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Abstract

Under modern interrogation, famously well-studied neural circuits such as that for orientation
tuning in V1 are steadily giving up their secrets, but quite basic questions about connectivity
and dynamics, including whether most computation is done by lateral processing or by selective
feedforward summation, remain unresolved. We show here that grid cells offer a particularly rich
opportunity for dissecting the mechanistic underpinnings of a cortical circuit, through a strategy
based on global circuit perturbation combined with sparse neural recordings. The strategy is based
on the theoretical insight that small perturbations of circuit activity will result in characteristic
quantal shifts in the spatial tuning relationships between grid cells, which should be observable
from multi- single unit recordings of a small subsample of the population. The predicted shifts
differ qualitatively across candidate recurrent network mechanisms, and also distinguish between
recurrent versus feedforward mechanisms. More generally, the proposed strategy demonstrates
how sparse neural recordings coupled with global perturbation in the grid cell system can reveal
much more about circuit mechanism as it relates to function than can full knowledge of network
activity or of the synaptic connectivity matrix.

Introduction

Questions about the origin of the beautiful tuning curves often seen in sensory and cortical circuits
have long consumed systems neuroscientists, both theorists who propose possible mechanisms, and
experimentalists who search for them (Hubel and Wiesel, 1959). Indeed, the mechanisms underly-
ing direction tuning in the retina and cortex and orientation tuning in V1 remain unresolved and
closely studied (Rivlin-Etzion et al., 2012; Kim et al., 2014; Takemura et al., 2013; Ferster and Miller,
2000; Sompolinsky and Shapley, 1997). Basic questions, like whether orientation tuning is largely
attributable to selective feedforward summation or lateral interactions, are not yet settled.

Here we propose that the grid cell system provides a unique opportunity for understanding the
underpinnings of computation in cortical circuits. The unusual responses of grid cells present a
challenge and simultaneously, an opportunity. The challenge is to understand how such a complex
cognitive response is generated; the opportunity is the availability of versatile experimental tools and
a rich set of relatively detailed models (Fuhs and Touretzky, 2006; Guanella et al., 2007; Burak and
Fiete, 2009; Burgess et al., 2007; Hasselmo et al., 2007; Welday et al., 2011; Mhatre et al., 2012; Bush
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and Burgess, 2014; Hasselmo and Brandon, 2012; Navratilova et al., 2012) that are well-constrained
by the very complexity of the grid cell response, to help meet the challenge.

The recent application of quantitative analyses to electrophysiological data reveals that the popula-
tion activity of grid cells (within individual modules) is localized around a continuous low-dimensional
(2D) manifold (Yoon et al., 2013; Fyhn et al., 2007), a finding that lends support to early models
predicated on the idea of low-dimensional pattern formation through strong lateral interactions (Fuhs
and Touretzky, 2006; Burak and Fiete, 2006; McNaughton et al., 2006; Guanella et al., 2007; Burak
and Fiete, 2009), as well as other models in which grid cells receive location-coded inputs and through
structured feedforward connections (with the possible addition of some lateral connectivity) generate
grid-patterned responses (Kropff and Treves, 2008; Mhatre et al., 2012; Welday et al., 2011; Bush and
Burgess, 2014).

These models are architecturally and mechanistically distinct in important ways, both large and
subtle: they differ in whether grid cells perform velocity-to-location integration, in whether pattern
formation originates wholly or partly within grid cells, and in the structure of their recurrent circuitry.
Some of the structural differences within recurrent models which seem subtle have qualitative rami-
fications for how the circuit could have developed. Despite their differences, the models are difficult
to distinguish on the basis of existing multiple single-unit activity records, because all of them pro-
duce grid-patterned outputs and exhibit approximate 2D continuous attractor dynamics. Worse, as
we discuss at the end, neither complete single neuron-resolution activity records nor complete single
synapse-resolution weight matrices will be sufficient to distinguish between proposed mechanisms.

We show how it is nevertheless possible to gain surprisingly detailed information about the grid cell
circuit from a feasible experimental strategy that depends on global circuit perturbation and sparse
neural recording. In this context, global means circuit-wide not brain-wide. The proposed strategy
can allow the experimenter to discriminate between various distinct candidate mechanisms that are
currently undifferentiated by experiment.

Results

Experimentally undifferentiated grid cell models

Let us begin by considering 2D recurrent pattern forming models, in which grid cells are assumed to
integrate velocity inputs and output location-coded responses. Such recurrent pattern forming models
are of three main types. The first are aperiodic networks (Burak and Fiete, 2009; Widloski and Fiete,
2014), Figure 1A. In these models, activity in the cortical sheet (when neurons are appropriately
rearranged – note that topography is not required in these models or in the proposed experiments) is
grid-like and therefore periodic, but the connectivity between cells is highly localized and not periodic.
In other words, connectivity does not reflect the periodicity in the activity. Taking a developmental
or plasticity perspective, this network model is somewhat unusual in that strongly correlated neurons
(those with the same activity phase, within or across activity bumps) are not connected as might be
expected from associative learning. So if this network architecture holds in the brain, it would suggest
that associative learning is curtailed once pattern formation occurs. From a functional viewpoint,
aperiodic networks can require careful tuning of input at the network edges to accurately integrate
their velocity inputs (Burak and Fiete (2009), but not so in Widloski and Fiete (2014)).

The second type are fully periodic networks, Figure 1B (Guanella et al., 2007; Burak and Fiete,
2006; Fuhs and Touretzky, 2006; Pastoll et al., 2013; Brecht et al., 2014; Widloski and Fiete, 2014).
In these, network connectivity is itself periodic (the network has periodic boundary conditions on a
rhombus), and the connectivity period equals the activity period: they each have a single period over
the network (left, Figure 1B). An alternative version of the fully periodic network is to consider an
aperiodic network with multiple activity bumps, but in which neurons at the centers of all the activity
bumps are synaptically coupled. These two views of a fully periodic network are mathematically
equivalent. Developmentally, the latter may be constructed from an aperiodic network (with multiple
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Figure 1: Mechanistically distinct models not distinguished by existing data. (A-C) Recur-
rent 2D pattern-forming models: Activity in the cortical sheet (gray; darker indicates more activity)
and the outgoing recurrent weights from a single representative cell (blue green regions centered on
the cell of origin). (A) Aperiodic network: Aperiodic boundary conditions and ”local” connectivity
that is not determined by activity phase so that connectivity does not reflect the periodicity in activ-
ity. (B) Fully periodic network: Connectivity period equals activity period, with periodic boundary
conditions on a rhombus. The two networks shown (left: single-bump network; right: multi-bump
network with all bumps identified by allowing for strong recurrent connections between cells of the
same activity phase) are mathematically identical. We refer to both as a single-bump network. (C)
Partially periodic network: “Local” connectivity (in same sense as in (A)), with opposite edges of the
cortical sheet identified so that the network boundary conditions are periodic. (D-E) Feedforward and
feedforward-recurrent models: Spatially tuned (post-path integration) inputs drive grid cells (gray:
spatial trajectory; spikes: red). (D) The inputs, generated from ring attractor networks (ellipses above
squares) that integrate different components of animal velocity indicated by the inset compasses, have
stripe-like spatial tuning (as in Mhatre et al. (2012)). Feedforward summation followed by a nonlinear-
ity produces grid-like responses (right). (E) Place-tuned inputs with selective feedforward summation,
and in some models, lateral interactions, drive grid-like responses.
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activity bumps) by application of associative learning post pattern-formation, so that neurons with
similar phase but in different bumps end up recurrently coupled (right, Figure 1B).

The third type of the recurrent pattern forming networks is partially periodic, Figure 1C (Burak
and Fiete, 2009). In these, as in the aperiodic networks, the bulk connectivity is local, so that
connectivity does not reflect the periodicity of the population activity patterns. However, opposite
edges of the cortical sheet are identified so that the network is effectively a torus. From a developmental
perspective, these networks are the strangest: bulk connectivity does not reflect the periodic activity
but the boundary condition requires knowledge of it (Figure S1).

Next come a variety of models in which grid cells are the result of feedforward summation of inputs
that are already spatially tuned (Kropff and Treves, 2008; Welday et al., 2011; Mhatre et al., 2012;
Bush and Burgess, 2014). Functionally, these models suggest that path integration occurs upstream
of grid cells, in different low-dimensional attractor networks (Welday et al., 2011; Mhatre et al., 2012;
Bush and Burgess, 2014). (In Kropff and Treves (2008), the origin of spatial tuning in the inputs
is not directly modeled; if the assumed place-cell like inputs are based on path integration then the
model will display low-dimensional dynamics, so we will consider the model under this assumption).
Some of these models additionally include recurrent weights in the grid cell layer (Kropff and Treves,
2008; Mhatre et al., 2012). We will call all these feedforward models.

A perturbation-based probe of circuit architecture

The conceptual idea for differentiating between recurrent models of grid cells depends on multi-single
unit grid cell recording before and after a global perturbation of the network. The idea is as follows.
If population activity patterning in the neural sheet is due to aperiodic recurrent connections, then
globally increasing the gain of recurrent inhibition or the time-constant of neurons in network models
is predicted to increase the period of stable patterns in the cortical sheet, Figure S2. These effects,
not predicted by linear stability analysis, exist in simulation of dynamical models (Widloski and
Fiete, 2014; Burak and Fiete, 2009) and can be analytically derived by considering nonlinear effects
(Widloski and Marder, unpublished observations).

Following the global perturbation, two cells originally in adjacent peaks of the population activity
pattern and thus at the same phase of the population pattern (Figure 2A, blue), no longer will be
(Figure 2A-B, red). Call the shift in pattern phase between cells in neighboring peaks one quantum
(Figure 2A, circle and square, red versus blue). Then the shift in pattern phase between cells previously
of the same phase and separated by exactly K peaks will be K quanta (Figure 2A, circle and triangle,
red versus blue; explicit phase plot in Figure 2B). Across all cell pairs in the population, the shifts in
phase will be quantized and will reach a maximum value of M quanta (or a full phase cycle, whichever
is smaller), where M is the number of bumps in the population pattern.

Suppose the perturbation induces at most small phase shifts between all bumps of the population
pattern (that is, αM < 1

2 , where α = |λpost

λpre
− 1| is the perturbation stretch factor, and λpre, λpost

are the population pattern periods pre- and post-perturbation, respectively; see Figure S3). Then the
number of peaks in the distribution of pattern phase shifts, Figure 2C, will equal twice the number of
bumps in the underlying population pattern, Figure 2A. In other words, the number of peaks in the
distribution of pattern phase shifts can specify the number of bumps in the population.

However, the construction of this distribution relies on experimentally difficult-to-access quantities,
namely the population pattern phase for each cell. If the network were topographically organized,
this would be relatively simple to extract from a snapshot of network activity. If the network is not
topographically organized, it is possible to obtain estimates of phase similarity or phase distance mag-
nitudes between cells from patterns of coactivation or correlation across snapshots of the population
activity, but such a scalar activity similarity measure cannot yield 2D phase in a 2D network.

The utility of our proposed strategy arises because the distribution of shifts in the population
pattern phase across cells is mirrored in the distribution of shifts in the relative phase of spatial tuning
across cells (Figure 2D). We illustrate this point in 1D, but the same idea carries directly over to 2D

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2015. ; https://doi.org/10.1101/019224doi: bioRxiv preprint 

https://doi.org/10.1101/019224
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

C

pre
post

neuron
0 1005025 75

0 1005025 75
neuron

0 0.5-0.5 -0.25 0.25 0 0.5-0.5 -0.25 0.25

fir
in

g 
ra

te
co

un
t

0

3

0

200

D

E

spatial tuning

co
un

t
sp

ik
e 

ra
te

 d
en

si
ty

underlying network
population activity

0

0.5

spatial location

distribution of relative phase shifts

∣∣φi
pop,pre

∣∣−
∣∣φi

pop,post

∣∣ |δijpre| − |δijpost|

spatial location

∣ ∣ φ
i p
o
p
,p
r
e

∣ ∣

∣∣φ
ip
o
p
,p
o
s
t ∣∣2∆∆

3∆

Figure 2: Global perturbation and phase shift analysis can reveal detailed features of
population patterning. (A) Schematic (not a dynamical neural network simulation) of population
activity in a 1D aperiodic grid cell network (blue) before perturbation and (red) after a 10% pattern
expansion (α = 0.1;λpop,pre = 20 neurons). For illustration, cells are ordered topographically based on
local connectivity and pattern expansion is centered at the left network edge. Circle, square, triangle:
cells that shared the same phase no longer do post-expansion. (B) The pattern phase (φipop; see
Experimental Procedures) of cells (i) in the network, pre- (blue) and post- (red) perturbation. Cells
exactly K peaks apart in the population pattern exhibit shifts in population phase equal to K∆, where
∆ is the quantal phase shift. (C) The histogram of shifts, pre- to post-perturbation, in the pattern
phases of all cells (n=100). Gray line: raw histogram (200 bins). Black line: smoothed histogram
(convolution with 2-bin Gaussian). Negative (positive) phase shifts are from gray-shaded (vertically-
striped) areas in (B). (D-E) Shift distributions for pattern phase (experimentally inaccessible) carry
over to shift distributions for relative spatial tuning phase (experimentally observable). (D) The
circle, square, and triangle cells originally have identical spatial tuning (schematic in blue), but post-
perturbation are no longer co-active thanks to shifts in the population pattern (as in A) and thus
also exhibit shifted spatial tuning curves (red). The shift for a pair is proportional to the number
of activity bumps between them in the original population pattern. (E) Histogram of relative phase
shifts (DRPS; gray). A relative phase shift (δij ; see Experimental Procedures) between a pair of
cells i, j equals the change in their relative spatial tuning phase post-perturbation. Black: smoothed
version. There are n = (100 choose 2) samples because relative phase is computed pairwise.
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(Figure S4). The relative spatial tuning phase is derived from the spatial tuning of simultaneously
recorded cell pairs. Cell pairs with zero relative phase in their spatial tuning pre-perturbation (because
they fell on the same phase of the population pattern, albeit in different bumps) will exhibit post-
perturbation shifts in relative phase that, like the shifts in the population phases, will be quantized,
and for small changes in population period will be proportional to the number of bumps separating that
cell pair, Figure 2C-E. This predicted distribution of relative phase shifts (DRPS, Figure 2E) between
neurons from an aperiodic network is a property of patterning in an abstract space, independent of
how neurons are actually arranged in the cortical sheet.

In 2D, relative phase is a vector, measured along the two principal axes of the spatial tuning grid.
The total number of bumps in the population pattern can then be read out as equal to a quarter of
the product of the number of peaks in the two relative phase shift distributions (Figure S4).

Relating network parameters to experimental parameters

Changes in the strength of recurrent inhibition in our model can be mapped, in the biological system,
into changes in the gain of inhibitory synaptic conductances. Experimentally, this perturbation may
be induced by locally infusing allosteric modulators that increase inhibitory channel conductances
(e.g. benzodiazipines (Rudolph and Möhler, 2004); personal communication with C. Barry). Changes
in the time-constant of our model neurons can be mapped to changes in the EPSP time-constant in
the biological system. Experimentally, the EPSP time-constant is sensitive to temperature through
the Arrhenius effect and can be lengthened by cooling (Katz and Miledi, 1965; Thompson et al., 1985;
Moser and Anderson, 1994). However, cooling affects several other single-neuron properties. To assess
what to expect experimentally from a temperature perturbation and how to correctly include tempera-
ture effects in simpler neural models, we performed network simulations with cortical Hodgkin-Huxley
neurons (Pospischil et al., 2008) while implementing documented temperature-dependent changes in
all ionic and synaptic conductances (Experimental Procedures, SI, and Figure S5). The effect of
cooling on conductance amplitudes is to shrink the population period in an aperiodic network, but its
effect on conductance time-constants is to expand the period. The net effect of cooling is an expansion
because temperature changes have larger effects on conductance time-constants (larger Q10 factors)
than amplitudes (smaller Q10 factors) (Hodgkin et al., 1952; Thompson et al., 1985). We therefore
conclude that changes in temperature are reasonable to associate with changes in the time-constant
of simple neuron models. To summarize, two global experimental perturbations capable of inducing
population activity period changes are neuromodulatory infusions that alter the gain of recurrent
inhibition and cortical cooling (Moser and Anderson, 1994; Long and Fee, 2008).

Discriminating amongst recurrent architectures

Dynamical simulations of grid cell models reveal that the effects of the global perturbation will differ
across recurrent network architectures, with consequently different predictions for the DRPS. In an
aperiodic network, incremental global perturbation results in incremental expansion of the population
activity pattern (Figure 3A, red, and Figure S2). Thus, the DRPS envelope will gradually and linearly
widen with perturbation strength, and the separation between peaks will gradually grow (Figure 3B-C,
red and Figure S2).

In a partially periodic network (with aperiodic local connectivity but with opposite boundaries
connected), the number of bumps in the population activity pattern is constrained to be an integer.
Thus, incrementally increasing the perturbation strength should result first in no change to the pop-
ulation activity period, and then a sudden change when the network can accommodate an additional
bump (or an additional row of bumps in 2D, assuming the pattern does not rotate as a result of
the perturbation; see Discussion) (Figure 3A, purple). Thus, incremental changes in perturbation
strength should result in a stepwise change in population period and in the width of the DRPS en-
velope (Figure 3B-C, purple). Because the number of bumps has increased by a discrete amount, as
soon as the DRPS changes, it will become maximally wide.
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Figure 3: Effects of perturbation on recurrent and feedforward neural networks and pre-
dictions for experiment. (A-B) The effect of perturbing inhibitory weights in dynamical neural
network simulations of aperiodic (column 1), partially periodic (column 2), and fully periodic (col-
umn 3) recurrent architectures (see Experimental Procedures for simulation details). (A) Population
pattern pre- and post-perturbation (first and second rows, with γinh = 1 and 1.33, respectively).
Vertical lines: bump centers in the unperturbed (solid) and perturbed (dotted) patterns. (B) DRPS
relative to the unperturbed network. Solid line: perturbed network with γinh = 1.33; dashed line:
larger perturbation of γinh = 1.66. (C) How the width of the DRPS, σiDRPS , defined as the standard
deviation of the DRPS, varies with perturbation strength. Thick green line: DRPS widths for feed-
forward networks (predicted, not from simulation). Note that, while the step-like shape of the DRPS
width as a function of perturbation strength for the partially periodic network is general, the point at
which the partially periodic network steps up will vary from trial to trial. (D) How the spatial tuning
periods (λix) vary with perturbation strength in the different simulated recurrent networks and in a
feedforward network (thick green line; predicted, not from simulation) (see SI for definition of spatial
tuning period).
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The fine structure of the DRPS will still be multimodal. However, counting peaks to estimate the
number of bumps in the underlying population pattern will result in serious underestimation: when
the pattern change is not incremental, there can be large changes in phase that are then lost in the
DRPS, which is cut off at the maximal phase norm of 0.5 (Figure S3 and e.g. Figure 3B, compare
peaks in the solid and dashed lines for small and large perturbations, respectively).

In the fully periodic network (Figure 1C), the same global perturbations that alter the population
pattern period in the other recurrent networks (Figure 1A-B) are ineffective in inducing a correspond-
ing change (Figure 3A, blue). This is because the periodic connectivity completely fixes the period
of the pattern. Thus, the global perturbation will not affect the relative phase relationships between
cells, and the DRPS is predicted to remain narrow, unimodal, and peaked at zero (Figure 3B-C, blue).

Discriminating feedforward from recurrent architectures

If the spatial tuning pattern or pattern components are generated upstream of grid cells and inherited
or combined by them through feedforward summation (Mhatre et al., 2012; Welday et al., 2011; Bush
and Burgess, 2014), then perturbing the recurrent weights or the biophysical time-constant within
only the grid cell layer is predicted to leave unchanged the population activity period, preserving the
spatial tuning shapes and cell-cell relationships. As a result, the DRPS should be narrow and centered
at zero, as in the case of a recurrent network with fully periodic connectivity (Figure 3C, green line).

In all recurrent model networks (Figure 1A-C), the spatial tuning period of cells is predicted to
expand with the global perturbation, which induces a change in the efficacy with which feedforward
velocity inputs shift the pattern phase over time (Figure 3D and Figure S6). This expansion in spatial
tuning period with global perturbation strength is predicted to hold for all three recurrent network
classes, and can be used as an assay of the effectiveness of the experimental manipulation, especially
when there is no shift in the DRPS.

By contrast, in feedforward models integration occurs upstream of the grid cells and thus the
spatial tuning period should remain unchanged with global perturbation (Figure 3D, green line).
Response amplitudes should nevertheless change in the feedforward models, thus revealing whether
the attempted global perturbations are in effect.

Experimental feasibility of proposed method

We consider two key data limitations. First, it is not yet experimentally feasible to record from all
cells in a grid module. Even a 100 cell sample would constitute a 1-10 % subsampling of the estimated
module size. With present estimates that <20 % of cells in a local patch in MEC are grid cells (Tang
et al., 2014), the yield would be a meager 20 grid cells. Is this sufficient to observe the predicted
quantal structure in a phase shift distribution, if it were present? Fortunately, the proposed method
is tolerant to severe sub-sampling of the population: a tiny random fraction of the population (10/1600
cells) can capture the essential structure of the full DRPS, Figure 4A.

Second, spatial tuning and relative phase parameters are estimated from neural responses during a
random, finite exploration trajectory in which cells respond variably. Hence, spatial tuning parameters,
including phase and relative phase, are only known with a degree of uncertainty. In tests that depend
only on the width of the DRPS (e.g. Figure 3), this phase uncertainty is not a serious limitation.

However, more detailed questions about the number of bumps in the population pattern in an
aperiodic network depend on estimating the number of DRPS peaks, and here phase estimation
uncertainty can be problematic: phase uncertainty will merge together peaks in the DRPS, Figure S7.
At very small perturbation strengths, the DRPS peak spacing (in the aperiodic network) increases
with the stretch factor. Thus, the larger the perturbation, the more distinguishable the peaks at a
fixed phase error, Figure 4B and Figure S7. Yet increasing the stretch factor is not without a tradeoff:
The two-for-one relationship between number of peaks in the DRPS and the number of bumps in the
population pattern per linear dimension holds when the total induced shift in phase is small for all
bumps (as before, when α < 1

2M , with M now equal to the larger of the number of bumps along
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Figure 4: Measurement limitations and the resolvability of predictions under such con-
straints. (A) Left: The quantal structure of the DRPS is apparent even in small samples of the pop-
ulation (black: full population DRPS; red: DRPS computed from n=10 cells; both curves smoothed
with 2-bin Gaussian; bins=200). Plotted is DRPS along first principal axis of the 2D phase (see Fig-
ure S4). Right: The L2-norm difference between the full and sampled DRPS as a function of number
of sampled cells. Inset: log-log scale. (B) First and second columns: DRPS (200 bins; gray line:
raw; black line: smoothed with 2-bin Gaussian) for different numbers of population pattern bumps
along the first principal axis of the pattern and for different amounts of phase noise (noise is sampled
i.i.d. from a gaussian distribution, N (0, σ2

phase), and added to each component of the relative phase

vector, ~δij ; “phase noise” is the same as σphase). Third column: Same as the second column, except
for a larger stretch factor, α = 0.2. Note that the peak-to-peak separation has increased so that
the individual peaks are discernible. However, for the 5 bump network in the second row, inferring
the number of bumps in the underlying population pattern would lead to an underestimate, since
M × α = 5 × 0.2 > 1/2. (C) The uncertainty (standard deviation) in estimating relative phase, for
different amounts of data (data from Hafting et al. (2005)), from bootstrap samples of the full dataset

(see SI for details). As expected, the decrease in uncertainty follows T−
1
2 (gray). Parameters: λpop,pre

= 40/3 neurons (A), = 20 neurons (B, top row), = 8 neurons (B, bottom row); α = 0.1; ê1 = [1, 0];
ê2 = ê1 + 60◦; network size: 40× 40 neurons.
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Figure 5: Decision tree for experimentally discriminating circuit mechanisms. For each of
three circuit perturbations of increasing strength, both spatial tuning period and relative phase shifts
are measured. Recurrent networks are discriminated from feedforward and feedforward-recurrent
networks by the effects of the perturbation on spatial tuning period (first open triangle). Different
recurrent networks can be discriminated based on how the DRPS width varies with perturbation
strength (second open triangle). The number of bumps in the multi-bump population patterns can be
inferred by counting the peaks in the DRPS (third open triangle), though, for the partially periodic,
only a lower bound on the number of bumps can be established (dotted line).

the two principal axes of the population pattern), Figure 4B. At larger stretch factors, the number of
peaks in the DRPS is smaller than twice the number of bumps along the corresponding dimension of
the pattern, and the discrepancy can be substantial.

Fortunately, the DRPS is computed from the relative phases between cells, which remain stable in
a fixed network (Yoon et al., 2013) (here fixed refers to the network while a given perturbation strength
is stably maintained). This stability makes it possible to gain progressively better estimates of relative
phase over time even if there is substantial drift in the spatial responses of cells, by computing the
relative spatial phase over short snapshots of the trajectory then averaging together the relative phase
estimates from different snapshots across a progressively longer trajectory (similar to the methods
used in Yoon et al. (2013) and Bonnevie et al. (2013)).

To distinguish M = 5 bumps per linear dimension based on structure within the DRPS would re-
quire a stretch factor of no greater than α = 1/(2M) = 0.1, and phase noise must be reduced to at least
0.02 (Figure S7). Distinguishing 7 bumps would require α ≤ 0.07 and a phase noise of smaller than
about 0.01. Based on grid cell and trajectory data (accessed through http://www.ntnu.edu/kavli/research/grid-
cell-data), this would require an approximately 10 (50) -minute recording (Figure 4C).

The proposed method therefore has high tolerance to subsampling and a more limited tolerance
to phase uncertainty. It will require longer-than-usual but still realistic amounts of spatial trajectory
data with neural recordings to obtain adequately small error in relative phase estimation to test
predictions that differentiate between models.

A decision tree for experimental design

We lay out a decision tree with an experimental workflow for discriminating between disparate net-
works, all of which exhibit 2D continuous attractor dynamics (Figure 5).

The demands from experiment are to be able to stably induce a global perturbation in one grid
module, and to do so at 2-3 strengths. In all the cases, the term perturbation refers to a small change
that leaves the network dynamics qualitatively unchanged while affecting its quantitative properties.
The data to be collected are simultaneous recordings from several grid cells as the animal explores a
familiar enclosure with no proximal spatial cues over about 20 minutes or more.

First, before applying perturbations, characterize the spatial tuning (periods) of the neurons, as
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well as cell-cell relationships (the relative spatial tuning phase). Next, apply a series of 2-3 global
perturbations of increasing strength. At each perturbation strength, characterize the spatial tuning
of cells and cell-cell relationships. A change in the amplitude of the cells’ response across the different
perturbations signals that the perturbation is having an effect.

If further there is no change in the spatial tuning period, it follows that the perturbations produced
no change in the population pattern and velocity responsiveness, thus the network must be feedfor-
ward, Figure 5 (green). Verify that cell-cell relationships remain unchanged across perturbations, as
predicted for feedforward networks.

If there is a change in the spatial tuning period, characterize the cell-cell relationships in each
perturbation condition. Plot the DRPS from each perturbed condition relative to the pre-perturbation
condition, and obtain its width. If the DRPS width increases steadily and linearly with perturbation
strength, that implies an aperiodic recurrent architecture, Figure 5 (red). If the DRPS width exhibits
a step change, it is consistent with a partially periodic recurrent network, Figure 5 (purple). A DRPS
that remains narrowly peaked around zero, with no change in width with perturbation strength, is
consistent with a fully periodic network, Figure 5 (blue).

Finally, if the network is either aperiodic or partially periodic, the underlying population pattern
has multiple bumps. The number of peaks in the DRPS for each dimension of relative phase bounds
from below the quantity 2M , where M is the number of bumps in the population pattern along that
dimension. When the stretch factor α times the number of bumps is smaller than 1/2, and if the
DRPS is quantal, the number of DRPS peaks equals twice the number of population activity bumps
along the corresponding dimension.

Discussion

Assumptions

The predictions made here assume that the network activity pattern is stable against rotations. Ro-
tations of the population pattern would induce large changes in the DRPS, obscuring the predicted
effects of pattern period expansion in any recurrent network. The fully periodic network is not subject
to rotations, but partially periodic and aperiodic networks may be. In experimental data, the cell-
cell phase relationships between grid cells are indeed very stable across time and environments (Yoon
et al., 2013), suggesting that the population activity undergoes no rotation. It is unclear what features
of the circuit stabilize the population pattern against rotation; it is possible that slight directional
anisotropies in the outgoing connectivity of neurons pin its orientation.

The simplifying observation, that spatial responses may be used to estimate the DRPS, depends on
other inputs not being able to overrule the new post-perturbation cell-cell relationships. For instance,
external sensory inputs or hippocampal place cells that become associated with particular configu-
rations of grid cells may keep resetting the grid networks to express old relative phase relationships.
To avoid this possibility, it may be important to assess post-perturbation cell-cell relationships only
in novel environments, for which there are no previously learned associations between external cues,
place cell responses, and grid cell activity.

Finally, it is important to note that if in feedforward models one were to include feedback from
the grid cell layer back to the spatially tuned inputs (as in Bush and Burgess (2014)), the network
would effectively become a type of recurrent circuit, and perturbing the grid cell layer may result in
changes in grid period and cell-cell relationships.

Prior probabilities of different grid cell models being correct

From theoretical arguments, we believe the candidate grid cell mechanisms are not equally proba-
ble. In particular, the partially periodic model is difficult to justify from the viewpoint of grid cell
development. In Widloski and Fiete (2014), we see that activity-dependent rules acting on spatially
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informative feedforward inputs can lead to the formation of a network capable of path integration and
with grid cell-like tuning. The network, post-development, has aperiodic structure. Under certain
conditions, if network weights continue to undergo plasticity after the network has matured enough
to expresses recurrent patterning, the network can become fully periodic as neurons with the same
spatial phase become wired together (Figure S8). In fact, the addition of relatively weak coupling
between neurons in nearest-neighbor activity bumps is sufficient to convert an aperiodic network into
what is, functionally if not topologically, a fully periodic network (Figure S8).

Thus, it is possible to imagine mechanisms for the development of the fully periodic and fully
aperiodic networks. By contrast, a partially periodic network involves local connectivity which does
not depend on a neuron’s spatial phase, but at the same time requires some mechanism for neurons at
one end of the network to link with those at the opposite end in way that depends on spatial phase,
Figure S1. It is more difficult to imagine a plausible mechanism that can satisfy both constraints. By
the same argument, in feedforward models, one would expect the 1D patterned inputs to grid cells to
involve fully periodic or fully aperiodic 1D networks.

Circuit inference through perturbation and sparse activity records: outlook
and alternatives

It is interesting to compare the potential of our suggested approach with that of single synapse-
level circuit reconstruction (a connectomics approach). A high-quality full-circuit connectome (with
signed connections) can specify the topology of the network structure. In other words, it should be
possible to reveal whether the circuit is intrinsically “local” (as in the aperiodic network of Figure
1A) (Widloski and Fiete, 2014), partially periodic (with local center-surround-like connectivity and
periodic boundary conditions as in Figure 1B), or fully periodic (with center-surround-like connectivity
of a width that spans the entire network together with periodic boundary conditions). It may even
be possible to infer the locality of structure in the aperiodic network from an unsigned connectome.

Network topology is, however, one ingredient in circuit mechanism: Determining whether the
signed connections lead to activity patterning still requires a large amount of inference (for instance,
converting the connections into weights and inserting the matrix into an appropriate dynamical
model). Even with further inference steps, whether the network actually performs certain functions
like velocity-to-position integration or only inherits them is not answerable based on connectomics
data. For instance, a network with lateral interactions may generate position-dependent responses de
novo through integration (Figure 1A-C), or may act only to further pattern inputs that are already
spatially tuned (Figure 1D-E) (Kropff and Treves, 2008; Mhatre et al., 2012; Bush and Burgess, 2014).
Despite these functional differences, both types of networks have similar connectivity and topologies.

Single neuron-resolution records of activity within a grid cell module can be fruitfully used to
understand the dimensionality and relationships of neural responses, but without perturbation, infer-
ring actual connectivity and thus mechanisms from activity is problematic (Roudi et al., 2009; Honey
et al., 2009). Hence, activity records do not distinguish between different recurrent models. In short,
while connectomics and large-scale recording can provide troves of useful information, they are not
sufficient for discriminating between models; as we have shown here, they may also not be immediately
necessary.

As we have seen, with a perturbation approach it is possible to localize where integration occurs:
if the perturbed area is performing integration, the spatial tuning period is predicted to change.
Generally speaking, perturbation modulates the effect of connectivity on dynamics, and the proposed
readout is neural activity. This closed-loop approach allows for detailed tests of mechanistic neural
models, whose very goal is to relate architecture and dynamics, in a way not easily rivaled by non-
perturbative probes of connectivity or activity.

Cooling and other perturbation experiments have been performed in V1 (Michalski et al., 1993;
Ferster and Miller, 2000), but they were not as revealing about underlying mechanism as might be
possible in grid cells. The reason is twofold: Recurrent models of orientation tuning in V1 are ring
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models, which are periodic single-bump networks, thus the predicted DRPS after cooling is essentially
the same as the prediction for a feedforward network. Moreover, because the orientation response
does not arise from integration of a velocity input, the spatial tuning width after cooling is also not
predicted to change in a substantial way for recurrent networks. These factors make it harder to
discriminate recurrent from feedforward mechanisms from perturbation. The multi-bump tuning of
grid cells offers a unique opportunity to use the types of perturbative approaches used in V1 (Michalski
et al., 1993; Ferster and Miller, 2000), to obtain unprecedented detail on the local circuit mechanisms
that support the complex tuning of cortical cells.

Methods

Definitions: Population phase and relative spatial phase

Roman subscripts (e.g., i and j) refer to individual cells. If cells are arranged topographically based on
connectivity, then i refers to the location (in neuron body-length units) within the population pattern
of the ith cell. If the period of the population pattern is λpop (again in neuron body-length units),
then the population pattern phase of cell ith is φipop = ((i − 1) mod λpop)/λpop (with the arbitrary
choice, made without loss of generality, that neuron 1 has phase 0).

Next, consider the spatial tuning curves of cells i, j. Without respect to arrangement in the cortical
sheet, let dij represent the offset, in meters, of the peak closest to the origin in the cross-correlation
of the two spatial tuning curves, and let λ be the spatial tuning period (in meters) of the two cells.
The relative spatial phase is defined as δij = (dij mod λ)/λ. Phase magnitudes are based on the

usual Lee metric, |δ| = min (|δ|, 1− |δ|). In 2D, the transformation of ~dij into ~δij is identical to that
described in Yoon et al. (2013) and replicated here in SI. Analogously, using the same procedure, the

2D coordinate of the ith cell in the cortical sheet can be transformed into ~φipop, the population phase

vector. As noted in Results, δij is easily experimentally accessible; φipop, much less so.

Generation of Figures

Figure 1 is schematic. Figure 2 is generated from ideal (imposed) periodic patterns but without
dynamical neural network simulations. In Figures 2, 4A,B, S3, S4, and S7 relative spatial phase is
computed for convenience (to save the computational cost of generating spatial tuning curves, then
deriving relative phases) from the population phases (thus, by setting δij = φipop−φjpop). Figures 3, S2,
S6, which distinguish between different recurrent architectures, are based on dynamical neural network
simulations using the mature grid cell network described in SI. Briefly, the model is a network of
excitatory and inhibitory neurons (except in S8 – see figure caption for details), with linear-nonlinear
Poisson (LNP) spiking dynamics (Burak and Fiete, 2009; Widloski and Fiete, 2014). For Figure S5,
we use Hodgkin-Huxley dynamics. Structured lateral interactions between neurons lead to pattern
formation in the neural population. Relative spatial phases are explicitly computed from spatial
tuning curves of cells, which are obtained from spike responses to 2-minute long simulated quasi-
random trajectories. Velocity inputs drive shifts of the population pattern, resulting in spatially
periodic tuning. Only cells from the simulation with good spatial tuning are included in the analysis
of relative phase shifts: for fully and partially periodic networks, this means all cells in the network,
while for aperiodic networks this means cells in the central 3/4 of the network. Since the inhibitory and
excitatory populations share similar population patterning and spatial tuning in these simulations,
we made the arbitrary choice to display the inhibitory population.
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Figure S1: The a priori theoretical implausibility of partially periodic networks. Population
activity in the cortical sheet (yellow-black blobs), with schematic of connectivity (green). Note that
in the bulk of the sheet, connectivity is local and not determined by the periodic activity in the sheet.
However, the imposition of periodic boundary conditions requires that some neurons connect with
others on the far edge of the sheet. Even if neurons are not topographically organized, the connectivity
requires that a planar cortical sheet is somehow intrinsically connected as a torus. Activity-dependent
weight changes that are based on the expression of periodic activity patterns could produce a torus-like
connectivity, but then if the sheet is not topographically ordered it is likely that neurons in various
bumps will connect to each other, producing a fully periodic rather than partially periodic network
(see also Figure S8).
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Figure S2: Dynamical simulations of the aperiodic network with LNP dynamics: gradual
change in population period and widening of the DRPS with perturbation strength. (A)
Change in population pattern period as the inhibition strength (filled circles) or the time-constant
(open circles) are scaled up by the factor β (inhibition strength γinh = βγ∗inh with γ∗inh = 1; time-
constant τsyn = βτ∗syn, with τ∗syn = 30 ms) in the 1D aperiodic grid cell neural network (see Experi-
mental Procedures for simulation details and Supplementary Experimental Procedures for definition
of population period). (B) DRPS for the data in (A) with respect to the unperturbed network, β = 1,,
with the size of the perturbations indicated by the corresponding colored dots in (A), with τsyn (left
column) and γinh (right column) as the perturbation parameters.
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Figure S3: When the 2:1 relationship between number of peaks in the DRPS and the
number of bumps in the population pattern breaks down. Top: Schematic of the phase in
a population pattern, pre- (blue) and post- (red) perturbation, for a large 1D network with many
bumps. If the post-perturbation pattern is aligned to the first bump of the original pattern, the Mth
bump is shifted by an amount λpopαM away from the corresponding bump in the original pattern.
When this shift equals λpop/2, i.e. the perturbed bump is maximally out of phase with the original
pattern, there can be no additional (farther out) quantal peaks in the DRPS. Thus, the number
of DRPS peaks equals twice the number of bumps in the pattern only when λpopαM < λpop/2, or
equivalently, when Mα < 1/2. Bottom: Black curve: Difference in the pre- and post-perturbation
phases of cells. At left, the DRPS is aligned vertically with the y-axis of the phase shift plot, so that
the origin of the DRPS peaks is more readily apparent. It is clear that once the two patterns reach
counter-phase, the locations of DRPS peaks simply repeat. Thus, M∗ = 1/(2α) bumps can accurately
be discriminated (per linear dimension of the pattern) for a given stretch factor α; when M > M∗,
the inference process suffers from systematic underestimation.
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Figure S4: The DRPS in two dimensions. (A) Schematic of 2D population activity pre- (blue) and
post- (red) perturbation (not a dynamical neural network simulation). For illustration, the pattern
is depicted topographically and pattern expansion is from bottom left. Subsequent predictions are
independent of both choices. Dotted lines: The two principal axes of the pattern. (B) Population phase
of each cell, depicted as an arrow (2D phase is a vector). (C) Two relative phase shift histograms
computed separately for the two components of the vector phase, along the two principal axes of
the lattice (gray: raw data; black: smoothed with 2-bin Gaussian). The DRPS for each phase
component resembles the 1D DRPS. Data for each histogram: n = (3200 choose 2); bins = 200.

Parameters: ~λpop,pre = λpop,pre(ê1 + ê2), λpop,pre = 20 neurons, ~λpop,post = (1 + α)~λpop,pre, α = 0.1,
ê1 = (cos θ, sin θ), θ = 23◦, ê2 = ê1 + 60◦, network size: 80× 40 neurons.
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Figure S5: Dynamical simulations of the aperiodic network with HH dynamics: gradual
change in population period. (A-D) Population period as a function of perturbation strength (see
Supplementary Experimental Procedures for description of HH dynamics and perturbation details).
(A) Population period increases gradually with strength of inhibition. Each point is the population
period averaged over 10 trials (with error bars equal to the standard deviation). Each trial is 1
second long, in which for the first third of the trial the population pattern is flowed with velocity
input equal to 0.3 m/s, and for the remaining time allowed to relax with no velocity input (see
Supplemental Experimental Procedures for definition of population period). (B) Population period
increases as the temperature is stepped down from 36◦C to 26◦C. (C) Temperature perturbation of
only the ionic conductances leads to decreasing population period with decreasing temperature. (D)
Temperature perturbation of only the synaptic conductances leads to increasing population period
with decreasing temperature. The net result of (C-D) is that the population period increases with
decreasing temperature (B). (E-G) Temperature dependencies of single-cell properties, color-coded as
a function of temperature. (E) Firing rate as a function of input current, (F) action potential shape,
and (G) impulse response (i.e., subthreshold response of membrane potential to current pulse), with
log-log plot in inset. (H) EPSP shape as a function of temperature. Though there is a slight decrease
in amplitude of the EPSP with temperature (as shown by the log-log plot of the same data in the
inset), it is small compared to the effect on the EPSP time constant.
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Figure S6: Changes in spatial tuning period in dynamical neural network simulations are
due to changes in both the population period and the velocity response of the network.
(A) Spatial tuning periods (λix for different perturbation strengths indexed by i) of cells in the different
recurrent networks, as the strength of inhibition is varied (data as in 3D). (B) The underlying period
(λipop) of the population patterns in the same networks for the corresponding strengths of inhibition.

(C) The velocity response (vipop) of the networks, or efficacy with which a unit input velocity shifts the
phase of the population pattern, as a function of inhibition strength. See Experimental Procedures
for simulation details, and Supplemental Experimental Procedures for definition of scores. It is clear
that the spatial tuning period (A) is more strongly influenced by the velocity response (C) than by
the population period (B).
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Figure S7: Effects of uncertainty in phase estimation. (A) Copied from Figure 4B. First and
second columns: DRPS (200 bins; gray line: raw; black line: smoothed with 2-bin Gaussian) for
different numbers of population pattern bumps along the first principal axis of the pattern and for
different amounts of phase noise (noise is sampled i.i.d. from a gaussian distribution, N (0, σ2

phase),

and added to each component of the relative phase vector, ~δij ; “phase noise” is the same as σphase).
Third column: Same as the second column, except for a larger stretch factor, α = 0.2. Note that the
peak-to-peak separation has increased so that the individual peaks are discernible. However, for the 5
bump network in the second row, inferring the number of bumps in the underlying population pattern
would lead to an underestimate, since M × α = 5 × 0.2 > 1/2. (B) Solid lines: Periodicity score (a
measure of how well separated and equidistant are the peaks in the DRPS, and ranges between 0 and
1; see Supplemental Experimental Procedures) as a function of phase noise for 2-bump network in (A),
for different values of the stretch factor, α (solid lines). Periodicity is measured for the DRPS along
the first principal axis. Dashed lines: Same as solid lines, except computed by randomly shuffling the
phase vectors post-perturbation. (C) Stretch factor, α, as a function of threshold phase noise (defined
as the phase noise where the DRPS is indistinguishable from the DRPS when the phase vectors in
the post-perturbation condition are reassigned randomly, i.e., the value of the phase noise when the
colored curves in (B) cross the respective colored dashed lines).
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Figure S8: Weakly coupling neurons in different activity bumps in an aperiodic network
results in behavior identical to single-bump fully periodic networks. (A) The population
pattern in the aperiodic network network exhibits a regime of continuous stretching (black curve) with
increasing inhibition strength (γinh). The ordinate axis is the stretch-factor alpha, which quantifies
the deviation of the period post-perturbation from that pre-perturbation, normalized by the pre-
perturbation period (See Supplemental Experimental Procedures for definition of population period).
However, adding even very weak synaptic connections between neurons in adjacent activity bumps in
the aperiodic network (B) transforms the network into one that will not stretch at all (cyan curve),
like the single-bump fully periodic network. The two constructions (the single bump network and
the aperiodic network with the addition of between-bump connections) would be mathematically the
same if there were strong coupling between all neurons of the same activity phase in the network;
this numerical result shows that the addition of very small weights that reflect the periodicity of
the population activity (but are nevertheless largely local within the network in the sense that only
neighboring bump neurons are connected, not neurons in remote bumps) already transforms the
aperiodic network into an effectively fully periodic, single-bump network. Simulation details: The
network connectivity is as a hybrid of the aperiodic network in Burak and Fiete (2009) with the fully
periodic network of Fuhs and Touretzky (2006) (note that, while the model of Fuhs and Touretzky
(2006) does not have explicit periodic boundary conditions, the multimodality of the synaptic weights
couples adjacent activity bumps so that the network acts as a single-bump, fully periodic network).
The dynamics are LNP-based (see Supplementary Experimental Procedures) and driven with inputs
simulating animal motion at constant speed (v = 0.3 m/s) for 10 seconds. There are only two
populations (call them R and L), distinct in their directional preferences (êP = (0,1), (0,-1) for the
R and L populations, respectively) and output synaptic asymmetries (see below). The shifted output
weight profiles are sinusoids with gaussian envelopes, the latter which constrain the non-locality of the
projections. For a narrow gaussian envelope, the weights resemble the purely local, center-surround
profiles of Burak and Fiete (2009), whereas for wide gaussian envelopes, the weights resemble the
non-local, multimodal projections of Fuhs and Touretzky (2006). The weights going from population

P ′ to P and from cells i and j, are given by WPP ′

ij = η
C exp

(
−x2

2σ2

)
(cos(ax)− 1), where x = i− j + ∆

(∆ = ±1 for P ′ = R(+) and P ′ = L(+)), η is a scaling factor that modulates the amplitude of

the weights, C =
√

2πσ2
(

exp
(
−σ2a2

2

)
− 1
)

is a normalization factor, σ determines the width of the

gaussian envelope, and a determines the period of the underlying sinusoid.

Parameters. NR = NL = 200 neurons; CV = 0.5; dt = 0.5 ms; τsyn = 30 ms; g0 = 50; g0
′

= 0; βvel =

1; APi = AP,aperi ; a = 2π/20; η = 200; σ = 4→12;
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Supplemental Experimental Procedures.

Neural network simulations.

Below, we describe the two different neural dynamics models used in the paper: the linear-nonlinear-
Poisson (LNP) model and the Hodgkin-Huxley conductance model.

Roman subscripts (e.g. i, j) refer to individual cells within population P . The population index P
can take the values {I, ER, EL}. Integration in all simulations is by the Euler method with time-step
dt.

Linear-Nonlinear-Poisson dynamics (all figures except Figure S5).

The LNP model we use is identical to that used in Widloski and Fiete (2014). Given a time-dependent
summed input GPi to the (P, i)th cell, the instantaneous firing rate of the cell is

rPi = f(GPi ), (1)

with the neural transfer function f given by

f(x) =

{
0 x ≤ 0
x x > 0.

(2)

Based on this time-varying firing rate, neurons fire spikes according to an inhomogeneous (sub-Poisson)
point process with a coefficient of variance of CV = 0.5 (see Burak and Fiete (2009) and Widloski
and Fiete (2014) for details on generating a sub-Poisson point process).

The time-dependent activation sPi of synapses from the (P, i)th cell is given by

dsPi
dt

+
sPi
τsyn

=
∑

b

δ(t− tPi,b), (3)

where tPi,b specifies the time of the bth spike of the cell and the sum is over all spikes of the cell.

The total input GPi (t) into the (P, i)th cell is given by

GPi = APi α
P,vel(gP,reci + g0) +APi g

0′ , (4)

where g0 (g0=50 for the E and I populations) and g0
′

(g0
′
=15 for the E population; g0

′
=0 for the

I population) are small, positive, constant bias terms common to all cells, gP,reci are the recurrent
inputs, αP,vel are the velocity inputs, and APi is an envelope that either suppresses activity near the
network boundaries for the aperiodic network, or is flat and equal to unity for the periodic networks
(see below). The recurrent input is

gP,reci =
∑

P ′

NP ′∑

j=1

WPP ′

ij sP
′

j , (5)

where WPP ′

ij are the recurrent weights and δ is the Kronecker delta function. The form of the

envelope function, APi , depends on the boundary conditions of the network. For aperiodic networks,
the envelope shape is a 1D version as that given by Burak and Fiete (2009):

AP,aperi =





1 rPi < κNP

exp

[
−a0

(
rPi −κNP

(1−κ)NP

)2]
otherwise

(6)
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where NP is the size of the network, rPi = |i− NP

2 |, κ = 0.3 determines the range over which tapering
occurs, and a0 = 30 controls the steepness of the tapering. For periodic networks, the envelope is flat:

AP,peri = 1 (7)

All cells in the P th population (with preferred direction given by the unit vector êP ) receive a common
velocity input:

αP,vel = 1 + βvel~v · êP , (8)

where ~v is instantaneous velocity of the animal and βvel sets the gain of the velocity input; êP = (0,0),
(0,1), (0,-1) for the I, ER, EL populations, respectively. The velocity input, unless otherwise noted,
is based on a 2-minute quasi-random trajectory derived with an algorithm identical to that described
in Widloski and Fiete (2014). Over the course of these trajectories, the stochastic dynamics leads to
drift in the path-integrated estimate of animal location if uncorrected. To minimize this drift, the
pattern phase is reset whenever the animal is in the vicinity of one of the 5 ‘landmarks’ evenly spaced
throughout the environment. During each encounter with a landmark, the pattern phase is corrected
via strong feedforward inputs that impose a snapshot of the pattern at its “correct” phase; “correct”
pattern snapshots are captured from the population pattern during the animal’s initial encounter with
each of the landmarks.

Temperature/neuromodulation of LNP dynamics. Temperature-dependent modulations are modelled
as a simple rescaling of the synaptic activation time constant, τsyn. Modulations of network inhibi-
tion are modelled as a gain change in the efficacy of the synaptic weights projecting from inhibitory
neurons, i.e., WPI ← γinhW

PI , where γinh is the strength of inhibition.

Hodgkin-Huxley dynamics (only used in Figure S5).

The model we use is identical to the reduced Hodgkin-Huxley “regular spiking (RS)” model of cortical
neurons, as described in Pospischil et al. (2008), supplemented with synaptic dynamics. The dynamics
of the membrane potential of the (P, i)th neuron is given as

Cm
dV Pi
dt

= −IPi , (9)

where IPi is the summed input current and Cm is the capacitance of the membrane. The summed
input current is given as

IPi = +αP,velAPi

(
IP,reci − Iapp

)
, (10)

where the first term represents currents related to the ionic membrane conductances and the second
and third terms represents synaptic and external conductances, respectively, gated by velocity inputs,
αP,vel, and an envelope function, APi . The ionic current has the following form:

IP,ioni = gL(V Pi − V L) + gKn
4(V Pi − V K) + gMq(V

P
i − V K) + gNam

3h(V Pi − V Na), (11)

where the g’s are the maximum conductance values and the V ’s the reversal potentials of the leak
conductance (L), fast (K) and slow (M) potassium conductances, and the sodium conductance (Na).
The dynamics and parameter settings of the gating variables n,m, q, h are described in Pospischil
et al. (2008) (note that we have replaced the “p” gating variable of Pospischil et al. (2008) with “q”).
The synaptic current based on recurrent connections within network is

IP,reci = η
∑

P ′

NP ′∑

j

WPP ′

ij sP
′

j (V Pi − V
P

), (12)
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where sP
′

j is the synaptic activation of the (P ′, j) neuron (which has the same dynamics as described

above in equation (3) – here, we define the time of a spike elicited by the jth neuron, tspkj , as when
the voltage moves from below 0 mV to above it in a single-time step, within the interval (t, t+ ∆t)),
η is a synaptic scaling factor shared by all synaptic weights, and V is the synapse-specific reversal

potential (V
E

=0 mV and V
I
=-80 mV).

Temperature/neuromodulation of HH dynamics. To simulate temperature-dependent modifications,
we used separate Q10 factors to modulate the time constant (Qτ10 = 3) and amplitudes (Qa10 = 1.3)
of the ionic/synaptic conductances (Hodgkin et al., 1952; Katz and Miledi, 1965). At temperature T
(◦C), the conductance amplitudes g(T ) and time constants τ(T ) have the following form:

g(T )← g(T0)(Qa10)
T−T0

10 (13)

τ(T )← τ(T0)/(Qτ10)
T−T0

10 . (14)

The conductance amplitude modulation was applied specifically to gL, gK , gM , gNa,W
PP ′

ij . The con-
ductance time constant modulation was applied to the gating variable time constants τn, τq, τm, τh
(for gating variable x, the time constant τx is defined as τx = 1/(αx + βx), where αx and βx
are the rate constants governing the gating variable’s dynamics – see Pospischil et al. (2008)) and
the synaptic time constant τsyn. For temperature perturbations of the ionic conductances only,

gL, gK , gM , gNa, τn, τq, τm, τh change with temperature, while WPP ′

ij and τsyn =16 ms are held con-

stant. For temperature perturbations of the synaptic conductances only, WPP ′

ij and τsyn change with
temperature, while the ionic conductance properties are held fixed.

The effects of specific neuromodulators targeting the inhibitory synapses was modelled in exactly
the same as for the LNP model.

Synaptic weights for network of excitatory and inhibitory neurons (all figures except
Figure S8).

The detailed synaptic weights used in the simulations are based on the developmentally-inspired hard-
wired weights with aperiodic boundary conditions described in the SI of Widloski and Fiete (2014),
and therefore can be viewed as the plausible culmination of a developmental process. Compared to
the LNP-based model used in Burak and Fiete (2009), we chose to implement the model in Wid-
loski and Fiete (2014) because it is more realistic, incorporating separate populations of excitatory
and inhibitory cells; however, both models give qualitatively similar results. (Note that while the
description of the weights below is different than that specified in Widloski and Fiete (2014) in order
to enable flexibility in setting the network boundary conditions, the weights used for the aperiodic
network are identical to those specified in Widloski and Fiete (2014).) The weights from population
P ′ to P , between cells i and j, are described as follows:

WPP ′

ij =
η

ρ
APP

′

ij Θ(c0−δρ) [Θ(−µx) + Θ(µ(x− µNP /2))]×
[
exp

( −c2−
2(σρ)2

)
+ ε exp

( −c2+
2(σρ)2

)]
, (15)

where x = i−γj, γ = NP

NP ′
(NP is the size of population P ), Θ is the Heaviside function (Θ(x) = 0 for

x < 0 and is 1 otherwise), c0 = ψ(x) and c± = ψ(x±∆ρ) where ψ(x) = min (Np − |x mod Np|, |x mod Np|),
and APP

′

ij = APi A
P ′

j , where APi = AP,aperi for aperiodic networks and APi = AP,peri for periodic net-

works (see above for definition of AP,peri and AP,aperi ). ρ is a scale factor that controls the width of
the synaptic weights, and therefore the number of bumps expressed in the pattern, whereas η is a
synaptic scaling factor that modulates only the amplitudes.

(A note on terminology: the partially periodic network has an overall topology that resembles
the periodic network of Burak and Fiete (2009). In our usage in the present work, periodic refers
to a fully periodic network, in which the periodicity of connections matches that of activity pattern,
whereas in the partially periodic network, the bulk of connectivity does not reflect the periodicity of
the population activity pattern.)
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Simulation parameters

Aperiodic network with LNP dynamics.
P = EL, ER, I; NEL

= NER
= 400 neurons; NI = 160 neurons; CV = 0.5; dt = 0.5 ms; τsyn = 30

ms*; βvel = 2; APi = AP,aperi ; ρ = 2.2. γinh = 1*;
EL → I (i.e., W IEL): η = 21; ε = 0; ∆ = -1; σ = 2; µ = 0; δ = 0;
ER → I: η = 21; ε = 0; ∆ = 1; σ = 2; µ = 0; δ = 0;
I → EL: η = 8; ε = 0; ∆ = 4; σ = 5; µ = -1; δ = 3;
I → ER: η = 8; ε = 0; ∆ = -4; σ = 5; µ = 1; δ = 3;
I → I: η = 24; ε = 1; ∆ = 2; σ = 3; µ = 0; δ = 3;
(* indicates that parameters can change through perturbation)

Partially periodic network with LNP dynamics.
Same parameters as aperiodic network, except that APi = AP,peri , and ρ = 2.2.

Fully periodic network with LNP dynamics.
Same parameters as aperiodic network, except that APi = AP,peri , and ρ = 22.

Aperiodic network with HH dynamics.
All ionic conductance parameters are identical to those described in Pospischil et al. (2008) for the RS
model; as noted there, the parameters are set to values corresponding to a temperature of T0 = 36◦C.
NEL

= NER
= 400 neurons; NI = 160 neurons; dt = 0.025 ms; τsyn = 15 ms*; βvel = 0.8; Cm = 1

µF/cm2; gL = 0.1 ms/cm2*; gK = 5 ms/cm2*; gM = 0.07 ms/cm2*; gNa = 50 ms/cm2*; V L = -70

mV; V K = -90 mV; V Na = 50 mV; Iapp = = 3 µA/cm2; η = 0.0015; APi = AP,aperi ; ρ = 2.2. γinh =
1*; Synaptic weights are identical to those described for the aperiodic network with LNP dynamics
up to a constant, η. (* indicates that parameters can change through perturbation)

Measures used in main text.

Bootstrap resampling and phase uncertainty. Given an original spike map of M total spikes (with
locations) from one cell, we created a new spike map of N (N < M) total spikes, by picking spikes
(with their corresponding location coordinates) from the original map one at a time, at random,
and with replacement. The same was done for a second, simultaneously recorded cell. From these
sampled spike trains for a pair of cells, we estimated relative phase (by computing the location of
the peak closest to the origin in the cross-correlation of the spatial maps of the two cells, as in
Yoon et al. (2013)). The procedure was performed 100 times, generating 100 bootstrapped relative
phase estimates per cell pair. Phase uncertainty was measured as the mean of the magnitudes of the
bootstrapped relative phase estimates.

Spatial tuning curves. For a given cell and trajectory, we build a histogram of spike counts at each
location (bin size = 1 cm), then normalize the count in each bin by the amount of time spent in it.
The normalized histogram is smoothed by convolution with a boxcar filter (width = 5 bins) to yield
a spatial tuning curve.

Spatial tuning period. The spatial tuning period is measured as the inverse of the spatial frequency
with the highest peak in the power spectrum of the spatial tuning curve (excluding the peak at 0
frequency).

Population period. Given the last 500 snapshots (frames) of the population pattern from a given trial,
the population period is measured as followed: For each frame, measure the inverse of the frequency
with the highest peak in the power spectrum (as with the spatial tuning period) of the population
pattern. The population period is the average of these estimates.

Velocity response. Velocity response is measured as the translation speed (neurons/sec) of the network
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pattern to fixed input velocity, computed by tracking the displacement of the pattern for 10 seconds,
smoothing the resulting trajectory with an 4-second moving average filter, and then measuring the
average speed of the middle-half of the trajectory.

Periodicity score for the DRPS. We smooth the histogram of relative phase shifts (by convolution
with a 2-bin Gaussian kernel) and normalize it (by mean subtraction and division by the standard
deviation). Next, we compute the power spectrum, rescaling the result by 2/L2, where L is the
number of bins in the histogram (L = 200). The periodicity score is set to be the power of the largest-
amplitude non-zero frequency component in the scaled power spectrum. This score returns 1 if the
DRPS is a pure sinusoid. It returns 0 if the DRPS is flat and returns an average value of < 0.2 if the
DRPS were constructed bin by bin by sampling iid from a uniform distribution on the unit interval.

2D relative phase. The displacement vector ~d is converted into a 2D phase ~δ according to ~δ =
f(dproj1 /λ1 mod 1, dproj2 /λ2 mod 1), where ~dproj = (dproj1 , dproj2 ) is the oblique projection of ~d onto the
principal vectors λ1ê1 and λ2ê2, and

f(~x) =





(x1 − 1, x2 − 1) if x1 ≥ 0.5 and x2 ≥ 0.5
(x1 − 1, x2) if x1 ≥ 0.5 and x2 < 0.5
(x1, x2 − 1) if x1 < 0.5 and x2 ≥ 0.5
(x1, x2) if x1 < 0.5 and x2 < 0.5.

(16)

Relative phase magnitude is given by

||~δ|| =
(
δ21 + δ22 + δ1δ2

) 1
2 . (17)
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