FDR adjusted for multiple 

testing. Second, we estimate the square of mean statistics by transforming the adjusted 

p-values to a upper 𝜒1
2 quantiles. Third, we estimate the mean of normally distributed 

scan statistics as the square root of the adjusted 𝜒1
2quantile with the sign of the 

unadjusted Z-score statistics. (The second and third steps can be combined into a 

single step by transforming to a normal quantile.) When compared to competing 

methods, FIQT estimators are shown to have a i) smaller mean squared error loss, ii) 

explain a higher proportion of the true means of the statistics and iii) substantially faster 

running times. The practical application to PGC-SCZ1 summary statistics show that 

FIQT estimators are useful for highlighting, with reasonable specificity, genomic regions 

likely to show significant signals in (much larger) future studies. 

 Empirical Bayes, EB, and similar methods are currently some of the state-of-the-

art approaches for accurately estimating the true means of scan statistics. However, in 

its commonly used form, EB does not take into account the local LD dependence 

between SNPs. We proposed EB-n, which eliminate this dependence by subdividing the 

SNPs in 𝑛 non-overlapping sets. These methods, e.g. EB-100, improve over the 

performance of classical EB, albeit at the expense of a dramatically increased 

computation time. However, all EB methods are computationally and skill intensive and, 

due to the need of empirically estimating the probability density of statistics, they are not 
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applicable when the number of statistics is reasonably small. Our proposed method, 

FIQT, eliminates these disadvantages while maintaining a similar or (sometimes much) 

better prediction accuracy. Its performance advantage over EB based methods is 

substantial at high sample sizes and a moderate to large number of true signals.  

 FIQT is designed to estimate the true means for all Z-scores in the genome scan. 

Sometimes, Z-scores are not present and the researchers need to estimate them from 

other summary data (see SM). Conversely, the adjusted Z-scores (e.g. FIQT estimates 

of their true mean) can be subsequently used to estimate the adjusted vales for the 

original (reported) summary statistics. For instance, if summary data contain only odds 

ratio, OR, and their standard error, s, then the vector of Z-scores is X =
𝑂𝑅

𝑠(𝑂𝑅)
. 

Subsequently, we can use the adjusted Z-scores (FIQT estimates), X∗, to estimate the 

adjusted odds ratio, e.g. as OR∗ = sX∗ (or, simply OR∗ = 
X∗

𝑋
𝑂𝑅).  OR∗ can be interpreted 

as the vector of unbiased (winner’s curse corrected) ORs.      

 FIQT is a very simple yet powerful method. However, in its present form, it is 

more of a proof-of-concept and it can be further improved. A first direction of 

improvement is to shrink the 𝜒1
2 statistics towards their actual mean, not towards zero as 

used in our simulations and practical application. A second improvement might involve 

shrinking the 𝜒1
2 statistics towards their functional group mean, i.e. somewhat similar to 

the conditional (p-value based) approach from Andressen et al (Andreassen, Djurovic, 

Thompson, Schork, Kendler, O'Donovan, Rujescu, Werge, van de Bunt, Morris et al. 

2013). A second possible improvement might be realized by taking into account the 

correlation between statistics.    

 FIQT can also be extended to the accurate estimation of other variables besides 

the mean of Z-scores. For instance, shrinkage estimators are widely used for 

correlation/covariance matrices (Daniels and Kass 2001). Given that the sample 

correlations are normally distributed with variances dependent only on the sample size, 

FIQT can be extended to the estimation of correlation matrices. The extension might 

involve shrinking the magnitudes of entries in the correlation matrix toward i) zero, ii) 

their average magnitude or iii) their average magnitude by lag. 

 FIQT might be also used in the personalized genomics, e.g. the prediction of 

subject level risk based on whole genome data. Methods for predicting subject level risk 

typically use summary statistics as input, e.g.  LDpred extension 

(http://biorxiv.org/content/early/2015/03/04/015859) of LD score method (Bulik-Sullivan, 

Loh, Finucane, Ripke, Yang, Patterson, Daly, Price, and Neale 2015). Thus an 

increased accuracy of signal estimation used as input will result in more accurate 

estimates of an individual’s risk/trait mean.  
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Software  

A robustly tested FIQT R function having only 10  lines of code  is available in the third 

section of SM. FIQT will also be implemented in DIST-MIX, or our group’s imputation 

software for cosmopolitan cohorts (https://code.google.com/p/distmix/). 
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