
Bayesian Nonparametric Inference of Population Size Changes from

Sequential Genealogies

Julia A. Palacios1,2,3⇤, John Wakeley1 and Sohini Ramachandran2,3,⇤

1Department of Organismic and Evolutionary Biology, Harvard University
2Department of Ecology and Evolutionary Biology, Brown University

3Center for Computational Molecular Biology, Brown University

Abstract

Sophisticated inferential tools coupled with the coalescent model have recently emerged
for estimating past population sizes from genomic data. Accurate methods are available for
data from a single locus or from independent loci. Recent methods that model recombination
require small sample sizes, make constraining assumptions about population size changes, and
do not report measures of uncertainty for estimates. Here, we develop a Gaussian process-based
Bayesian nonparametric method coupled with a sequentially Markov coalescent model which
allows accurate inference of population sizes over time from a set of genealogies. In contrast to
current methods, our approach considers a broad class of recombination events, including those
that do not change local genealogies. We show that our method outperforms recent likelihood-
based methods that rely on discretization of the parameter space. We illustrate the application of
our method to multiple demographic histories, including population bottlenecks and exponential
growth. In simulation, our Bayesian approach produces point estimates four times more accurate
than maximum likelihood estimation (based on the sum of absolute di↵erences between the
truth and the estimated values). Further, our method’s credible intervals for population size
as a function of time cover 90 percent of true values across multiple demographic scenarios,
enabling formal hypothesis testing about population size di↵erences over time. Using genealogies
estimated with ARGweaver, we apply our method to European and Yoruban samples from the
1000 Genomes Project and confirm key known aspects of population size history over the past
150,000 years.

keywords. Markov Process, Genomics, Sequentially Markov Coalescent, Point Process, Gaussian
Process.

1 Introduction

For a single non-recombining locus, neutral coalescent theory predicts the set of timed ancestral
relationships among sampled individuals, known as a gene genealogy (Kingman 1982; Hudson
1983; Tajima 1983; Hudson 1990). In the coalescent model with variable population size, the rate
at which two lineages coalesce, or have a common ancestor, is a function of the population size
in the past. Here we denote the population size trajectory by N(t), where t is time in the past,
and use the term local genealogy to describe ancestral relationships at one non-recombining locus.

⇤
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When analyzing multilocus sequences, a single local genealogy will not represent the full history of
the sample. Instead, the set of ancestral relationships and recombination events among a sample
of multilocus sequences can be represented by a graph, known as the ancestral recombination
graph (ARG) which depicts the complex structure of neighboring local genealogies and results in a
computationally expensive model for inferring N(t) (Gri�ths and Marjoram 1997; Wiuf and Hein
1999).

Recent studies have leveraged computationally simpler approximations for the coalescent with
recombination—the sequentially Markov coalescent (SMC) (McVean and Cardin 2005) and its
variant SMC0 (Marjoram and Wall 2006; Chen et al. 2009)—both of which model local genealogies
as a continuous time Markov process along sequences (Figure 1). The di↵erence between the SMC
and SMC0 is that the SMC models only the class of recombination events that alter local genealogies
of the sample. In general, the SMC0 is a better approximation to the ARG than the SMC (Chen
et al. 2009; Wilton et al. 2015). Because of these features, in this work we rely on the SMC0 to
model local genealogies with recombination.

Under the coalescent and the sequentially Markov coalescent (SMC and SMC0) models, pop-
ulation size trajectories and sequence data are separated by two stochastic processes: i) a state
process which describes the relationship between the population size trajectory and the set of local
genealogies, and ii) an observation process which describes how the hidden local genealogies are
observed through patterns of nucleotide diversity in the sequence data. The observation process
includes mutation and genotyping error while the state process models coalescence. Sequence data
are then used to make inferences of population size trajectories. In this paper, we restrict attention
to the state process of local genealogies and show how inferences of population size trajectories
can be made from them. We solve a number of key modeling and inference problems, and thus
provide a basis for developing e�cient algorithms to infer population parameters from sequence
data directly.

Whole-genome inference of population size trajectories has been hampered by the enormous size
of the state space of local genealogies when the sample size is large. The pioneering, pairwise
sequentially Markov Coalescent (PSMC) method of Li and Durbin (2011) employed the SMC to
make inferences from a sample of size two (n = 2). In this method, time is discretized and the
population size trajectory is piece-wise constant, allowing pairwise genealogies also to be discretized.
Subsequent methods for samples larger than two similarly rely on the discretization of time and
genealogies. The natural extension of the PSMC to n > 2 is the multiple sequentially Markovian
coalescent (MSMC) (Schi↵els and Durbin 2014). However, the MSMC models only the most recent
coalescent event of the sample, and hence its estimation of population sizes is limited to very
recent times. Other recent methods propose e�cient ways of exploring the state space of hidden
genealogies for n > 2 (Sheehan et al. 2013; Rasmussen et al. 2014), yet also rely on discretizing
the state space of local genealogies and assume a piece-wise constant trajectory of population
sizes. We show that the a priori specification of change points for the piece-wise population size
trajectory required by current approaches is problematic because estimates of N(t) are sensitive to
this specification. Moreover, current methods do not generate interval estimates for N(t).
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Figure 1: SMC0 model for inferring population size trajectories. Drawn after Rasmussen
et al. (2014) to highlight notation specific to our study. A. Observed sequence data in a segment
of length L from five individuals; three loci are shown delimited by recombination breakpoints
b
1

and b
2

. Only the derived mutations at polymorphic sites are shown. B. Corresponding local
genealogies g

i

for each locus i. The five sampled individuals are depicted as black filled circles. Local
genealogies have a Markovian degree 1 dependency. Each inter-coalescent time (the time interval
between coalescent events denoted as empty circles) provides information about past population size
(number of gray filled circles at a given time point). Moving from left to right after recombination
breakpoint b

1

, the pruning location p
1

is selected from genealogy g
0

and the pruned branch is
regrafted back on the genealogy (blue filled circle). The coalescent event of g

0

depicted as a red
filled circle in g

1

is deleted. This creates the next genealogy g
1

. The process continues until L.
At L, the population size trajectory N(t) (depicted as a black curve superimposed on g

2

) can be
inferred.
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Gaussian Process-based Bayesian inference of population size trajectories has proven to be a
powerful and flexible nonparametric approach when applied to a single local genealogy (Palacios
and Minin 2013; Lan et al. 2015). The two main advantages of the GP-based approach are: (i)
it does not require a specific functional form of the population size trajectory (such as constant
or exponential growth) and (ii) it does not require an arbitrary specification of change points in a
piece-wise constant or linear framework.

In this paper, we show the downstream e↵ects of discretizing time, assuming a piecewise constant
trajectory, and reporting only point estimates for past population sizes. We overcome previous
limitations by introducing a Bayesian nonparametric approach with a Gaussian Process (GP) to
model the population size trajectory as a continuous function of time. More specifically, we model
the logarithm of the population size trajectory a priori as a Gaussian process (the log ensures our
estimates are positive). As mentioned above, we assume that local gene genealogies are known.
For our Bayesian model, we develop a Markov Chain Monte Carlo (MCMC) method to sample
from the posterior distribution of population sizes over time. Our MCMC algorithm uses the
recently developed algorithm Split Hamiltonian Monte Carlo (splitHMC) (Shahbaba et al. 2014;
Lan et al. 2015). splitHMC updates all model parameters jointly and it can be extended to a
full inferential framework that is directly applicable to sequence data. In order to compare our
Bayesian GP-based estimation of population size trajectories with a piece-wise constant maximum
likelihood-based estimation (e.g. Li and Durbin 2011; Sheehan et al. 2013; Schi↵els and Durbin
2014), we implemented the Expectation-maximization (EM) algorithm within our framework and
computed the observed Fisher information to obtain confidence intervals of the maximum likelihood
estimates.

Lastly, we address a key problem for inference of population size trajectories under sequentially
Markov coalescent models is the e�cient computation of transition densities needed in the cal-
culation of likelihoods. Here, we express the transition densities of local genealogies in terms of
local ranked tree shapes (Tajima 1983) and coalescent times, and show that these quantities are
statistically su�cient for inferring population size trajectories either from sequence data directly
or from the set of local genealogies. The use of ranked tree shapes allows us to exploit the state
process of local genealogies e�ciently since the space of ranked tree shapes has a smaller cardinality
than the space of labeled topologies (Sainudiin et al. 2014).

2 Methods: SMC

0
Calculations

Following notation similar to Rasmussen et al. (2014) (Table 1) a realization of the embedded
SMC0 chain consists of a set of m local genealogies (g

0

, g
1

, . . . , g
m�1

), m� 1 recombination break-
points at chromosomal locations (b

1

, b
2

, . . . , b
m�1

), and m� 1 pruning locations (p
1

, p
2

, . . . , p
m�1

),
where p

i

= (u
i

, w
i

) indicates the time of the recombination event u
i

and the branch w
i

where re-
combination happened in genealogy g

i�1

(Figure 1). Genealogy g
0

corresponds to the genealogy of
n sequences that contains the set of timed ancestral relationships among the n individuals for the
chromosomal segment (0, b

1

]. Genealogy g
i

corresponds to the genealogy of the same n sequences
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for the chromosomal segment (b
i

, b
i+1

] for i = 1, 2, . . . ,m � 2. Finally, ti
j

denotes the time when
two of j lineages coalesce in genealogy g

i

, measured in units of generations before present.

Using capital letters to denote random variables, the evolution of the SMC0 process along chro-
mosomal segments is governed by a point process B = {B

i

}
i2N that represents the random locations

of recombination breakpoints. We use S
i

= B
i

� B
i�1

, for i = 1, 2, . . . ,m, to denote the segment
lengths for each local genealogy, with S

0

= B
0

= 0. Let G = {G
i

}
i2N be the chain which records

the local genealogies, and let P = (U,W ) = {(U
i

,W
i

)}
i2N represent the chain which records the

pruning locations (time and branch) on G. The sequence (G
i

, P
i

= {U
i

,W
i

}, B
i

) has the following
conditional independence relation:

Pr[G
i

= g
i

, U
i

 u
i

,W
i

= w
i

, S
i

 s | (g
0

, b
0

), (g
1

, u
1

, w
1

, b
1

), . . . , (g
i�1

, u
i�1

, w
i�1

, b
i�1

)]

= Pr[S
i

 s
i

| g
i�1

] (1)

⇥ Pr[U
i

 u
i

,W
i

= w
i

| g
i�1

] (2)

⇥ Pr[G
i

= g
i

| U
i

 u
i

,W
i

= w
i

, g
i�1

] (3)

Given a chain of local genealogies, pruning locations and recombination breakpoints, the joint
transition probability to a new genealogy, pruning location and locus length can be expressed as the
product of the locus length probability conditioned on the current genealogy (Expression 1, above),
the pruning location probability conditioned on the current genealogy (Expression 2, above) and,
the transition probability of the new genealogy conditioned on the current genealogy and pruning
location (Expression 3, above).

2.1 Complete data transition densities

Consider the chain of local genealogies g = (g
0

, g
1

, . . . , g
m�1

) with recombination breakpoints
at b = (0, b

1

, . . . , b
m�1

). According to the SMC0 process, the first local genealogy g
0

follows the
standard coalescent density:

Pr[G
0

= g
0

| N(t)] =
n

Y

j=2

1

N(t0
j

)
exp

(

�
Z

t

0
j

t

0
j+1

A0(t)(A0(t)� 1)dt

2N(t)

)

, (4)

where t0
n+1

= 0 and t0
n

< . . . < t0
2

are the set of coalescent times in local genealogy g
0

. The
piece-wise constant function Ai(t) denotes the number of ancestral lineages present at time t in
genealogy g

i

, that is

Ai(t) =
n

X

j=1

j1
t2(ti

j+1,t
i

j

)

,

with ti
1

= 1.
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Table 1: Notation for the SMC0 model used in this work.

Symbol Description
Parameters: ⇢ Recombination rate per site per generation

N(t) E↵ective population size trajectory with time mea-
sured in units of N0 generations

⌧ Hyperparameter that controls the smoothness of the
log-Gaussian process prior on N(t)

Notation specific L Length of observed sequences
to SMC0 chain: bi Chromosomal location of the ith recombination break-

point
m Number of local genealogies corresponding to m � 1

recombination events
si+1 = bi+1 � bi Segment length for local genealogy i

gi Local genealogy for the segment (bi�1, bi)

Notation specific n Sample size, or number of sequences
to local genealogy: li Total tree length of local genealogy gi

Ai(t) Piece-wise constant function of the number of ances-
tral lineages at time t in local genealogy gi

tij Coalescent time in genealogy gi when two of j lineages
coalesce. Ai(tij�) = j; Ai(tij+) = j � 1

ti = (tin, t
i
n�1, . . . , t

i
2) Vector of coalescent times of genealogy gi

pi = (ui, wi) Pruning location along local genealogy gi
ui Time when the recombination event happened along

the height of the genealogy gi
wi Lineage on genealogy gi�1 where the recombination

event happened
w0

i New lineage added on genealogy gi where the recom-
bination event happened

tinew Coalescent time in genealogy gi when the lineage wi

coalesces.
tidel Coalescent time in genealogy gi�1 that no longer exists

in genealogy gi
ci Lineage on genealogy gi that coalesces with lineage w0

i

F i
j,k Number of free lineages in local genealogy gi that do

not coalesce in the time interval (tij+1,t
i
k)

Ii(t) Piece-wise constant function that takes values in
{0, 1, 2} indicating the number of ancestral lineages at
time t in genealogy gi where the pruning event would
produce a visible transition to gi+1

Discretization: d Number of change points at which N(t) is estimated
x = (x1, . . . , xd) Times at which N(t) is estimated
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Given a current local genealogy g
i�1

, the distribution of the length S
i

= B
i

� b
i�1

of the current
locus depends on the current state of the SMC0 chain through the local genealogy’s total tree length
l
i�1

(the sum of all branch lengths in g
i�1

) and the recombination rate per site per generation ⇢.

f(s
i

| g
i�1

, ⇢) = ⇢l
i�1

exp{�⇢l
i�1

s
i

}. (5)

At recombination breakpoint b
i

, a new local genealogy g
i

is generated (Figure 1). This new local
genealogy g

i

depends on the previous local genealogy g
i�1

and the population size trajectory N(t).
To generate g

i

we first randomly choose a pruning location p
i

(consisting of a pruning time u
i

and a lineage w
i

) uniformly along g
i�1

. At pruning location p
i

, we add a new lineage w0
i

and
coalesce it further in the past at time ti

new

with some lineage, c
i

(Figure 2). We then delete the w
i

lineage’s segment from u
i

to ti
del

(the coalescent time of lineage w
i

). The transition density to a
new genealogy at recombination breakpoint b

i

is then

Pr[p
i

= (u
i

, w
i

), ti
new

, c
i

| g
i�1

, N(t)] = Pr[p
i

= (u
i

, w
i

) | g
i�1

]Pr[ti
new

, c
i

| u
i

, g
i�1

, N(t)]

=

✓

1

l
i�1

◆

1

N(ti
new

)
exp

(

�
Z

t

i

new

u

i

Ai�1(t)dt

N(t)

)

, (6)

where l
i�1

denotes the total tree length of g
i�1

.

This generative process of local genealogies can result in the two types of transitions depicted in
Figure 2. A visible transition results in a genealogy g

i

which is di↵erent from g
i�1

(Figure 2A),
while an invisible transition makes g

i

identical to g
i�1

(Figure 2B).

An invisible transition g
i

= g
i�1

, occurs when c
i

= w
i

. Given the pruning location p
i

= (u
i

, w
i

), a
transition to an invisible event occurs when T i

new

2 (u
i

, ti
del

) and C
i

, the random variable indicating
the lineage that coalesces with lineage w0

i

, takes the value w
i

. The probability of an invisible
transition is given by

Pr[G
i

= g
i�1

| p
i

= (u
i

, w
i

), g
i�1

, N(t)] = Pr[u
i

 T i

new

 ti
del

, C
i

= w
i

| p
i

= (u
i

, w
i

), g
i�1

, N(t)]

=

Z

t

i

del

u

i

1

N(t)
exp

⇢

�
Z

t

u

i

Ai�1(u)du

N(u)

�

dt.

Thus, the joint transition probability to an invisible event with pruning location (u
i

, w
i

), given g
i�1

is:

Pr[G
i

= g
i�1

, p
i

= (u
i

, w
i

) | g
i�1

, N(t)] =
1

l
i�1

Pr[G
i

= g
i�1

| p
i

= (u
i

, w
i

), g
i�1

, N(t)].

2.2 Transition densities averaged over unknown pruning locations

Even though we will assume that local genealogies are known, in order to anticipate later applica-
tions to sequence data we do not wish to make the same assumption about pruning locations. Thus,
we average over pruning locations to obtain marginal transition densities between genealogies, for
both visible and invisible transitions.
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Figure 2: Schematic representation of SMC0 transitions given a recombination break-
point at location b

i

(indicated as an arrow in each panel). A: Visible transition. We
uniformly sample the pruning location p

i

from g
i�1

at time u
i

along some branch w
i

, we add a
new branch w0

i

at u
i

and re-graft it (dashed black line). The new branch w0
i

coalesces with some
branch c

i

at time ti
new

. We then delete branch w
i

and the coalescent time ti
del

to generate genealogy
g
i

. Any pruning time along the branch w
i

(shown in green) would have produced the same visible
transition from g

i�1

to g
i

. B: Invisible transition. We uniformly sample the pruning location
p
i

= (u
i

, w
i

), add a new branch w0
i

at u
i

and re-graft it. The new branch w0
i

coalesces with itself
(dashed black line); that is, C

i

= w
i

, and then the segment (u
i

, ti
del

) of w
i

is deleted. If C
i

= w
i

,
any pruning location along the green branches would have produced the same invisible transition.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2015. ; https://doi.org/10.1101/019216doi: bioRxiv preprint 

https://doi.org/10.1101/019216
http://creativecommons.org/licenses/by-nc-nd/4.0/


To compute the marginal visible transition density to a new genealogy g
i

= {g
i�1

\ {ti
del

} [
{ti

new

, (w0
i

, c
i

)}}, we need to average over all possible pruning locations p
i

= (u
i

, w
i

) along g
i�1

. By
comparing the two genealogies g

i�1

and g
i

in Figure 2A, we know that p
i

corresponds to the lineage
w
i

some time along (0, ti�1

4

), or equivalently, along (0, ti
del

). In general, comparison of g
i�1

and g
i

may not provide complete information to identify the lineage that was pruned. When the children
of the node corresponding to t

del

and the children of the node corresponding to t
new

are the same,
pruning di↵erent branches can lead to the same transition. We enumerate all cases of incomplete
information for visible transitions in Supporting Information Figure S1.

We introduce a function Ii�1(t), equal to the number of possible lineages at time t where the
pruning location along g

i�1

would produce a visible transition to g
i

. Ii�1(t) is a piece-wise constant
function that takes the values in {0, 1, 2} depending on whether the pruning location p

i

can happen
in 0, 1 or 2 branches at time t. In the example in Figure 2A,

Ii�1(t) =

(

1, if t 2 (0, ti�1

4

),

0, if t 2 (ti�1

4

,1).
(7)

For a general Ii�1(t) piece-wise constant function that indicates the number of possible pruning
branches at time t, the marginal visible transition density to a new genealogy is

Pr[G
i

= g
i

| g
i�1

, N(t)] =
1

l
i�1

Z 1

0

Ii�1(u) Pr[ti
new

, c
i

| u,w
i

]du (8)

=
1

l
i�1

Z 1

0

Ii�1(u)
1

N(ti
new

)
exp

(

�
Z

t

i

new

u

Ai�1(t)dt

N(t)

)

du.

Turning now to the computation of marginal transition probabilities for invisible events, we
need to average over all possible pruning locations p

i

. Consider the example in Figure 2B and
choosing a pruning time (u

i

) along g
i�1

. In order to have an invisible transition, the coalescing
branch C

i

must be the same pruning branch W
i

. In Figure 2B the new coalescent time T i

new

can
happen along five lineages in the interval (0, ti�1

5

), three lineages in the interval (ti�1

5

, ti�1

4

), and
two lineages in the interval (ti�1

4

, ti�1

3

). To generalize this calculation, we introduce the quantity
F i

j,k

with (n + 1) � j � k � 2 which denotes the number of lineages in g
i

that are free (do not

coalesce), in the time segment (ti
j+1

, ti
k

). The time interval (ti
j+1

, ti
k

) includes the interval of pruning

(ti
j+1

, ti
j

) up to the interval of self-coalescence (ti
k+1

, ti
k

). Thus, if the pruning time happens at time

U
i

2 (ti
j

, ti
j�1

), an invisible transition with new coalescent time T i

new

2 (ti
k+1

, ti
k

) can happen along

F i

j,k

free lineages.

In Figure 2B, u
i

happened in the time interval (0, ti�1

5

). If the new coalescent time T i

new

happens
in the interval (u

i

, ti�1

5

) along the same (unknown) pruning branch, then this invisible transition
has probability

Pr[G
i

= g
i�1

, T i

new

2 (ti�1

6

, ti�1

5

) | u
i

, g
i�1

, N(t)] = F i�1

5,5

Z

t

i�1
5

u

i

1

N(t)
exp

⇢

�
Z

t

u

i

Ai�1(u)du

N(u)

�

dt,

with F
5,5

= 5.
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Now consider the same example of Figure 2B but with an unknown pruning time u
i

. The joint
event where recombination occurs at pruning time U

i

2 (ti�1

6

, ti�1

5

) and coalescent time T i

new

occurs
in the interval (ti�1

6

, ti�1

5

) and this results in an invisible transition has probability:

Pr[G
i

= g
i�1

, U
i

2 (ti�1

6

, ti�1

5

), T i

new

2 (ti�1

6

, ti�1

5

) | g
i�1

, N(t)]

=
F i�1

5,5

R

t

i�1
5

t

i�1
6

R

t

i�1
5

u

i

1

N(t)

exp
n

� R

t

u

i

A

i�1
(u)du

N(u)

o

dtdu
i

l
i�1

(9)

=
F i�1

5,5

P i�1

5,5

l
i�1

, (10)

where P i�1

5,5

denotes the double integral expression in Equation 9 for ease of notation.

An invisible transition would also result if U
i

2 (ti�1

6

, ti�1

5

) and T i

new

2 (ti�1

5

, ti�1

4

) along the
same (unknown) pruning branch; according to Figure 2B, this can happen along three lineages, so
F i�1

5,4

= 3 and this event has probability:

Pr[G
i

= g
i�1

, U
i

2 (ti�1

6

, ti�1

5

), T i

new

2 (ti�1

5

, ti�1

4

) | g
i�1

, N(t)]

=
F i�1

5,4

R

t

i�1
5

t

i�1
6

exp
n

� R

t

i�1
5

u

i

A

i�1
(u)du

N(u)

o

l
i�1

Z

t

i�1
4

t

i�1
5

1

N(t)
exp

(

�
Z

t

t

i�1
5

Ai�1(u)du

N(u)

)

dtdu
i

=
F i�1

5,4

P i�1

5,4

l
i�1

.

If we continue considering the cases where U
i

2 (ti�1

6

, ti�1

5

) and T i

new

2 (ti�1

4

, ti�1

3

) or T i

new

2
(ti�1

3

, ti�1

2

), we have F i�1

5,3

= 2 and F i�1

5,2

= 0. Then, the joint probability of an invisible event and

U
i

2 (ti�1

6

, ti�1

5

) is

Pr[G
i

= g
i�1

, U
i

2 (ti
6

, ti
5

) | g
i�1

, N(t)] =

P

6

k=2

F i�1

j,k

P i�1

j,k

l
i�1

,

For the cases when U
i

2 (ti�1

j+1

, ti�1

j

) and the new coalescent time T i

new

falls in another coalescent

interval (ti�1

k+1

, ti�1

k

), we need to compute the following:

• The joint probability of U
i

2 (ti�1

j+1

, ti�1

j

) and no coalescence in the interval (u
i

, ti�1

j

):

1

l
i�1

Qi�1

j

=
1

l
i�1

Z

t

i�1
j

t

i�1
j+1

exp

(

�
Z

t

i�1
j

u

i

Ci�1(u)du

N(u)

)

du
i

,

• The probability of no coalescence in any of the intermediate coalescent intervals (ti�1

l+1

, ti�1

l

):

qi�1

l

= exp

(

�
Z

t

i�1
l

t

i�1
l+1

Ci�1(u)du

N(u)

)

,

and
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• The probability of coalescing at T i

new

2 (ti�1

k+1

, ti�1

k

):

1� qi�1

k

.

Then,
1

l
i�1

P i�1

j,k

=
1

l
i�1

Qi�1

j

qi�1

j�1

qi�1

j�2

. . . qi�1

k+1

(1� qi�1

k

)

represents the probability that the pruning location is w
i

at time U
i

2 (ti�1

j+1

, ti�1

j

) and the new

lineage w0
i

coalesces at time T i

new

2 (ti�1

k+1

, ti�1

k

) with lineage c
i

= w
i

. Overall, the marginal transition
probability to an invisible event is:

Pr[G
i

= g
i�1

| g
i�1

, N(t)] =

Z

t

i�1
2

0

Pr[G
i

= g
i�1

, u
i

| g
i�1

, N(t)]du
i

=
n

X

j=2

Pr[G
i

= g
i�1

, U
i

2 (ti�1

j+1

, ti�1

j

) | g
i�1

, N(t)]

=
1

l
i�1

n

X

j=2

j

X

k=2

F i�1

j,k

P i�1

j,k

. (11)

2.3 The likelihood of the embedded SMC

0
chain

Instead of having a complete realization of the embedded SMC0 chain of m local genealogies
g
0

, . . . , g
m�1

and pruning locations p
1

, . . . , p
m�1

at recombination breakpoints b
1

, . . . , b
m�1

, we
assume that our data (unless otherwise noted) consist only of m local genealogies at recombination
breakpoints from a chromosomal segment of length L. Note that our observed data are not sequence
data. More specifically, our observed data are

Y = {(g
0

, 0), (g
1

, b
1

) . . . , (g
m�1

, b
m�1

), s
m

= L� b
m�1

}. (12)

Then, the observed data likelihood is

L
obs

(Y;N(t), ⇢) = Pr[g
0

| N(t)]

"

m�2

Y

i=0

f [s
i+1

| g
i

, ⇢]Pr[g
i+1

| g
i

, N(t)]

#

h(L� b
m�1

| g
m�1

, ⇢),

=

factors that depend on N(t)
z }| {

Pr[g
0

| N(t)]

"

m�2

Y

i=0

Pr[g
i+1

| g
i

, N(t)]

#

factors that depend on ⇢
z }| {

h(L� b
m�1

| g
m�1

, ⇢)

"

m�2

Y

i=0

f [s
i+1

| g
i

, ⇢]

#

(13)

where h(L � b
m�1

| g
m�1

, ⇢) is the survival function in state g
m�1

. Equation 13 is factored into
terms that depend on N(t) alone and ones that depend on ⇢ alone. The terms that depend on
⇢, given by Equation 5, depend on the data only through total tree lengths l

0

, . . . , l
m�1

and locus
lengths s

1

, . . . , s
m�1

, L � b
m�1

. By the factorization theorem for su�cient statistics, local tree
lengths l

0

, . . . , l
m�1

and locus lengths s
1

, . . . , s
m�1

, L� b
m�1

are su�cient for inferring ⇢.
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3 Methods: Inference

Current coalescent-based methods that infer a population size trajectory N(t) from whole-genome
data assume N(t) is a piece-wise constant function with change points x

1

= 0 < x
2

< . . . < x
d

(Li
and Durbin 2011; Sheehan et al. 2013; Rasmussen et al. 2014; Schi↵els and Durbin 2014). That is

N(t) =
d

X

i=1

N
i

1
t2(x

i�1,xi

]

. (14)

Equation 14 presents two challenges. The first challenge lies in the specification of the change points.
The narrower an interval is, the higher the probability that we do not observe coalescent times in
that interval. The fewer observed coalescent times in an interval, the greater the uncertainty of
the estimate bN

i

(if the estimate even exists). The second challenge lies in the specification of the
time window (0, x

d

): if x
d

is set too far in the past, we might not have enough data to accurately
estimate N(t) for x

d

 t < 1.

In order to solve the first challenge, Rasmussen et al. (2014) and Li and Durbin (2011) distribute
the d change points evenly on a logarithmic scale:

x
j

=
1



⇢

exp



j

d
log(1 + x

d

)

�

� 1

�

. (15)

where  is specified by the user. Schi↵els and Durbin (2014) propose discretizing time according
to the quantiles of the exponential distribution.

x
j

=
�1

�
log



1� j

d

�

, (16)

where � is the rate of an exponential distribution. Schi↵els and Durbin (2014) model the time to
the most recent coalescent event and set � =

�

n

2

�

. However, Equation 16 is not directly applicable
here because we use all coalescent events for inference.

In the following sections, we first present our Bayesian nonparametric method, then develop a
maximum likelihood method under a piece-wise constant trajectory so we can directly compare
an EM-based method (Li and Durbin 2011; Sheehan et al. 2013) to our Bayesian nonparametric
method. The R code for all simulation studies and real data analysis conducted in this paper are
publicly available at http://ramachandran-data.brown.edu/datarepo/.

3.1 Gaussian-Process-based Bayesian Nonparametric Estimation of N(t)

For our Bayesian methodology, we assume the following log-Gaussian Process prior on the pop-
ulation size trajectory, N(t):

N(t) = exp[f(t)], f(t) ⇠ GP(0,C(⌧)), (17)
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where GP(0,C(⌧)) denotes a Gaussian process with mean function 0 and inverse covariance function
C�1(⌧) = ⌧C�1 with precision parameter ⌧ . For computational convenience, we use Brownian
motion as our prior for f(t) since its inverse covariance matrix is sparse. We place a Gamma prior
on the precision parameter ⌧ ,

⌧ ⇠ �(↵,�).

Assuming that recombination rate ⇢ is known, the posterior distribution of model parameters
(Figure 3) is then

Pr[N(t), ⌧ | g
0

, . . . , g
m�1

] / Pr[g
0

| N(t)]

(

m�2

Y

i=0

Pr[g
i+1

| g
i

, N(t)]

)

Pr[N(t) | ⌧ ]Pr(⌧). (18)

The first two factors on the right side of Equation 18, detailed in Equations 8 and 11 involve
integration over N(t), an infinite dimensional random function (Equation 17). We approximate the
integral

Z

b

a

dt

N(t)
=

Z

b

a

exp[�f(t)]dt,

by the Riemann sum over a partition of the integration interval. That is,
Z

b

a

exp[�f(t)]dt ⇡
k

X

j=i

exp[�f⇤
j

]�
j

, (19)

for x
i

< a < x
i+1

< . . . < x
k�1

< b < x
k

, �
i

= x
i+1

� a, �
k

= b � x
k�1

and �
j

= x
j+1

� x
j

for
i < j < k. f⇤

j

is a representative value of f(t) in the interval (x
j

, x
j+1

); in our implementation,
we set f⇤

j

= f(x⇤
j

) with x⇤
j

= (x
j

+ x
j+1

)/2. This way, we discretize our time window in d evenly

spaced segments x
1

= 0 < x
2

< . . . < x
d

, with x
d

= max(t0
1

, . . . , tm�1

1

), the maximum time to the
most common ancestor observed in the sequence of local genealogies, and approximate N(t) by a
piece-wise linear function evaluated at (x⇤

1

, x⇤
2

, . . . , x⇤
d

).

We condition on the set of m local genealogies g
0

, . . . , g
m�1

to generate posterior samples for
the vector f⇤ = [logN(x⇤

1

), . . . , logN(x⇤
d

)] and ⌧ and use these posterior samples to infer N(t) at
t 2 (x⇤

1

, . . . , x⇤
d

), where x⇤
i

= (x
i

+ x
i+1

)/2. Updating N(t) and ⌧ separately is not recommended
because of their strong dependency (Lan et al. 2015). Therefore, we update (N(t), ⌧) jointly in
an MCMC sampling algorithm using Split Hamiltonian Monte Carlo (Shahbaba et al. 2014; Lan
et al. 2015). Split Hamiltonian Monte Carlo relies on our ability to calculate the log-likelihood
of the observed data and the gradient vector of the log-likelihood (i.e., the score function). The
log-likelihood of the observed data is approximated via sums of the form in Equation 19. We
approximate the score function rL

obs

(Y; f⇤) with respect to f⇤ by applying Fisher’s identity:

rL
obs

(Y; f⇤) = Ef⇤ [rL
c

(Y
c

; f⇤) | Y],

where, at each iteration in the MCMC, expectation is calculated using the current value of f⇤. We
show the details of this calculation in the Appendix.

Alternatively, one can update N(t) in the MCMC algorithm using Elliptical Slice Sampler (Mur-
ray et al. 2010) with a fixed value of ⌧ (perhaps estimated from previous studies or from a prelim-
inary run from the Split Hamiltonian Monte Carlo algorithm). The advantage of using Elliptical
Slice Sampler over the Split Hamiltonian Monte Carlo is purely computational since Elliptical Slice
Sampler does not require calculation of the score function.
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⌧

N(t)

g0 g1 g2 gm�2 gm�1

b1

p1 p2 pm�2 pm�1

bm�1bm�2b2

Observed

. . . 

Latent

Figure 3: Structure of our Bayesian model for inferring population size trajectories
from a realization of the SMC0 process at recombination breakpoints. Hyperparameter
⌧ controls the smoothness of the log-Gaussian process prior on N(t). Local genealogies depend on
N(t) and form a Markov chain of degree one. Given the current local genealogy g

i�1

, we sample
the location of the new recombination breakpoint b

i

and a pruning location p
i

on genealogy g
i�1

.
The new genealogy g

i

depends on N(t), p
i

and g
i�1

.
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3.2 Maximum-likelihood estimation of N(t) with measures of uncertainty

We assume that the population size trajectory N(t) is defined as in Equation 14. The standard
coalescent density (Equation 4) and the transition densities defined in Equations 11 and 8 are
tractable, so calculation of the likelihood (Equation 13) is tractable. However maximization of the
likelihood function cannot be performed analytically because pruning locations are missing. We
rely on the Expectation-Maximization (EM) algorithm (Dempster et al. 1977) to find the maximum
likelihood estimator of N = (N

1

, . . . , N
d

). The complete data Y
c

for inferring N(t) are then the
set of local genealogies g

0

, . . . , g
m�1

and the set of pruning locations p
1

. . . , p
m�1

. For the invisible
transitions, we also need to know the new coalescent times {ti

new

}
i2I , where I ⇢ {1, 2, . . . ,m� 1}

denotes the set of indices of invisible transitions (transition i is an invisible transition if g
i

= g
i�1

).

The complete data log-likelihood is then

L
c

(Y
c

;N) := log Pr[g
0

| N(t)] +
m�1

X

i=1

log Pr[p
i

= (u
i

, w
i

), ti
new

, c
i

| g
i�1

, N(t)]. (20)

The EM algorithm starts by initializing the population size trajectory to a piece-wise constant
function with change points x

1

, . . . , x
d

with arbitrarily chosen vector N0. At the kth iteration of
the algorithm we set

Nk = argmax
N

ENk�1 [L
c

(Y
c

;N) | Y]. (21)

The conditional expectation in Equation 21 is conditional on the observed data Y defined in
Equation 12. Let xi = {xi

1

, xi
2

, . . . , xi
d+n�1

} be the ordered set of time points corresponding to the
change points x

1

, . . . , x
d

and the coalescent time points ti of local genealogy i. If the transition
from g

i

to g
i+1

is visible, we replace the jth time point xi
j

by ti+1

new

, where j corresponds to the index

such that xi
j�1

< ti+1

new

 xi
j

. For ease of notation, we will denote the number of time intervals |xi|
by D = d+ n� 2. Let

a0
j

=

(

1, if x0
j+1

= t0
k

, for k = 2, . . . , n,

0, othewise,

be an indicator function that takes the value of 1 when the jth interval contains a coalescent time
of the first genealogy g

0

. Then, the log density of the first genealogy is:

log Pr[g
0

| N(t)] = �
D

X

j=1

(

a0
j

logN(x0
j+1

) +
A0(x0

j+1

)[A0(x0
j+1

)� 1](x0
j+1

� x0
j

) exp[� logN(x0
j+1

)]

2

)

.

(22)
Let

zi
j

=

(

1, if xi
j

< ti+1

new

 xi
j+1

,

0, otherwise,

be an indicator function that takes the value of 1 when the new coalescent time of genealogy i

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2015. ; https://doi.org/10.1101/019216doi: bioRxiv preprint 

https://doi.org/10.1101/019216
http://creativecommons.org/licenses/by-nc-nd/4.0/


happens in the corresponding time interval (xi
j

, xi
j+1

), and let the adjusted interval length be

�i

j

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

xi
j+1

� xi
j

, if u
i+1

< xi
j

, and xi
j+1

< ti+1

new

(after pruning and before coalescence),

xi
j+1

� u
i+1

, if xi
j

< u
i+1

< xi
j+1

 ti+1

new

(before coalescence with pruning adjustment),

ti+1

new

� u
i+1

, if xi
j

< u
i+1

< ti+1

new

< x
j+1

(adjustment for prunning and coalescence),

ti+1

new

� xi
j

, if u
i+1

< xi
j

< ti+1

new

< xi
j+1

(after pruning with coalescence adjustment),

0, otherwise.

Then, the augmented transition density can be expressed as:

log Pr[p
i

= (u
i

, w
i

), ti
new

, c
i

| g
i�1

, N(t)] = log Pr[p
i

= (u
i

, w
i

), ti
new

, c
i

, zi,�i | g
i�1

, N(t)]

= � log l
i�1

�
D

X

j=1

n

zi�1

j

logN(xi�1

j+1

)
o

�
D

X

j=1

n

Ai�1(xi�1

j+1

)�i�1

j

exp[� logN(xi�1

j+1

)]
o

. (23)

where zi and �i are the vectors with zi
j

and �i

j

elements. For the EM algorithm we need to

compute the conditional expected vectors E[zi
j

| Y] and E[�i

j

| Y]. The details of these calculation
are in the Appendix.

We use the Fisher information matrix to compute approximate standard errors of log bN and
use these standard errors together with asymptotic normality of maximum likelihood estimators
to produce confidence intervals for log population size piece-wise trajectories. We compute the
observed Fisher information matrix following Louis (1982):

ÎY[ bN] = E bN[�HL
c

(Y
c

; bN) | Y]� E bN[rL
c

(Y
c

; bN)rL
c

(Y
c

; bN)0 | Y],

whererL
c

(Y
c

; bN) is the gradient andHL
c

(Y
c

; bN) is the Hessian of the complete-data log-likelihood
with respect to logN. This requires the calculation of conditional cross-product means and condi-
tional second moments described in the Appendix.

4 Results

We simulated 1000 local genealogies of 2, 20 and 100 individuals from each of the three di↵erent
demographic models described in Table 2 using MaCS (Chen et al. 2009); see Supporting Information
for details of these simulations. We assumed that all individuals were sampled at time t = 0 under
a demographic model in Table 2.

We compared the point estimates with the truth for each demographic model using the sum of
relative errors (SRE):

SRE =
K

X

i=1

| bN(x
i

)�N(x
i

)|
N(x

i

)
, (24)
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Table 2: Simulated demographic scenarios. The argument t denotes time measured in units of N
0

generations.

Demographic model N(t)

Constant Population size: N(t) = 1

Exponential growth followed by constant size: N(t) =

(

1, for t 2 (0, 0.1),

exp[�10(t� 0.1)], for t 2 (0.1,1).

Population bottleneck: N(t) =

8

>

>

<

>

>

:

1, for t 2 (0, 0.3),

0.1, for t 2 (0.3, 0.5),

1, for t 2 (0.5,1).

where bN(x
i

) is the estimated population size trajectory at time x
i

. We compute SRE at equally
space time points x

1

, . . . , x
K

. Second, we compute the mean relative width (MRW) as follows:

MRW =
K

X

i=1

| bN
up

(x
i

)� bN
low

(x
i

)|
KN(x

i

)
, (25)

where bN
up

(x
i

) corresponds to the 97.5% upper limit and bN
low

(x
i

) corresponds to the 2.5% lower

limit of bN(x
i

). For EM estimates, [ bN
low

(x
i

), bN
up

(x
i

)] corresponds to the 95% confidence interval

estimated using the observed Fisher information; for Bayesian GP estimates, [ bN
low

(x
i

), bN
up

(x
i

)]

corresponds to the 95% Bayesian credible interval (BCI) of bN(x
i

). To measure how well these
intervals cover the truth, we compute the envelope measure (ENV) in the following way:

ENV =

P

K

i=1

I( bN
up

(x
i

)  N(x
i

)  bN
low

(x
i

))

K
(26)

We compute SRE, MRW and ENV for K = 150 at equally spaced time points.

For our Bayesian GP estimates, we estimate N(x
i

) at d = 100 time points, unless stated
otherwise. The parameters of the Gamma prior on the GP precision parameter ⌧ were set to
↵ = � = 0.001, reflecting our lack of prior information about the smoothness of the population size
trajectory.

For our EM estimates, we used di↵erent discretizations based on Equation 15 and varying the
number of change points d and  over the fixed interval (0, x

d

) with x
d

set to be the maximum
observed coalescent time. For the cases where we only consider one genealogy (m = 1), the EM
approach becomes standard maximum likelihood estimation. We summarize our posterior inference
and compare our Bayesian GP method to the EM method. The population size trajectory is log-
transformed for ease of visualization and for direct comparison with other methods (Minin et al.
2008; Palacios and Minin 2013).
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Table 3: Summary statistics for simulation results depicted in Figure 4. SRE is the sum of relative
errors (Equation 24), MRW is the mean relative width of the 95% BCI (Equation 25), and ENV is
the envelope measure (Equation 26). Values in bold indicate best performance.

Simulation of a single genealogy with n = 100

SRE MRW ENV
MLE d = 5,  = 1 41.80 14.76 100.0%

MLE d = 5,  = 10 41.05 2.98 100.0%

MLE d = 5,  = 100 57.12 1.72 100.0%

MLE d = 10,  = 10 47.93 16.08 100.0%

MLE d = 10,  = 100 61.77 3.91 100.0%

MLE d = 10,  = 500 31.52 3.60 100.0%

Bayesian GP d = 50 6.98 1.88 100.0%

Bayesian GP d = 100 5.52 2.15 100.0%

Bayesian GP d = 200 4.96 1.70 100.0%

4.1 Sensitivity of EM estimates of N(t) to discretization

In Figure 4, we show our Bayesian GP and EM estimates of a constant population size trajectory
from a single genealogy of 100 individuals with di↵erent discretizations. We find that our Bayesian
GP point estimates depicted in Figure 4A recover the truth (dashed line) almost perfectly with
less uncertainty than the EM (Figure 4B-C). Comparing our Bayesian GP estimates with di↵erent
discretizations: 50, 100 and 200 equally spaced time points (Figure 4A), we find that increasing
the number of time points improves inference (Table 4) but that the di↵erences between estimates
among the three discretizations are marginal (Figure 4A). In contrast, we show that di↵erent grid
definitions alter the EM estimates (Figure 4B). It is not clear how to define a good strategy for the
definition of the grid for the EM method, even for the simple model of constant population size.
For example, increasing  from 100 to 500 with 5 change points (Figure 4B), does not improve
estimation. Increasing the number of change points does not necessarily improve the estimates
either; for example, increasing the the number of change points from 5 to 10 for  = 10 (Figures
4B-C). EM grid sensitivity is persistent even when the number of genealogies increases; Figure
S2 in Supplementary Information shows that the best definition of change points when our data
consist of 1000 local genealogies of 100 individuals has 10 change points evenly distributed.

4.2 Comparing Methods of Estimating N(t)

Figure 5 shows the estimated population size trajectories when the number of samples is 2 for the
three di↵erent demographic scenarios and varying the number of local genealogies (100, 500 and
1000 local genealogies). For constant and exponential growth, our EM method assumes a piece-wise
constant trajectory of 10 change points (d = 10) and  = 1 using Equation 15 (similar to Li and
Durbin (2011) and Rasmussen et al. (2014)). For the bottleneck scenario, some of the intervals did
not have coalescent events; hence, for this case we assumed a piece-wise constant trajectory of 5
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(A) GP

(B) EM, d=5

(C) EM, d=10

Figure 4: Sensitivity to parameter discretization. Comparison of population size trajectories
estimated from one simulated genealogy (m = 1) of 100 individuals with a constant population
size. We show true trajectories as dashed lines. (A) Bayesian GP estimates at d = 50, 100 and
200 equally spaced time points. (B) EM estimates of a piece-wise constant trajectory with d = 5
change points and  = 1, 10 and 100 (Equation 15). (C) EM estimates of a piece-wise constant
trajectory with d = 10 change points and  = 10, 100 and 500 (Equation 15). Point estimates are
shown as solid black lines. 95% credible intervals and 95% confidence intervals are shown by gray
shaded areas.
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change points (d = 5) and  = 1 for constructing our EM estimates. We show the boxplots of the
time to the most recent common ancestor (TMRCA) at the bottom of each plot in Figure 5. The
distribution of the TMRCA serves as an indicator of the uncertainty expected of our estimates.
Both approaches, EM and Bayesian GP show narrower confidence and credible intervals at the
center of the distribution of the TMRCA, particularly during the bottleneck in Figure 5C.

For the constant population demographic model in Figure 5A, our Bayesian GP outperforms
our EM estimates considerably. This is not surprising since a priori logN(t) has mean 0 in our
Bayesian approach (Equation 17). Moreover, EM confidence intervals only cover the truth constant
population size around 30% of the time, while the GP method covers 100% of the truth (Table 4A).
Despite placing a mean-0 prior on logN(t), the Bayesian GP method accurately recovers sudden
changes as shown in the bottleneck example. Our Bayesian GP prior on logN(t) is Brownian motion
which is not di↵erentiable at any point; yet, our Bayesian GP recovers smooth curves (Figure 5B).

Table 4A shows the performance statistics for the estimates of N(t) in Figure 5. In general,
our Bayesian GP has wider credible intervals than the EM confidence intervals but these credible
intervals cover the true trajectory better than the EM confidence intervals in all the cases (MRW
and ENV in Table 4). Our Bayesian GP estimates also generally have smaller sums of relative
errors (SRE in Table 4). Under the bottleneck scenario, our Bayesian GP produces greater sums of
relative errors than does the EM, but our Bayesian GP estimates recover the truth more accurately
than the EM during the bottleneck.

Figures 6 and 7 show our estimates when n = 20 and n = 100. The performance statistics of
the estimates displayed are shown in Table 4(B) and (C). In general, our GP-based estimates have
smaller SRE and larger ENV than the EM-based estimates and hence, the MRW is usually wider
in the GP-based estimates, accurately reflecting the uncertainty of the estimates. As expected,
increasing the number of loci (m) generally decreases the width of the confidence and credible
intervals of our estimates (MRW). Although this is generally true for EM estimates as well, EM
estimates have very low coverage of the truth (MRE in Table 4) when the number of loci increases.

4.3 Sampling more individuals versus sequencing more loci

Figures 5-7 show our estimates for n = 2, 20 and 100 sampled individuals across varying numbers
of loci. Since performance of EM estimates depends strongly on the definition of the grid, we base
what follows on the Bayesian GP estimates. We find that increasing the number of loci, decreases
uncertainty of our estimates and allows us to infer N(t) further back in time. Increasing the number
of samples does not necessarily increase the performance of our GP estimates. For example, under
the bottleneck scenario, we are able to detect the bottleneck phase fairly accurately even for two
samples with m = 1000 local genealogies. Increasing the number of samples to n = 20 and n = 100
does not improve estimation of the features of the bottleneck. This is because most TMRCAs
observed under the bottleneck scenario occur during the bottleneck (Figures 5,6 and 7), regardless
of the number of individuals sampled. In contrast, in our exponential growth example, increasing
the number of samples from n = 2 to n = 100 improves accuracy (point estimates are closer to the
truth, see SRE in Tables 4A-C) and credible intervals cover the truth completely (ENV of 100%).
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(A) Constant

(B) Exponential Growth and Constant

(C) Bottleneck

Figure 5: Inference of population size trajectories N(t) for a pair of individuals (n = 2).
(A) Simulated data under constant population size, (B) exponential and constant trajectory, and
(C) a bottleneck. We show estimates from m = 100, m = 500, and m = 1000 local genealogies.
We show the true trajectories as dashed lines, blue lines and light blue shaded areas represent EM
point estimates and 95% confidence areas, and red lines and pink shaded areas represent Bayesian
GP posterior medians and 95% BCIs. Boxplots of the TMRCA are shown at the bottom of each
plot.
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Table 4: Summary of simulation results depicted in Figures 5. SRE is the sum of relative errors
calculated as in (24), MRW is the mean relative width of the 95% BCI as defined in (25), and ENV
is the envelope measure calculated as in (26). Values in bold indicate best performance for each
demographic model and sample size.

A. Simulations with n = 2

SRE MRW ENV
m=100 m=500 m=1000 m=100 m=500 m=1000 m=100 m=500 m=1000

Const. EM 39.80 41.78 38.60 0.98 0.26 0.08 31.3% 28.0% 19.3%
Const. GP 30.60 4.25 3.04 0.49 0.33 0.22 100.0% 100.0% 100.0%

Exp. EM 64.68 25.70 33.70 0.91 0.16 0.12 42.0% 26.0% 6.6%
Exp. GP 28.38 32.70 26.76 2.04 0.45 0.33 100.0% 56.0% 50.6%

Bottle. EM 48.48 46.51 127.70 0.43 0.45 1.37 40.6% 30.0% 34.0%
Bottle. GP 33.76 45.14 223.58 3.44 6.84 17.13 98.0% 94.6% 94.6%

B. Simulation with n = 20

SRE MRW ENV
m=1 m=100 m=1000 m=1 m=100 m=1000 m=1 m=100 m=1000

Const. EM 60.87 121.30 25.60 2.28 2.16 0.23 100.0% 37.7% 39.3%
Const. GP 31.74 3.94 13.22 1.06 0.70 0.36 100.0% 100.0% 100.0%

Exp. EM 40.97 40.66 40.22 3.11 0.37 0.19 100.0% 38.6% 19.3%
Exp. GP 25.35 27.03 65.61 3.53 1.56 0.42 100.0% 100.0% 39.3%

Bottle. EM 147.93 78.40 78.20 6.98 0.81 68.4 66.0% 78.6% 49.33%
Bottle. GP 68.93 78.2 50.92 2.74 2.47 1.47 92.0% 79.3% 78.6%

C. Simulation with n = 100

SRE MRW ENV
m=1 m=100 m=1000 m=1 m=100 m=1000 m=1 m=100 m=1000

Const. EM 41.05 220.85 43.41 2.98 4.93 0.99 100.0% 35.3% 48.0%
Const. GP 5.52 34.78 12.17 2.15 1.49 0.47 100.0% 100.0% 89.3%

Exp. EM 76.86 40.22 27.63 3.23 0.81 0.13 87.3% 42.0% 14.0%
Exp. GP 114.53 25.82 26.42 3.57 1.55 0.83 100.0% 100.0% 100.0%

Bottle. EM 194.77 59.54 127.68 3.95 1.08 0.85 84.0% 51.3% 45.3%
Bottle. 90.27 44.14 42.68 6.98 2.62 1.74 100.0% 94.7% 96.0%
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Figure 6: Inference of population size trajectories N(t) for n = 20. (A) Simulated data
under constant population size, (B) exponential and constant trajectory, and (C) a bottleneck. We
show estimates from m = 1 genealogy, m = 100 local genealogies and m = 1000 local genealogies.
We show the true trajectories as dashed lines, blue lines and light blue shaded areas represent EM
point estimates and 95% confidence areas, and red lines and pink shaded areas represent Bayesian
GP posterior medians and 95% BCIs. Boxplots of the TMRCA are shown at the bottom of each
plot.
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Figure 7: Inference of population size trajectories N(t) for n = 100. (A) Simulated data
under constant population size, (B) exponential and constant trajectory, and (C) bottleneck. We
show estimates from m = 1 genealogy, m = 100 local genealogies and m = 1000 local genealogies.
We show the true trajectories as dashed lines, blue lines and light blue shaded areas represent EM
point estimates and 95% confidence areas, and red lines and pink shaded areas represent Bayesian
GP posterior medians and 95% BCIs. Boxplots of the TMRCA are shown at the bottom of each
plot.
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4.4 Sequential Tajima’s genealogies are su�cient statistics under the SMC

0

Under the SMC0 process, marginally at each locus along the chromosome, a local genealogy is a
realization of Kingman’s n-coalescent (Kingman 1982), a continuous-time Markov chain taking its
values in the set K

n

of partitions of the label set {1, 2, . . . , n}. A local genealogy g of n individuals
includes labeled topology K

n

and coalescent times t = (t
n

, . . . , t
2

). The state space of a local
genealogy is then G = K

n

⌦R+

n�1, and the cardinality of the set K
n

is n!(n� 1)!/2n�1. However,
only the set of ordered coalescent times carry information about N(t). For a single locus, the set
coalescent times are su�cient statistics for inferring N(t) (proof is in the Appendix). A natural
question that follows is whether the coalescent times corresponding to the set of local genealogies are
su�cient statistics for inferring N(t) under the SMC0 model. We find that the su�cient statistics
for inferring N(t) under the SMC0 model, are the coalescent times, when taken together with
local ranked tree shapes. For a single locus, the set of coalescent times together with the ranked
tree shape correspond to a realization of Tajima’s n-coalescent. Tajima’s n-coalescent (Tajima
1983) is a continuous-time Markov chain taking its values in the set H

n

of ranked tree shapes
also called histories, evolutionary relationships or vintaged and sized coalescent (Sainudiin et al.
2014). The state space of Tajima’s local genealogy is then GT = H

n

⌦ R+

n�1, and the cardinality
of the set H

n

corresponds to the sequence of Euler zigzag numbers whose first ten elements are
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936 (Disanto and Wiehe 2013). The probability of getting a particular
type of ranked tree shape H

n

of n samples (Tajima 1983) is given by

P (H
n

) =
2n�c�1

(n� 1)!
, (27)

where c is the number of cherries, defined as branching events that lead to exactly two leaves.

In the Methods section, we defined transition densities in terms of coalescent times and F
i,j

quantities. The set of all F
i,j

quantities from a local genealogy form a triangular matrix: F -matrix.
In the Appendix, we show that (i) F -matrices are in bijection with ranked tree shapes and (ii) the
set of local Tajima’s genealogies are su�cient statistics for inferring N(t) under the SMC0 model.
These observations are crucial for inferring N(t) from sequence data directly. Coalescent-based
inference from sequence data rely on marginalization over the hidden state space of genealogies. In
the Appendix, we show that the state space needed is the space of local Tajima’s genealogies, as
opposed to the space of local Kingman’s genealogies. For n = 10 sequences, there are 2, 571, 912, 000
possible labeled topologies while only 7, 936 possible ranked tree shapes.

4.5 Application to human data

We applied our method to a 2-Mb region on chromosome 1 (187,500,000-189,500,000) with no
genes from five Yorubans from Ibadan, Nigeria (YRI) and five Utah residents of central European
descent (CEU) from the 1000 Genomes pilot project (1000 Genomes Project Consortium 2012) and
previously analyzed for the same purpose (Sheehan et al. 2013). We used ARGweaver (Rasmussen
et al. 2014) to obtain a sample path of local genealogies for the two populations (YRI and CEU).
The parameters used are 200 change points, a mutation rate of µ = 1.26⇥10�8 and a recombination
rate of ⇢ = 1.6 ⇥ 10�8 (Rasmussen et al. 2014, details regarding parameters used can be found in
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Figure 8: Inference of human population size trajectories N(t) for n = 10. Green solid
line and green shaded areas represent the posterior median and 95% BCI for European population
(CEU) and blue solid line and blue shaded areas represent the posterior median and 95% BCI for
Yoruban population (YRI). Time is measured in years in the past assuming a generation length of
25 years and a reference diploid population of 10,000 individuals. The x-axis is log transformed.

Supplementary Information). We note that ARGweaver assumes the SMC process and our method
assumes the SMC0 process. Moreover, our inference is based on a single sample of the SMC process
with known pruning times. Our ARGweaver set of local genealogies are discretized at 200 time
points and our GP-based inference is influenced by this discretization. In Figure 8 we show our
estimates of past Yoruban (in blue) and European population sizes (in green). The two population
size trajectories experience a series of bottlenecks and overlap until about 100 YKA, assuming a
diploid reference population size of N

0

=10,000 and a generation time of 25 years. In Figure 8
we recover an out-of-Africa bootleneck that starts about 100 KYA and ends about 30 KYA in the
European population. These results are consistent with previously published results (Li and Durbin
2011; Gronau et al. 2011; Rasmussen et al. 2011; Sheehan et al. 2013; Schi↵els and Durbin 2014).
In Supplementary Information Figure S4 we show the estimates of logN(t) instead of logN(t) and
time measured in units of N

0

generations (same scaling as with simulations in Figures 5-7).
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5 Discussion

In this paper, we propose a Gaussian-process based Bayesian nonparametric method for estimating
e↵ective population size trajectories N(t) from a sequence of local genealogies, accounting for
recombination. Under a variety of simulated demographic scenarios and sampling designs, our
method recovers the truth with better precision and accuracy than a maximum likelihood approach
(Figures 5-7). We apply our method to genealogies estimated from human genomic data ARGweaver
(Rasmussen et al. 2014) and conduct inference of the human population size trajectory for European
and African populations; this application to real data recover the known features of the out of Africa
bottleneck (Figure 8).

Several recent approaches have emerged for inference of population size trajectories from multi-
ple whole-genome sequences using the sequentially Markov coalescent (SMC) (Li and Durbin 2011;
Sheehan et al. 2013; Schi↵els and Durbin 2014). However, current SMC-based methods rely on
maximum likelihood inference (EM) of both a discretized parameter space and a discretized state
space in order to gain computational tractability, and incur the costs of reduced accuracy and bi-
ased estimates. Although in principle the EM approach and the Bayesian nonparametric approach
approximate N(t) similarly — by either a piece-wise constant or a piece-wise linear function —
the Bayesian nonparametric approach is not a↵ected by increasing the number of parameters (or
change points) in the estimation of N(t). For comparison with existing methods, we implemented
an EM approach to infer population size trajectories from a sequence of local genealogies and we
note that increasing the number of loci may actually increase the bias of the EM estimates (Fig-
ures 5-7). For example, in simulation, our EM approach incorrectly detects the initial period of
the simulated bottleneck (around 0.8N

0

instead of 0.5N
0

generations ago) with narrow confidence
intervals (Figure 7C).

There are many advantages to using Bayesian GP over EM for inference of population size
trajectories. Similar to Palacios and Minin’s (2013) approach to inference from a single genealogy,
we a priori assume that N(t) follows a log Brownian Motion process. This allows us to model
N(t) as a continuous positive function. The main advantage of using a Brownian Motion process is
that its inverse covariance function is a sparse matrix that allows for fast computations. Since the
likelihood function involves integration over N(t), this integral is approximated by the Riemann
sum over a regular grid of points. The finer the grid is, the better the approximation. We find that
our method performs well for inferring N(t) at 100 change points in all our examples and, more
importantly, results are not sensitive to the number of change points used in the analysis (Figure
4). Our Bayesian approach relies on MCMC for inference from the posterior distribution of model
parameters. Because population sizes at di↵erent grid points are correlated, we adapt the recently
developed MCMC technique Split Hamiltonian Monte Carlo (splitHMC) for jointly sampling all
model parameters (Shahbaba et al. 2014; Lan et al. 2015). splitHMC is a Metropolis sampling
algorithm that e�ciently proposes states that are distant from current states with high acceptance
rates. It has been shown to be more e�cient in inferring N(t) from a single genealogy than elliptical
slice sampling or regular Hamiltonian Monte Carlo sampling(Lan et al. 2015). However, splitHMC
relies on calculating the score function at every single iteration. Because pruning time in each local
genealogy is unknown, we calculate the score function via Fisher’s formula.
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In simulations, we find that our algorithm scales well with hundreds of individuals; our compu-
tational bottleneck is in the number of local genealogies. We envision that extending the current
methodology to inference from sequence data directly will require a strategy for sampling shorter
genomic segments. This would be a probabilistic alternative to arbitrarily choosing segment lengths
(Sheehan et al. 2013; Rasmussen et al. 2014).

Under the SMCmodel, every recombination event along the genome translates to a new coalescent
event for the sample under study, so increasing the number of loci results in more realizations of the
coalescent process. The longer the segments are and the larger the number of samples taken, the
greater the chance of observing variation due to recombination. This fact makes it hard to define
a sampling strategy: longer genomes or larger sample sizes? We show that increasing the number
of local genealogies improves precision of our Bayesian GP estimates (Figures 5-7). However,
resolution into the past from contemporaneous sequences highly depends on the actual population
size trajectory N(t).

We use ARGweaver (Rasmussen et al. 2014) to generate two samples of contiguous local genealo-
gies corresponding to a 2-Mb region of chromosome 1 for five Europeans (CEU) and five Africans
(YRI) from the 1000 Genomes Project; this genomic region is free of genes and was also analyzed
in Sheehan et al. (2013). Taking these two samples of local genealogies as our data (4186 local
genealogies for CEU and 6247 local genealogies for YRI), we were able to use our Bayesian GP
method to infer Yoruban and and European e↵ective population size trajectories (Figure 8). We
find an out-of-Africa bottleneck that began ⇠ 100 KYA and ended ⇠ 30 KYA in the European
population consistent with Li and Durbin (2011); Rasmussen et al. (2011); Gronau et al. (2011);
Sheehan et al. (2013) and Schi↵els and Durbin (2014). We note that our estimates are based on
a single sample of local genealogies and thus ignore genealogical uncertainty. Moreover, we gen-
erated our data from the posterior distribution of local genealogies using ARGweaver at 200 time
intervals so our GP-based approach cannot fully detect sudden changes that may occur between
the discretized times. In addition, ARGweaver assumes an SMC prior model on local genealogies
and our GP-based method assumes the SMC0 process; the lack of invisible recombination events in
ARGweaver ’s genealogies will bias inference.

The natural next extension for our method presented in this study is to infer N(t) from sequence
data directly and not from the set of local genealogies. Our MCMC approach allows us extend the
current methodology in a Bayesian hierarchical framework where the SMC0 process would be used
as a prior distribution over local genealogies. The work we present here suggests a combination of
ARGweaver accommodating SMC0 and GP priors would result in an e�cient method for inferring
population size trajectories from sequence data directly. In addition, our model can be easily
modified to model a variable recombination rate along chromosomal segments and to jointly infer
variable recombination rates and N(t).

Finally, we show that, under the SMC0 model, local ranked tree shapes and coalescent times
correspond to a set of local Tajima’s genealogies; these Tajima’s genealogies are the su�cient
statistics for inferring N(t). Under the SMC0 model, the state space needed for inferring population
size trajectories from sequence data is that of a sequence of local Tajima’s genealogies. This
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lumping, or reduction of the original SMC0 process, will allow more e�cient inference from sequence
data directly.

Current methods for inferring population size trajectories make tradeo↵s to analyze whole genomes
that limit both biological understanding of sudden population size changes and the ability to test
hypotheses regarding population size changes. This work represents a critical set of theoretical
results that lay the groundwork for e�cient estimation of detailed histories from sequence data
with measures of uncertainty.
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Appendix A

Discretization
For both our Bayesian method and our EM method, we assume that N(t) is a piece-wise linear (or
piece-wise constant) function with d change points. Let xi = {xi

1

, xi
2

, . . . , xi
d+n�1

} be the ordered
set of time points corresponding to the change points x

1

, . . . , x
d

and the coalescent time points ti

of local genealogy i. Then, we calculate all the factors needed for the observed data likelihood
(Equation 13) and the complete data likelihood (Equation 20).

Let eF i

k,j

denote the discretized version of F i that represents the number of branches in g
i

that

do not coalesce with any other branch in the time interval (xi
k

, xi
j+1

). Note that the indices here

are in increasing order, k  j. Similarly, let 1

l

i

eP i

k,j

denote the probability that U
i

(the pruning

time along genealogy i), occurs in (xi
k

, xi
k+1

) and the self-coalescing event occurs at time ti
new

in
(xi

j

, xi
j+1

). That is,

eP i

k,j

=

(

1

A

i

(x

i

j+1)
(�i

j

� eQi

j

) k = j

eQi

k

q̃i
k+1

q̃i
k+2

. . . q̃i
j+1

(1� q̃i
j

) k < j
, (28)

where
1

l
i

eQi

k

=
1

l
i

N(xi
k+1

)

Ai(xi
k+1

)
[1� q̃i

k

] (29)

is the joint probability of pruning time U
i

2 (xi
k

, xi
k+1

) and not coalescing back to the same branch
in the time interval (xi

k

, xi
k+1

), and

q̃i
k

= exp

(

�Ai(xi
k+1

)�i

k

N(xi
k+1

)

)

Expectation-Maximization Algorithm

E-step: Equations 22 and 23 show that for the E-step, the only expectations we need are E[zi
j

| Y]

and E[�i

j

| Y]. We compute these expression as follows:
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M-step. Now, for the kth iteration of the algorithm and maximizing the complete data log-
likelihood (Equation 20) we have
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=
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P
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+
P
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P

D

j=1

ENk�1 [zi
j

]1i
l,j

where

1i
l,j

=

(

1, if x
l

< xi
j+1

 x
l+1

,

0, otherwise.
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is an indicator function that takes the value of 1 when (x
l

, x
l+1

) covers the interval (xi
j

, xi
j+1

).

Observed score function for Split Hamiltonian Monte Carlo
Our Bayesian approach relies on Split Hamiltonian Monte Carlo (splitHMC) to sample from the
posterior distribution of model parameters. This method requires the calculation of the observed
score function. We use Fisher’s identity and calculate the observed score function as the conditional
expected complete score function. The lth element of rL

obs

is

(rL
obs

)
l

= �
D�1

X

j=1

a0
j

10
l,j

+
1

2

D�1

X

j=1

C0(x0
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)[C0(x0
j+1

)� 1](x0
j+1

� x0
j

)10
l,j

exp[� logN
l

]

�
m�2

X

i=0

D�1

X

j=1

E[zi
j

| Y]10
l,j

+
m�2

X

i=0

D�1

X

j=1

Ci(xi
j+1

)E[�i

j

| Y]1i
l,j

exp[� logN
l

] (31)

Fisher Information Calculation
The calculation of the Fisher information needed to estimate confidence intervals of a piece-wise
constant trajectory of population sizes, requires the following expected values:
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Next, di↵erentiating Equation (32), we have @
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=

;

Su�cient statistics under SMC0

Proposition 1. For a single locus, the set of coalescent times are su�cient statistics for inferring

N(t).

Proof. This can be proved using the factorization theorem. The marginal density of a local ge-

nealogy (Equation 3) has a unique factor that depends on N(t) and g only through t
n

, . . . , t
2

. The

values of A(t) are induced by the natural order of the coalescent times.
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Let F denote a lower triangular matrix of size n⇥ n with the F
i,j

entry the number of lineages
that do not coalesce in the time interval (t

i+1

, t
j

), as defined in the methods section and with the
following properties:

1. F
i,1

= 0 for all i = 1, . . . , n (The first column contains 0s for completion)

2. F
i,j

= 0 for all j > i (Lower triangular matrix)

3. F
i,i

= i for all i � 2 (The diagonal corresponds to the number of lineages at each intercoales-
cent interval)

4. F
i,i�1

= i� 2 for all i � 2 (At each intercoalescent interval, we loose two free lineages, so the
second diagonal correspond to the number of lineages minus two)

5. For j < n� 1, the last row of F is defined according to:

F
n,j�1

=

8

>

>

>

>

<

>

>

>
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2 )
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(j�F
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)

(j2)
,

F
n,j

, with probability p =
(j�F

n,j

2 )
(j2)

6. Let c denote the number of cherries, then

c =
n

X

j=2

1{F
n,j

�F

n,j�1=2}

7. For i < n and j < i� 1, if F
n,j�1

= F
n,j

� 2, then F
i,j�1

= F
i,j

� 2.

8. Let v
i

denote the set of lineages in the intercoalescent interval (t
i

, t
i�1

) with direct descendant
internal nodes. The lineage labels correspond to the label of the coalescent time, when the
direct descendant internal node was created. That is, the lineage created at t

n

has label n:
v
n

= {n}; the lineage created at t
i

has label i. Let |v
i

| denote the size of the set v
i

. Note
that 1  |v

i

|  c and

|v
i

| =
n

X
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1{F
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9. For i < n and j < i� 1, if F
n,j�1

= F
n,j

� 1, then at time t
j

, there is a coalescence between
a singleton and a lineage in the set v

j

. Let a
j

be the lineage selected uniformly at random
from v

j

, then

F
i,j�1

=

(

F
i,j

� 1 if i > a
j
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� 2 if j < i  a
j
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10. For i < n and j < i� 1, if F
n,j�1

= F
n,j

, then at time t
j

, there is a coalescence between two
lineages a1

j

and a2
j

from the set v
j

. Let a1
j

denote the minimum and a2
j

the maximum of the
two lineages selected, then

F
i,j�1

=
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>

<

>

:

F
i,j

if i > a2
j

F
i,j

� 1 if a1
j

< i  a2
j

F
i,j

� 2 if j < i  a1
j

We show the correspondence between a ranked tree shape and the F-matrix in the example of
Figure A1. The first row and the first column are set to 0, the first two diagonals are known with
probability 1: F

i,i

= i and F
i,i�1

= F
i,i

� 2 for i > 1. In our example, n = 5 and so, the first
diagonal corresponds to (0, 2, 3, 4, 5) and the second diagonal corresponds to (0, 1, 2, 3). The last
row F

5,

contains 0, followed by the number of branches that do not coalesce in the time intervals
(t

6

, t
2

), (t
6

, t
3

), (t
6

, t
4

) and (t
6

, t
5

) corresponding to (0, 0, 2, 3, 5).

t6

t5

t4

t3

t2

Figure A1: Ranked tree shape for n = 6
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1

C

C
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C

A

Proposition 2. There is a bijection between the set of ranked tree shapes H
n

and F , the set of

F-matrices.

Proof. The probability of the F matrix can be expressed as the product of the conditional proba-

bilities of the columns of the F matrix, that is:

Pr(F ) = Pr(F·,n)
n�1

Y

j=1

Pr(F·,n�j

| F·,n�j+1

)

=
n�2

Y

j=2

Pr(F·,n�j

| F·,n�j+1

),
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since the first and last column of F are known with probability 1. Note F·,j represents the j-th

column vector of the F matrix.

Let d
i

= F
n,i

� F
n,i�1

for i = 3, . . . , n, and d
2

= F
n,2

then

Pr(F·,n�j

| F·,n�j+1

) = Pr(d
n�j

| F·,n�j+1

)Pr(F
n�j:n�1,n�j

| d
n�j

, F·,n�j+1

). (33)

That is, the conditional probability of the (n� j)th column of F given the (n� j +1)th column of

F is the product of the conditional probability of the last element of the (n� j)th column and the

conditional probability of the rest of the (n� j)th column. When d
n�j

= 2 the rest of the column

is known with probability 1 (property 7 of the F -matrix). When d
n�j

= 1, the rest of the n� jth

column has probability 1/|v
n�j+1

| (property 9 of the F�matrix) and when d
n�j

= 2, the rest of

the n � jth column has probability 1/
�|v

n�j+1|
2

�

(property 10 of the F -matrix). Then re-writing

Equation 33, we have

Pr(F·,n�j

| F·,n�j+1

) = Pr(d
n�j+1

| F·,n�j+1

)

✓

1

|v
n�j+1

|
◆

1{d
n�j

=1}
 

1
�|v

n�j+1|
2

�

!

1{d
n�j

=0}

, (34)

since |v
n�j

| = P

n

k=n�j

(1{d
k

=2} � 1{d
k

=0}), and F
n,k

= n�P

n

j=k+1

d
j

, then

Pr(d
n�j+1

| F·,n�j+1

) = Pr(d
n�j+1

| F
n,n�j+1

) = Pr(d
n�j+1

|
n

X

k=n�j+2

d
k

),
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and

Pr(F ) =
n�2

Y

j=1

Pr(d
n�j

|
n

X

k=n�j+1

d
k

)

✓

1
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◆
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⇥
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⇥
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|(|v
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1

�

n�j

2

�

=
2n�221�c

(n� 1)!(n� 2)!

n�1

Y

j=2

0

@(n�
n

X

k=j+1

d
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)(n�
n

X

k=j+1

d
k

� 1)

1
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⇥
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X
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d
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1
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=1}
0
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n

X

k=j+1

d
k
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n

X

k=j+1

d
k

� 1)

1
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1
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|
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✓

1
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◆
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Since d
n

= 2 and |v
n

| = 1, for j = n� 1, then d
n�1

is either 1 or 2, then

Pr(F ) =
2n�c�1

(n� 1)!(n� 2)!
(n� 2)(n� 3)1{dn�1=2}
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If we continue expanding the expressions, we get:

Pr(F ) =
2n�c�1

(n� 1)!(n� 2)!
(n� 2)(n� 3)(n� 4)1{dn�2=2}+1{d

n�2=1}1{d
n�1=2}(n� 5)1{dn�2=2}1{d

n�1=2}

⇥
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✓

1

|v
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|� 1

◆

1{d
j

=0}

= · · ·

=
2n�c�1

(n� 1)!

Note that the entries of the F matrix correspond to the same quantity needed to express the
transition density of an invisible event (Equation 11). We claim that the sequence of coalescent
times sets t0, t1, . . . , tm�1 and F 0, F 1, . . . , Fm�1 matrices corresponding to the ranked tree shapes
of local genealogies g

0

, g
1

, . . . , g
m�1

are su�cient statistics to infer N(t) under the SMC0 process.
We prove this through the following propositions.

Proposition 3. The probability density of Tajima’s genealogy is proportional, up to a combinatorial

factor, to the probability density of Kingman’s genealogy.

Proof.

Pr[GT = {F, t
n

, t
n�1

, . . . , t
2

} | N(t)] = Pr[t
n

, t
n�1

, . . . , t
2

| N(t)]Pr[F | t
n

, t
n�1

, . . . , t
2

]

=
n!(n� 1)!

2n�1

Pr[G = {K
n

, t
n

, . . . , t
2

} | N(t)]
2n�c�1

(n� 1)!

=
n!

2c

n

Y

j=2

1

N(t0
j

)
exp

(

�
Z

t

0
j

t

0
j+1

A0(t)(A0(t)� 1)dt

2N(t)

)

(35)

Proposition 4. The marginal visible transition density from a local Kingman’s genealogy g
i�1

to

G
i

is proportional to the marginal visible transition density from the corresponding local Tajima’s

genealogy gT
i�1

to GT

i

.
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Proof. When the labeled topology of g
i�1

is the same as the labeled topology of g
i

, then a transition

from g
i�1

to g
i

contains the same information about pruning location as a transition from gT
i�1

to

gT
i

(Supplementary Information, Figures S1A and S2D). In fact, the Ii�1(t) function defined in

section 2.1.2 (Equation 8) can be defined in terms of the F i-matrix and the coalescent times ti�1

and ti. In this case, for some j 2 {2, . . . , n}, ti�1

j

= ti
del

and ti
j

= ti
new

. Then

Ii�1(t) =

8

>

>

>

>

<

>

>

>

>

:

0, if t > min(ti
new

, ti
del

),

F i�1

l,j

� F i�1

l,j�1

, if t 2 (ti�1

l+1

, ti�1

l

) for l = j, j + 1, . . . , n.

Hence, if K
i�1

= K
i

, the labeled topologies of g
i�1

and g
i

, then

Pr[G
i

= {Ki�1, ti} | g
i�1

= {Ki�1, ti�1}, N(t)] = Pr[GT

i

= {F i�1, ti} | gT
i�1

= {F i�1, ti�1}, N(t)].

When the labeled topologies of g
i�1

and g
i

are di↵erent, but the children of ti
del

and the children of

ti
new

are the same, we cannot exactly identify the pruning branch and the new coalescing branch

(Supplementary Information, Figure S1B) and then a transition from g
i�1

to g
i

contains the same

information about pruning location as a transition from gT
i�1

to gT
i

. Let ti�1

j

= ti
del

and ti
k

= ti
new

,

since the children of ti�1

j

and ti
k

are the same, it is enough to consider F i�1. Then

Ii�1(t) =

8

>

>

>

>

<

>

>

>

>

:

0, if t > min(ti
new

, ti
del

),

F i�1

l,j

� F i�1

l,j�1

, if t 2 (ti�1

l+1

, ti�1

l

) for l = j, j + 1, . . . , n.

and

Pr[G
i

= {Ki, ti} | g
i�1

= {Ki�1, ti�1}, N(t)] = Pr[GT

i

= {F i�1, ti} | gT
i�1

= {F i�1, ti�1}, N(t)].

Now, when the deleted node corresponding to t
del

is a cherry and the new node corresponding

to t
new

is also a cherry, there are four possible topologies K
i

that lead to the same ranked tree
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shape F i, then

Pr[G
i

= g
i

| g
i�1

, N(t)] =

✓

1

2

◆

1{ti�1
j

=t

i

del

}1{Fi�1
n,j

=F

i�1
n,j+1�2} ⇥

✓

1

2

◆

1{ti
j

=t

i

new

}1{Fi

n,j

=F

i

n,j+1�2} ⇥

⇥ Pr[GT

i

= gT
i

| gT
i�1

, N(t)],

Proposition 5. The marginal invisible transition density from a local Kingman’s genealogy g
i�1

to G
i

is equal to the marginal invisible transition density from the corresponding local Tajima’s

genealogy gT
i�1

to GT

i

.

Proof.

Pr[G
i

= g
i1 | g

i�1

, N(t)] = Pr[G
i

= g
i�1

| gT
i�1

, N(t)],

since all needed to compute the transition probability are the coalescent times and the F i�1 matrix.

Since the topology does not change, the proof follows.

Proposition 6. The Likelihood of partially observed embedded SMC 0 chain of local Kingman’s

genealogies is proportional, up to a combinatorial factor, to the likelihood of partially observed

embedded SMC 0 chain of the corresponding local Tajima’s genealogies.

Proof. The proof follows from propositions 3, 4 and 5 needed to express the likelihood of partially

observed embedded SMC0 chain (Equation 13).
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Supporting Information: Bayesian Nonparametric Inference

of Population Size Changes from Sequential

Genealogies

Julia A. Palacios1,2,3, John Wakeley1, and Sohini Ramachandran2,3

1Department of Organismic and Evolutionary Biology, Harvard University
2Department of Ecology and Evolutionary Biology, Brown University

3Center for Computational Molecular Biology, Brown University

1 Visible Transitions

Figure S1A shows an example of a visible transition when the topology remains the same and Figure S1B
shows an example of a visible transition when the topology changes. Green lines mark the possible pruning
locations that could have lead to the same visible transition; the red circle indicates the deleted node at
coalescent time tdel and the blue circle indicates the new node created at coalescent time tnew.

tdel tnew Pruning location 

a b c d e a b c d e

a b c d e f g a b c d e f g

A.

B.

Figure S1: Examples of visible transitions when the pruning branch is uncertain. Red circle indicates deleted
node at coalescent time tdel, blue circle indicates new node at coalescent time tnew. Green lines indicates
possible pruning locations that could have resulted in such a visible transition. A. The topology remains the
same. B. The topology changes.
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A. B.

C. D.

tdel tnew Pruning location 

Figure S2: Examples of visible transitions between local Tajima’s genealogies. Red circle indicates deleted
node at coalescent time tdel, blue circle indicates new node at coalescent time tnew. Green lines indicates
possible pruning locations that could have resulted in such a visible transition.

2 Visible transitions between Tajima’s genealogies

A Tajima’s genealogy gT is an unlabeled genealogy. In Figure S2, we show four possible visible transitions.
In the first case (Figure 2A), when we compare the number of children of the blue circle node on the right
tree at time t with the children of the red circle node on the left tree, we can conclude that only the green
branch could have been selected for pruning. In Figure 2B, comparing the children of the blue circle node on
the right genealogy to the children of the red circle in the left genealogy, we conclude that the two children

of the red circle are possible pruning locations. In Figures 2C-D, tnew < tdel. This implies that the possible
pruning locations will necessarily have heights up to tnew. Again, by comparing the children of the blue
circle node on the right to the children of the red circle node on the left, we can asses the possible pruning
locations.
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3 Simulations with MaCS

We use MaCS (Chen et al., 2009) for all our simulations with the following code lines:
Constant population size:
./macs2 300000 -t 1.0 -T -r .005 -h 1 (SEED: 1420480396)
./macs20 3000000 -t 1.0 -T -r .0002 -h 1 (SEED: 1399175725)
./macs100 3000000 -t 1.0 -T -r .0002 -h 1 (SEED: 1400528079)

Exponential growth and constant:
./macs2 300000 -t 1.0 -eG .1 10 -T -r .02 -h 1 (SEED: 1419985269)
./macs20 300000 -t 4.0 -eG .1 10 -T -r .002 -h 1 (SEED: 1420040333)
./macs100 300000 -t 1.0 -eG .1 10 -T -r .0002 -h 1 (SEED: 1401855826)

Bottleneck:
./macs2 300000 -t 4.0 -eN 0 1 -eN 0.3 0.1 -eN 0.5 1 -T -r .01 -h 1 (SEED: 1420824821)
./macs20 300000 -t 4.0 -eN 0 1 -eN 0.3 0.1 -eN 0.5 1 -T -r .002 -h 1 (SEED: 1420826310)
./macs100 300000 -t 4.0 -eN 0 1 -eN 0.3 0.1 -eN 0.5 1 -T -r .001 -h 1 (SEED: 1420826409)
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Figure S3: EM sensitivity to parameter discretization. Comparison of population size trajectories
estimated from 1000 simulated genealogy (m = 1000) of 100 individuals with a constant population size. EM
inference with di↵erent discretizations varying the parameters in Equation ??.

Table S1: Summary of simulation results depicted in Figure S3. SRE is the sum of relative errors (Equation

24), MRW is the mean relative width of the 95% BCI (Equation 25), and ENV (Equation 26).

SRE MRW ENV
EM d = 10,  = 10 43.41 0.99 48.6%
EM d = 30,  = 10 34.25 0.76 42.6%
EM d = 30,  = 100 43.96 0.99 46.0%

4 EM sensitivity to parameter discretization

In Figure S3, we show EM estimates of a constant population size from 1000 local genealogies of 100 individ-
uals. We show that di↵erent discretizations result in di↵erent estimates. We note that confidence intervals
perform poorly in terms of coverage. The performance statistics corresponding to the three estimations
displayed in Figure S3 are shown in Table S1.

5 Analysis of Human data

We use ARGweaver (Rasmussen et al., 2014) with the following code lines:
European population:

arg-sample -s data1000/CEU_10.sites

-N 11534 -r 1.6e-8 -m 1.26e-8

--ntimes 200 --maxtime 200e3 -c 1 -n 10

-o data1000/CEU.sample/out

Yoruban population:

arg-sample -s data1000/YRI_10.sites

-N 11534 -r 1.6e-8 -m 1.26e-8

--ntimes 200 --maxtime 200e3 -c 1 -n 10

-o data1000/YRI.sample/out
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Figure S4: Inference of human population size trajectories N(t) for n = 10. Green solid line and
green shaded areas represent the posterior median and 95% BCI for European population (CEU) and blue
solid line and blue shaded areas represent the posterior median and 95% BCI for Yoruban population.

ARGweaver time is measured in units of generations, so in order to generate Figure 8, we multiplied time
by 1/(2⇥ 11, 534). To obtain logN(t) displayed in Figure 8, we multiplied our estimates by 1/(8⇥ 11, 532)
and converted them in logarithmic scale.
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