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Abstract 

The uses of the Genome Reference Consortium’s human reference sequence can be roughly 
categorized into three related but distinct categories: as a representative species genome, as a 
coordinate system for identifying variants, and as an alignment reference for variation detection 
algorithms. However, the use of this reference sequence as simultaneously a representative 
species genome and as an alignment reference leads to unnecessary artifacts for structural 
variation detection algorithms and limits their accuracy. We show how decoupling these two 
references and developing a separate alignment reference can significantly improve the accu-
racy of structural variation detection, lead to improved genotyping of disease related genes, 
and decrease the cost of studying polymorphism in a population.  
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1 Introduction  

The initial sequencing and assembly of a human reference genome allowed for the under-
standing of our genomic landscape in comparison to other species [1, 2]. It also facilitated our 
understanding of polymorphism within the human species by providing a high-resolution coor-
dinate system onto which variants could be mapped [2]. As resequencing projects became 
wide-spread, the reference also began to play a central role as a tool for variant detection and 
discovery algorithms. By mapping the reads to the reference, one could identify both structural 
and single-nucleotide variants in the sequenced (donor) genome.  
 
Thus, the uses of the human reference sequence can be roughly categorized into three related 
but distinct categories: as a representative species genome, as a coordinate system for identi-
fying variants, and as an alignment reference for variation detection algorithms. The reference 
sequence used for all the above scenarios is maintained by the Genomic Reference Consorti-
um (GRC). One notable exception is the idea of a human pan-genome, which has been intro-
duced [3] to distinguish the representative species genome from the GRC reference.  
 
The use of the GRC reference genome as an alignment reference has led to some artifacts in 
the structural variants we can detect. One striking example is that most structural variation 
(SV) detection methods have less power to detect long insertions than deletions, with respect 
to the GRC reference [4]. Identifying large insertions is notoriously difficult, since it requires 
careful de novo assembly procedures and the detection of two novel adjacencies [5, 6]. Dele-
tions, on the other hand, are significantly easier, since only one new adjacency has to be de-
tected and no novel sequence has to be considered [7]. However, whether an indel is a dele-
tion or insertion depends on which allele sequence is represented in the GRC reference ge-
nome. Thus the power to detect a variant depends on the sequence content of the GRC refer-
ence. Such artifacts seem unnecessary and arbitrary and can pose challenges to downstream 
analyses, as large indel polymorphisms play a key role in the susceptibility to disease of indi-
viduals or entire populations. 
 
We propose that the alignment reference should be decoupled from the traditional GRC refer-
ence. The alignment reference can be considered as simply a sequence of nucleotides that 
serve as an input to variant detection algorithms, as opposed to a representative genome or a 
coordinate system for mapping variants. This sequence does not need to represent a real or 
even mosaic genome. We can then pose the question: what sequence would maximize the 
power of SV detection algorithms? 
 
In this paper, we demonstrate how a distinct alignment reference genome can be used to in-
crease the power to detect insertions. First, we show how to construct an alignment reference 
by augmenting the GRC reference with known insertions. We use a set of insertions found in 
the HuRef genome [8], relative to the GRC reference. We then develop a pipeline that “wraps” 
around any existing SV calling pipeline to incorporate the augmented reference. Finally, we run 
this pipeline on low-coverage sequencing data from 16 individuals from the 1000 Genomes 
Project and show that the accuracy of detecting the insertions increases by 67%. 

2 Results 
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We first identified 229 high confidence insertions in the HuRef genome (Supplementary Fig. 1), 
which is an alternative human whole genome assembly based on 454 sequencing data from J. 
Craig Venter [8]. These are insertions in HuRef relative to the GRC reference (hg18) that are at 
least 300nt in length and do not lie within 300nt of a repetitive region. We refer to those as 
Venter Novel Alleles (VNAs). We then created an augmented alignment reference, called ref+, 
by injecting the sequence of the VNAs into the appropriate locations of hg18. Ref+ contains 
328kbp of new sequence, covering 48 genes. We note that none of the VNAs are present in 
the database of genomic structural variation (dbVar), except as entries from the HuRef study 
itself.  
 
A typical SV detection pipeline maps the reads to the GRC reference genome, runs an SV 
caller to analyze the resulting mappings for SV signatures, and then outputs a set of loci in the 
GRC reference that are the location of the called SVs (Fig. 1a). We demonstrate how to modify 
any such pipeline to use ref+ instead (Fig. 1b). After creating ref+, we align the reads to ref+ 
and run the SV caller. The SV caller now reports calls relative to ref+, so we convert these to 
be relative to the GRC reference: deletions in injected regions correspond to no variation rela-
tive to the GRC reference, while no-calls in injected regions correspond to insertions relative to 
the GRC reference (see Methods section for more details). The potential power of using ref+ 
instead of the GRC reference is illustrated in Figure 2. 
 
We wanted to demonstrate the power of using ref+ with existing pipelines to detect SVs in a 
population setting of multi sample, low coverage sequencing data. We used 1000 Genomes 
Project [9] data for 16 individuals, with five individuals each from the YRI and CHB populations 
and six individuals from the CEU population (Supplementary Table 1).  We used bowtie2 [10] 
as the aligner and Delly [11] as the SV caller, which are common tools used for SV detection. 
We ran both the standard GRC pipeline and the ref+ pipeline (raw results in Supplementary 
Table 2), and measured the accuracy as the proportion of validated sites that were correct (see 
Methods section for validation details).  
 
The average accuracy of the ref+ pipeline was 80% (σ=5%) while the accuracy of the GRC 
pipeline was 48% (σ=13%), an increase of 67% (Fig.  3, Supplementary Table 3).  As ex-
pected, the GRC pipeline had low sensitivity (average of 8.3%) compared to the ref+ pipeline 
(77.7%). The false discovery rate (FDR) was higher with the ref+ pipeline (30.6% average) 
than with the GRC pipeline (16.0% average), since the GRC pipeline made much fewer calls 
(avg=12) than did the ref+ pipeline (avg=96). However, the increase in sensitivity outweighed 
the decrease in FDR, as the average increase in the accuracy per sample was 31 percentage 
points.   
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Figure 1: Method workflow. a) In a tradi-
tional SV calling pipeline the reads are first 
aligned against the GRC reference and the 
alignments are passed to an SV caller, 
which annotates regions of the GRC refer-
ence as being inserted/deleted. b) Our ap-
proach is composed of two additional com-
ponents. BUILD_REF takes a set of se-
quences to be inserted and modifies the 
GRC reference genome (e.g. hg18) by in-
serting the sequences into their prescribed 
locations, obtaining a new genome (ref+). 
We next align the reads to ref+ and run a 
SV caller. The TRANSLATE_CALLS com-
ponent then modifies the resulting calls so 
that they become calls relative to the GRC 
reference, not ref+.   
 
 
 
 
 

Figure 2 An illustrative example. In the top 
scenario, a VNA (shown in red) is present 
in the donor. In ref+, only concordant 
alignments (correct orientation and mapped 
distance) are present. As a result, the SV 
caller does not make a call in ref+, which is 
converted by TRANSLATE_CALLS to an 
insertion call in the GRC reference (hg18). 
In the GRC reference, however, the read 
pairs that originate from across the VNA 
junction map discordantly, with one read 
left unmapped or falsely mapping to a ho-
mologous region. These signals in the GRC 
reference are difficult to decipher for any 
SV algorithm. In the bottom scenario, 
where the VNA is absent in the donor, the 
pairs that span the VNA injection point in 
the donor align concordantly to the GRC 
reference. In ref+, they align discordantly 
with an enlarged mapped distance but bear 
the hallmark signature of a deletion. This is 
among the easiest signals that an SV caller 
can detect and most algorithms show good 
results with respect to this SV type 
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We observe that the increase in accuracy de-
pends on the population. In the CEU popula-
tion, the mean increase was 44 percentage 
points, while in the CHB and YRI populations 
it was 28 and 20 points, respectively (Sup-
plementary Table 3). This is expected, given 
that we found that VNAs are more frequent in 
CEU than in CHB, and more frequent in CHB 
than in YRI (Supplementary Fig. 2). These 
findings for VNAs are consistent with the 
known genetic heritage of the HuRef genome 
[8]. 

 

3 Discussion 

The increased power offered by ref+ can help in genotyping variants of clinical importance, as 
some of the VNAs affect genes that play a role in disease. For example, our ref+ pipeline was 
able to detect an ALU insertion in the intronic region of CNTNAP2, a gene associated with au-
tism and schizophrenia (the GRC pipeline did not detect this insertion). In general, an aug-
mented reference can be used to target any known insertions of special interest. The approach 
here can be extended to include other novel sequences, such as the alternate haplotypes in-
cluded with GRCh38. 
Our results also suggest that an augmented reference can be used to decrease the costs of 
polymorphism discovery and detection in a population study. A single genome can be se-
quenced at high coverage to allow to de novo assemble novel insertions using methods such 
as [12, 5] and include them in an augmented reference. Other individuals in the population can 
then be sequenced at low coverage while allowing the detection of the novel insertions. A simi-
lar approach can be applied in a family setting, by sequencing the parents at high and the chil-
dren at low depth.  
 
The use of ref+ is not always recommended. For instance, if the goal is to detect SNPs, then 
the presence of repetitive VNAs in the alignment reference may create false mappings, thus 
decreasing SNP detection accuracy. Or, for detecting SVs in populations that are expected to 
have a low frequency of VNAs, the higher false discovery rate may outweigh the benefits of 
better sensitivity. 
 
The availability of longer reads (e.g. PacBio) can simplify the task of detecting variants longer 
than the Illumina read lengths. However, many insertions will remain too large to be captured 

Figure 3  Analysis of ref+ pipeline accura-
cy.  Each vertical line represents one indi-
vidual, with the plus (+) point representing 
the ref+ pipeline and the square point rep-
resenting the GRC pipeline.   
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even by long reads. Moreover, the use of long read technologies is still limited, the impact of 
their different error properties is yet to be fully assessed, and it is not clear if their use will be-
come ubiquitous or limited to certain applications. 
 
We have argued for the need to decouple the reference used for alignment from the reference 
used as a representative species genome. Our results indicate just one possible way that an 
alignment reference can be constructed to improve SV detection. Undoubtedly, the develop-
ment of new ideas will lead to approaches that improve accuracy even further. Ideally an 
alignment reference would capture all the possible alleles by using a graph, but such an ap-
proach would require more sophisticated alignment algorithms. In fact, two recent papers have 
shown how reads can be efficiently and accurately aligned to a reference graph that contains 
multiple genomes from a population [13, 14]. The further development of such graph alignment 
algorithms will enable more sophisticated approaches to building the best alignment reference. 
However, the trade-offs involved between representing a more complete set of alleles (e.g. 
graph based approach) and allowing the use of existing alignment methods (e.g. linear based 
approach such as ref+) are not yet clear. 

4 Methods 

4.1 Data 

We identified 229 Venter Novel Alleles (VNAs) as the insertions in HuRef [8] that meet the fol-
lowing criteria: the insertion locus (the locus in between two nucleotides in the GRC reference) 
does not fall into a repeat (according to the RepeatMasker track from the UCSC genome 
browser), is not within 300nt of a tandem repeat (simpleRepeat track on the UCSC genome 
browser), has unique mappability (100% according to the wgEncodeCrgMapabilityAlign100mer 
track on the UCSC genome browser), and the inserted sequence has a length greater than 
300nt. Supplementary Figure 1 visualizes these using the PhenoGram software [15]. These 
filters are intended to select a set of alleles which have the best potential to be detected with 
Illumina sequencing. Alleles that are embedded in repeats would be difficult to detect for both 
the GRC and ref+ pipelines, interfering with the interpretation of our results. Alleles shorter 
than 300nt are below Delly’s detection threshold on the available data. 
 
We selected 16 individuals from the 1000 Genomes Project as testing data (six with European 
background (CEU), five Chinese (CHB), and five African (YRI)) (Supplementary Table 1). We 
chose individuals to achieve a balance of background and to avoid related individuals (i.e. tri-
os). We also chose the individuals so that we had a high coverage of libraries with at least 
100nt reads and consistent insert sizes (around 350-450nt). We used only such runs since 
Delly utilizes a combination of split-read and paired-end information in the data to generate its 
output, and is therefore dependent on long reads as well as consistent insert sizes. 
 

4.2 Ref+ construction 

The augmented reference ref+ is constructed by creating new chromosomes that inject VNAs 
into the specified coordinates of hg18 (the build_ref script, Fig. 1b). This increases the chro-
mosome sizes and coordinates shift towards higher positions. We therefore generate a set of 
offsets that allows coordinate transfer between ref+ and hg18. The translate_calls script uses 
these offsets to translate calls relative to ref+ into calls relative to hg18. Calls in non-injected 
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regions are simply converted onto the corresponding co-ordinates of the hg18 reference. Dele-
tion calls in injected regions correspond to no variation relative to the GRC reference, while no-
calls in injected regions correspond to insertions relative to the GRC reference.   
 

4.3 SV calling pipeline 

To analyse the impact of different reference genomes, we create a standard bioinformatics 
pipeline that can be used in any project that analyzes SVs in NGS data. We chose a single al-
gorithm to perform the task of variant detection: Delly [11]. We chose Delly because it offers 
dedicated modules for deletion and duplication detection, and has been used in large-scale SV 
analyses [16]. However, any SV detection tool could be used. Reads are mapped to the refer-
ence genome (ref+ in the ref+ pipeline and hg18 in the GRC pipeline) with bowtie2 (2.0.0 beta 
7) in local mode. Then, Delly sub-modules are executed on aligned reads (delly for ref+, duppy 
for hg18). Delly version 0.0.9 is used. Next, the set of SV calls from Delly are analysed with re-
spect to the VNA sites. In hg18, duplications called within 500nt of a VNA insertion sites are 
regarded as predictions of VNA insertion. In ref+, we compare the deletion calls to the intervals 
corresponding to the VNA sites, and establish a Delly deletion of the VNA if the intervals over-
lap with an F-score higher than 0.1. The F-score is defined as 2PR/(P+R), where R is the pro-
portion of the VNA covered by a Delly call  (recall) and P is the proportion of the respective 
Delly call inside the VNA (precision). Finally, ref+ calls are translated into hg18 calls using the 
translate_calls script described above. 
 

4.4 Accuracy calculation 

We establish the accuracy of the ref+ and hg18 pipelines on account of how well they agree 
with the validation classifier. The validation classifier is our independent method to establish 
the allele status at a particular site and is described in the next section (Sec. 4.5). For each 
VNA site where the validation classifier is able to establish the status of the donor allele, we 
categorize it as a true positive (TP) or negative (TN) if our pipeline call agrees with the valida-
tion, or as a false positive (FP) or negative (FN) otherwise. More specifically, a TN is account-
ed for in hg18 if Delly does not call the site and the classifier evaluated the reference allele to 
be present homozygously; a homozygous reference allele paired with an insertion call by Delly 
is considered a FP; if both the alleles are present (heterozygous state) or the VNA is present 
homozygously, but Delly does not make call, it is a FN, otherwise a TP. Analogously, Delly de-
letion calls in ref+ are evaluated as TP for homozygous and heterozygous reference alleles, 
absent calls as FN; for homozygous VNAs a Delly call means a FP, and a TN upon absence of 
a call. The contingency tables for each of the samples for hg18 and ref+ are shown in Supple-
mentary Table 3. We use the standard formulas to calculate the accuracy as 
(TP+TN)/(TP+TN+FP+FN), the sensitivity as TP/(TP+FN), and the false discovery rate as 
FP/(TP+FP). 
 

4.5 Validation classifier details 

We designed our own classifier to assess VNAs upon their presence or absence in the sam-
ples, independently from the SV calling pipeline. The purpose of this classifier is to establish 
the true status of each VNA in a sample, so that we can evaluate the performance of the SV 
pipeline. The classifier operates with the knowledge of the VNA’s loci, and joins the signal from 
reads mapped to hg18 as well as ref+. Additionally, the sequencing data used by the classifier 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2015. ; https://doi.org/10.1101/019109doi: bioRxiv preprint 

https://doi.org/10.1101/019109


 

8 

is a superset of that available to Delly: some, but not all, of the samples have runs with differ-
ent library preparation available to them. Delly needs a homogeneous distribution of fragment 
lengths, but our classifier makes use of all the runs available. The read coverage utilised to 
classify alleles in each individual as well as the run accession numbers is shown in Supple-
mentary Table 4. 
 
The classifier establishes evidence for the reference allele if there are at least three reads 
spanning the VNA insertion site in hg18. We define a read as spanning if it overlaps the locus 
by at least 10nt on either side (this requirement is designed to exclude mis-mapped and soft-
clipped reads from the classification). The classifier then establishes support for the VNA if 
there are at least three reads spanning each the beginning of the VNA and its end in ref+. 
These two judgements are then used in the straightforward manner to classify the sample to 
be heterozygous, homozygous for the VNA, or homozygous for the hg18 allele. Some alleles 
can be classified as neither, if there is no evidence in hg18 and in ref+ (these alleles are then 
excluded from the analysis in the respective individual). The VNA frequency (VNAf) of an indi-
vidual is the percentage of alleles at the validated sites that are those of Venter. 
 
Unlike Delly, the validation classifier has a priori knowledge of the insertion or deletion sites 
and access to both the hg18 and ref+ alignments. This allows it to scrutinize the locus with sin-
gle nucleotide resolution, so we consider it more reliable than Delly’s approach, which is oblivi-
ous to the differences between the two reference genomes. Additionally, it has access to high-
er coverage data. The classifier will nevertheless misclassify some alleles; however, it is not 
biased towards ref+ or hg18, so any potential misclassifications do not skew the results of our 
analysis. 
 

5 Supporting information 

S1 Fig: Venter Novel Alleles locations. 
We show the location of the VNAs and the genes they overlap. The figure is generating using 
the PhenoGram software [15].  
 
S2 Fig:  Proportion of validated VNA sites that have a VNA allele, per individual, segregated 
by population (as judged by the validation classifier). 
 
S1 Table : Description of dataset.  
 
S2 Table: VNA annotations and presence in samples.  
This spreadsheet contains information about each VNA and its status in each individual. The 
columns indicate the location of the VNA insertion in hg18, the sequence of the VNA, the gene 
(if any) which it overlaps, a column for each of the 16 individuals indicating its pres-
ence/absence as determined by the ref+ pipeline, a column for its status as indicated by the 
GRC pipeline, and a column for the status as determined by our validation classifier. 
 
S3 Table: Pipeline accuracies.  
This table shows the accuracy of our ref+ and GRC pipelines for each of the individuals. For 
each sample, the validated sites are those for which our validation classifier finds evidence for 
at least one of the alleles (GRC or VNA).  
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S4 Table: Validation dataset 
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