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Under modern interrogation, famously well-studied neural circuits
such as that for orientation tuning in V1 are steadily giving up their
secrets, but quite basic questions about connectivity and dynamics,
including whether most computation is done by lateral processing or
by selective feedforward summation, remain unresolved. We show
here that grid cells o↵er a particularly rich opportunity for dissect-
ing the mechanistic underpinnings of a cortical circuit, through a
strategy based on global circuit perturbation combined with sparse
neural recordings. The strategy is based on the theoretical insight
that small perturbations of circuit activity will result in character-
istic quantal shifts in the spatial tuning relationships between grid
cells, which should be observable from multi- single unit recordings
of a small subsample of the population. The predicted shifts di↵er
qualitatively across candidate recurrent network mechanisms, and
also distinguish between recurrent versus feedforward mechanisms.
More generally, the proposed strategy demonstrates how sparse neu-
ral recordings coupled with global perturbation in the grid cell system
can reveal much more about circuit mechanism as it relates to func-
tion than can full knowledge of network activity or of the synaptic
connectivity matrix.

Significance: Grid cells in the mammalian brain maintain an up-
dated record of location as animals move through space. Systems
neuroscience aims to find the mechanisms of such memory and inte-
gration functions. The grid cell system o↵ers a unique opportunity
amongst cortical circuits to understand mechanism, in part because
of its highly constrained response properties. We propose an exper-
imental strategy based on global circuit perturbation combined with
sparse neural recordings, that can yield surprisingly detailed infor-
mation about mechanism and discriminate between distinct models
currently undi↵erentiated by experiment. The proposed strategy
demonstrates how sparse neural recordings coupled with global per-
turbation can reveal more about circuit mechanism as it relates to
function than can full knowledge of network activity or of the synap-
tic connectivity matrix.

grid cells | cortical microcircuit | neural integrator | attractor dynamics

Abbreviations: DRPS, distribution of relative phase shifts

Questions about the origin of the beautiful tuning curves
often seen in sensory and cortical circuits have long

consumed systems neuroscientists, both theorists who pro-
pose possible mechanisms, and experimentalists who search
for them (1). Indeed, the mechanisms underlying direction
tuning in the retina and cortex and orientation tuning in V1
remain unresolved and closely studied (2–6). Basic questions,
like whether orientation tuning is largely attributable to se-
lective feedforward summation or lateral interactions, are not
yet settled.

Here we propose that the grid cell system provides a
unique opportunity for understanding the underpinnings of
computation in cortical circuits. The unusual responses of
grid cells present a challenge and simultaneously, an oppor-
tunity. The challenge is to understand how such a complex
cognitive response is generated; the opportunity is the avail-
ability of versatile experimental tools and a rich set of rela-
tively detailed models (7–16) that are well-constrained by the
very complexity of the grid cell response, to help meet the
challenge.

The recent application of quantitative analyses to electro-
physiological data reveals that the population activity of grid
cells (within individual modules) is localized around a contin-
uous low-dimensional (2D) manifold (17, 18), a finding that
lends support to early models predicated on the idea of low-
dimensional pattern formation through strong lateral interac-
tions (7–9, 19, 20), as well as other models in which grid cells
receive location-coded inputs and through structured feedfor-
ward connections (with the possible addition of some lateral
connectivity) generate grid-patterned responses (12–14,21).

These models are architecturally and mechanistically dis-
tinct in important ways, both large and subtle: they di↵er in
whether grid cells perform velocity-to-location integration, in
whether pattern formation originates wholly or partly within
grid cells, and in the structure of their recurrent circuitry.
Some of the structural di↵erences within recurrent models
which seem subtle have qualitative ramifications for how the
circuit could have developed. Despite their di↵erences, the
models are di�cult to distinguish on the basis of existing mul-
tiple single-unit activity records, because all of them produce
grid-patterned outputs and exhibit approximate 2D contin-
uous attractor dynamics. Worse, as we discuss at the end,
neither complete single neuron-resolution activity records nor
complete single synapse-resolution weight matrices will be suf-
ficient to distinguish between proposed mechanisms.

We show how it is nevertheless possible to gain surpris-
ingly detailed information about the grid cell circuit from
a feasible experimental strategy that depends on global cir-
cuit perturbation and sparse neural recording. In this con-
text, global means circuit-wide not brain-wide. The proposed
strategy can allow the experimenter to discriminate between
various distinct candidate mechanisms that are currently un-
di↵erentiated by experiment.

Results
Experimentally undi↵erentiated grid cell models. Let us begin
by considering 2D recurrent pattern forming models, in which
grid cells are assumed to integrate velocity inputs and out-
put location-coded responses. Such recurrent pattern forming
models are of three main types. The first are aperiodic net-
works (9,22), Figure 1A. In these models, activity in the cor-
tical sheet (when neurons are appropriately rearranged – note
that topography is not required in these models or in the pro-
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posed experiments) is grid-like and therefore periodic, but the
connectivity between cells is highly localized and not periodic.
In other words, connectivity does not reflect the periodicity in
the activity. Taking a developmental or plasticity perspective,
this network model is somewhat unusual in that strongly cor-
related neurons (those with the same activity phase, within
or across activity bumps) are not connected as might be ex-
pected from associative learning. So if this network archi-
tecture holds in the brain, it would suggest that associative
learning is curtailed once pattern formation occurs. From a
functional viewpoint, aperiodic networks can require careful
tuning of input at the network edges to accurately integrate
their velocity inputs ( (9), but not so in (22)).

The second type are fully periodic networks, Figure 1B
(7, 8, 19, 22–24). In these, network connectivity is itself pe-
riodic (the network has periodic boundary conditions on a
rhombus), and the connectivity period equals the activity pe-
riod: they each have a single period over the network (left,
Figure 1B). An alternative version of the fully periodic net-
work is to consider an aperiodic network with multiple ac-
tivity bumps, but in which neurons at the centers of all the
activity bumps are synaptically coupled. These two views of
a fully periodic network are mathematically equivalent. De-
velopmentally, the latter may be constructed from an aperi-
odic network (with multiple activity bumps) by application of
associative learning post pattern-formation, so that neurons
with similar phase but in di↵erent bumps end up recurrently
coupled (right, Figure 1B).

The third type of the recurrent pattern forming networks
is partially periodic, Figure 1C (9). In these, as in the aperi-
odic networks, the bulk connectivity is local, so that connec-
tivity does not reflect the periodicity of the population activ-
ity patterns. However, opposite edges of the cortical sheet are
identified so that the network is e↵ectively a torus. From a
developmental perspective, these networks are the strangest:
bulk connectivity does not reflect the periodic activity but the
boundary condition requires knowledge of it (Figure S1).

Next come a variety of models in which grid cells are the
result of feedforward summation of inputs that are already
spatially tuned (12–14,21). Functionally, these models suggest
that path integration occurs upstream of grid cells, in di↵er-
ent low-dimensional attractor networks (12–14). (In (21), the
origin of spatial tuning in the inputs is not directly modeled;
if the assumed place-cell like inputs are based on path integra-
tion then the model will display low-dimensional dynamics, so
we will consider the model under this assumption). Some of
these models additionally include recurrent weights in the grid
cell layer (13,21). We will call all these feedforward models.

A perturbation-based probe of circuit architecture.The con-
ceptual idea for di↵erentiating between recurrent models of
grid cells depends on multi-single unit grid cell recording be-
fore and after a global perturbation of the network. The idea
is as follows. If population activity patterning in the neural
sheet is due to aperiodic recurrent connections, then globally
increasing the gain of recurrent inhibition or the time-constant
of neurons in network models is predicted to increase the pe-
riod of stable patterns in the cortical sheet, Figure S2. These
e↵ects, not predicted by linear stability analysis, exist in sim-
ulation of dynamical models (9,22) and can be analytically de-
rived by considering nonlinear e↵ects (Widloski and Marder,
unpublished observations).

Following the global perturbation, two cells originally in
adjacent peaks of the population activity pattern and thus at
the same phase of the population pattern (Figure 2A, blue),
no longer will be (Figure 2A-B, red). Call the shift in pattern
phase between cells in neighboring peaks one quantum (Fig-

ure 2A, circle and square, red versus blue). Then the shift in
pattern phase between cells previously of the same phase and
separated by exactly K peaks will be K quanta (Figure 2A,
circle and triangle, red versus blue; explicit phase plot in Fig-
ure 2B). Across all cell pairs in the population, the shifts in
phase will be quantized and will reach a maximum value of
M quanta (or a full phase cycle, whichever is smaller), where
M is the number of bumps in the population pattern.

Suppose the perturbation induces at most small phase
shifts between all bumps of the population pattern (that is,

↵M <

1
2 , where ↵ = |�post

�

pre

� 1| is the perturbation stretch

factor, and �

pre

,�

post

are the population pattern periods pre-
and post-perturbation, respectively; see Figure S3). Then the
number of peaks in the distribution of pattern phase shifts,
Figure 2C, will equal twice the number of bumps in the un-
derlying population pattern, Figure 2A. In other words, the
number of peaks in the distribution of pattern phase shifts
can specify the number of bumps in the population.

However, the construction of this distribution relies on
experimentally di�cult-to-access quantities, namely the pop-
ulation pattern phase for each cell. If the network were topo-
graphically organized, this would be relatively simple to ex-
tract from a snapshot of network activity. If the network is not
topographically organized, it is possible to obtain estimates of
phase similarity or phase distance magnitudes between cells
from patterns of coactivation or correlation across snapshots
of the population activity, but such a scalar activity similarity
measure cannot yield 2D phase in a 2D network.

The utility of our proposed strategy arises because the
distribution of shifts in the population pattern phase across
cells is mirrored in the distribution of shifts in the relative
phase of spatial tuning across cells (Figure 2D). We illustrate
this point in 1D, but the same idea carries directly over to
2D (Figure S4). The relative spatial tuning phase is de-
rived from the spatial tuning of simultaneously recorded cell
pairs. Cell pairs with zero relative phase in their spatial tun-
ing pre-perturbation (because they fell on the same phase of
the population pattern, albeit in di↵erent bumps) will exhibit
post-perturbation shifts in relative phase that, like the shifts
in the population phases, will be quantized, and for small
changes in population period will be proportional to the num-
ber of bumps separating that cell pair, Figure 2C-E. This pre-
dicted distribution of relative phase shifts (DRPS, Figure 2E)
between neurons from an aperiodic network is a property of
patterning in an abstract space, independent of how neurons
are actually arranged in the cortical sheet.

In 2D, relative phase is a vector, measured along the two
principal axes of the spatial tuning grid. The total number
of bumps in the population pattern can then be read out as
equal to a quarter of the product of the number of peaks in
the two relative phase shift distributions (Figure S4).

Relating network parameters to experimental parameters.
Changes in the strength of recurrent inhibition in our model
can be mapped, in the biological system, into changes in
the gain of inhibitory synaptic conductances. Experimen-
tally, this perturbation may be induced by locally infusing
allosteric modulators that increase inhibitory channel conduc-
tances (e.g. benzodiazipines; (25) and personal communica-
tion with C. Barry). Changes in the time-constant of our
model neurons can be mapped to changes in the EPSP time-
constant in the biological system. Experimentally, the EPSP
time-constant is sensitive to temperature through the Arrhe-
nius e↵ect and can be lengthened by cooling (26–28). How-
ever, cooling a↵ects several other single-neuron properties. To
assess what to expect experimentally from a temperature per-
turbation and how to correctly include temperature e↵ects
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in simpler neural models, we performed network simulations
with cortical Hodgkin-Huxley neurons (29) while implement-
ing documented temperature-dependent changes in all ionic
and synaptic conductances (Experimental Procedures, SI, and
Figure S5). The e↵ect of cooling on conductance amplitudes
is to shrink the population period in an aperiodic network,
but its e↵ect on conductance time-constants is to expand the
period. The net e↵ect of cooling is an expansion because
temperature changes have larger e↵ects on conductance time-
constants (larger Q10 factors) than amplitudes (smaller Q10
factors) (27, 30). We therefore conclude that changes in tem-
perature are reasonable to associate with changes in the time-
constant of simple neuron models. To summarize, two global
experimental perturbations capable of inducing population ac-
tivity period changes are neuromodulatory infusions that alter
the gain of recurrent inhibition and cortical cooling (28,31).

Discriminating amongst recurrent architectures.Dynamical
simulations of grid cell models reveal that the e↵ects of the
global perturbation will di↵er across recurrent network ar-
chitectures, with consequently di↵erent predictions for the
DRPS. In an aperiodic network, incremental global pertur-
bation results in incremental expansion of the population ac-
tivity pattern (Figure 3A, red, and Figure S2). Thus, the
DRPS envelope will gradually and linearly widen with pertur-
bation strength, and the separation between peaks will grad-
ually grow (Figure 3B-C, red and Figure S2).

In a partially periodic network (with aperiodic local con-
nectivity but with opposite boundaries connected), the num-
ber of bumps in the population activity pattern is constrained
to be an integer. Thus, incrementally increasing the perturba-
tion strength should result first in no change to the population
activity period, and then a sudden change when the network
can accommodate an additional bump (or an additional row
of bumps in 2D, assuming the pattern does not rotate as a re-
sult of the perturbation; see Discussion) (Figure 3A, purple).
Thus, incremental changes in perturbation strength should
result in a stepwise change in population period and in the
width of the DRPS envelope (Figure 3B-C, purple). Because
the number of bumps has increased by a discrete amount, as
soon as the DRPS changes, it will become maximally wide.

The fine structure of the DRPS will still be multimodal.
However, counting peaks to estimate the number of bumps in
the underlying population pattern will result in serious under-
estimation: when the pattern change is not incremental, there
can be large changes in phase that are then lost in the DRPS,
which is cut o↵ at the maximal phase norm of 0.5 (Figure S3
and e.g. Figure 3B, compare peaks in the solid and dashed
lines for small and large perturbations, respectively).

In the fully periodic network (Figure 1C), the same global
perturbations that alter the population pattern period in the
other recurrent networks (Figure 1A-B) are ine↵ective in in-
ducing a corresponding change (Figure 3A, blue). This is
because the periodic connectivity completely fixes the period
of the pattern. Thus, the global perturbation will not a↵ect
the relative phase relationships between cells, and the DRPS
is predicted to remain narrow, unimodal, and peaked at zero
(Figure 3B-C, blue).

Discriminating feedforward from recurrent architectures.If
the spatial tuning pattern or pattern components are gener-
ated upstream of grid cells and inherited or combined by them
through feedforward summation (12–14), then perturbing the
recurrent weights or the biophysical time-constant within only
the grid cell layer is predicted to leave unchanged the popula-
tion activity period, preserving the spatial tuning shapes and
cell-cell relationships. As a result, the DRPS should be nar-

row and centered at zero, as in the case of a recurrent network
with fully periodic connectivity (Figure 3C, green line).

In all recurrent model networks (Figure 1A-C), the spa-
tial tuning period of cells is predicted to expand with the
global perturbation, which induces a change in the e�cacy
with which feedforward velocity inputs shift the pattern phase
over time (Figure 3D and Figure S6). This expansion in spa-
tial tuning period with global perturbation strength is pre-
dicted to hold for all three recurrent network classes, and can
be used as an assay of the e↵ectiveness of the experimental
manipulation, especially when there is no shift in the DRPS.

By contrast, in feedforward models integration occurs
upstream of the grid cells and thus the spatial tuning pe-
riod should remain unchanged with global perturbation (Fig-
ure 3D, green line). Response amplitudes should nevertheless
change in the feedforward models, thus revealing whether the
attempted global perturbations are in e↵ect.

Experimental feasibility of proposed method.We consider two
key data limitations. First, it is not yet experimentally fea-
sible to record from all cells in a grid module. Even a 100
cell sample would constitute a 1-10 % subsampling of the es-
timated module size. With present estimates that <20 % of
cells in a local patch in MEC are grid cells (32), the yield
would be a meager 20 grid cells. Is this su�cient to observe
the predicted quantal structure in a phase shift distribution, if
it were present? Fortunately, the proposed method is tolerant
to severe sub-sampling of the population: a tiny random frac-
tion of the population (10/1600 cells) can capture the essential
structure of the full DRPS, Figure 4A.

Second, spatial tuning and relative phase parameters are
estimated from neural responses during a random, finite ex-
ploration trajectory in which cells respond variably. Hence,
spatial tuning parameters, including phase and relative phase,
are only known with a degree of uncertainty. In tests that de-
pend only on the width of the DRPS (e.g. Figure 3), this
phase uncertainty is not a serious limitation.

However, more detailed questions about the number of
bumps in the population pattern in an aperiodic network de-
pend on estimating the number of DRPS peaks, and here
phase estimation uncertainty can be problematic: phase un-
certainty will merge together peaks in the DRPS, Figure S7.
At very small perturbation strengths, the DRPS peak spacing
(in the aperiodic network) increases with the stretch factor.
Thus, the larger the perturbation, the more distinguishable
the peaks at a fixed phase error, Figure 4B and Figure S7.
Yet increasing the stretch factor is not without a tradeo↵:
The two-for-one relationship between number of peaks in the
DRPS and the number of bumps in the population pattern
per linear dimension holds when the total induced shift in
phase is small for all bumps (as before, when ↵ <

1
2M , with

M now equal to the larger of the number of bumps along
the two principal axes of the population pattern), Figure 4B.
At larger stretch factors, the number of peaks in the DRPS
is smaller than twice the number of bumps along the corre-
sponding dimension of the pattern, and the discrepancy can
be substantial.

Fortunately, the DRPS is computed from the relative
phases between cells, which remain stable in a fixed net-
work (17) (here fixed refers to the network while a given per-
turbation strength is stably maintained). This stability makes
it possible to gain progressively better estimates of relative
phase over time even if there is substantial drift in the spa-
tial responses of cells, by computing the relative spatial phase
over short snapshots of the trajectory then averaging together
the relative phase estimates from di↵erent snapshots across a
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progressively longer trajectory (similar to the methods used
in (17) and (33)).

To distinguish M = 5 bumps per linear dimension based
on structure within the DRPS would require a stretch factor
of no greater than ↵ = 1/(2M) = 0.1, and phase noise must be
reduced to at least 0.02 (Figure S7). Distinguishing 7 bumps
would require ↵  0.07 and a phase noise of smaller than
about 0.01. Based on grid cell and trajectory data (accessed
through http://www.ntnu.edu/kavli/research/grid-cell-data),
this would require an approximately 10 (50) -minute recording
(Figure 4C).

The proposed method therefore has high tolerance to sub-
sampling and a more limited tolerance to phase uncertainty.
It will require longer-than-usual but still realistic amounts of
spatial trajectory data with neural recordings to obtain ade-
quately small error in relative phase estimation to test predic-
tions that di↵erentiate between models.

A decision tree for experimental design.We lay out a deci-
sion tree with an experimental workflow for discriminating
between disparate networks, all of which exhibit 2D continu-
ous attractor dynamics (Figure 5).

The demands from experiment are to be able to stably
induce a global perturbation in one grid module, and to do so
at 2-3 strengths. In all the cases, the term perturbation refers
to a small change that leaves the network dynamics qualita-
tively unchanged while a↵ecting its quantitative properties.
The data to be collected are simultaneous recordings from
several grid cells as the animal explores a familiar enclosure
with no proximal spatial cues over about 20 minutes or more.

First, before applying perturbations, characterize the spa-
tial tuning (periods) of the neurons, as well as cell-cell rela-
tionships (the relative spatial tuning phase). Next, apply a
series of 2-3 global perturbations of increasing strength. At
each perturbation strength, characterize the spatial tuning of
cells and cell-cell relationships. A change in the amplitude of
the cells’ response across the di↵erent perturbations signals
that the perturbation is having an e↵ect.

If further there is no change in the spatial tuning period, it
follows that the perturbations produced no change in the pop-
ulation pattern and velocity responsiveness, thus the network
must be feedforward, Figure 5 (green). Verify that cell-cell
relationships remain unchanged across perturbations, as pre-
dicted for feedforward networks.

If there is a change in the spatial tuning period, charac-
terize the cell-cell relationships in each perturbation condi-
tion. Plot the DRPS from each perturbed condition relative
to the pre-perturbation condition, and obtain its width. If
the DRPS width increases steadily and linearly with perturba-
tion strength, that implies an aperiodic recurrent architecture,
Figure 5 (red). If the DRPS width exhibits a step change, it
is consistent with a partially periodic recurrent network, Fig-
ure 5 (purple). A DRPS that remains narrowly peaked around
zero, with no change in width with perturbation strength, is
consistent with a fully periodic network, Figure 5 (blue).

Finally, if the network is either aperiodic or partially peri-
odic, the underlying population pattern has multiple bumps.
The number of peaks in the DRPS for each dimension of rel-
ative phase bounds from below the quantity 2M , where M

is the number of bumps in the population pattern along that
dimension. When the stretch factor ↵ times the number of
bumps is smaller than 1/2, and if the DRPS is quantal, the
number of DRPS peaks equals twice the number of population
activity bumps along the corresponding dimension.

Discussion
Assumptions.The predictions made here assume that the net-
work activity pattern is stable against rotations. Rotations
of the population pattern would induce large changes in the
DRPS, obscuring the predicted e↵ects of pattern period ex-
pansion in any recurrent network. The fully periodic network
is not subject to rotations, but partially periodic and aperiodic
networks may be. In experimental data, the cell-cell phase re-
lationships between grid cells are indeed very stable across
time and environments (17), suggesting that the population
activity undergoes no rotation. It is unclear what features of
the circuit stabilize the population pattern against rotation; it
is possible that slight directional anisotropies in the outgoing
connectivity of neurons pin its orientation.

The simplifying observation, that spatial responses may be
used to estimate the DRPS, depends on other inputs not being
able to overrule the new post-perturbation cell-cell relation-
ships. For instance, external sensory inputs or hippocampal
place cells that become associated with particular configura-
tions of grid cells may keep resetting the grid networks to
express old relative phase relationships. To avoid this possi-
bility, it may be important to assess post-perturbation cell-
cell relationships only in novel environments, for which there
are no previously learned associations between external cues,
place cell responses, and grid cell activity.

Finally, it is important to note that if in feedforward mod-
els one were to include feedback from the grid cell layer back
to the spatially tuned inputs (as in (14)), the network would
e↵ectively become a type of recurrent circuit, and perturbing
the grid cell layer may result in changes in grid period and
cell-cell relationships.

Prior probabilities of di↵erent grid cell models being cor-
rect.From theoretical arguments, we believe the candidate
grid cell mechanisms are not equally probable. In particu-
lar, the partially periodic model is di�cult to justify from
the viewpoint of grid cell development. In (22), we see that
activity-dependent rules acting on spatially informative feed-
forward inputs can lead to the formation of a network capable
of path integration and with grid cell-like tuning. The net-
work, post-development, has aperiodic structure. Under cer-
tain conditions, if network weights continue to undergo plas-
ticity after the network has matured enough to expresses re-
current patterning, the network can become fully periodic as
neurons with the same spatial phase become wired together
(Figure S8). In fact, the addition of relatively weak coupling
between neurons in nearest-neighbor activity bumps is su�-
cient to convert an aperiodic network into what is, functionally
if not topologically, a fully periodic network (Figure S8).

Thus, it is possible to imagine mechanisms for the devel-
opment of the fully periodic and fully aperiodic networks. By
contrast, a partially periodic network involves local connec-
tivity which does not depend on a neuron’s spatial phase, but
at the same time requires some mechanism for neurons at one
end of the network to link with those at the opposite end in
way that depends on spatial phase, Figure S1. It is more dif-
ficult to imagine a plausible mechanism that can satisfy both
constraints. By the same argument, in feedforward models,
one would expect the 1D patterned inputs to grid cells to
involve fully periodic or fully aperiodic 1D networks.

Circuit inference through perturbation and sparse activity
records: outlook and alternatives. It is interesting to com-
pare the potential of our suggested approach with that of sin-
gle synapse-level circuit reconstruction (a connectomics ap-
proach). A high-quality full-circuit connectome (with signed
connections) can specify the topology of the network struc-
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ture. In other words, it should be possible to reveal whether
the circuit is intrinsically “local” (as in the aperiodic net-
work of Figure 1A) (22), partially periodic (with local center-
surround-like connectivity and periodic boundary conditions
as in Figure 1B), or fully periodic (with center-surround-like
connectivity of a width that spans the entire network together
with periodic boundary conditions). It may even be possible
to infer the locality of structure in the aperiodic network from
an unsigned connectome.

Network topology is, however, one ingredient in circuit
mechanism: Determining whether the signed connections lead
to activity patterning still requires a large amount of infer-
ence (for instance, converting the connections into weights and
inserting the matrix into an appropriate dynamical model).
Even with further inference steps, whether the network ac-
tually performs certain functions like velocity-to-position in-
tegration or only inherits them is not answerable based on
connectomics data. For instance, a network with lateral in-
teractions may generate position-dependent responses de novo
through integration (Figure 1A-C), or may act only to fur-
ther pattern inputs that are already spatially tuned (Figure
1D-E) (13, 14, 21). Despite these functional di↵erences, both
types of networks have similar connectivity and topologies.

Single neuron-resolution records of activity within a grid
cell module can be fruitfully used to understand the dimen-
sionality and relationships of neural responses, but without
perturbation, inferring actual connectivity and thus mecha-
nisms from activity is problematic (34, 35). Hence, activity
records do not distinguish between di↵erent recurrent mod-
els. In short, while connectomics and large-scale recording
can provide troves of useful information, they are not su�-
cient for discriminating between models; as we have shown
here, they may also not be immediately necessary.

As we have seen, with a perturbation approach it is pos-
sible to localize where integration occurs: if the perturbed
area is performing integration, the spatial tuning period is
predicted to change. Generally speaking, perturbation modu-
lates the e↵ect of connectivity on dynamics, and the proposed
readout is neural activity. This closed-loop approach allows
for detailed tests of mechanistic neural models, whose very
goal is to relate architecture and dynamics, in a way not easily
rivaled by non-perturbative probes of connectivity or activity.

Cooling and other perturbation experiments have been
performed in V1 (5,36), but they were not as revealing about
underlying mechanism as might be possible in grid cells. The
reason is twofold: Recurrent models of orientation tuning in
V1 are ring models, which are periodic single-bump networks,
thus the predicted DRPS after cooling is essentially the same
as the prediction for a feedforward network. Moreover, be-

cause the orientation response does not arise from integration
of a velocity input, the spatial tuning width after cooling is
also not predicted to change in a substantial way for recurrent
networks. These factors make it harder to discriminate recur-
rent from feedforward mechanisms from perturbation. The
multi-bump tuning of grid cells o↵ers a unique opportunity to
use the types of perturbative approaches used in V1 (5,36), to
obtain unprecedented detail on the local circuit mechanisms
that support the complex tuning of cortical cells.

Materials and Methods
Definitions: Population phase and relative spatial phase. Roman subscripts
(e.g., i and j) refer to individual cells. If cells are arranged topographically based on
connectivity, then i refers to the location (in neuron body-length units) within the
population pattern of the ith cell. If the period of the population pattern is �

pop

(again in neuron body-length units), then the population pattern phase of cell ith is

�

i

pop

= ((i� 1) mod �

pop

)/�
pop

(with the arbitrary choice, made without
loss of generality, that neuron 1 has phase 0).

Next, consider the spatial tuning curves of cells i, j. Without respect to ar-

rangement in the cortical sheet, let d
ij

represent the o↵set, in meters, of the peak
closest to the origin in the cross-correlation of the two spatial tuning curves, and
let � be the spatial tuning period (in meters) of the two cells. The relative spatial

phase is defined as �
ij = (dij mod �)/�. Phase magnitudes are based on the

usual Lee metric, |�| = min (|�|, 1� |�|). In 2D, the transformation of ~

d

ij

into ~

�

ij is identical to that described in (17) and replicated here in SI. Analogously,
using the same procedure, the 2D coordinate of the ith cell in the cortical sheet can

be transformed into ~�
i

pop

, the population phase vector. As noted in Results, �
ij

is

easily experimentally accessible; �
i

pop

, much less so.

Generation of Figures. Figure 1 is schematic. Figure 2 is generated from ideal
(imposed) periodic patterns but without dynamical neural network simulations. In
Figures 2, 4A,B, S3, S4, and S7 relative spatial phase is computed for convenience
(to save the computational cost of generating spatial tuning curves, then deriving rel-

ative phases) from the population phases (thus, by setting �
ij = �

i

pop

� �

j

pop

).
Figures 3, S2, S6, which distinguish between di↵erent recurrent architectures, are
based on dynamical neural network simulations using the mature grid cell network
described in SI. Briefly, the model is a network of excitatory and inhibitory neurons
(except in S8 – see figure caption for details), with linear-nonlinear Poisson (LNP)
spiking dynamics (9, 22). For Figure S5, we use Hodgkin-Huxley dynamics. Struc-
tured lateral interactions between neurons lead to pattern formation in the neural
population. Relative spatial phases are explicitly computed from spatial tuning curves
of cells, which are obtained from spike responses to 2-minute long simulated quasi-
random trajectories. Velocity inputs drive shifts of the population pattern, resulting
in spatially periodic tuning. Only cells from the simulation with good spatial tuning
are included in the analysis of relative phase shifts: for fully and partially periodic
networks, this means all cells in the network, while for aperiodic networks this means
cells in the central 3/4 of the network. Since the inhibitory and excitatory popula-
tions share similar population patterning and spatial tuning in these simulations, we
made the arbitrary choice to display the inhibitory population.
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Fig. 1. Mechanistically distinct models not distinguished by ex-
isting data. (A-C) Recurrent 2D pattern-forming models: Activity in the cortical sheet
(gray; darker indicates more activity) and the outgoing recurrent weights from a single represen-
tative cell (blue green regions centered on the cell of origin). (A) Aperiodic network: Aperiodic
boundary conditions and ”local” connectivity that is not determined by activity phase so that
connectivity does not reflect the periodicity in activity. (B) Fully periodic network: Connec-
tivity period equals activity period, with periodic boundary conditions on a rhombus. The two
networks shown (left: single-bump network; right: multi-bump network with all bumps identi-
fied by allowing for strong recurrent connections between cells of the same activity phase) are
mathematically identical. We refer to both as a single-bump network. (C) Partially periodic
network: “Local” connectivity (in same sense as in (A)), with opposite edges of the cortical
sheet identified so that the network boundary conditions are periodic. (D-E) Feedforward and
feedforward-recurrent models: Spatially tuned (post-path integration) inputs drive grid cells
(gray: spatial trajectory; spikes: red). (D) The inputs, generated from ring attractor networks
(ellipses above squares) that integrate di↵erent components of animal velocity indicated by the
inset compasses, have stripe-like spatial tuning (as in (13)). Feedforward summation followed
by a nonlinearity produces grid-like responses (right). (E) Place-tuned inputs with selective
feedforward summation, and in some models, lateral interactions, drive grid-like responses.
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Fig. 2. Global perturbation and phase shift analysis can reveal
detailed features of population patterning. (A) Schematic (not a dynamical
neural network simulation) of population activity in a 1D aperiodic grid cell network (blue)
before perturbation and (red) after a 10% pattern expansion (↵ = 0.1;�

pop,pre

= 20

neurons). For illustration, cells are ordered topographically based on local connectivity and
pattern expansion is centered at the left network edge. Circle, square, triangle: cells that shared
the same phase no longer do post-expansion. (B) The pattern phase (�i

pop

; see Experimental
Procedures) of cells (i) in the network, pre- (blue) and post- (red) perturbation. Cells exactly
K peaks apart in the population pattern exhibit shifts in population phase equal to K�,
where � is the quantal phase shift. (C) The histogram of shifts, pre- to post-perturbation,
in the pattern phases of all cells (n=100). Gray line: raw histogram (200 bins). Black line:
smoothed histogram (convolution with 2-bin Gaussian). Negative (positive) phase shifts are
from gray-shaded (vertically-striped) areas in (B). (D-E) Shift distributions for pattern phase
(experimentally inaccessible) carry over to shift distributions for relative spatial tuning phase
(experimentally observable). (D) The circle, square, and triangle cells originally have identical
spatial tuning (schematic in blue), but post-perturbation are no longer co-active thanks to shifts
in the population pattern (as in A) and thus also exhibit shifted spatial tuning curves (red). The
shift for a pair is proportional to the number of activity bumps between them in the original
population pattern. (E) Histogram of relative phase shifts (DRPS; gray). A relative phase
shift (�ij ; see Experimental Procedures) between a pair of cells i, j equals the change in their
relative spatial tuning phase post-perturbation. Black: smoothed version. There are n = (100
choose 2) samples because relative phase is computed pairwise.
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Fig. 3. E↵ects of perturbation on recurrent and feedforward neu-
ral networks and predictions for experiment. (A-B) The e↵ect of perturb-
ing inhibitory weights in dynamical neural network simulations of aperiodic (column 1), partially
periodic (column 2), and fully periodic (column 3) recurrent architectures (see Experimental
Procedures for simulation details). (A) Population pattern pre- and post-perturbation (first and
second rows, with �

inh

= 1 and 1.33, respectively). Vertical lines: bump centers in the
unperturbed (solid) and perturbed (dotted) patterns. (B) DRPS relative to the unperturbed
network. Solid line: perturbed network with �

inh

= 1.33; dashed line: larger perturbation of
�

inh

= 1.66. (C) How the width of the DRPS, �i

DRPS

, defined as the standard deviation
of the DRPS, varies with perturbation strength. Thick green line: DRPS widths for feedforward
networks (predicted, not from simulation). Note that, while the step-like shape of the DRPS
width as a function of perturbation strength for the partially periodic network is general, the
point at which the partially periodic network steps up will vary from trial to trial. (D) How the
spatial tuning periods (�i

x

) vary with perturbation strength in the di↵erent simulated recurrent
networks and in a feedforward network (thick green line; predicted, not from simulation) (see
SI for definition of spatial tuning period).
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Fig. 4. Measurement limitations and the resolvability of predic-
tions under such constraints. (A) Left: The quantal structure of the DRPS is
apparent even in small samples of the population (black: full population DRPS; red: DRPS
computed from n=10 cells; both curves smoothed with 2-bin Gaussian; bins=200). Plotted is
DRPS along first principal axis of the 2D phase (see Figure S4). Right: The L2-norm di↵erence
between the full and sampled DRPS as a function of number of sampled cells. Inset: log-log
scale. (B) First and second columns: DRPS (200 bins; gray line: raw; black line: smoothed with
2-bin Gaussian) for di↵erent numbers of population pattern bumps along the first principal axis
of the pattern and for di↵erent amounts of phase noise (noise is sampled i.i.d. from a gaussian

distribution, N (0,�

2
phase

), and added to each component of the relative phase vector, ~�ij ;

“phase noise” is the same as �
phase

). Third column: Same as the second column, except for
a larger stretch factor, ↵ = 0.2. Note that the peak-to-peak separation has increased so that
the individual peaks are discernible. However, for the 5 bump network in the second row, infer-
ring the number of bumps in the underlying population pattern would lead to an underestimate,
since M ⇥ ↵ = 5 ⇥ 0.2 > 1/2. (C) The uncertainty (standard deviation) in estimating
relative phase, for di↵erent amounts of data (data from (37)), from bootstrap samples of the

full dataset (see SI for details). As expected, the decrease in uncertainty follows T� 1
2 (gray).

Parameters: �
pop,pre

= 40/3 neurons (A), = 20 neurons (B, top row), = 8 neurons (B,
bottom row); ↵ = 0.1; ê1 = [1, 0]; ê2 = ê1 + 60

�; network size: 40⇥ 40 neurons.
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Fig. 5. Decision tree for experimentally discriminating circuit
mechanisms. For each of three circuit perturbations of increasing strength, both spatial
tuning period and relative phase shifts are measured. Recurrent networks are discriminated
from feedforward and feedforward-recurrent networks by the e↵ects of the perturbation on
spatial tuning period (first open triangle). Di↵erent recurrent networks can be discriminated
based on how the DRPS width varies with perturbation strength (second open triangle). The
number of bumps in the multi-bump population patterns can be inferred by counting the peaks
in the DRPS (third open triangle), though, for the partially periodic, only a lower bound on the
number of bumps can be established (dotted line).
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