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Abstract: Single cell RNA-seq data allows insight into normal cellular function and diseases including 
cancer through the molecular characterisation of cellular state at the single-cell level. Dimensionality 
reduction of such high-dimensional datasets is essential for visualization and analysis, but single-cell 
RNA-seq data is challenging for classical dimensionality reduction methods because of the prevalence of 
dropout events leading to zero-inflated data. Here we develop a dimensionality reduction method, (Z)ero 
(I)nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout characteristics, and show that it 
improves performance on simulated and biological datasets. 
  
Text: Single cell RNA expression analysis (scRNA-seq) is revolutionizing whole-organism science1 
allowing the unbiased identification of previously uncharacterized molecular heterogeneity at the cellular 
level. Statistical analysis of single cell gene expression profiles can highlight putative cellular subtypes, 
delineating subgroups of T-cells2, lung cells3 and myoblasts4. These subgroups can be clinically relevant: 
for example, individual brain tumors contain cells from multiple types of brain cancers, and greater tumor 
heterogeneity is associated with worse prognosis5. 
  
Despite the success of early single cell studies, the statistical tools that have been applied to date are 
largely generic, rarely taking into account the particular structural features of single cell expression data. 
In particular, single cell gene expression data contains an abundance of dropout events that lead to zero 
expression measurements. These dropout events may be the result of technical sampling effects (due to 
low transcript numbers) or real biology arising from stochastic transcriptional activity (Fig. 1a). Here, we 
show that the performance of standard dimensionality-reduction algorithms on high-dimensional, single 
cell expression data can be perturbed by the presence of zero-inflation making them sub-optimal. We 
present a new dimensionality-reduction model, Zero-Inflated Factor Analysis (ZIFA), that explicitly 
accounts for the presence of dropouts, and demonstrate that ZIFA outperforms other methods on 
simulated data and single cell data from recent scRNA-seq studies2,4,6,7. 
  
The fundamental empirical observation that underlies the zero-inflation model in ZIFA is that the dropout 
rate for a gene depends on the expected expression level of that gene in the population. Genes with 
lower expression magnitude are more likely to be affected by dropout than genes that are expressed with 
greater magnitude. In particular, if the mean level of non-zero expression is given by µ and the dropout 
rate for that gene by p0, we have found that this dropout relationship can be approximately modelled with 
a parametric form p0 = exp(-λµ2), where λ is a fitted parameter, based on a double exponential function. 
This relationship is consistent with previous investigations8,14 and holds in many existing single cell 
datasets (Fig. 1b). The use of this parametric form permits fast, tractable linear algebra computations in 
ZIFA enabling its use on realistically sized datasets in a multivariate setting. 
  
ZIFA adopts a latent variable model based on the Factor Analysis (FA) framework9 and augments it with 
an additional zero-inflation modulation layer. Like FA, the data generation process assumes that the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2015. ; https://doi.org/10.1101/019141doi: bioRxiv preprint 

https://doi.org/10.1101/019141


separable cell states or sub-types initially exist as points in a latent (unobserved) low-dimensional space. 
These are then projected onto points in a latent high-dimensional gene expression space via a linear 
transformation and the addition of Gaussian-distributed measurement noise. Each measurement then has 
some probability of being set to zero via the dropout model that modulates the latent distribution of 
expression values. This allows us to account for observed zero-inflated single cell gene expression data 
(Fig. 1c). The scaling parameter in the dropout model can allow for a large range of dropout-expression 
profiles (Fig. 1d). ZIFA performs maximum likelihood-based statistical inference assuming this data 
generative model to infer the latent, low-dimensional cell state representation from the observed zero-
inflated high-dimensional gene expression data. As with FA we were able to derive a fast and scalable 
expectation-maximization (EM) algorithm10 to fit the model. The algorithm structurally resembles the 
equivalent EM algorithm for FA but incorporates additional data imputation steps to estimated expected 
gene expression levels for observed null values. 
  
We tested the relative performance of ZIFA against Principal Components Analysis (PCA), Probabilistic 
PCA (PPCA), Factor Aanalysis and, where appropriate, non-linear techniques including Stochastic 
Neighbour Embedding (t-SNE)11, Isomap12, and Multidimensional Scaling13 (MDS). First, we generated 
simulated datasets according to the PPCA/FA data generative model with the addition of one of three 
dropout models (i) a double exponential model (as assumed by ZIFA), (ii) a linear decay model and (iii) a 
missing-at-random uniform model. The latter two models were designed to test the robustness of ZIFA to 
extreme misspecification of the dropout model. Data was simulated under a range of different conditions 
by varying noise levels, dropout rates, number of latent dimensions and number of genes. 
  
We applied the dimensionality reduction methods to the simulated data sets and obtained the output of 
each algorithm as a projection of the observed zero-inflated data on to a lower-dimensional latent space 
(Fig. 2a). We defined performance as the Spearman correlation between the distances of the projected 
data in the inferred latent low-dimensional space versus the distances in the actual latent space used in 
the simulation. Overall, ZIFA outperformed standard dimensionality reduction algorithms under all 
simulations. This occurred regardless of whether zeros were added following the assumed decaying 
squared exponential model (Fig. 2b), a linear model (Supplementary Fig. 1B), or missing-at-random 
model (Supplementary Fig. 1C). Although the data sets was generated according to a PPCA/FA model 
(up to the dropout stage), in the presence of cells with genes possessing zero expression, PPCA and FA 
will be sub-optimal compared to ZIFA. We provide an interactive illustration of our model15, showing how 
it more clearly resolves separable latent clusters from zero-inflated data. 
  
We next sought to test these methods in an experiment based on real single cell expression 
datasets2,4,6,7. In this case, the “true” latent space is unknown and we are unable to measure performance 
as with the previous simulated data experiment. Instead, for each of the data sets, we took random 
subsets of 25, 100, 250 and 1,000 genes and applied ZIFA, PPCA and FA to each subset assuming 5 
latent dimensions. We then compared, for each gene in the subset, the predicted data distribution 
obtained by each dimensionality reduction method to the empirical data distribution by computing the 
divergence between these two distributions (see Supplementary Information). Using this criterion we 
found that predictive distributions from PPCA and FA showed high divergence for genes that exhibited a 
high dropout rate or possessed a low non-zero expression level. This meant that the predictive data 
distributions were a poor fit for the empirical data. ZIFA performance was largely unaffected in contrast 
(Fig. 2c). Example predictive model fits are shown for the T-cell data set2 for three genes: Plscr3, Ulk2 
and Ncrna00085 (Fig. 2c). The statistical frameworks underlying PPCA and FA employ Gaussianity 
assumptions that are unable to explicitly account for zero-inflation in single cell expression data. The 
dropout model used by ZIFA modulates this Gaussianity assumption allowing for zero-inflation leading to 
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drastically improved modelling accuracy. Across the four data sets we found that the predictive 
distribution derived by ZIFA was superior to those of PPCA and FA on at least 80% of the genes 
examined and often over 95% (Supplementary Table 1). 
  
The density of dropout events in scRNA-seq data can render classical dimensionality-reduction 
algorithms unsuitable and to-date it has not been possible to assess the potential ramifications of 
applying such methods on zero-inflated data. We have modified the PPCA/FA framework to account for 
dropout to a produce a  “safe” method for visualization and clustering of single-cell gene expression data 
that provides robustness against such uncertainties. Our methodology differs from approaches, such as 
Robust PCA, that model corrupted observations. ZIFA treats dropouts as observations, not outliers, 
whose occurrence properties have been characterised using an empirically informed statistical model. 
ZIFA is also potentially applicable to other zero-inflated data where there is a negative correlation 
between the frequency with which a measurement feature is zero and its mean signal magnitude in non-
zero samples. A Python-based software implementation is available online: 
https://github.com/epierson9/ZIFA.  
  
Methods 
Detailed simulation and analytical methodology as well as mathematical derivations are contained in the 
Supplementary Information. 
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List of Figures 
  
Figure 1: Zero-inflation in single cell expression data. (a) Illustrative distribution of expression levels for 
three randomly chosen genes shows an abundance of single cells exhibiting null expression7. (b) 
Heatmaps showing the relationship between dropout rate and mean non-zero expression level for three 
published single cell data sets2,4,6 including an approximate double exponential model fit. (c) Flow 
diagram illustrating the data generative process used by ZIFA. (d) Illustrative plot showing how different 
values of λ in the dropout-mean expression relationship (blue lines) can modulate the latent gene 
expression distribution to give a range of observed zero-inflated data. 
  
Figure 2: Performance comparison of dimensionality reduction techniques. (a) Toy simulated data 
example illustrating the performance of ZIFA compared to standard dimensionality reduction algorithms. 
(b) Performance on simulated datasets based on correlation score between the estimated and true latent 
distances as a function of λ (larger λ, lower dropout rate), number of genes and latent dimensions and 
noise level used in the simulations. (c) Plots showing the divergence between the predictive and empirical 
data distributions as a function of dropout rate and mean expression level for FA, PPCA and ZIFA. 
Illustrative predictive performance and model fits (red) on the T-cell single cell data set (black)2.  
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